linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48        "sb_writers",
  49        "sb_pagefaults",
  50        "sb_internal",
  51};
  52
  53/*
  54 * One thing we have to be careful of with a per-sb shrinker is that we don't
  55 * drop the last active reference to the superblock from within the shrinker.
  56 * If that happens we could trigger unregistering the shrinker from within the
  57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  58 * take a passive reference to the superblock to avoid this from occurring.
  59 */
  60static unsigned long super_cache_scan(struct shrinker *shrink,
  61                                      struct shrink_control *sc)
  62{
  63        struct super_block *sb;
  64        long    fs_objects = 0;
  65        long    total_objects;
  66        long    freed = 0;
  67        long    dentries;
  68        long    inodes;
  69
  70        sb = container_of(shrink, struct super_block, s_shrink);
  71
  72        /*
  73         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  74         * to recurse into the FS that called us in clear_inode() and friends..
  75         */
  76        if (!(sc->gfp_mask & __GFP_FS))
  77                return SHRINK_STOP;
  78
  79        if (!trylock_super(sb))
  80                return SHRINK_STOP;
  81
  82        if (sb->s_op->nr_cached_objects)
  83                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  84
  85        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  86        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  87        total_objects = dentries + inodes + fs_objects + 1;
  88        if (!total_objects)
  89                total_objects = 1;
  90
  91        /* proportion the scan between the caches */
  92        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  93        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  94        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  95
  96        /*
  97         * prune the dcache first as the icache is pinned by it, then
  98         * prune the icache, followed by the filesystem specific caches
  99         *
 100         * Ensure that we always scan at least one object - memcg kmem
 101         * accounting uses this to fully empty the caches.
 102         */
 103        sc->nr_to_scan = dentries + 1;
 104        freed = prune_dcache_sb(sb, sc);
 105        sc->nr_to_scan = inodes + 1;
 106        freed += prune_icache_sb(sb, sc);
 107
 108        if (fs_objects) {
 109                sc->nr_to_scan = fs_objects + 1;
 110                freed += sb->s_op->free_cached_objects(sb, sc);
 111        }
 112
 113        up_read(&sb->s_umount);
 114        return freed;
 115}
 116
 117static unsigned long super_cache_count(struct shrinker *shrink,
 118                                       struct shrink_control *sc)
 119{
 120        struct super_block *sb;
 121        long    total_objects = 0;
 122
 123        sb = container_of(shrink, struct super_block, s_shrink);
 124
 125        /*
 126         * We don't call trylock_super() here as it is a scalability bottleneck,
 127         * so we're exposed to partial setup state. The shrinker rwsem does not
 128         * protect filesystem operations backing list_lru_shrink_count() or
 129         * s_op->nr_cached_objects(). Counts can change between
 130         * super_cache_count and super_cache_scan, so we really don't need locks
 131         * here.
 132         *
 133         * However, if we are currently mounting the superblock, the underlying
 134         * filesystem might be in a state of partial construction and hence it
 135         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 136         * avoid this situation, so do the same here. The memory barrier is
 137         * matched with the one in mount_fs() as we don't hold locks here.
 138         */
 139        if (!(sb->s_flags & SB_BORN))
 140                return 0;
 141        smp_rmb();
 142
 143        if (sb->s_op && sb->s_op->nr_cached_objects)
 144                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 145
 146        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 147        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 148
 149        if (!total_objects)
 150                return SHRINK_EMPTY;
 151
 152        total_objects = vfs_pressure_ratio(total_objects);
 153        return total_objects;
 154}
 155
 156static void destroy_super_work(struct work_struct *work)
 157{
 158        struct super_block *s = container_of(work, struct super_block,
 159                                                        destroy_work);
 160        int i;
 161
 162        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 163                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 164        kfree(s);
 165}
 166
 167static void destroy_super_rcu(struct rcu_head *head)
 168{
 169        struct super_block *s = container_of(head, struct super_block, rcu);
 170        INIT_WORK(&s->destroy_work, destroy_super_work);
 171        schedule_work(&s->destroy_work);
 172}
 173
 174/* Free a superblock that has never been seen by anyone */
 175static void destroy_unused_super(struct super_block *s)
 176{
 177        if (!s)
 178                return;
 179        up_write(&s->s_umount);
 180        list_lru_destroy(&s->s_dentry_lru);
 181        list_lru_destroy(&s->s_inode_lru);
 182        security_sb_free(s);
 183        put_user_ns(s->s_user_ns);
 184        kfree(s->s_subtype);
 185        free_prealloced_shrinker(&s->s_shrink);
 186        /* no delays needed */
 187        destroy_super_work(&s->destroy_work);
 188}
 189
 190/**
 191 *      alloc_super     -       create new superblock
 192 *      @type:  filesystem type superblock should belong to
 193 *      @flags: the mount flags
 194 *      @user_ns: User namespace for the super_block
 195 *
 196 *      Allocates and initializes a new &struct super_block.  alloc_super()
 197 *      returns a pointer new superblock or %NULL if allocation had failed.
 198 */
 199static struct super_block *alloc_super(struct file_system_type *type, int flags,
 200                                       struct user_namespace *user_ns)
 201{
 202        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 203        static const struct super_operations default_op;
 204        int i;
 205
 206        if (!s)
 207                return NULL;
 208
 209        INIT_LIST_HEAD(&s->s_mounts);
 210        s->s_user_ns = get_user_ns(user_ns);
 211        init_rwsem(&s->s_umount);
 212        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 213        /*
 214         * sget() can have s_umount recursion.
 215         *
 216         * When it cannot find a suitable sb, it allocates a new
 217         * one (this one), and tries again to find a suitable old
 218         * one.
 219         *
 220         * In case that succeeds, it will acquire the s_umount
 221         * lock of the old one. Since these are clearly distrinct
 222         * locks, and this object isn't exposed yet, there's no
 223         * risk of deadlocks.
 224         *
 225         * Annotate this by putting this lock in a different
 226         * subclass.
 227         */
 228        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 229
 230        if (security_sb_alloc(s))
 231                goto fail;
 232
 233        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 234                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 235                                        sb_writers_name[i],
 236                                        &type->s_writers_key[i]))
 237                        goto fail;
 238        }
 239        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 240        s->s_bdi = &noop_backing_dev_info;
 241        s->s_flags = flags;
 242        if (s->s_user_ns != &init_user_ns)
 243                s->s_iflags |= SB_I_NODEV;
 244        INIT_HLIST_NODE(&s->s_instances);
 245        INIT_HLIST_BL_HEAD(&s->s_roots);
 246        mutex_init(&s->s_sync_lock);
 247        INIT_LIST_HEAD(&s->s_inodes);
 248        spin_lock_init(&s->s_inode_list_lock);
 249        INIT_LIST_HEAD(&s->s_inodes_wb);
 250        spin_lock_init(&s->s_inode_wblist_lock);
 251
 252        s->s_count = 1;
 253        atomic_set(&s->s_active, 1);
 254        mutex_init(&s->s_vfs_rename_mutex);
 255        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 256        init_rwsem(&s->s_dquot.dqio_sem);
 257        s->s_maxbytes = MAX_NON_LFS;
 258        s->s_op = &default_op;
 259        s->s_time_gran = 1000000000;
 260        s->s_time_min = TIME64_MIN;
 261        s->s_time_max = TIME64_MAX;
 262        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 263
 264        s->s_shrink.seeks = DEFAULT_SEEKS;
 265        s->s_shrink.scan_objects = super_cache_scan;
 266        s->s_shrink.count_objects = super_cache_count;
 267        s->s_shrink.batch = 1024;
 268        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 269        if (prealloc_shrinker(&s->s_shrink))
 270                goto fail;
 271        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 272                goto fail;
 273        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 274                goto fail;
 275        return s;
 276
 277fail:
 278        destroy_unused_super(s);
 279        return NULL;
 280}
 281
 282/* Superblock refcounting  */
 283
 284/*
 285 * Drop a superblock's refcount.  The caller must hold sb_lock.
 286 */
 287static void __put_super(struct super_block *s)
 288{
 289        if (!--s->s_count) {
 290                list_del_init(&s->s_list);
 291                WARN_ON(s->s_dentry_lru.node);
 292                WARN_ON(s->s_inode_lru.node);
 293                WARN_ON(!list_empty(&s->s_mounts));
 294                security_sb_free(s);
 295                put_user_ns(s->s_user_ns);
 296                kfree(s->s_subtype);
 297                call_rcu(&s->rcu, destroy_super_rcu);
 298        }
 299}
 300
 301/**
 302 *      put_super       -       drop a temporary reference to superblock
 303 *      @sb: superblock in question
 304 *
 305 *      Drops a temporary reference, frees superblock if there's no
 306 *      references left.
 307 */
 308static void put_super(struct super_block *sb)
 309{
 310        spin_lock(&sb_lock);
 311        __put_super(sb);
 312        spin_unlock(&sb_lock);
 313}
 314
 315
 316/**
 317 *      deactivate_locked_super -       drop an active reference to superblock
 318 *      @s: superblock to deactivate
 319 *
 320 *      Drops an active reference to superblock, converting it into a temporary
 321 *      one if there is no other active references left.  In that case we
 322 *      tell fs driver to shut it down and drop the temporary reference we
 323 *      had just acquired.
 324 *
 325 *      Caller holds exclusive lock on superblock; that lock is released.
 326 */
 327void deactivate_locked_super(struct super_block *s)
 328{
 329        struct file_system_type *fs = s->s_type;
 330        if (atomic_dec_and_test(&s->s_active)) {
 331                cleancache_invalidate_fs(s);
 332                unregister_shrinker(&s->s_shrink);
 333                fs->kill_sb(s);
 334
 335                /*
 336                 * Since list_lru_destroy() may sleep, we cannot call it from
 337                 * put_super(), where we hold the sb_lock. Therefore we destroy
 338                 * the lru lists right now.
 339                 */
 340                list_lru_destroy(&s->s_dentry_lru);
 341                list_lru_destroy(&s->s_inode_lru);
 342
 343                put_filesystem(fs);
 344                put_super(s);
 345        } else {
 346                up_write(&s->s_umount);
 347        }
 348}
 349
 350EXPORT_SYMBOL(deactivate_locked_super);
 351
 352/**
 353 *      deactivate_super        -       drop an active reference to superblock
 354 *      @s: superblock to deactivate
 355 *
 356 *      Variant of deactivate_locked_super(), except that superblock is *not*
 357 *      locked by caller.  If we are going to drop the final active reference,
 358 *      lock will be acquired prior to that.
 359 */
 360void deactivate_super(struct super_block *s)
 361{
 362        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 363                down_write(&s->s_umount);
 364                deactivate_locked_super(s);
 365        }
 366}
 367
 368EXPORT_SYMBOL(deactivate_super);
 369
 370/**
 371 *      grab_super - acquire an active reference
 372 *      @s: reference we are trying to make active
 373 *
 374 *      Tries to acquire an active reference.  grab_super() is used when we
 375 *      had just found a superblock in super_blocks or fs_type->fs_supers
 376 *      and want to turn it into a full-blown active reference.  grab_super()
 377 *      is called with sb_lock held and drops it.  Returns 1 in case of
 378 *      success, 0 if we had failed (superblock contents was already dead or
 379 *      dying when grab_super() had been called).  Note that this is only
 380 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 381 *      of their type), so increment of ->s_count is OK here.
 382 */
 383static int grab_super(struct super_block *s) __releases(sb_lock)
 384{
 385        s->s_count++;
 386        spin_unlock(&sb_lock);
 387        down_write(&s->s_umount);
 388        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 389                put_super(s);
 390                return 1;
 391        }
 392        up_write(&s->s_umount);
 393        put_super(s);
 394        return 0;
 395}
 396
 397/*
 398 *      trylock_super - try to grab ->s_umount shared
 399 *      @sb: reference we are trying to grab
 400 *
 401 *      Try to prevent fs shutdown.  This is used in places where we
 402 *      cannot take an active reference but we need to ensure that the
 403 *      filesystem is not shut down while we are working on it. It returns
 404 *      false if we cannot acquire s_umount or if we lose the race and
 405 *      filesystem already got into shutdown, and returns true with the s_umount
 406 *      lock held in read mode in case of success. On successful return,
 407 *      the caller must drop the s_umount lock when done.
 408 *
 409 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 410 *      The reason why it's safe is that we are OK with doing trylock instead
 411 *      of down_read().  There's a couple of places that are OK with that, but
 412 *      it's very much not a general-purpose interface.
 413 */
 414bool trylock_super(struct super_block *sb)
 415{
 416        if (down_read_trylock(&sb->s_umount)) {
 417                if (!hlist_unhashed(&sb->s_instances) &&
 418                    sb->s_root && (sb->s_flags & SB_BORN))
 419                        return true;
 420                up_read(&sb->s_umount);
 421        }
 422
 423        return false;
 424}
 425
 426/**
 427 *      generic_shutdown_super  -       common helper for ->kill_sb()
 428 *      @sb: superblock to kill
 429 *
 430 *      generic_shutdown_super() does all fs-independent work on superblock
 431 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 432 *      that need destruction out of superblock, call generic_shutdown_super()
 433 *      and release aforementioned objects.  Note: dentries and inodes _are_
 434 *      taken care of and do not need specific handling.
 435 *
 436 *      Upon calling this function, the filesystem may no longer alter or
 437 *      rearrange the set of dentries belonging to this super_block, nor may it
 438 *      change the attachments of dentries to inodes.
 439 */
 440void generic_shutdown_super(struct super_block *sb)
 441{
 442        const struct super_operations *sop = sb->s_op;
 443
 444        if (sb->s_root) {
 445                shrink_dcache_for_umount(sb);
 446                sync_filesystem(sb);
 447                sb->s_flags &= ~SB_ACTIVE;
 448
 449                cgroup_writeback_umount();
 450
 451                /* evict all inodes with zero refcount */
 452                evict_inodes(sb);
 453                /* only nonzero refcount inodes can have marks */
 454                fsnotify_unmount_inodes(sb);
 455
 456                if (sb->s_dio_done_wq) {
 457                        destroy_workqueue(sb->s_dio_done_wq);
 458                        sb->s_dio_done_wq = NULL;
 459                }
 460
 461                if (sop->put_super)
 462                        sop->put_super(sb);
 463
 464                if (!list_empty(&sb->s_inodes)) {
 465                        printk("VFS: Busy inodes after unmount of %s. "
 466                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 467                           sb->s_id);
 468                }
 469        }
 470        spin_lock(&sb_lock);
 471        /* should be initialized for __put_super_and_need_restart() */
 472        hlist_del_init(&sb->s_instances);
 473        spin_unlock(&sb_lock);
 474        up_write(&sb->s_umount);
 475        if (sb->s_bdi != &noop_backing_dev_info) {
 476                bdi_put(sb->s_bdi);
 477                sb->s_bdi = &noop_backing_dev_info;
 478        }
 479}
 480
 481EXPORT_SYMBOL(generic_shutdown_super);
 482
 483bool mount_capable(struct fs_context *fc)
 484{
 485        if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 486                return capable(CAP_SYS_ADMIN);
 487        else
 488                return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 489}
 490
 491/**
 492 * sget_fc - Find or create a superblock
 493 * @fc: Filesystem context.
 494 * @test: Comparison callback
 495 * @set: Setup callback
 496 *
 497 * Find or create a superblock using the parameters stored in the filesystem
 498 * context and the two callback functions.
 499 *
 500 * If an extant superblock is matched, then that will be returned with an
 501 * elevated reference count that the caller must transfer or discard.
 502 *
 503 * If no match is made, a new superblock will be allocated and basic
 504 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 505 * the set() callback will be invoked), the superblock will be published and it
 506 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 507 * as yet unset.
 508 */
 509struct super_block *sget_fc(struct fs_context *fc,
 510                            int (*test)(struct super_block *, struct fs_context *),
 511                            int (*set)(struct super_block *, struct fs_context *))
 512{
 513        struct super_block *s = NULL;
 514        struct super_block *old;
 515        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 516        int err;
 517
 518retry:
 519        spin_lock(&sb_lock);
 520        if (test) {
 521                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 522                        if (test(old, fc))
 523                                goto share_extant_sb;
 524                }
 525        }
 526        if (!s) {
 527                spin_unlock(&sb_lock);
 528                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 529                if (!s)
 530                        return ERR_PTR(-ENOMEM);
 531                goto retry;
 532        }
 533
 534        s->s_fs_info = fc->s_fs_info;
 535        err = set(s, fc);
 536        if (err) {
 537                s->s_fs_info = NULL;
 538                spin_unlock(&sb_lock);
 539                destroy_unused_super(s);
 540                return ERR_PTR(err);
 541        }
 542        fc->s_fs_info = NULL;
 543        s->s_type = fc->fs_type;
 544        s->s_iflags |= fc->s_iflags;
 545        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 546        list_add_tail(&s->s_list, &super_blocks);
 547        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 548        spin_unlock(&sb_lock);
 549        get_filesystem(s->s_type);
 550        register_shrinker_prepared(&s->s_shrink);
 551        return s;
 552
 553share_extant_sb:
 554        if (user_ns != old->s_user_ns) {
 555                spin_unlock(&sb_lock);
 556                destroy_unused_super(s);
 557                return ERR_PTR(-EBUSY);
 558        }
 559        if (!grab_super(old))
 560                goto retry;
 561        destroy_unused_super(s);
 562        return old;
 563}
 564EXPORT_SYMBOL(sget_fc);
 565
 566/**
 567 *      sget    -       find or create a superblock
 568 *      @type:    filesystem type superblock should belong to
 569 *      @test:    comparison callback
 570 *      @set:     setup callback
 571 *      @flags:   mount flags
 572 *      @data:    argument to each of them
 573 */
 574struct super_block *sget(struct file_system_type *type,
 575                        int (*test)(struct super_block *,void *),
 576                        int (*set)(struct super_block *,void *),
 577                        int flags,
 578                        void *data)
 579{
 580        struct user_namespace *user_ns = current_user_ns();
 581        struct super_block *s = NULL;
 582        struct super_block *old;
 583        int err;
 584
 585        /* We don't yet pass the user namespace of the parent
 586         * mount through to here so always use &init_user_ns
 587         * until that changes.
 588         */
 589        if (flags & SB_SUBMOUNT)
 590                user_ns = &init_user_ns;
 591
 592retry:
 593        spin_lock(&sb_lock);
 594        if (test) {
 595                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 596                        if (!test(old, data))
 597                                continue;
 598                        if (user_ns != old->s_user_ns) {
 599                                spin_unlock(&sb_lock);
 600                                destroy_unused_super(s);
 601                                return ERR_PTR(-EBUSY);
 602                        }
 603                        if (!grab_super(old))
 604                                goto retry;
 605                        destroy_unused_super(s);
 606                        return old;
 607                }
 608        }
 609        if (!s) {
 610                spin_unlock(&sb_lock);
 611                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 612                if (!s)
 613                        return ERR_PTR(-ENOMEM);
 614                goto retry;
 615        }
 616
 617        err = set(s, data);
 618        if (err) {
 619                spin_unlock(&sb_lock);
 620                destroy_unused_super(s);
 621                return ERR_PTR(err);
 622        }
 623        s->s_type = type;
 624        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 625        list_add_tail(&s->s_list, &super_blocks);
 626        hlist_add_head(&s->s_instances, &type->fs_supers);
 627        spin_unlock(&sb_lock);
 628        get_filesystem(type);
 629        register_shrinker_prepared(&s->s_shrink);
 630        return s;
 631}
 632EXPORT_SYMBOL(sget);
 633
 634void drop_super(struct super_block *sb)
 635{
 636        up_read(&sb->s_umount);
 637        put_super(sb);
 638}
 639
 640EXPORT_SYMBOL(drop_super);
 641
 642void drop_super_exclusive(struct super_block *sb)
 643{
 644        up_write(&sb->s_umount);
 645        put_super(sb);
 646}
 647EXPORT_SYMBOL(drop_super_exclusive);
 648
 649static void __iterate_supers(void (*f)(struct super_block *))
 650{
 651        struct super_block *sb, *p = NULL;
 652
 653        spin_lock(&sb_lock);
 654        list_for_each_entry(sb, &super_blocks, s_list) {
 655                if (hlist_unhashed(&sb->s_instances))
 656                        continue;
 657                sb->s_count++;
 658                spin_unlock(&sb_lock);
 659
 660                f(sb);
 661
 662                spin_lock(&sb_lock);
 663                if (p)
 664                        __put_super(p);
 665                p = sb;
 666        }
 667        if (p)
 668                __put_super(p);
 669        spin_unlock(&sb_lock);
 670}
 671/**
 672 *      iterate_supers - call function for all active superblocks
 673 *      @f: function to call
 674 *      @arg: argument to pass to it
 675 *
 676 *      Scans the superblock list and calls given function, passing it
 677 *      locked superblock and given argument.
 678 */
 679void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 680{
 681        struct super_block *sb, *p = NULL;
 682
 683        spin_lock(&sb_lock);
 684        list_for_each_entry(sb, &super_blocks, s_list) {
 685                if (hlist_unhashed(&sb->s_instances))
 686                        continue;
 687                sb->s_count++;
 688                spin_unlock(&sb_lock);
 689
 690                down_read(&sb->s_umount);
 691                if (sb->s_root && (sb->s_flags & SB_BORN))
 692                        f(sb, arg);
 693                up_read(&sb->s_umount);
 694
 695                spin_lock(&sb_lock);
 696                if (p)
 697                        __put_super(p);
 698                p = sb;
 699        }
 700        if (p)
 701                __put_super(p);
 702        spin_unlock(&sb_lock);
 703}
 704
 705/**
 706 *      iterate_supers_type - call function for superblocks of given type
 707 *      @type: fs type
 708 *      @f: function to call
 709 *      @arg: argument to pass to it
 710 *
 711 *      Scans the superblock list and calls given function, passing it
 712 *      locked superblock and given argument.
 713 */
 714void iterate_supers_type(struct file_system_type *type,
 715        void (*f)(struct super_block *, void *), void *arg)
 716{
 717        struct super_block *sb, *p = NULL;
 718
 719        spin_lock(&sb_lock);
 720        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 721                sb->s_count++;
 722                spin_unlock(&sb_lock);
 723
 724                down_read(&sb->s_umount);
 725                if (sb->s_root && (sb->s_flags & SB_BORN))
 726                        f(sb, arg);
 727                up_read(&sb->s_umount);
 728
 729                spin_lock(&sb_lock);
 730                if (p)
 731                        __put_super(p);
 732                p = sb;
 733        }
 734        if (p)
 735                __put_super(p);
 736        spin_unlock(&sb_lock);
 737}
 738
 739EXPORT_SYMBOL(iterate_supers_type);
 740
 741static struct super_block *__get_super(struct block_device *bdev, bool excl)
 742{
 743        struct super_block *sb;
 744
 745        if (!bdev)
 746                return NULL;
 747
 748        spin_lock(&sb_lock);
 749rescan:
 750        list_for_each_entry(sb, &super_blocks, s_list) {
 751                if (hlist_unhashed(&sb->s_instances))
 752                        continue;
 753                if (sb->s_bdev == bdev) {
 754                        sb->s_count++;
 755                        spin_unlock(&sb_lock);
 756                        if (!excl)
 757                                down_read(&sb->s_umount);
 758                        else
 759                                down_write(&sb->s_umount);
 760                        /* still alive? */
 761                        if (sb->s_root && (sb->s_flags & SB_BORN))
 762                                return sb;
 763                        if (!excl)
 764                                up_read(&sb->s_umount);
 765                        else
 766                                up_write(&sb->s_umount);
 767                        /* nope, got unmounted */
 768                        spin_lock(&sb_lock);
 769                        __put_super(sb);
 770                        goto rescan;
 771                }
 772        }
 773        spin_unlock(&sb_lock);
 774        return NULL;
 775}
 776
 777/**
 778 *      get_super - get the superblock of a device
 779 *      @bdev: device to get the superblock for
 780 *
 781 *      Scans the superblock list and finds the superblock of the file system
 782 *      mounted on the device given. %NULL is returned if no match is found.
 783 */
 784struct super_block *get_super(struct block_device *bdev)
 785{
 786        return __get_super(bdev, false);
 787}
 788EXPORT_SYMBOL(get_super);
 789
 790static struct super_block *__get_super_thawed(struct block_device *bdev,
 791                                              bool excl)
 792{
 793        while (1) {
 794                struct super_block *s = __get_super(bdev, excl);
 795                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 796                        return s;
 797                if (!excl)
 798                        up_read(&s->s_umount);
 799                else
 800                        up_write(&s->s_umount);
 801                wait_event(s->s_writers.wait_unfrozen,
 802                           s->s_writers.frozen == SB_UNFROZEN);
 803                put_super(s);
 804        }
 805}
 806
 807/**
 808 *      get_super_thawed - get thawed superblock of a device
 809 *      @bdev: device to get the superblock for
 810 *
 811 *      Scans the superblock list and finds the superblock of the file system
 812 *      mounted on the device. The superblock is returned once it is thawed
 813 *      (or immediately if it was not frozen). %NULL is returned if no match
 814 *      is found.
 815 */
 816struct super_block *get_super_thawed(struct block_device *bdev)
 817{
 818        return __get_super_thawed(bdev, false);
 819}
 820EXPORT_SYMBOL(get_super_thawed);
 821
 822/**
 823 *      get_super_exclusive_thawed - get thawed superblock of a device
 824 *      @bdev: device to get the superblock for
 825 *
 826 *      Scans the superblock list and finds the superblock of the file system
 827 *      mounted on the device. The superblock is returned once it is thawed
 828 *      (or immediately if it was not frozen) and s_umount semaphore is held
 829 *      in exclusive mode. %NULL is returned if no match is found.
 830 */
 831struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 832{
 833        return __get_super_thawed(bdev, true);
 834}
 835EXPORT_SYMBOL(get_super_exclusive_thawed);
 836
 837/**
 838 * get_active_super - get an active reference to the superblock of a device
 839 * @bdev: device to get the superblock for
 840 *
 841 * Scans the superblock list and finds the superblock of the file system
 842 * mounted on the device given.  Returns the superblock with an active
 843 * reference or %NULL if none was found.
 844 */
 845struct super_block *get_active_super(struct block_device *bdev)
 846{
 847        struct super_block *sb;
 848
 849        if (!bdev)
 850                return NULL;
 851
 852restart:
 853        spin_lock(&sb_lock);
 854        list_for_each_entry(sb, &super_blocks, s_list) {
 855                if (hlist_unhashed(&sb->s_instances))
 856                        continue;
 857                if (sb->s_bdev == bdev) {
 858                        if (!grab_super(sb))
 859                                goto restart;
 860                        up_write(&sb->s_umount);
 861                        return sb;
 862                }
 863        }
 864        spin_unlock(&sb_lock);
 865        return NULL;
 866}
 867
 868struct super_block *user_get_super(dev_t dev)
 869{
 870        struct super_block *sb;
 871
 872        spin_lock(&sb_lock);
 873rescan:
 874        list_for_each_entry(sb, &super_blocks, s_list) {
 875                if (hlist_unhashed(&sb->s_instances))
 876                        continue;
 877                if (sb->s_dev ==  dev) {
 878                        sb->s_count++;
 879                        spin_unlock(&sb_lock);
 880                        down_read(&sb->s_umount);
 881                        /* still alive? */
 882                        if (sb->s_root && (sb->s_flags & SB_BORN))
 883                                return sb;
 884                        up_read(&sb->s_umount);
 885                        /* nope, got unmounted */
 886                        spin_lock(&sb_lock);
 887                        __put_super(sb);
 888                        goto rescan;
 889                }
 890        }
 891        spin_unlock(&sb_lock);
 892        return NULL;
 893}
 894
 895/**
 896 * reconfigure_super - asks filesystem to change superblock parameters
 897 * @fc: The superblock and configuration
 898 *
 899 * Alters the configuration parameters of a live superblock.
 900 */
 901int reconfigure_super(struct fs_context *fc)
 902{
 903        struct super_block *sb = fc->root->d_sb;
 904        int retval;
 905        bool remount_ro = false;
 906        bool force = fc->sb_flags & SB_FORCE;
 907
 908        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 909                return -EINVAL;
 910        if (sb->s_writers.frozen != SB_UNFROZEN)
 911                return -EBUSY;
 912
 913        retval = security_sb_remount(sb, fc->security);
 914        if (retval)
 915                return retval;
 916
 917        if (fc->sb_flags_mask & SB_RDONLY) {
 918#ifdef CONFIG_BLOCK
 919                if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 920                        return -EACCES;
 921#endif
 922
 923                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 924        }
 925
 926        if (remount_ro) {
 927                if (!hlist_empty(&sb->s_pins)) {
 928                        up_write(&sb->s_umount);
 929                        group_pin_kill(&sb->s_pins);
 930                        down_write(&sb->s_umount);
 931                        if (!sb->s_root)
 932                                return 0;
 933                        if (sb->s_writers.frozen != SB_UNFROZEN)
 934                                return -EBUSY;
 935                        remount_ro = !sb_rdonly(sb);
 936                }
 937        }
 938        shrink_dcache_sb(sb);
 939
 940        /* If we are reconfiguring to RDONLY and current sb is read/write,
 941         * make sure there are no files open for writing.
 942         */
 943        if (remount_ro) {
 944                if (force) {
 945                        sb->s_readonly_remount = 1;
 946                        smp_wmb();
 947                } else {
 948                        retval = sb_prepare_remount_readonly(sb);
 949                        if (retval)
 950                                return retval;
 951                }
 952        }
 953
 954        if (fc->ops->reconfigure) {
 955                retval = fc->ops->reconfigure(fc);
 956                if (retval) {
 957                        if (!force)
 958                                goto cancel_readonly;
 959                        /* If forced remount, go ahead despite any errors */
 960                        WARN(1, "forced remount of a %s fs returned %i\n",
 961                             sb->s_type->name, retval);
 962                }
 963        }
 964
 965        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 966                                 (fc->sb_flags & fc->sb_flags_mask)));
 967        /* Needs to be ordered wrt mnt_is_readonly() */
 968        smp_wmb();
 969        sb->s_readonly_remount = 0;
 970
 971        /*
 972         * Some filesystems modify their metadata via some other path than the
 973         * bdev buffer cache (eg. use a private mapping, or directories in
 974         * pagecache, etc). Also file data modifications go via their own
 975         * mappings. So If we try to mount readonly then copy the filesystem
 976         * from bdev, we could get stale data, so invalidate it to give a best
 977         * effort at coherency.
 978         */
 979        if (remount_ro && sb->s_bdev)
 980                invalidate_bdev(sb->s_bdev);
 981        return 0;
 982
 983cancel_readonly:
 984        sb->s_readonly_remount = 0;
 985        return retval;
 986}
 987
 988static void do_emergency_remount_callback(struct super_block *sb)
 989{
 990        down_write(&sb->s_umount);
 991        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 992            !sb_rdonly(sb)) {
 993                struct fs_context *fc;
 994
 995                fc = fs_context_for_reconfigure(sb->s_root,
 996                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
 997                if (!IS_ERR(fc)) {
 998                        if (parse_monolithic_mount_data(fc, NULL) == 0)
 999                                (void)reconfigure_super(fc);
1000                        put_fs_context(fc);
1001                }
1002        }
1003        up_write(&sb->s_umount);
1004}
1005
1006static void do_emergency_remount(struct work_struct *work)
1007{
1008        __iterate_supers(do_emergency_remount_callback);
1009        kfree(work);
1010        printk("Emergency Remount complete\n");
1011}
1012
1013void emergency_remount(void)
1014{
1015        struct work_struct *work;
1016
1017        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1018        if (work) {
1019                INIT_WORK(work, do_emergency_remount);
1020                schedule_work(work);
1021        }
1022}
1023
1024static void do_thaw_all_callback(struct super_block *sb)
1025{
1026        down_write(&sb->s_umount);
1027        if (sb->s_root && sb->s_flags & SB_BORN) {
1028                emergency_thaw_bdev(sb);
1029                thaw_super_locked(sb);
1030        } else {
1031                up_write(&sb->s_umount);
1032        }
1033}
1034
1035static void do_thaw_all(struct work_struct *work)
1036{
1037        __iterate_supers(do_thaw_all_callback);
1038        kfree(work);
1039        printk(KERN_WARNING "Emergency Thaw complete\n");
1040}
1041
1042/**
1043 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1044 *
1045 * Used for emergency unfreeze of all filesystems via SysRq
1046 */
1047void emergency_thaw_all(void)
1048{
1049        struct work_struct *work;
1050
1051        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1052        if (work) {
1053                INIT_WORK(work, do_thaw_all);
1054                schedule_work(work);
1055        }
1056}
1057
1058static DEFINE_IDA(unnamed_dev_ida);
1059
1060/**
1061 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1062 * @p: Pointer to a dev_t.
1063 *
1064 * Filesystems which don't use real block devices can call this function
1065 * to allocate a virtual block device.
1066 *
1067 * Context: Any context.  Frequently called while holding sb_lock.
1068 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1069 * or -ENOMEM if memory allocation failed.
1070 */
1071int get_anon_bdev(dev_t *p)
1072{
1073        int dev;
1074
1075        /*
1076         * Many userspace utilities consider an FSID of 0 invalid.
1077         * Always return at least 1 from get_anon_bdev.
1078         */
1079        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1080                        GFP_ATOMIC);
1081        if (dev == -ENOSPC)
1082                dev = -EMFILE;
1083        if (dev < 0)
1084                return dev;
1085
1086        *p = MKDEV(0, dev);
1087        return 0;
1088}
1089EXPORT_SYMBOL(get_anon_bdev);
1090
1091void free_anon_bdev(dev_t dev)
1092{
1093        ida_free(&unnamed_dev_ida, MINOR(dev));
1094}
1095EXPORT_SYMBOL(free_anon_bdev);
1096
1097int set_anon_super(struct super_block *s, void *data)
1098{
1099        return get_anon_bdev(&s->s_dev);
1100}
1101EXPORT_SYMBOL(set_anon_super);
1102
1103void kill_anon_super(struct super_block *sb)
1104{
1105        dev_t dev = sb->s_dev;
1106        generic_shutdown_super(sb);
1107        free_anon_bdev(dev);
1108}
1109EXPORT_SYMBOL(kill_anon_super);
1110
1111void kill_litter_super(struct super_block *sb)
1112{
1113        if (sb->s_root)
1114                d_genocide(sb->s_root);
1115        kill_anon_super(sb);
1116}
1117EXPORT_SYMBOL(kill_litter_super);
1118
1119int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1120{
1121        return set_anon_super(sb, NULL);
1122}
1123EXPORT_SYMBOL(set_anon_super_fc);
1124
1125static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1126{
1127        return sb->s_fs_info == fc->s_fs_info;
1128}
1129
1130static int test_single_super(struct super_block *s, struct fs_context *fc)
1131{
1132        return 1;
1133}
1134
1135/**
1136 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1137 * @fc: The filesystem context holding the parameters
1138 * @keying: How to distinguish superblocks
1139 * @fill_super: Helper to initialise a new superblock
1140 *
1141 * Search for a superblock and create a new one if not found.  The search
1142 * criterion is controlled by @keying.  If the search fails, a new superblock
1143 * is created and @fill_super() is called to initialise it.
1144 *
1145 * @keying can take one of a number of values:
1146 *
1147 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1148 *     system.  This is typically used for special system filesystems.
1149 *
1150 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1151 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1152 *     key again will turn up the superblock for that key.
1153 *
1154 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1155 *     unkeyed.  Each call will get a new superblock.
1156 *
1157 * A permissions check is made by sget_fc() unless we're getting a superblock
1158 * for a kernel-internal mount or a submount.
1159 */
1160int vfs_get_super(struct fs_context *fc,
1161                  enum vfs_get_super_keying keying,
1162                  int (*fill_super)(struct super_block *sb,
1163                                    struct fs_context *fc))
1164{
1165        int (*test)(struct super_block *, struct fs_context *);
1166        struct super_block *sb;
1167        int err;
1168
1169        switch (keying) {
1170        case vfs_get_single_super:
1171        case vfs_get_single_reconf_super:
1172                test = test_single_super;
1173                break;
1174        case vfs_get_keyed_super:
1175                test = test_keyed_super;
1176                break;
1177        case vfs_get_independent_super:
1178                test = NULL;
1179                break;
1180        default:
1181                BUG();
1182        }
1183
1184        sb = sget_fc(fc, test, set_anon_super_fc);
1185        if (IS_ERR(sb))
1186                return PTR_ERR(sb);
1187
1188        if (!sb->s_root) {
1189                err = fill_super(sb, fc);
1190                if (err)
1191                        goto error;
1192
1193                sb->s_flags |= SB_ACTIVE;
1194                fc->root = dget(sb->s_root);
1195        } else {
1196                fc->root = dget(sb->s_root);
1197                if (keying == vfs_get_single_reconf_super) {
1198                        err = reconfigure_super(fc);
1199                        if (err < 0) {
1200                                dput(fc->root);
1201                                fc->root = NULL;
1202                                goto error;
1203                        }
1204                }
1205        }
1206
1207        return 0;
1208
1209error:
1210        deactivate_locked_super(sb);
1211        return err;
1212}
1213EXPORT_SYMBOL(vfs_get_super);
1214
1215int get_tree_nodev(struct fs_context *fc,
1216                  int (*fill_super)(struct super_block *sb,
1217                                    struct fs_context *fc))
1218{
1219        return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1220}
1221EXPORT_SYMBOL(get_tree_nodev);
1222
1223int get_tree_single(struct fs_context *fc,
1224                  int (*fill_super)(struct super_block *sb,
1225                                    struct fs_context *fc))
1226{
1227        return vfs_get_super(fc, vfs_get_single_super, fill_super);
1228}
1229EXPORT_SYMBOL(get_tree_single);
1230
1231int get_tree_single_reconf(struct fs_context *fc,
1232                  int (*fill_super)(struct super_block *sb,
1233                                    struct fs_context *fc))
1234{
1235        return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1236}
1237EXPORT_SYMBOL(get_tree_single_reconf);
1238
1239int get_tree_keyed(struct fs_context *fc,
1240                  int (*fill_super)(struct super_block *sb,
1241                                    struct fs_context *fc),
1242                void *key)
1243{
1244        fc->s_fs_info = key;
1245        return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1246}
1247EXPORT_SYMBOL(get_tree_keyed);
1248
1249#ifdef CONFIG_BLOCK
1250
1251static int set_bdev_super(struct super_block *s, void *data)
1252{
1253        s->s_bdev = data;
1254        s->s_dev = s->s_bdev->bd_dev;
1255        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1256
1257        return 0;
1258}
1259
1260static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1261{
1262        return set_bdev_super(s, fc->sget_key);
1263}
1264
1265static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1266{
1267        return s->s_bdev == fc->sget_key;
1268}
1269
1270/**
1271 * get_tree_bdev - Get a superblock based on a single block device
1272 * @fc: The filesystem context holding the parameters
1273 * @fill_super: Helper to initialise a new superblock
1274 */
1275int get_tree_bdev(struct fs_context *fc,
1276                int (*fill_super)(struct super_block *,
1277                                  struct fs_context *))
1278{
1279        struct block_device *bdev;
1280        struct super_block *s;
1281        fmode_t mode = FMODE_READ | FMODE_EXCL;
1282        int error = 0;
1283
1284        if (!(fc->sb_flags & SB_RDONLY))
1285                mode |= FMODE_WRITE;
1286
1287        if (!fc->source)
1288                return invalf(fc, "No source specified");
1289
1290        bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1291        if (IS_ERR(bdev)) {
1292                errorf(fc, "%s: Can't open blockdev", fc->source);
1293                return PTR_ERR(bdev);
1294        }
1295
1296        /* Once the superblock is inserted into the list by sget_fc(), s_umount
1297         * will protect the lockfs code from trying to start a snapshot while
1298         * we are mounting
1299         */
1300        mutex_lock(&bdev->bd_fsfreeze_mutex);
1301        if (bdev->bd_fsfreeze_count > 0) {
1302                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1303                warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1304                blkdev_put(bdev, mode);
1305                return -EBUSY;
1306        }
1307
1308        fc->sb_flags |= SB_NOSEC;
1309        fc->sget_key = bdev;
1310        s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1311        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1312        if (IS_ERR(s)) {
1313                blkdev_put(bdev, mode);
1314                return PTR_ERR(s);
1315        }
1316
1317        if (s->s_root) {
1318                /* Don't summarily change the RO/RW state. */
1319                if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1320                        warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1321                        deactivate_locked_super(s);
1322                        blkdev_put(bdev, mode);
1323                        return -EBUSY;
1324                }
1325
1326                /*
1327                 * s_umount nests inside bd_mutex during
1328                 * __invalidate_device().  blkdev_put() acquires
1329                 * bd_mutex and can't be called under s_umount.  Drop
1330                 * s_umount temporarily.  This is safe as we're
1331                 * holding an active reference.
1332                 */
1333                up_write(&s->s_umount);
1334                blkdev_put(bdev, mode);
1335                down_write(&s->s_umount);
1336        } else {
1337                s->s_mode = mode;
1338                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1339                sb_set_blocksize(s, block_size(bdev));
1340                error = fill_super(s, fc);
1341                if (error) {
1342                        deactivate_locked_super(s);
1343                        return error;
1344                }
1345
1346                s->s_flags |= SB_ACTIVE;
1347                bdev->bd_super = s;
1348        }
1349
1350        BUG_ON(fc->root);
1351        fc->root = dget(s->s_root);
1352        return 0;
1353}
1354EXPORT_SYMBOL(get_tree_bdev);
1355
1356static int test_bdev_super(struct super_block *s, void *data)
1357{
1358        return (void *)s->s_bdev == data;
1359}
1360
1361struct dentry *mount_bdev(struct file_system_type *fs_type,
1362        int flags, const char *dev_name, void *data,
1363        int (*fill_super)(struct super_block *, void *, int))
1364{
1365        struct block_device *bdev;
1366        struct super_block *s;
1367        fmode_t mode = FMODE_READ | FMODE_EXCL;
1368        int error = 0;
1369
1370        if (!(flags & SB_RDONLY))
1371                mode |= FMODE_WRITE;
1372
1373        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1374        if (IS_ERR(bdev))
1375                return ERR_CAST(bdev);
1376
1377        /*
1378         * once the super is inserted into the list by sget, s_umount
1379         * will protect the lockfs code from trying to start a snapshot
1380         * while we are mounting
1381         */
1382        mutex_lock(&bdev->bd_fsfreeze_mutex);
1383        if (bdev->bd_fsfreeze_count > 0) {
1384                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1385                error = -EBUSY;
1386                goto error_bdev;
1387        }
1388        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1389                 bdev);
1390        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1391        if (IS_ERR(s))
1392                goto error_s;
1393
1394        if (s->s_root) {
1395                if ((flags ^ s->s_flags) & SB_RDONLY) {
1396                        deactivate_locked_super(s);
1397                        error = -EBUSY;
1398                        goto error_bdev;
1399                }
1400
1401                /*
1402                 * s_umount nests inside bd_mutex during
1403                 * __invalidate_device().  blkdev_put() acquires
1404                 * bd_mutex and can't be called under s_umount.  Drop
1405                 * s_umount temporarily.  This is safe as we're
1406                 * holding an active reference.
1407                 */
1408                up_write(&s->s_umount);
1409                blkdev_put(bdev, mode);
1410                down_write(&s->s_umount);
1411        } else {
1412                s->s_mode = mode;
1413                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1414                sb_set_blocksize(s, block_size(bdev));
1415                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1416                if (error) {
1417                        deactivate_locked_super(s);
1418                        goto error;
1419                }
1420
1421                s->s_flags |= SB_ACTIVE;
1422                bdev->bd_super = s;
1423        }
1424
1425        return dget(s->s_root);
1426
1427error_s:
1428        error = PTR_ERR(s);
1429error_bdev:
1430        blkdev_put(bdev, mode);
1431error:
1432        return ERR_PTR(error);
1433}
1434EXPORT_SYMBOL(mount_bdev);
1435
1436void kill_block_super(struct super_block *sb)
1437{
1438        struct block_device *bdev = sb->s_bdev;
1439        fmode_t mode = sb->s_mode;
1440
1441        bdev->bd_super = NULL;
1442        generic_shutdown_super(sb);
1443        sync_blockdev(bdev);
1444        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1445        blkdev_put(bdev, mode | FMODE_EXCL);
1446}
1447
1448EXPORT_SYMBOL(kill_block_super);
1449#endif
1450
1451struct dentry *mount_nodev(struct file_system_type *fs_type,
1452        int flags, void *data,
1453        int (*fill_super)(struct super_block *, void *, int))
1454{
1455        int error;
1456        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1457
1458        if (IS_ERR(s))
1459                return ERR_CAST(s);
1460
1461        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1462        if (error) {
1463                deactivate_locked_super(s);
1464                return ERR_PTR(error);
1465        }
1466        s->s_flags |= SB_ACTIVE;
1467        return dget(s->s_root);
1468}
1469EXPORT_SYMBOL(mount_nodev);
1470
1471static int reconfigure_single(struct super_block *s,
1472                              int flags, void *data)
1473{
1474        struct fs_context *fc;
1475        int ret;
1476
1477        /* The caller really need to be passing fc down into mount_single(),
1478         * then a chunk of this can be removed.  [Bollocks -- AV]
1479         * Better yet, reconfiguration shouldn't happen, but rather the second
1480         * mount should be rejected if the parameters are not compatible.
1481         */
1482        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1483        if (IS_ERR(fc))
1484                return PTR_ERR(fc);
1485
1486        ret = parse_monolithic_mount_data(fc, data);
1487        if (ret < 0)
1488                goto out;
1489
1490        ret = reconfigure_super(fc);
1491out:
1492        put_fs_context(fc);
1493        return ret;
1494}
1495
1496static int compare_single(struct super_block *s, void *p)
1497{
1498        return 1;
1499}
1500
1501struct dentry *mount_single(struct file_system_type *fs_type,
1502        int flags, void *data,
1503        int (*fill_super)(struct super_block *, void *, int))
1504{
1505        struct super_block *s;
1506        int error;
1507
1508        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1509        if (IS_ERR(s))
1510                return ERR_CAST(s);
1511        if (!s->s_root) {
1512                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1513                if (!error)
1514                        s->s_flags |= SB_ACTIVE;
1515        } else {
1516                error = reconfigure_single(s, flags, data);
1517        }
1518        if (unlikely(error)) {
1519                deactivate_locked_super(s);
1520                return ERR_PTR(error);
1521        }
1522        return dget(s->s_root);
1523}
1524EXPORT_SYMBOL(mount_single);
1525
1526/**
1527 * vfs_get_tree - Get the mountable root
1528 * @fc: The superblock configuration context.
1529 *
1530 * The filesystem is invoked to get or create a superblock which can then later
1531 * be used for mounting.  The filesystem places a pointer to the root to be
1532 * used for mounting in @fc->root.
1533 */
1534int vfs_get_tree(struct fs_context *fc)
1535{
1536        struct super_block *sb;
1537        int error;
1538
1539        if (fc->root)
1540                return -EBUSY;
1541
1542        /* Get the mountable root in fc->root, with a ref on the root and a ref
1543         * on the superblock.
1544         */
1545        error = fc->ops->get_tree(fc);
1546        if (error < 0)
1547                return error;
1548
1549        if (!fc->root) {
1550                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1551                       fc->fs_type->name);
1552                /* We don't know what the locking state of the superblock is -
1553                 * if there is a superblock.
1554                 */
1555                BUG();
1556        }
1557
1558        sb = fc->root->d_sb;
1559        WARN_ON(!sb->s_bdi);
1560
1561        /*
1562         * Write barrier is for super_cache_count(). We place it before setting
1563         * SB_BORN as the data dependency between the two functions is the
1564         * superblock structure contents that we just set up, not the SB_BORN
1565         * flag.
1566         */
1567        smp_wmb();
1568        sb->s_flags |= SB_BORN;
1569
1570        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1571        if (unlikely(error)) {
1572                fc_drop_locked(fc);
1573                return error;
1574        }
1575
1576        /*
1577         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1578         * but s_maxbytes was an unsigned long long for many releases. Throw
1579         * this warning for a little while to try and catch filesystems that
1580         * violate this rule.
1581         */
1582        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1583                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1584
1585        return 0;
1586}
1587EXPORT_SYMBOL(vfs_get_tree);
1588
1589/*
1590 * Setup private BDI for given superblock. It gets automatically cleaned up
1591 * in generic_shutdown_super().
1592 */
1593int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1594{
1595        struct backing_dev_info *bdi;
1596        int err;
1597        va_list args;
1598
1599        bdi = bdi_alloc(NUMA_NO_NODE);
1600        if (!bdi)
1601                return -ENOMEM;
1602
1603        va_start(args, fmt);
1604        err = bdi_register_va(bdi, fmt, args);
1605        va_end(args);
1606        if (err) {
1607                bdi_put(bdi);
1608                return err;
1609        }
1610        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1611        sb->s_bdi = bdi;
1612
1613        return 0;
1614}
1615EXPORT_SYMBOL(super_setup_bdi_name);
1616
1617/*
1618 * Setup private BDI for given superblock. I gets automatically cleaned up
1619 * in generic_shutdown_super().
1620 */
1621int super_setup_bdi(struct super_block *sb)
1622{
1623        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1624
1625        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1626                                    atomic_long_inc_return(&bdi_seq));
1627}
1628EXPORT_SYMBOL(super_setup_bdi);
1629
1630/*
1631 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1632 * instead.
1633 */
1634void __sb_end_write(struct super_block *sb, int level)
1635{
1636        percpu_up_read(sb->s_writers.rw_sem + level-1);
1637}
1638EXPORT_SYMBOL(__sb_end_write);
1639
1640/*
1641 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1642 * instead.
1643 */
1644int __sb_start_write(struct super_block *sb, int level, bool wait)
1645{
1646        bool force_trylock = false;
1647        int ret = 1;
1648
1649#ifdef CONFIG_LOCKDEP
1650        /*
1651         * We want lockdep to tell us about possible deadlocks with freezing
1652         * but it's it bit tricky to properly instrument it. Getting a freeze
1653         * protection works as getting a read lock but there are subtle
1654         * problems. XFS for example gets freeze protection on internal level
1655         * twice in some cases, which is OK only because we already hold a
1656         * freeze protection also on higher level. Due to these cases we have
1657         * to use wait == F (trylock mode) which must not fail.
1658         */
1659        if (wait) {
1660                int i;
1661
1662                for (i = 0; i < level - 1; i++)
1663                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1664                                force_trylock = true;
1665                                break;
1666                        }
1667        }
1668#endif
1669        if (wait && !force_trylock)
1670                percpu_down_read(sb->s_writers.rw_sem + level-1);
1671        else
1672                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1673
1674        WARN_ON(force_trylock && !ret);
1675        return ret;
1676}
1677EXPORT_SYMBOL(__sb_start_write);
1678
1679/**
1680 * sb_wait_write - wait until all writers to given file system finish
1681 * @sb: the super for which we wait
1682 * @level: type of writers we wait for (normal vs page fault)
1683 *
1684 * This function waits until there are no writers of given type to given file
1685 * system.
1686 */
1687static void sb_wait_write(struct super_block *sb, int level)
1688{
1689        percpu_down_write(sb->s_writers.rw_sem + level-1);
1690}
1691
1692/*
1693 * We are going to return to userspace and forget about these locks, the
1694 * ownership goes to the caller of thaw_super() which does unlock().
1695 */
1696static void lockdep_sb_freeze_release(struct super_block *sb)
1697{
1698        int level;
1699
1700        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1701                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1702}
1703
1704/*
1705 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1706 */
1707static void lockdep_sb_freeze_acquire(struct super_block *sb)
1708{
1709        int level;
1710
1711        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1712                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1713}
1714
1715static void sb_freeze_unlock(struct super_block *sb)
1716{
1717        int level;
1718
1719        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1720                percpu_up_write(sb->s_writers.rw_sem + level);
1721}
1722
1723/**
1724 * freeze_super - lock the filesystem and force it into a consistent state
1725 * @sb: the super to lock
1726 *
1727 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1728 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1729 * -EBUSY.
1730 *
1731 * During this function, sb->s_writers.frozen goes through these values:
1732 *
1733 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1734 *
1735 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1736 * writes should be blocked, though page faults are still allowed. We wait for
1737 * all writes to complete and then proceed to the next stage.
1738 *
1739 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1740 * but internal fs threads can still modify the filesystem (although they
1741 * should not dirty new pages or inodes), writeback can run etc. After waiting
1742 * for all running page faults we sync the filesystem which will clean all
1743 * dirty pages and inodes (no new dirty pages or inodes can be created when
1744 * sync is running).
1745 *
1746 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1747 * modification are blocked (e.g. XFS preallocation truncation on inode
1748 * reclaim). This is usually implemented by blocking new transactions for
1749 * filesystems that have them and need this additional guard. After all
1750 * internal writers are finished we call ->freeze_fs() to finish filesystem
1751 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1752 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1753 *
1754 * sb->s_writers.frozen is protected by sb->s_umount.
1755 */
1756int freeze_super(struct super_block *sb)
1757{
1758        int ret;
1759
1760        atomic_inc(&sb->s_active);
1761        down_write(&sb->s_umount);
1762        if (sb->s_writers.frozen != SB_UNFROZEN) {
1763                deactivate_locked_super(sb);
1764                return -EBUSY;
1765        }
1766
1767        if (!(sb->s_flags & SB_BORN)) {
1768                up_write(&sb->s_umount);
1769                return 0;       /* sic - it's "nothing to do" */
1770        }
1771
1772        if (sb_rdonly(sb)) {
1773                /* Nothing to do really... */
1774                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1775                up_write(&sb->s_umount);
1776                return 0;
1777        }
1778
1779        sb->s_writers.frozen = SB_FREEZE_WRITE;
1780        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1781        up_write(&sb->s_umount);
1782        sb_wait_write(sb, SB_FREEZE_WRITE);
1783        down_write(&sb->s_umount);
1784
1785        /* Now we go and block page faults... */
1786        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1787        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1788
1789        /* All writers are done so after syncing there won't be dirty data */
1790        sync_filesystem(sb);
1791
1792        /* Now wait for internal filesystem counter */
1793        sb->s_writers.frozen = SB_FREEZE_FS;
1794        sb_wait_write(sb, SB_FREEZE_FS);
1795
1796        if (sb->s_op->freeze_fs) {
1797                ret = sb->s_op->freeze_fs(sb);
1798                if (ret) {
1799                        printk(KERN_ERR
1800                                "VFS:Filesystem freeze failed\n");
1801                        sb->s_writers.frozen = SB_UNFROZEN;
1802                        sb_freeze_unlock(sb);
1803                        wake_up(&sb->s_writers.wait_unfrozen);
1804                        deactivate_locked_super(sb);
1805                        return ret;
1806                }
1807        }
1808        /*
1809         * For debugging purposes so that fs can warn if it sees write activity
1810         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1811         */
1812        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1813        lockdep_sb_freeze_release(sb);
1814        up_write(&sb->s_umount);
1815        return 0;
1816}
1817EXPORT_SYMBOL(freeze_super);
1818
1819/**
1820 * thaw_super -- unlock filesystem
1821 * @sb: the super to thaw
1822 *
1823 * Unlocks the filesystem and marks it writeable again after freeze_super().
1824 */
1825static int thaw_super_locked(struct super_block *sb)
1826{
1827        int error;
1828
1829        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1830                up_write(&sb->s_umount);
1831                return -EINVAL;
1832        }
1833
1834        if (sb_rdonly(sb)) {
1835                sb->s_writers.frozen = SB_UNFROZEN;
1836                goto out;
1837        }
1838
1839        lockdep_sb_freeze_acquire(sb);
1840
1841        if (sb->s_op->unfreeze_fs) {
1842                error = sb->s_op->unfreeze_fs(sb);
1843                if (error) {
1844                        printk(KERN_ERR
1845                                "VFS:Filesystem thaw failed\n");
1846                        lockdep_sb_freeze_release(sb);
1847                        up_write(&sb->s_umount);
1848                        return error;
1849                }
1850        }
1851
1852        sb->s_writers.frozen = SB_UNFROZEN;
1853        sb_freeze_unlock(sb);
1854out:
1855        wake_up(&sb->s_writers.wait_unfrozen);
1856        deactivate_locked_super(sb);
1857        return 0;
1858}
1859
1860int thaw_super(struct super_block *sb)
1861{
1862        down_write(&sb->s_umount);
1863        return thaw_super_locked(sb);
1864}
1865EXPORT_SYMBOL(thaw_super);
1866