linux/include/linux/workqueue.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * workqueue.h --- work queue handling for Linux.
   4 */
   5
   6#ifndef _LINUX_WORKQUEUE_H
   7#define _LINUX_WORKQUEUE_H
   8
   9#include <linux/timer.h>
  10#include <linux/linkage.h>
  11#include <linux/bitops.h>
  12#include <linux/lockdep.h>
  13#include <linux/threads.h>
  14#include <linux/atomic.h>
  15#include <linux/cpumask.h>
  16#include <linux/rcupdate.h>
  17#include <linux/rh_kabi.h>
  18
  19struct workqueue_struct;
  20
  21struct work_struct;
  22typedef void (*work_func_t)(struct work_struct *work);
  23void delayed_work_timer_fn(struct timer_list *t);
  24
  25/*
  26 * The first word is the work queue pointer and the flags rolled into
  27 * one
  28 */
  29#define work_data_bits(work) ((unsigned long *)(&(work)->data))
  30
  31enum {
  32        WORK_STRUCT_PENDING_BIT = 0,    /* work item is pending execution */
  33        WORK_STRUCT_DELAYED_BIT = 1,    /* work item is delayed */
  34        WORK_STRUCT_PWQ_BIT     = 2,    /* data points to pwq */
  35        WORK_STRUCT_LINKED_BIT  = 3,    /* next work is linked to this one */
  36#ifdef CONFIG_DEBUG_OBJECTS_WORK
  37        WORK_STRUCT_STATIC_BIT  = 4,    /* static initializer (debugobjects) */
  38        WORK_STRUCT_COLOR_SHIFT = 5,    /* color for workqueue flushing */
  39#else
  40        WORK_STRUCT_COLOR_SHIFT = 4,    /* color for workqueue flushing */
  41#endif
  42
  43        WORK_STRUCT_COLOR_BITS  = 4,
  44
  45        WORK_STRUCT_PENDING     = 1 << WORK_STRUCT_PENDING_BIT,
  46        WORK_STRUCT_DELAYED     = 1 << WORK_STRUCT_DELAYED_BIT,
  47        WORK_STRUCT_PWQ         = 1 << WORK_STRUCT_PWQ_BIT,
  48        WORK_STRUCT_LINKED      = 1 << WORK_STRUCT_LINKED_BIT,
  49#ifdef CONFIG_DEBUG_OBJECTS_WORK
  50        WORK_STRUCT_STATIC      = 1 << WORK_STRUCT_STATIC_BIT,
  51#else
  52        WORK_STRUCT_STATIC      = 0,
  53#endif
  54
  55        /*
  56         * The last color is no color used for works which don't
  57         * participate in workqueue flushing.
  58         */
  59        WORK_NR_COLORS          = (1 << WORK_STRUCT_COLOR_BITS) - 1,
  60        WORK_NO_COLOR           = WORK_NR_COLORS,
  61
  62        /* not bound to any CPU, prefer the local CPU */
  63        WORK_CPU_UNBOUND        = NR_CPUS,
  64
  65        /*
  66         * Reserve 7 bits off of pwq pointer w/ debugobjects turned off.
  67         * This makes pwqs aligned to 256 bytes and allows 15 workqueue
  68         * flush colors.
  69         */
  70        WORK_STRUCT_FLAG_BITS   = WORK_STRUCT_COLOR_SHIFT +
  71                                  WORK_STRUCT_COLOR_BITS,
  72
  73        /* data contains off-queue information when !WORK_STRUCT_PWQ */
  74        WORK_OFFQ_FLAG_BASE     = WORK_STRUCT_COLOR_SHIFT,
  75
  76        __WORK_OFFQ_CANCELING   = WORK_OFFQ_FLAG_BASE,
  77        WORK_OFFQ_CANCELING     = (1 << __WORK_OFFQ_CANCELING),
  78
  79        /*
  80         * When a work item is off queue, its high bits point to the last
  81         * pool it was on.  Cap at 31 bits and use the highest number to
  82         * indicate that no pool is associated.
  83         */
  84        WORK_OFFQ_FLAG_BITS     = 1,
  85        WORK_OFFQ_POOL_SHIFT    = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
  86        WORK_OFFQ_LEFT          = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
  87        WORK_OFFQ_POOL_BITS     = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
  88        WORK_OFFQ_POOL_NONE     = (1LU << WORK_OFFQ_POOL_BITS) - 1,
  89
  90        /* convenience constants */
  91        WORK_STRUCT_FLAG_MASK   = (1UL << WORK_STRUCT_FLAG_BITS) - 1,
  92        WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
  93        WORK_STRUCT_NO_POOL     = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT,
  94
  95        /* bit mask for work_busy() return values */
  96        WORK_BUSY_PENDING       = 1 << 0,
  97        WORK_BUSY_RUNNING       = 1 << 1,
  98
  99        /* maximum string length for set_worker_desc() */
 100        WORKER_DESC_LEN         = 24,
 101};
 102
 103struct work_struct {
 104        atomic_long_t data;
 105        struct list_head entry;
 106        work_func_t func;
 107#ifdef CONFIG_LOCKDEP
 108        struct lockdep_map lockdep_map;
 109#endif
 110        RH_KABI_RESERVE(1)
 111        RH_KABI_RESERVE(2)
 112        RH_KABI_RESERVE(3)
 113        RH_KABI_RESERVE(4)
 114};
 115
 116#define WORK_DATA_INIT()        ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
 117#define WORK_DATA_STATIC_INIT() \
 118        ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
 119
 120struct delayed_work {
 121        struct work_struct work;
 122        struct timer_list timer;
 123
 124        /* target workqueue and CPU ->timer uses to queue ->work */
 125        struct workqueue_struct *wq;
 126        int cpu;
 127        RH_KABI_RESERVE(1)
 128        RH_KABI_RESERVE(2)
 129        RH_KABI_RESERVE(3)
 130        RH_KABI_RESERVE(4)
 131};
 132
 133struct rcu_work {
 134        struct work_struct work;
 135        struct rcu_head rcu;
 136
 137        /* target workqueue ->rcu uses to queue ->work */
 138        struct workqueue_struct *wq;
 139};
 140
 141/**
 142 * struct workqueue_attrs - A struct for workqueue attributes.
 143 *
 144 * This can be used to change attributes of an unbound workqueue.
 145 */
 146struct workqueue_attrs {
 147        /**
 148         * @nice: nice level
 149         */
 150        int nice;
 151
 152        /**
 153         * @cpumask: allowed CPUs
 154         */
 155        cpumask_var_t cpumask;
 156
 157        /**
 158         * @no_numa: disable NUMA affinity
 159         *
 160         * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It
 161         * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus
 162         * doesn't participate in pool hash calculations or equality comparisons.
 163         */
 164        bool no_numa;
 165};
 166
 167static inline struct delayed_work *to_delayed_work(struct work_struct *work)
 168{
 169        return container_of(work, struct delayed_work, work);
 170}
 171
 172static inline struct rcu_work *to_rcu_work(struct work_struct *work)
 173{
 174        return container_of(work, struct rcu_work, work);
 175}
 176
 177struct execute_work {
 178        struct work_struct work;
 179};
 180
 181#ifdef CONFIG_LOCKDEP
 182/*
 183 * NB: because we have to copy the lockdep_map, setting _key
 184 * here is required, otherwise it could get initialised to the
 185 * copy of the lockdep_map!
 186 */
 187#define __WORK_INIT_LOCKDEP_MAP(n, k) \
 188        .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
 189#else
 190#define __WORK_INIT_LOCKDEP_MAP(n, k)
 191#endif
 192
 193#define __WORK_INITIALIZER(n, f) {                                      \
 194        .data = WORK_DATA_STATIC_INIT(),                                \
 195        .entry  = { &(n).entry, &(n).entry },                           \
 196        .func = (f),                                                    \
 197        __WORK_INIT_LOCKDEP_MAP(#n, &(n))                               \
 198        }
 199
 200#define __DELAYED_WORK_INITIALIZER(n, f, tflags) {                      \
 201        .work = __WORK_INITIALIZER((n).work, (f)),                      \
 202        .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
 203                                     (tflags) | TIMER_IRQSAFE),         \
 204        }
 205
 206#define DECLARE_WORK(n, f)                                              \
 207        struct work_struct n = __WORK_INITIALIZER(n, f)
 208
 209#define DECLARE_DELAYED_WORK(n, f)                                      \
 210        struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
 211
 212#define DECLARE_DEFERRABLE_WORK(n, f)                                   \
 213        struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
 214
 215#ifdef CONFIG_DEBUG_OBJECTS_WORK
 216extern void __init_work(struct work_struct *work, int onstack);
 217extern void destroy_work_on_stack(struct work_struct *work);
 218extern void destroy_delayed_work_on_stack(struct delayed_work *work);
 219static inline unsigned int work_static(struct work_struct *work)
 220{
 221        return *work_data_bits(work) & WORK_STRUCT_STATIC;
 222}
 223#else
 224static inline void __init_work(struct work_struct *work, int onstack) { }
 225static inline void destroy_work_on_stack(struct work_struct *work) { }
 226static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
 227static inline unsigned int work_static(struct work_struct *work) { return 0; }
 228#endif
 229
 230/*
 231 * initialize all of a work item in one go
 232 *
 233 * NOTE! No point in using "atomic_long_set()": using a direct
 234 * assignment of the work data initializer allows the compiler
 235 * to generate better code.
 236 */
 237#ifdef CONFIG_LOCKDEP
 238#define __INIT_WORK(_work, _func, _onstack)                             \
 239        do {                                                            \
 240                static struct lock_class_key __key;                     \
 241                                                                        \
 242                __init_work((_work), _onstack);                         \
 243                (_work)->data = (atomic_long_t) WORK_DATA_INIT();       \
 244                lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
 245                INIT_LIST_HEAD(&(_work)->entry);                        \
 246                (_work)->func = (_func);                                \
 247        } while (0)
 248#else
 249#define __INIT_WORK(_work, _func, _onstack)                             \
 250        do {                                                            \
 251                __init_work((_work), _onstack);                         \
 252                (_work)->data = (atomic_long_t) WORK_DATA_INIT();       \
 253                INIT_LIST_HEAD(&(_work)->entry);                        \
 254                (_work)->func = (_func);                                \
 255        } while (0)
 256#endif
 257
 258#define INIT_WORK(_work, _func)                                         \
 259        __INIT_WORK((_work), (_func), 0)
 260
 261#define INIT_WORK_ONSTACK(_work, _func)                                 \
 262        __INIT_WORK((_work), (_func), 1)
 263
 264#define __INIT_DELAYED_WORK(_work, _func, _tflags)                      \
 265        do {                                                            \
 266                INIT_WORK(&(_work)->work, (_func));                     \
 267                __init_timer(&(_work)->timer,                           \
 268                             delayed_work_timer_fn,                     \
 269                             (_tflags) | TIMER_IRQSAFE);                \
 270        } while (0)
 271
 272#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)              \
 273        do {                                                            \
 274                INIT_WORK_ONSTACK(&(_work)->work, (_func));             \
 275                __init_timer_on_stack(&(_work)->timer,                  \
 276                                      delayed_work_timer_fn,            \
 277                                      (_tflags) | TIMER_IRQSAFE);       \
 278        } while (0)
 279
 280#define INIT_DELAYED_WORK(_work, _func)                                 \
 281        __INIT_DELAYED_WORK(_work, _func, 0)
 282
 283#define INIT_DELAYED_WORK_ONSTACK(_work, _func)                         \
 284        __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
 285
 286#define INIT_DEFERRABLE_WORK(_work, _func)                              \
 287        __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
 288
 289#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)                      \
 290        __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
 291
 292#define INIT_RCU_WORK(_work, _func)                                     \
 293        INIT_WORK(&(_work)->work, (_func))
 294
 295#define INIT_RCU_WORK_ONSTACK(_work, _func)                             \
 296        INIT_WORK_ONSTACK(&(_work)->work, (_func))
 297
 298/**
 299 * work_pending - Find out whether a work item is currently pending
 300 * @work: The work item in question
 301 */
 302#define work_pending(work) \
 303        test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
 304
 305/**
 306 * delayed_work_pending - Find out whether a delayable work item is currently
 307 * pending
 308 * @w: The work item in question
 309 */
 310#define delayed_work_pending(w) \
 311        work_pending(&(w)->work)
 312
 313/*
 314 * Workqueue flags and constants.  For details, please refer to
 315 * Documentation/core-api/workqueue.rst.
 316 */
 317enum {
 318        WQ_UNBOUND              = 1 << 1, /* not bound to any cpu */
 319        WQ_FREEZABLE            = 1 << 2, /* freeze during suspend */
 320        WQ_MEM_RECLAIM          = 1 << 3, /* may be used for memory reclaim */
 321        WQ_HIGHPRI              = 1 << 4, /* high priority */
 322        WQ_CPU_INTENSIVE        = 1 << 5, /* cpu intensive workqueue */
 323        WQ_SYSFS                = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */
 324
 325        /*
 326         * Per-cpu workqueues are generally preferred because they tend to
 327         * show better performance thanks to cache locality.  Per-cpu
 328         * workqueues exclude the scheduler from choosing the CPU to
 329         * execute the worker threads, which has an unfortunate side effect
 330         * of increasing power consumption.
 331         *
 332         * The scheduler considers a CPU idle if it doesn't have any task
 333         * to execute and tries to keep idle cores idle to conserve power;
 334         * however, for example, a per-cpu work item scheduled from an
 335         * interrupt handler on an idle CPU will force the scheduler to
 336         * excute the work item on that CPU breaking the idleness, which in
 337         * turn may lead to more scheduling choices which are sub-optimal
 338         * in terms of power consumption.
 339         *
 340         * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
 341         * but become unbound if workqueue.power_efficient kernel param is
 342         * specified.  Per-cpu workqueues which are identified to
 343         * contribute significantly to power-consumption are identified and
 344         * marked with this flag and enabling the power_efficient mode
 345         * leads to noticeable power saving at the cost of small
 346         * performance disadvantage.
 347         *
 348         * http://thread.gmane.org/gmane.linux.kernel/1480396
 349         */
 350        WQ_POWER_EFFICIENT      = 1 << 7,
 351
 352        __WQ_DRAINING           = 1 << 16, /* internal: workqueue is draining */
 353        __WQ_ORDERED            = 1 << 17, /* internal: workqueue is ordered */
 354        __WQ_LEGACY             = 1 << 18, /* internal: create*_workqueue() */
 355        __WQ_ORDERED_EXPLICIT   = 1 << 19, /* internal: alloc_ordered_workqueue() */
 356
 357        WQ_MAX_ACTIVE           = 512,    /* I like 512, better ideas? */
 358        WQ_MAX_UNBOUND_PER_CPU  = 4,      /* 4 * #cpus for unbound wq */
 359        WQ_DFL_ACTIVE           = WQ_MAX_ACTIVE / 2,
 360};
 361
 362/* unbound wq's aren't per-cpu, scale max_active according to #cpus */
 363#define WQ_UNBOUND_MAX_ACTIVE   \
 364        max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
 365
 366/*
 367 * System-wide workqueues which are always present.
 368 *
 369 * system_wq is the one used by schedule[_delayed]_work[_on]().
 370 * Multi-CPU multi-threaded.  There are users which expect relatively
 371 * short queue flush time.  Don't queue works which can run for too
 372 * long.
 373 *
 374 * system_highpri_wq is similar to system_wq but for work items which
 375 * require WQ_HIGHPRI.
 376 *
 377 * system_long_wq is similar to system_wq but may host long running
 378 * works.  Queue flushing might take relatively long.
 379 *
 380 * system_unbound_wq is unbound workqueue.  Workers are not bound to
 381 * any specific CPU, not concurrency managed, and all queued works are
 382 * executed immediately as long as max_active limit is not reached and
 383 * resources are available.
 384 *
 385 * system_freezable_wq is equivalent to system_wq except that it's
 386 * freezable.
 387 *
 388 * *_power_efficient_wq are inclined towards saving power and converted
 389 * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
 390 * they are same as their non-power-efficient counterparts - e.g.
 391 * system_power_efficient_wq is identical to system_wq if
 392 * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
 393 */
 394extern struct workqueue_struct *system_wq;
 395extern struct workqueue_struct *system_highpri_wq;
 396extern struct workqueue_struct *system_long_wq;
 397extern struct workqueue_struct *system_unbound_wq;
 398extern struct workqueue_struct *system_freezable_wq;
 399extern struct workqueue_struct *system_power_efficient_wq;
 400extern struct workqueue_struct *system_freezable_power_efficient_wq;
 401
 402/**
 403 * alloc_workqueue - allocate a workqueue
 404 * @fmt: printf format for the name of the workqueue
 405 * @flags: WQ_* flags
 406 * @max_active: max in-flight work items, 0 for default
 407 * remaining args: args for @fmt
 408 *
 409 * Allocate a workqueue with the specified parameters.  For detailed
 410 * information on WQ_* flags, please refer to
 411 * Documentation/core-api/workqueue.rst.
 412 *
 413 * RETURNS:
 414 * Pointer to the allocated workqueue on success, %NULL on failure.
 415 */
 416struct workqueue_struct *alloc_workqueue(const char *fmt,
 417                                         unsigned int flags,
 418                                         int max_active, ...);
 419
 420/**
 421 * alloc_ordered_workqueue - allocate an ordered workqueue
 422 * @fmt: printf format for the name of the workqueue
 423 * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
 424 * @args...: args for @fmt
 425 *
 426 * Allocate an ordered workqueue.  An ordered workqueue executes at
 427 * most one work item at any given time in the queued order.  They are
 428 * implemented as unbound workqueues with @max_active of one.
 429 *
 430 * RETURNS:
 431 * Pointer to the allocated workqueue on success, %NULL on failure.
 432 */
 433#define alloc_ordered_workqueue(fmt, flags, args...)                    \
 434        alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |                \
 435                        __WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
 436
 437#define create_workqueue(name)                                          \
 438        alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
 439#define create_freezable_workqueue(name)                                \
 440        alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \
 441                        WQ_MEM_RECLAIM, 1, (name))
 442#define create_singlethread_workqueue(name)                             \
 443        alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
 444
 445extern void destroy_workqueue(struct workqueue_struct *wq);
 446
 447struct workqueue_attrs *alloc_workqueue_attrs(void);
 448void free_workqueue_attrs(struct workqueue_attrs *attrs);
 449int apply_workqueue_attrs(struct workqueue_struct *wq,
 450                          const struct workqueue_attrs *attrs);
 451int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
 452
 453extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
 454                        struct work_struct *work);
 455extern bool queue_work_node(int node, struct workqueue_struct *wq,
 456                            struct work_struct *work);
 457extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 458                        struct delayed_work *work, unsigned long delay);
 459extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
 460                        struct delayed_work *dwork, unsigned long delay);
 461extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
 462
 463extern void flush_workqueue(struct workqueue_struct *wq);
 464extern void drain_workqueue(struct workqueue_struct *wq);
 465
 466extern int schedule_on_each_cpu(work_func_t func);
 467
 468int execute_in_process_context(work_func_t fn, struct execute_work *);
 469
 470extern bool flush_work(struct work_struct *work);
 471extern bool cancel_work_sync(struct work_struct *work);
 472
 473extern bool flush_delayed_work(struct delayed_work *dwork);
 474extern bool cancel_delayed_work(struct delayed_work *dwork);
 475extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
 476
 477extern bool flush_rcu_work(struct rcu_work *rwork);
 478
 479extern void workqueue_set_max_active(struct workqueue_struct *wq,
 480                                     int max_active);
 481extern struct work_struct *current_work(void);
 482extern bool current_is_workqueue_rescuer(void);
 483extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
 484extern unsigned int work_busy(struct work_struct *work);
 485extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
 486extern void print_worker_info(const char *log_lvl, struct task_struct *task);
 487extern void show_workqueue_state(void);
 488extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
 489
 490/**
 491 * queue_work - queue work on a workqueue
 492 * @wq: workqueue to use
 493 * @work: work to queue
 494 *
 495 * Returns %false if @work was already on a queue, %true otherwise.
 496 *
 497 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 498 * it can be processed by another CPU.
 499 */
 500static inline bool queue_work(struct workqueue_struct *wq,
 501                              struct work_struct *work)
 502{
 503        return queue_work_on(WORK_CPU_UNBOUND, wq, work);
 504}
 505
 506/**
 507 * queue_delayed_work - queue work on a workqueue after delay
 508 * @wq: workqueue to use
 509 * @dwork: delayable work to queue
 510 * @delay: number of jiffies to wait before queueing
 511 *
 512 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
 513 */
 514static inline bool queue_delayed_work(struct workqueue_struct *wq,
 515                                      struct delayed_work *dwork,
 516                                      unsigned long delay)
 517{
 518        return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
 519}
 520
 521/**
 522 * mod_delayed_work - modify delay of or queue a delayed work
 523 * @wq: workqueue to use
 524 * @dwork: work to queue
 525 * @delay: number of jiffies to wait before queueing
 526 *
 527 * mod_delayed_work_on() on local CPU.
 528 */
 529static inline bool mod_delayed_work(struct workqueue_struct *wq,
 530                                    struct delayed_work *dwork,
 531                                    unsigned long delay)
 532{
 533        return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
 534}
 535
 536/**
 537 * schedule_work_on - put work task on a specific cpu
 538 * @cpu: cpu to put the work task on
 539 * @work: job to be done
 540 *
 541 * This puts a job on a specific cpu
 542 */
 543static inline bool schedule_work_on(int cpu, struct work_struct *work)
 544{
 545        return queue_work_on(cpu, system_wq, work);
 546}
 547
 548/**
 549 * schedule_work - put work task in global workqueue
 550 * @work: job to be done
 551 *
 552 * Returns %false if @work was already on the kernel-global workqueue and
 553 * %true otherwise.
 554 *
 555 * This puts a job in the kernel-global workqueue if it was not already
 556 * queued and leaves it in the same position on the kernel-global
 557 * workqueue otherwise.
 558 */
 559static inline bool schedule_work(struct work_struct *work)
 560{
 561        return queue_work(system_wq, work);
 562}
 563
 564/**
 565 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 566 *
 567 * Forces execution of the kernel-global workqueue and blocks until its
 568 * completion.
 569 *
 570 * Think twice before calling this function!  It's very easy to get into
 571 * trouble if you don't take great care.  Either of the following situations
 572 * will lead to deadlock:
 573 *
 574 *      One of the work items currently on the workqueue needs to acquire
 575 *      a lock held by your code or its caller.
 576 *
 577 *      Your code is running in the context of a work routine.
 578 *
 579 * They will be detected by lockdep when they occur, but the first might not
 580 * occur very often.  It depends on what work items are on the workqueue and
 581 * what locks they need, which you have no control over.
 582 *
 583 * In most situations flushing the entire workqueue is overkill; you merely
 584 * need to know that a particular work item isn't queued and isn't running.
 585 * In such cases you should use cancel_delayed_work_sync() or
 586 * cancel_work_sync() instead.
 587 */
 588static inline void flush_scheduled_work(void)
 589{
 590        flush_workqueue(system_wq);
 591}
 592
 593/**
 594 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 595 * @cpu: cpu to use
 596 * @dwork: job to be done
 597 * @delay: number of jiffies to wait
 598 *
 599 * After waiting for a given time this puts a job in the kernel-global
 600 * workqueue on the specified CPU.
 601 */
 602static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
 603                                            unsigned long delay)
 604{
 605        return queue_delayed_work_on(cpu, system_wq, dwork, delay);
 606}
 607
 608/**
 609 * schedule_delayed_work - put work task in global workqueue after delay
 610 * @dwork: job to be done
 611 * @delay: number of jiffies to wait or 0 for immediate execution
 612 *
 613 * After waiting for a given time this puts a job in the kernel-global
 614 * workqueue.
 615 */
 616static inline bool schedule_delayed_work(struct delayed_work *dwork,
 617                                         unsigned long delay)
 618{
 619        return queue_delayed_work(system_wq, dwork, delay);
 620}
 621
 622#ifndef CONFIG_SMP
 623static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
 624{
 625        return fn(arg);
 626}
 627static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
 628{
 629        return fn(arg);
 630}
 631#else
 632long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
 633long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
 634#endif /* CONFIG_SMP */
 635
 636#ifdef CONFIG_FREEZER
 637extern void freeze_workqueues_begin(void);
 638extern bool freeze_workqueues_busy(void);
 639extern void thaw_workqueues(void);
 640#endif /* CONFIG_FREEZER */
 641
 642#ifdef CONFIG_SYSFS
 643int workqueue_sysfs_register(struct workqueue_struct *wq);
 644#else   /* CONFIG_SYSFS */
 645static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
 646{ return 0; }
 647#endif  /* CONFIG_SYSFS */
 648
 649#ifdef CONFIG_WQ_WATCHDOG
 650void wq_watchdog_touch(int cpu);
 651#else   /* CONFIG_WQ_WATCHDOG */
 652static inline void wq_watchdog_touch(int cpu) { }
 653#endif  /* CONFIG_WQ_WATCHDOG */
 654
 655#ifdef CONFIG_SMP
 656int workqueue_prepare_cpu(unsigned int cpu);
 657int workqueue_online_cpu(unsigned int cpu);
 658int workqueue_offline_cpu(unsigned int cpu);
 659#endif
 660
 661int __init workqueue_init_early(void);
 662int __init workqueue_init(void);
 663
 664#endif
 665