linux/drivers/xen/xenbus/xenbus_client.c
<<
>>
Prefs
   1/******************************************************************************
   2 * Client-facing interface for the Xenbus driver.  In other words, the
   3 * interface between the Xenbus and the device-specific code, be it the
   4 * frontend or the backend of that driver.
   5 *
   6 * Copyright (C) 2005 XenSource Ltd
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version 2
  10 * as published by the Free Software Foundation; or, when distributed
  11 * separately from the Linux kernel or incorporated into other
  12 * software packages, subject to the following license:
  13 *
  14 * Permission is hereby granted, free of charge, to any person obtaining a copy
  15 * of this source file (the "Software"), to deal in the Software without
  16 * restriction, including without limitation the rights to use, copy, modify,
  17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
  18 * and to permit persons to whom the Software is furnished to do so, subject to
  19 * the following conditions:
  20 *
  21 * The above copyright notice and this permission notice shall be included in
  22 * all copies or substantial portions of the Software.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  30 * IN THE SOFTWARE.
  31 */
  32
  33#include <linux/mm.h>
  34#include <linux/slab.h>
  35#include <linux/types.h>
  36#include <linux/spinlock.h>
  37#include <linux/vmalloc.h>
  38#include <linux/export.h>
  39#include <asm/xen/hypervisor.h>
  40#include <xen/page.h>
  41#include <xen/interface/xen.h>
  42#include <xen/interface/event_channel.h>
  43#include <xen/balloon.h>
  44#include <xen/events.h>
  45#include <xen/grant_table.h>
  46#include <xen/xenbus.h>
  47#include <xen/xen.h>
  48#include <xen/features.h>
  49
  50#include "xenbus.h"
  51
  52#define XENBUS_PAGES(_grants)   (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
  53
  54#define XENBUS_MAX_RING_PAGES   (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
  55
  56struct xenbus_map_node {
  57        struct list_head next;
  58        union {
  59                struct {
  60                        struct vm_struct *area;
  61                } pv;
  62                struct {
  63                        struct page *pages[XENBUS_MAX_RING_PAGES];
  64                        unsigned long addrs[XENBUS_MAX_RING_GRANTS];
  65                        void *addr;
  66                } hvm;
  67        };
  68        grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
  69        unsigned int   nr_handles;
  70};
  71
  72static DEFINE_SPINLOCK(xenbus_valloc_lock);
  73static LIST_HEAD(xenbus_valloc_pages);
  74
  75struct xenbus_ring_ops {
  76        int (*map)(struct xenbus_device *dev,
  77                   grant_ref_t *gnt_refs, unsigned int nr_grefs,
  78                   void **vaddr);
  79        int (*unmap)(struct xenbus_device *dev, void *vaddr);
  80};
  81
  82static const struct xenbus_ring_ops *ring_ops __read_mostly;
  83
  84const char *xenbus_strstate(enum xenbus_state state)
  85{
  86        static const char *const name[] = {
  87                [ XenbusStateUnknown      ] = "Unknown",
  88                [ XenbusStateInitialising ] = "Initialising",
  89                [ XenbusStateInitWait     ] = "InitWait",
  90                [ XenbusStateInitialised  ] = "Initialised",
  91                [ XenbusStateConnected    ] = "Connected",
  92                [ XenbusStateClosing      ] = "Closing",
  93                [ XenbusStateClosed       ] = "Closed",
  94                [XenbusStateReconfiguring] = "Reconfiguring",
  95                [XenbusStateReconfigured] = "Reconfigured",
  96        };
  97        return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
  98}
  99EXPORT_SYMBOL_GPL(xenbus_strstate);
 100
 101/**
 102 * xenbus_watch_path - register a watch
 103 * @dev: xenbus device
 104 * @path: path to watch
 105 * @watch: watch to register
 106 * @callback: callback to register
 107 *
 108 * Register a @watch on the given path, using the given xenbus_watch structure
 109 * for storage, and the given @callback function as the callback.  Return 0 on
 110 * success, or -errno on error.  On success, the given @path will be saved as
 111 * @watch->node, and remains the caller's to free.  On error, @watch->node will
 112 * be NULL, the device will switch to %XenbusStateClosing, and the error will
 113 * be saved in the store.
 114 */
 115int xenbus_watch_path(struct xenbus_device *dev, const char *path,
 116                      struct xenbus_watch *watch,
 117                      void (*callback)(struct xenbus_watch *,
 118                                       const char *, const char *))
 119{
 120        int err;
 121
 122        watch->node = path;
 123        watch->callback = callback;
 124
 125        err = register_xenbus_watch(watch);
 126
 127        if (err) {
 128                watch->node = NULL;
 129                watch->callback = NULL;
 130                xenbus_dev_fatal(dev, err, "adding watch on %s", path);
 131        }
 132
 133        return err;
 134}
 135EXPORT_SYMBOL_GPL(xenbus_watch_path);
 136
 137
 138/**
 139 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
 140 * @dev: xenbus device
 141 * @watch: watch to register
 142 * @callback: callback to register
 143 * @pathfmt: format of path to watch
 144 *
 145 * Register a watch on the given @path, using the given xenbus_watch
 146 * structure for storage, and the given @callback function as the callback.
 147 * Return 0 on success, or -errno on error.  On success, the watched path
 148 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
 149 * kfree().  On error, watch->node will be NULL, so the caller has nothing to
 150 * free, the device will switch to %XenbusStateClosing, and the error will be
 151 * saved in the store.
 152 */
 153int xenbus_watch_pathfmt(struct xenbus_device *dev,
 154                         struct xenbus_watch *watch,
 155                         void (*callback)(struct xenbus_watch *,
 156                                          const char *, const char *),
 157                         const char *pathfmt, ...)
 158{
 159        int err;
 160        va_list ap;
 161        char *path;
 162
 163        va_start(ap, pathfmt);
 164        path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
 165        va_end(ap);
 166
 167        if (!path) {
 168                xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
 169                return -ENOMEM;
 170        }
 171        err = xenbus_watch_path(dev, path, watch, callback);
 172
 173        if (err)
 174                kfree(path);
 175        return err;
 176}
 177EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
 178
 179static void xenbus_switch_fatal(struct xenbus_device *, int, int,
 180                                const char *, ...);
 181
 182static int
 183__xenbus_switch_state(struct xenbus_device *dev,
 184                      enum xenbus_state state, int depth)
 185{
 186        /* We check whether the state is currently set to the given value, and
 187           if not, then the state is set.  We don't want to unconditionally
 188           write the given state, because we don't want to fire watches
 189           unnecessarily.  Furthermore, if the node has gone, we don't write
 190           to it, as the device will be tearing down, and we don't want to
 191           resurrect that directory.
 192
 193           Note that, because of this cached value of our state, this
 194           function will not take a caller's Xenstore transaction
 195           (something it was trying to in the past) because dev->state
 196           would not get reset if the transaction was aborted.
 197         */
 198
 199        struct xenbus_transaction xbt;
 200        int current_state;
 201        int err, abort;
 202
 203        if (state == dev->state)
 204                return 0;
 205
 206again:
 207        abort = 1;
 208
 209        err = xenbus_transaction_start(&xbt);
 210        if (err) {
 211                xenbus_switch_fatal(dev, depth, err, "starting transaction");
 212                return 0;
 213        }
 214
 215        err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
 216        if (err != 1)
 217                goto abort;
 218
 219        err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
 220        if (err) {
 221                xenbus_switch_fatal(dev, depth, err, "writing new state");
 222                goto abort;
 223        }
 224
 225        abort = 0;
 226abort:
 227        err = xenbus_transaction_end(xbt, abort);
 228        if (err) {
 229                if (err == -EAGAIN && !abort)
 230                        goto again;
 231                xenbus_switch_fatal(dev, depth, err, "ending transaction");
 232        } else
 233                dev->state = state;
 234
 235        return 0;
 236}
 237
 238/**
 239 * xenbus_switch_state
 240 * @dev: xenbus device
 241 * @state: new state
 242 *
 243 * Advertise in the store a change of the given driver to the given new_state.
 244 * Return 0 on success, or -errno on error.  On error, the device will switch
 245 * to XenbusStateClosing, and the error will be saved in the store.
 246 */
 247int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
 248{
 249        return __xenbus_switch_state(dev, state, 0);
 250}
 251
 252EXPORT_SYMBOL_GPL(xenbus_switch_state);
 253
 254int xenbus_frontend_closed(struct xenbus_device *dev)
 255{
 256        xenbus_switch_state(dev, XenbusStateClosed);
 257        complete(&dev->down);
 258        return 0;
 259}
 260EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
 261
 262static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
 263                                const char *fmt, va_list ap)
 264{
 265        unsigned int len;
 266        char *printf_buffer;
 267        char *path_buffer;
 268
 269#define PRINTF_BUFFER_SIZE 4096
 270
 271        printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
 272        if (!printf_buffer)
 273                return;
 274
 275        len = sprintf(printf_buffer, "%i ", -err);
 276        vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
 277
 278        dev_err(&dev->dev, "%s\n", printf_buffer);
 279
 280        path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
 281        if (!path_buffer ||
 282            xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer))
 283                dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
 284                        dev->nodename, printf_buffer);
 285
 286        kfree(printf_buffer);
 287        kfree(path_buffer);
 288}
 289
 290/**
 291 * xenbus_dev_error
 292 * @dev: xenbus device
 293 * @err: error to report
 294 * @fmt: error message format
 295 *
 296 * Report the given negative errno into the store, along with the given
 297 * formatted message.
 298 */
 299void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
 300{
 301        va_list ap;
 302
 303        va_start(ap, fmt);
 304        xenbus_va_dev_error(dev, err, fmt, ap);
 305        va_end(ap);
 306}
 307EXPORT_SYMBOL_GPL(xenbus_dev_error);
 308
 309/**
 310 * xenbus_dev_fatal
 311 * @dev: xenbus device
 312 * @err: error to report
 313 * @fmt: error message format
 314 *
 315 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
 316 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
 317 * closedown of this driver and its peer.
 318 */
 319
 320void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
 321{
 322        va_list ap;
 323
 324        va_start(ap, fmt);
 325        xenbus_va_dev_error(dev, err, fmt, ap);
 326        va_end(ap);
 327
 328        xenbus_switch_state(dev, XenbusStateClosing);
 329}
 330EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
 331
 332/**
 333 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
 334 * avoiding recursion within xenbus_switch_state.
 335 */
 336static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
 337                                const char *fmt, ...)
 338{
 339        va_list ap;
 340
 341        va_start(ap, fmt);
 342        xenbus_va_dev_error(dev, err, fmt, ap);
 343        va_end(ap);
 344
 345        if (!depth)
 346                __xenbus_switch_state(dev, XenbusStateClosing, 1);
 347}
 348
 349/**
 350 * xenbus_grant_ring
 351 * @dev: xenbus device
 352 * @vaddr: starting virtual address of the ring
 353 * @nr_pages: number of pages to be granted
 354 * @grefs: grant reference array to be filled in
 355 *
 356 * Grant access to the given @vaddr to the peer of the given device.
 357 * Then fill in @grefs with grant references.  Return 0 on success, or
 358 * -errno on error.  On error, the device will switch to
 359 * XenbusStateClosing, and the error will be saved in the store.
 360 */
 361int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
 362                      unsigned int nr_pages, grant_ref_t *grefs)
 363{
 364        int err;
 365        int i, j;
 366
 367        for (i = 0; i < nr_pages; i++) {
 368                err = gnttab_grant_foreign_access(dev->otherend_id,
 369                                                  virt_to_gfn(vaddr), 0);
 370                if (err < 0) {
 371                        xenbus_dev_fatal(dev, err,
 372                                         "granting access to ring page");
 373                        goto fail;
 374                }
 375                grefs[i] = err;
 376
 377                vaddr = vaddr + XEN_PAGE_SIZE;
 378        }
 379
 380        return 0;
 381
 382fail:
 383        for (j = 0; j < i; j++)
 384                gnttab_end_foreign_access_ref(grefs[j], 0);
 385        return err;
 386}
 387EXPORT_SYMBOL_GPL(xenbus_grant_ring);
 388
 389
 390/**
 391 * Allocate an event channel for the given xenbus_device, assigning the newly
 392 * created local port to *port.  Return 0 on success, or -errno on error.  On
 393 * error, the device will switch to XenbusStateClosing, and the error will be
 394 * saved in the store.
 395 */
 396int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
 397{
 398        struct evtchn_alloc_unbound alloc_unbound;
 399        int err;
 400
 401        alloc_unbound.dom = DOMID_SELF;
 402        alloc_unbound.remote_dom = dev->otherend_id;
 403
 404        err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
 405                                          &alloc_unbound);
 406        if (err)
 407                xenbus_dev_fatal(dev, err, "allocating event channel");
 408        else
 409                *port = alloc_unbound.port;
 410
 411        return err;
 412}
 413EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
 414
 415
 416/**
 417 * Free an existing event channel. Returns 0 on success or -errno on error.
 418 */
 419int xenbus_free_evtchn(struct xenbus_device *dev, int port)
 420{
 421        struct evtchn_close close;
 422        int err;
 423
 424        close.port = port;
 425
 426        err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
 427        if (err)
 428                xenbus_dev_error(dev, err, "freeing event channel %d", port);
 429
 430        return err;
 431}
 432EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
 433
 434
 435/**
 436 * xenbus_map_ring_valloc
 437 * @dev: xenbus device
 438 * @gnt_refs: grant reference array
 439 * @nr_grefs: number of grant references
 440 * @vaddr: pointer to address to be filled out by mapping
 441 *
 442 * Map @nr_grefs pages of memory into this domain from another
 443 * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
 444 * pages of virtual address space, maps the pages to that address, and
 445 * sets *vaddr to that address.  Returns 0 on success, and GNTST_*
 446 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
 447 * error. If an error is returned, device will switch to
 448 * XenbusStateClosing and the error message will be saved in XenStore.
 449 */
 450int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
 451                           unsigned int nr_grefs, void **vaddr)
 452{
 453        return ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
 454}
 455EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
 456
 457/* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
 458 * long), e.g. 32-on-64.  Caller is responsible for preparing the
 459 * right array to feed into this function */
 460static int __xenbus_map_ring(struct xenbus_device *dev,
 461                             grant_ref_t *gnt_refs,
 462                             unsigned int nr_grefs,
 463                             grant_handle_t *handles,
 464                             phys_addr_t *addrs,
 465                             unsigned int flags,
 466                             bool *leaked)
 467{
 468        struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
 469        struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
 470        int i, j;
 471        int err = GNTST_okay;
 472
 473        if (nr_grefs > XENBUS_MAX_RING_GRANTS)
 474                return -EINVAL;
 475
 476        for (i = 0; i < nr_grefs; i++) {
 477                memset(&map[i], 0, sizeof(map[i]));
 478                gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
 479                                  dev->otherend_id);
 480                handles[i] = INVALID_GRANT_HANDLE;
 481        }
 482
 483        gnttab_batch_map(map, i);
 484
 485        for (i = 0; i < nr_grefs; i++) {
 486                if (map[i].status != GNTST_okay) {
 487                        err = map[i].status;
 488                        xenbus_dev_fatal(dev, map[i].status,
 489                                         "mapping in shared page %d from domain %d",
 490                                         gnt_refs[i], dev->otherend_id);
 491                        goto fail;
 492                } else
 493                        handles[i] = map[i].handle;
 494        }
 495
 496        return GNTST_okay;
 497
 498 fail:
 499        for (i = j = 0; i < nr_grefs; i++) {
 500                if (handles[i] != INVALID_GRANT_HANDLE) {
 501                        memset(&unmap[j], 0, sizeof(unmap[j]));
 502                        gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
 503                                            GNTMAP_host_map, handles[i]);
 504                        j++;
 505                }
 506        }
 507
 508        if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
 509                BUG();
 510
 511        *leaked = false;
 512        for (i = 0; i < j; i++) {
 513                if (unmap[i].status != GNTST_okay) {
 514                        *leaked = true;
 515                        break;
 516                }
 517        }
 518
 519        return err;
 520}
 521
 522struct map_ring_valloc_hvm
 523{
 524        unsigned int idx;
 525
 526        /* Why do we need two arrays? See comment of __xenbus_map_ring */
 527        phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
 528        unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 529};
 530
 531static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
 532                                            unsigned int goffset,
 533                                            unsigned int len,
 534                                            void *data)
 535{
 536        struct map_ring_valloc_hvm *info = data;
 537        unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
 538
 539        info->phys_addrs[info->idx] = vaddr;
 540        info->addrs[info->idx] = vaddr;
 541
 542        info->idx++;
 543}
 544
 545static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
 546                                      grant_ref_t *gnt_ref,
 547                                      unsigned int nr_grefs,
 548                                      void **vaddr)
 549{
 550        struct xenbus_map_node *node;
 551        int err;
 552        void *addr;
 553        bool leaked = false;
 554        struct map_ring_valloc_hvm info = {
 555                .idx = 0,
 556        };
 557        unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
 558
 559        if (nr_grefs > XENBUS_MAX_RING_GRANTS)
 560                return -EINVAL;
 561
 562        *vaddr = NULL;
 563
 564        node = kzalloc(sizeof(*node), GFP_KERNEL);
 565        if (!node)
 566                return -ENOMEM;
 567
 568        err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
 569        if (err)
 570                goto out_err;
 571
 572        gnttab_foreach_grant(node->hvm.pages, nr_grefs,
 573                             xenbus_map_ring_setup_grant_hvm,
 574                             &info);
 575
 576        err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
 577                                info.phys_addrs, GNTMAP_host_map, &leaked);
 578        node->nr_handles = nr_grefs;
 579
 580        if (err)
 581                goto out_free_ballooned_pages;
 582
 583        addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
 584                    PAGE_KERNEL);
 585        if (!addr) {
 586                err = -ENOMEM;
 587                goto out_xenbus_unmap_ring;
 588        }
 589
 590        node->hvm.addr = addr;
 591
 592        spin_lock(&xenbus_valloc_lock);
 593        list_add(&node->next, &xenbus_valloc_pages);
 594        spin_unlock(&xenbus_valloc_lock);
 595
 596        *vaddr = addr;
 597        return 0;
 598
 599 out_xenbus_unmap_ring:
 600        if (!leaked)
 601                xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
 602        else
 603                pr_alert("leaking %p size %u page(s)",
 604                         addr, nr_pages);
 605 out_free_ballooned_pages:
 606        if (!leaked)
 607                free_xenballooned_pages(nr_pages, node->hvm.pages);
 608 out_err:
 609        kfree(node);
 610        return err;
 611}
 612
 613
 614/**
 615 * xenbus_map_ring
 616 * @dev: xenbus device
 617 * @gnt_refs: grant reference array
 618 * @nr_grefs: number of grant reference
 619 * @handles: pointer to grant handle to be filled
 620 * @vaddrs: addresses to be mapped to
 621 * @leaked: fail to clean up a failed map, caller should not free vaddr
 622 *
 623 * Map pages of memory into this domain from another domain's grant table.
 624 * xenbus_map_ring does not allocate the virtual address space (you must do
 625 * this yourself!). It only maps in the pages to the specified address.
 626 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
 627 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
 628 * XenbusStateClosing and the first error message will be saved in XenStore.
 629 * Further more if we fail to map the ring, caller should check @leaked.
 630 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
 631 * should not free the address space of @vaddr.
 632 */
 633int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
 634                    unsigned int nr_grefs, grant_handle_t *handles,
 635                    unsigned long *vaddrs, bool *leaked)
 636{
 637        phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
 638        int i;
 639
 640        if (nr_grefs > XENBUS_MAX_RING_GRANTS)
 641                return -EINVAL;
 642
 643        for (i = 0; i < nr_grefs; i++)
 644                phys_addrs[i] = (unsigned long)vaddrs[i];
 645
 646        return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
 647                                 phys_addrs, GNTMAP_host_map, leaked);
 648}
 649EXPORT_SYMBOL_GPL(xenbus_map_ring);
 650
 651
 652/**
 653 * xenbus_unmap_ring_vfree
 654 * @dev: xenbus device
 655 * @vaddr: addr to unmap
 656 *
 657 * Based on Rusty Russell's skeleton driver's unmap_page.
 658 * Unmap a page of memory in this domain that was imported from another domain.
 659 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
 660 * xenbus_map_ring_valloc (it will free the virtual address space).
 661 * Returns 0 on success and returns GNTST_* on error
 662 * (see xen/include/interface/grant_table.h).
 663 */
 664int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
 665{
 666        return ring_ops->unmap(dev, vaddr);
 667}
 668EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
 669
 670#ifdef CONFIG_XEN_PV
 671static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
 672                                     grant_ref_t *gnt_refs,
 673                                     unsigned int nr_grefs,
 674                                     void **vaddr)
 675{
 676        struct xenbus_map_node *node;
 677        struct vm_struct *area;
 678        pte_t *ptes[XENBUS_MAX_RING_GRANTS];
 679        phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
 680        int err = GNTST_okay;
 681        int i;
 682        bool leaked;
 683
 684        *vaddr = NULL;
 685
 686        if (nr_grefs > XENBUS_MAX_RING_GRANTS)
 687                return -EINVAL;
 688
 689        node = kzalloc(sizeof(*node), GFP_KERNEL);
 690        if (!node)
 691                return -ENOMEM;
 692
 693        area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
 694        if (!area) {
 695                kfree(node);
 696                return -ENOMEM;
 697        }
 698
 699        for (i = 0; i < nr_grefs; i++)
 700                phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
 701
 702        err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
 703                                phys_addrs,
 704                                GNTMAP_host_map | GNTMAP_contains_pte,
 705                                &leaked);
 706        if (err)
 707                goto failed;
 708
 709        node->nr_handles = nr_grefs;
 710        node->pv.area = area;
 711
 712        spin_lock(&xenbus_valloc_lock);
 713        list_add(&node->next, &xenbus_valloc_pages);
 714        spin_unlock(&xenbus_valloc_lock);
 715
 716        *vaddr = area->addr;
 717        return 0;
 718
 719failed:
 720        if (!leaked)
 721                free_vm_area(area);
 722        else
 723                pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
 724
 725        kfree(node);
 726        return err;
 727}
 728
 729static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
 730{
 731        struct xenbus_map_node *node;
 732        struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
 733        unsigned int level;
 734        int i;
 735        bool leaked = false;
 736        int err;
 737
 738        spin_lock(&xenbus_valloc_lock);
 739        list_for_each_entry(node, &xenbus_valloc_pages, next) {
 740                if (node->pv.area->addr == vaddr) {
 741                        list_del(&node->next);
 742                        goto found;
 743                }
 744        }
 745        node = NULL;
 746 found:
 747        spin_unlock(&xenbus_valloc_lock);
 748
 749        if (!node) {
 750                xenbus_dev_error(dev, -ENOENT,
 751                                 "can't find mapped virtual address %p", vaddr);
 752                return GNTST_bad_virt_addr;
 753        }
 754
 755        for (i = 0; i < node->nr_handles; i++) {
 756                unsigned long addr;
 757
 758                memset(&unmap[i], 0, sizeof(unmap[i]));
 759                addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
 760                unmap[i].host_addr = arbitrary_virt_to_machine(
 761                        lookup_address(addr, &level)).maddr;
 762                unmap[i].dev_bus_addr = 0;
 763                unmap[i].handle = node->handles[i];
 764        }
 765
 766        if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
 767                BUG();
 768
 769        err = GNTST_okay;
 770        leaked = false;
 771        for (i = 0; i < node->nr_handles; i++) {
 772                if (unmap[i].status != GNTST_okay) {
 773                        leaked = true;
 774                        xenbus_dev_error(dev, unmap[i].status,
 775                                         "unmapping page at handle %d error %d",
 776                                         node->handles[i], unmap[i].status);
 777                        err = unmap[i].status;
 778                        break;
 779                }
 780        }
 781
 782        if (!leaked)
 783                free_vm_area(node->pv.area);
 784        else
 785                pr_alert("leaking VM area %p size %u page(s)",
 786                         node->pv.area, node->nr_handles);
 787
 788        kfree(node);
 789        return err;
 790}
 791
 792static const struct xenbus_ring_ops ring_ops_pv = {
 793        .map = xenbus_map_ring_valloc_pv,
 794        .unmap = xenbus_unmap_ring_vfree_pv,
 795};
 796#endif
 797
 798struct unmap_ring_vfree_hvm
 799{
 800        unsigned int idx;
 801        unsigned long addrs[XENBUS_MAX_RING_GRANTS];
 802};
 803
 804static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
 805                                              unsigned int goffset,
 806                                              unsigned int len,
 807                                              void *data)
 808{
 809        struct unmap_ring_vfree_hvm *info = data;
 810
 811        info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
 812
 813        info->idx++;
 814}
 815
 816static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
 817{
 818        int rv;
 819        struct xenbus_map_node *node;
 820        void *addr;
 821        struct unmap_ring_vfree_hvm info = {
 822                .idx = 0,
 823        };
 824        unsigned int nr_pages;
 825
 826        spin_lock(&xenbus_valloc_lock);
 827        list_for_each_entry(node, &xenbus_valloc_pages, next) {
 828                addr = node->hvm.addr;
 829                if (addr == vaddr) {
 830                        list_del(&node->next);
 831                        goto found;
 832                }
 833        }
 834        node = addr = NULL;
 835 found:
 836        spin_unlock(&xenbus_valloc_lock);
 837
 838        if (!node) {
 839                xenbus_dev_error(dev, -ENOENT,
 840                                 "can't find mapped virtual address %p", vaddr);
 841                return GNTST_bad_virt_addr;
 842        }
 843
 844        nr_pages = XENBUS_PAGES(node->nr_handles);
 845
 846        gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
 847                             xenbus_unmap_ring_setup_grant_hvm,
 848                             &info);
 849
 850        rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
 851                               info.addrs);
 852        if (!rv) {
 853                vunmap(vaddr);
 854                free_xenballooned_pages(nr_pages, node->hvm.pages);
 855        }
 856        else
 857                WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
 858
 859        kfree(node);
 860        return rv;
 861}
 862
 863/**
 864 * xenbus_unmap_ring
 865 * @dev: xenbus device
 866 * @handles: grant handle array
 867 * @nr_handles: number of handles in the array
 868 * @vaddrs: addresses to unmap
 869 *
 870 * Unmap memory in this domain that was imported from another domain.
 871 * Returns 0 on success and returns GNTST_* on error
 872 * (see xen/include/interface/grant_table.h).
 873 */
 874int xenbus_unmap_ring(struct xenbus_device *dev,
 875                      grant_handle_t *handles, unsigned int nr_handles,
 876                      unsigned long *vaddrs)
 877{
 878        struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
 879        int i;
 880        int err;
 881
 882        if (nr_handles > XENBUS_MAX_RING_GRANTS)
 883                return -EINVAL;
 884
 885        for (i = 0; i < nr_handles; i++)
 886                gnttab_set_unmap_op(&unmap[i], vaddrs[i],
 887                                    GNTMAP_host_map, handles[i]);
 888
 889        if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
 890                BUG();
 891
 892        err = GNTST_okay;
 893        for (i = 0; i < nr_handles; i++) {
 894                if (unmap[i].status != GNTST_okay) {
 895                        xenbus_dev_error(dev, unmap[i].status,
 896                                         "unmapping page at handle %d error %d",
 897                                         handles[i], unmap[i].status);
 898                        err = unmap[i].status;
 899                        break;
 900                }
 901        }
 902
 903        return err;
 904}
 905EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
 906
 907
 908/**
 909 * xenbus_read_driver_state
 910 * @path: path for driver
 911 *
 912 * Return the state of the driver rooted at the given store path, or
 913 * XenbusStateUnknown if no state can be read.
 914 */
 915enum xenbus_state xenbus_read_driver_state(const char *path)
 916{
 917        enum xenbus_state result;
 918        int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
 919        if (err)
 920                result = XenbusStateUnknown;
 921
 922        return result;
 923}
 924EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
 925
 926static const struct xenbus_ring_ops ring_ops_hvm = {
 927        .map = xenbus_map_ring_valloc_hvm,
 928        .unmap = xenbus_unmap_ring_vfree_hvm,
 929};
 930
 931void __init xenbus_ring_ops_init(void)
 932{
 933#ifdef CONFIG_XEN_PV
 934        if (!xen_feature(XENFEAT_auto_translated_physmap))
 935                ring_ops = &ring_ops_pv;
 936        else
 937#endif
 938                ring_ops = &ring_ops_hvm;
 939}
 940