linux/include/linux/rculist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_RCULIST_H
   3#define _LINUX_RCULIST_H
   4
   5#ifdef __KERNEL__
   6
   7/*
   8 * RCU-protected list version
   9 */
  10#include <linux/list.h>
  11#include <linux/rcupdate.h>
  12
  13/*
  14 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  15 * purpose.  The list_empty() function fetches the RCU-protected pointer
  16 * and compares it to the address of the list head, but neither dereferences
  17 * this pointer itself nor provides this pointer to the caller.  Therefore,
  18 * it is not necessary to use rcu_dereference(), so that list_empty() can
  19 * be used anywhere you would want to use a list_empty_rcu().
  20 */
  21
  22/*
  23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  24 * @list: list to be initialized
  25 *
  26 * You should instead use INIT_LIST_HEAD() for normal initialization and
  27 * cleanup tasks, when readers have no access to the list being initialized.
  28 * However, if the list being initialized is visible to readers, you
  29 * need to keep the compiler from being too mischievous.
  30 */
  31static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  32{
  33        WRITE_ONCE(list->next, list);
  34        WRITE_ONCE(list->prev, list);
  35}
  36
  37/*
  38 * return the ->next pointer of a list_head in an rcu safe
  39 * way, we must not access it directly
  40 */
  41#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  42
  43/**
  44 * list_tail_rcu - returns the prev pointer of the head of the list
  45 * @head: the head of the list
  46 *
  47 * Note: This should only be used with the list header, and even then
  48 * only if list_del() and similar primitives are not also used on the
  49 * list header.
  50 */
  51#define list_tail_rcu(head)     (*((struct list_head __rcu **)(&(head)->prev)))
  52
  53/*
  54 * Check during list traversal that we are within an RCU reader
  55 */
  56
  57#define check_arg_count_one(dummy)
  58
  59#ifdef CONFIG_PROVE_RCU_LIST
  60#define __list_check_rcu(dummy, cond, extra...)                         \
  61        ({                                                              \
  62        check_arg_count_one(extra);                                     \
  63        RCU_LOCKDEP_WARN(!cond && !rcu_read_lock_any_held(),            \
  64                         "RCU-list traversed in non-reader section!");  \
  65        })
  66
  67#define __list_check_srcu(cond)                                  \
  68        ({                                                               \
  69        RCU_LOCKDEP_WARN(!(cond),                                        \
  70                "RCU-list traversed without holding the required lock!");\
  71        })
  72#else
  73#define __list_check_rcu(dummy, cond, extra...)                         \
  74        ({ check_arg_count_one(extra); })
  75
  76#define __list_check_srcu(cond) ({ })
  77#endif
  78
  79/*
  80 * Insert a new entry between two known consecutive entries.
  81 *
  82 * This is only for internal list manipulation where we know
  83 * the prev/next entries already!
  84 */
  85static inline void __list_add_rcu(struct list_head *new,
  86                struct list_head *prev, struct list_head *next)
  87{
  88        if (!__list_add_valid(new, prev, next))
  89                return;
  90
  91        new->next = next;
  92        new->prev = prev;
  93        rcu_assign_pointer(list_next_rcu(prev), new);
  94        next->prev = new;
  95}
  96
  97/**
  98 * list_add_rcu - add a new entry to rcu-protected list
  99 * @new: new entry to be added
 100 * @head: list head to add it after
 101 *
 102 * Insert a new entry after the specified head.
 103 * This is good for implementing stacks.
 104 *
 105 * The caller must take whatever precautions are necessary
 106 * (such as holding appropriate locks) to avoid racing
 107 * with another list-mutation primitive, such as list_add_rcu()
 108 * or list_del_rcu(), running on this same list.
 109 * However, it is perfectly legal to run concurrently with
 110 * the _rcu list-traversal primitives, such as
 111 * list_for_each_entry_rcu().
 112 */
 113static inline void list_add_rcu(struct list_head *new, struct list_head *head)
 114{
 115        __list_add_rcu(new, head, head->next);
 116}
 117
 118/**
 119 * list_add_tail_rcu - add a new entry to rcu-protected list
 120 * @new: new entry to be added
 121 * @head: list head to add it before
 122 *
 123 * Insert a new entry before the specified head.
 124 * This is useful for implementing queues.
 125 *
 126 * The caller must take whatever precautions are necessary
 127 * (such as holding appropriate locks) to avoid racing
 128 * with another list-mutation primitive, such as list_add_tail_rcu()
 129 * or list_del_rcu(), running on this same list.
 130 * However, it is perfectly legal to run concurrently with
 131 * the _rcu list-traversal primitives, such as
 132 * list_for_each_entry_rcu().
 133 */
 134static inline void list_add_tail_rcu(struct list_head *new,
 135                                        struct list_head *head)
 136{
 137        __list_add_rcu(new, head->prev, head);
 138}
 139
 140/**
 141 * list_del_rcu - deletes entry from list without re-initialization
 142 * @entry: the element to delete from the list.
 143 *
 144 * Note: list_empty() on entry does not return true after this,
 145 * the entry is in an undefined state. It is useful for RCU based
 146 * lockfree traversal.
 147 *
 148 * In particular, it means that we can not poison the forward
 149 * pointers that may still be used for walking the list.
 150 *
 151 * The caller must take whatever precautions are necessary
 152 * (such as holding appropriate locks) to avoid racing
 153 * with another list-mutation primitive, such as list_del_rcu()
 154 * or list_add_rcu(), running on this same list.
 155 * However, it is perfectly legal to run concurrently with
 156 * the _rcu list-traversal primitives, such as
 157 * list_for_each_entry_rcu().
 158 *
 159 * Note that the caller is not permitted to immediately free
 160 * the newly deleted entry.  Instead, either synchronize_rcu()
 161 * or call_rcu() must be used to defer freeing until an RCU
 162 * grace period has elapsed.
 163 */
 164static inline void list_del_rcu(struct list_head *entry)
 165{
 166        __list_del_entry(entry);
 167        entry->prev = LIST_POISON2;
 168}
 169
 170/**
 171 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 172 * @n: the element to delete from the hash list.
 173 *
 174 * Note: list_unhashed() on the node return true after this. It is
 175 * useful for RCU based read lockfree traversal if the writer side
 176 * must know if the list entry is still hashed or already unhashed.
 177 *
 178 * In particular, it means that we can not poison the forward pointers
 179 * that may still be used for walking the hash list and we can only
 180 * zero the pprev pointer so list_unhashed() will return true after
 181 * this.
 182 *
 183 * The caller must take whatever precautions are necessary (such as
 184 * holding appropriate locks) to avoid racing with another
 185 * list-mutation primitive, such as hlist_add_head_rcu() or
 186 * hlist_del_rcu(), running on this same list.  However, it is
 187 * perfectly legal to run concurrently with the _rcu list-traversal
 188 * primitives, such as hlist_for_each_entry_rcu().
 189 */
 190static inline void hlist_del_init_rcu(struct hlist_node *n)
 191{
 192        if (!hlist_unhashed(n)) {
 193                __hlist_del(n);
 194                n->pprev = NULL;
 195        }
 196}
 197
 198/**
 199 * list_replace_rcu - replace old entry by new one
 200 * @old : the element to be replaced
 201 * @new : the new element to insert
 202 *
 203 * The @old entry will be replaced with the @new entry atomically.
 204 * Note: @old should not be empty.
 205 */
 206static inline void list_replace_rcu(struct list_head *old,
 207                                struct list_head *new)
 208{
 209        new->next = old->next;
 210        new->prev = old->prev;
 211        rcu_assign_pointer(list_next_rcu(new->prev), new);
 212        new->next->prev = new;
 213        old->prev = LIST_POISON2;
 214}
 215
 216/**
 217 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 218 * @list:       the RCU-protected list to splice
 219 * @prev:       points to the last element of the existing list
 220 * @next:       points to the first element of the existing list
 221 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 222 *
 223 * The list pointed to by @prev and @next can be RCU-read traversed
 224 * concurrently with this function.
 225 *
 226 * Note that this function blocks.
 227 *
 228 * Important note: the caller must take whatever action is necessary to prevent
 229 * any other updates to the existing list.  In principle, it is possible to
 230 * modify the list as soon as sync() begins execution. If this sort of thing
 231 * becomes necessary, an alternative version based on call_rcu() could be
 232 * created.  But only if -really- needed -- there is no shortage of RCU API
 233 * members.
 234 */
 235static inline void __list_splice_init_rcu(struct list_head *list,
 236                                          struct list_head *prev,
 237                                          struct list_head *next,
 238                                          void (*sync)(void))
 239{
 240        struct list_head *first = list->next;
 241        struct list_head *last = list->prev;
 242
 243        /*
 244         * "first" and "last" tracking list, so initialize it.  RCU readers
 245         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 246         * instead of INIT_LIST_HEAD().
 247         */
 248
 249        INIT_LIST_HEAD_RCU(list);
 250
 251        /*
 252         * At this point, the list body still points to the source list.
 253         * Wait for any readers to finish using the list before splicing
 254         * the list body into the new list.  Any new readers will see
 255         * an empty list.
 256         */
 257
 258        sync();
 259
 260        /*
 261         * Readers are finished with the source list, so perform splice.
 262         * The order is important if the new list is global and accessible
 263         * to concurrent RCU readers.  Note that RCU readers are not
 264         * permitted to traverse the prev pointers without excluding
 265         * this function.
 266         */
 267
 268        last->next = next;
 269        rcu_assign_pointer(list_next_rcu(prev), first);
 270        first->prev = prev;
 271        next->prev = last;
 272}
 273
 274/**
 275 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 276 *                        designed for stacks.
 277 * @list:       the RCU-protected list to splice
 278 * @head:       the place in the existing list to splice the first list into
 279 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 280 */
 281static inline void list_splice_init_rcu(struct list_head *list,
 282                                        struct list_head *head,
 283                                        void (*sync)(void))
 284{
 285        if (!list_empty(list))
 286                __list_splice_init_rcu(list, head, head->next, sync);
 287}
 288
 289/**
 290 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 291 *                             list, designed for queues.
 292 * @list:       the RCU-protected list to splice
 293 * @head:       the place in the existing list to splice the first list into
 294 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 295 */
 296static inline void list_splice_tail_init_rcu(struct list_head *list,
 297                                             struct list_head *head,
 298                                             void (*sync)(void))
 299{
 300        if (!list_empty(list))
 301                __list_splice_init_rcu(list, head->prev, head, sync);
 302}
 303
 304/**
 305 * list_entry_rcu - get the struct for this entry
 306 * @ptr:        the &struct list_head pointer.
 307 * @type:       the type of the struct this is embedded in.
 308 * @member:     the name of the list_head within the struct.
 309 *
 310 * This primitive may safely run concurrently with the _rcu list-mutation
 311 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 312 */
 313#define list_entry_rcu(ptr, type, member) \
 314        container_of(READ_ONCE(ptr), type, member)
 315
 316/*
 317 * Where are list_empty_rcu() and list_first_entry_rcu()?
 318 *
 319 * Implementing those functions following their counterparts list_empty() and
 320 * list_first_entry() is not advisable because they lead to subtle race
 321 * conditions as the following snippet shows:
 322 *
 323 * if (!list_empty_rcu(mylist)) {
 324 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 325 *      do_something(bar);
 326 * }
 327 *
 328 * The list may not be empty when list_empty_rcu checks it, but it may be when
 329 * list_first_entry_rcu rereads the ->next pointer.
 330 *
 331 * Rereading the ->next pointer is not a problem for list_empty() and
 332 * list_first_entry() because they would be protected by a lock that blocks
 333 * writers.
 334 *
 335 * See list_first_or_null_rcu for an alternative.
 336 */
 337
 338/**
 339 * list_first_or_null_rcu - get the first element from a list
 340 * @ptr:        the list head to take the element from.
 341 * @type:       the type of the struct this is embedded in.
 342 * @member:     the name of the list_head within the struct.
 343 *
 344 * Note that if the list is empty, it returns NULL.
 345 *
 346 * This primitive may safely run concurrently with the _rcu list-mutation
 347 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 348 */
 349#define list_first_or_null_rcu(ptr, type, member) \
 350({ \
 351        struct list_head *__ptr = (ptr); \
 352        struct list_head *__next = READ_ONCE(__ptr->next); \
 353        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 354})
 355
 356/**
 357 * list_next_or_null_rcu - get the first element from a list
 358 * @head:       the head for the list.
 359 * @ptr:        the list head to take the next element from.
 360 * @type:       the type of the struct this is embedded in.
 361 * @member:     the name of the list_head within the struct.
 362 *
 363 * Note that if the ptr is at the end of the list, NULL is returned.
 364 *
 365 * This primitive may safely run concurrently with the _rcu list-mutation
 366 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 367 */
 368#define list_next_or_null_rcu(head, ptr, type, member) \
 369({ \
 370        struct list_head *__head = (head); \
 371        struct list_head *__ptr = (ptr); \
 372        struct list_head *__next = READ_ONCE(__ptr->next); \
 373        likely(__next != __head) ? list_entry_rcu(__next, type, \
 374                                                  member) : NULL; \
 375})
 376
 377/**
 378 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 379 * @pos:        the type * to use as a loop cursor.
 380 * @head:       the head for your list.
 381 * @member:     the name of the list_head within the struct.
 382 * @cond:       optional lockdep expression if called from non-RCU protection.
 383 *
 384 * This list-traversal primitive may safely run concurrently with
 385 * the _rcu list-mutation primitives such as list_add_rcu()
 386 * as long as the traversal is guarded by rcu_read_lock().
 387 */
 388#define list_for_each_entry_rcu(pos, head, member, cond...)             \
 389        for (__list_check_rcu(dummy, ## cond, 0),                       \
 390             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 391                &pos->member != (head);                                 \
 392                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 393
 394/**
 395 * list_for_each_entry_srcu     -       iterate over rcu list of given type
 396 * @pos:        the type * to use as a loop cursor.
 397 * @head:       the head for your list.
 398 * @member:     the name of the list_head within the struct.
 399 * @cond:       lockdep expression for the lock required to traverse the list.
 400 *
 401 * This list-traversal primitive may safely run concurrently with
 402 * the _rcu list-mutation primitives such as list_add_rcu()
 403 * as long as the traversal is guarded by srcu_read_lock().
 404 * The lockdep expression srcu_read_lock_held() can be passed as the
 405 * cond argument from read side.
 406 */
 407#define list_for_each_entry_srcu(pos, head, member, cond)               \
 408        for (__list_check_srcu(cond),                                   \
 409             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 410                &pos->member != (head);                                 \
 411                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 412
 413/**
 414 * list_entry_lockless - get the struct for this entry
 415 * @ptr:        the &struct list_head pointer.
 416 * @type:       the type of the struct this is embedded in.
 417 * @member:     the name of the list_head within the struct.
 418 *
 419 * This primitive may safely run concurrently with the _rcu
 420 * list-mutation primitives such as list_add_rcu(), but requires some
 421 * implicit RCU read-side guarding.  One example is running within a special
 422 * exception-time environment where preemption is disabled and where lockdep
 423 * cannot be invoked.  Another example is when items are added to the list,
 424 * but never deleted.
 425 */
 426#define list_entry_lockless(ptr, type, member) \
 427        container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 428
 429/**
 430 * list_for_each_entry_lockless - iterate over rcu list of given type
 431 * @pos:        the type * to use as a loop cursor.
 432 * @head:       the head for your list.
 433 * @member:     the name of the list_struct within the struct.
 434 *
 435 * This primitive may safely run concurrently with the _rcu
 436 * list-mutation primitives such as list_add_rcu(), but requires some
 437 * implicit RCU read-side guarding.  One example is running within a special
 438 * exception-time environment where preemption is disabled and where lockdep
 439 * cannot be invoked.  Another example is when items are added to the list,
 440 * but never deleted.
 441 */
 442#define list_for_each_entry_lockless(pos, head, member) \
 443        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 444             &pos->member != (head); \
 445             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 446
 447/**
 448 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 449 * @pos:        the type * to use as a loop cursor.
 450 * @head:       the head for your list.
 451 * @member:     the name of the list_head within the struct.
 452 *
 453 * Continue to iterate over list of given type, continuing after
 454 * the current position which must have been in the list when the RCU read
 455 * lock was taken.
 456 * This would typically require either that you obtained the node from a
 457 * previous walk of the list in the same RCU read-side critical section, or
 458 * that you held some sort of non-RCU reference (such as a reference count)
 459 * to keep the node alive *and* in the list.
 460 *
 461 * This iterator is similar to list_for_each_entry_from_rcu() except
 462 * this starts after the given position and that one starts at the given
 463 * position.
 464 */
 465#define list_for_each_entry_continue_rcu(pos, head, member)             \
 466        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 467             &pos->member != (head);    \
 468             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 469
 470/**
 471 * list_for_each_entry_from_rcu - iterate over a list from current point
 472 * @pos:        the type * to use as a loop cursor.
 473 * @head:       the head for your list.
 474 * @member:     the name of the list_node within the struct.
 475 *
 476 * Iterate over the tail of a list starting from a given position,
 477 * which must have been in the list when the RCU read lock was taken.
 478 * This would typically require either that you obtained the node from a
 479 * previous walk of the list in the same RCU read-side critical section, or
 480 * that you held some sort of non-RCU reference (such as a reference count)
 481 * to keep the node alive *and* in the list.
 482 *
 483 * This iterator is similar to list_for_each_entry_continue_rcu() except
 484 * this starts from the given position and that one starts from the position
 485 * after the given position.
 486 */
 487#define list_for_each_entry_from_rcu(pos, head, member)                 \
 488        for (; &(pos)->member != (head);                                        \
 489                pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
 490
 491/**
 492 * hlist_del_rcu - deletes entry from hash list without re-initialization
 493 * @n: the element to delete from the hash list.
 494 *
 495 * Note: list_unhashed() on entry does not return true after this,
 496 * the entry is in an undefined state. It is useful for RCU based
 497 * lockfree traversal.
 498 *
 499 * In particular, it means that we can not poison the forward
 500 * pointers that may still be used for walking the hash list.
 501 *
 502 * The caller must take whatever precautions are necessary
 503 * (such as holding appropriate locks) to avoid racing
 504 * with another list-mutation primitive, such as hlist_add_head_rcu()
 505 * or hlist_del_rcu(), running on this same list.
 506 * However, it is perfectly legal to run concurrently with
 507 * the _rcu list-traversal primitives, such as
 508 * hlist_for_each_entry().
 509 */
 510static inline void hlist_del_rcu(struct hlist_node *n)
 511{
 512        __hlist_del(n);
 513        n->pprev = LIST_POISON2;
 514}
 515
 516/**
 517 * hlist_replace_rcu - replace old entry by new one
 518 * @old : the element to be replaced
 519 * @new : the new element to insert
 520 *
 521 * The @old entry will be replaced with the @new entry atomically.
 522 */
 523static inline void hlist_replace_rcu(struct hlist_node *old,
 524                                        struct hlist_node *new)
 525{
 526        struct hlist_node *next = old->next;
 527
 528        new->next = next;
 529        new->pprev = old->pprev;
 530        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 531        if (next)
 532                new->next->pprev = &new->next;
 533        old->pprev = LIST_POISON2;
 534}
 535
 536/*
 537 * return the first or the next element in an RCU protected hlist
 538 */
 539#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 540#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 541#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 542
 543/**
 544 * hlist_add_head_rcu
 545 * @n: the element to add to the hash list.
 546 * @h: the list to add to.
 547 *
 548 * Description:
 549 * Adds the specified element to the specified hlist,
 550 * while permitting racing traversals.
 551 *
 552 * The caller must take whatever precautions are necessary
 553 * (such as holding appropriate locks) to avoid racing
 554 * with another list-mutation primitive, such as hlist_add_head_rcu()
 555 * or hlist_del_rcu(), running on this same list.
 556 * However, it is perfectly legal to run concurrently with
 557 * the _rcu list-traversal primitives, such as
 558 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 559 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 560 * list-traversal primitive must be guarded by rcu_read_lock().
 561 */
 562static inline void hlist_add_head_rcu(struct hlist_node *n,
 563                                        struct hlist_head *h)
 564{
 565        struct hlist_node *first = h->first;
 566
 567        n->next = first;
 568        n->pprev = &h->first;
 569        rcu_assign_pointer(hlist_first_rcu(h), n);
 570        if (first)
 571                first->pprev = &n->next;
 572}
 573
 574/**
 575 * hlist_add_tail_rcu
 576 * @n: the element to add to the hash list.
 577 * @h: the list to add to.
 578 *
 579 * Description:
 580 * Adds the specified element to the specified hlist,
 581 * while permitting racing traversals.
 582 *
 583 * The caller must take whatever precautions are necessary
 584 * (such as holding appropriate locks) to avoid racing
 585 * with another list-mutation primitive, such as hlist_add_head_rcu()
 586 * or hlist_del_rcu(), running on this same list.
 587 * However, it is perfectly legal to run concurrently with
 588 * the _rcu list-traversal primitives, such as
 589 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 590 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 591 * list-traversal primitive must be guarded by rcu_read_lock().
 592 */
 593static inline void hlist_add_tail_rcu(struct hlist_node *n,
 594                                      struct hlist_head *h)
 595{
 596        struct hlist_node *i, *last = NULL;
 597
 598        /* Note: write side code, so rcu accessors are not needed. */
 599        for (i = h->first; i; i = i->next)
 600                last = i;
 601
 602        if (last) {
 603                n->next = last->next;
 604                n->pprev = &last->next;
 605                rcu_assign_pointer(hlist_next_rcu(last), n);
 606        } else {
 607                hlist_add_head_rcu(n, h);
 608        }
 609}
 610
 611/**
 612 * hlist_add_before_rcu
 613 * @n: the new element to add to the hash list.
 614 * @next: the existing element to add the new element before.
 615 *
 616 * Description:
 617 * Adds the specified element to the specified hlist
 618 * before the specified node while permitting racing traversals.
 619 *
 620 * The caller must take whatever precautions are necessary
 621 * (such as holding appropriate locks) to avoid racing
 622 * with another list-mutation primitive, such as hlist_add_head_rcu()
 623 * or hlist_del_rcu(), running on this same list.
 624 * However, it is perfectly legal to run concurrently with
 625 * the _rcu list-traversal primitives, such as
 626 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 627 * problems on Alpha CPUs.
 628 */
 629static inline void hlist_add_before_rcu(struct hlist_node *n,
 630                                        struct hlist_node *next)
 631{
 632        n->pprev = next->pprev;
 633        n->next = next;
 634        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 635        next->pprev = &n->next;
 636}
 637
 638/**
 639 * hlist_add_behind_rcu
 640 * @n: the new element to add to the hash list.
 641 * @prev: the existing element to add the new element after.
 642 *
 643 * Description:
 644 * Adds the specified element to the specified hlist
 645 * after the specified node while permitting racing traversals.
 646 *
 647 * The caller must take whatever precautions are necessary
 648 * (such as holding appropriate locks) to avoid racing
 649 * with another list-mutation primitive, such as hlist_add_head_rcu()
 650 * or hlist_del_rcu(), running on this same list.
 651 * However, it is perfectly legal to run concurrently with
 652 * the _rcu list-traversal primitives, such as
 653 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 654 * problems on Alpha CPUs.
 655 */
 656static inline void hlist_add_behind_rcu(struct hlist_node *n,
 657                                        struct hlist_node *prev)
 658{
 659        n->next = prev->next;
 660        n->pprev = &prev->next;
 661        rcu_assign_pointer(hlist_next_rcu(prev), n);
 662        if (n->next)
 663                n->next->pprev = &n->next;
 664}
 665
 666#define __hlist_for_each_rcu(pos, head)                         \
 667        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 668             pos;                                               \
 669             pos = rcu_dereference(hlist_next_rcu(pos)))
 670
 671/**
 672 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 673 * @pos:        the type * to use as a loop cursor.
 674 * @head:       the head for your list.
 675 * @member:     the name of the hlist_node within the struct.
 676 * @cond:       optional lockdep expression if called from non-RCU protection.
 677 *
 678 * This list-traversal primitive may safely run concurrently with
 679 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 680 * as long as the traversal is guarded by rcu_read_lock().
 681 */
 682#define hlist_for_each_entry_rcu(pos, head, member, cond...)            \
 683        for (__list_check_rcu(dummy, ## cond, 0),                       \
 684             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 685                        typeof(*(pos)), member);                        \
 686                pos;                                                    \
 687                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 688                        &(pos)->member)), typeof(*(pos)), member))
 689
 690/**
 691 * hlist_for_each_entry_srcu - iterate over rcu list of given type
 692 * @pos:        the type * to use as a loop cursor.
 693 * @head:       the head for your list.
 694 * @member:     the name of the hlist_node within the struct.
 695 * @cond:       lockdep expression for the lock required to traverse the list.
 696 *
 697 * This list-traversal primitive may safely run concurrently with
 698 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 699 * as long as the traversal is guarded by srcu_read_lock().
 700 * The lockdep expression srcu_read_lock_held() can be passed as the
 701 * cond argument from read side.
 702 */
 703#define hlist_for_each_entry_srcu(pos, head, member, cond)              \
 704        for (__list_check_srcu(cond),                                   \
 705             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 706                        typeof(*(pos)), member);                        \
 707                pos;                                                    \
 708                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 709                        &(pos)->member)), typeof(*(pos)), member))
 710
 711/**
 712 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 713 * @pos:        the type * to use as a loop cursor.
 714 * @head:       the head for your list.
 715 * @member:     the name of the hlist_node within the struct.
 716 *
 717 * This list-traversal primitive may safely run concurrently with
 718 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 719 * as long as the traversal is guarded by rcu_read_lock().
 720 *
 721 * This is the same as hlist_for_each_entry_rcu() except that it does
 722 * not do any RCU debugging or tracing.
 723 */
 724#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 725        for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
 726                        typeof(*(pos)), member);                        \
 727                pos;                                                    \
 728                pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
 729                        &(pos)->member)), typeof(*(pos)), member))
 730
 731/**
 732 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 733 * @pos:        the type * to use as a loop cursor.
 734 * @head:       the head for your list.
 735 * @member:     the name of the hlist_node within the struct.
 736 *
 737 * This list-traversal primitive may safely run concurrently with
 738 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 739 * as long as the traversal is guarded by rcu_read_lock().
 740 */
 741#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 742        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 743                        typeof(*(pos)), member);                        \
 744                pos;                                                    \
 745                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 746                        &(pos)->member)), typeof(*(pos)), member))
 747
 748/**
 749 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 750 * @pos:        the type * to use as a loop cursor.
 751 * @member:     the name of the hlist_node within the struct.
 752 */
 753#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 754        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 755                        &(pos)->member)), typeof(*(pos)), member);      \
 756             pos;                                                       \
 757             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 758                        &(pos)->member)), typeof(*(pos)), member))
 759
 760/**
 761 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 762 * @pos:        the type * to use as a loop cursor.
 763 * @member:     the name of the hlist_node within the struct.
 764 */
 765#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 766        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 767                        &(pos)->member)), typeof(*(pos)), member);      \
 768             pos;                                                       \
 769             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 770                        &(pos)->member)), typeof(*(pos)), member))
 771
 772/**
 773 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 774 * @pos:        the type * to use as a loop cursor.
 775 * @member:     the name of the hlist_node within the struct.
 776 */
 777#define hlist_for_each_entry_from_rcu(pos, member)                      \
 778        for (; pos;                                                     \
 779             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 780                        &(pos)->member)), typeof(*(pos)), member))
 781
 782#endif  /* __KERNEL__ */
 783#endif
 784