linux/include/net/tcp.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the TCP module.
   7 *
   8 * Version:     @(#)tcp.h       1.0.5   05/23/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *              This program is free software; you can redistribute it and/or
  14 *              modify it under the terms of the GNU General Public License
  15 *              as published by the Free Software Foundation; either version
  16 *              2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock_reuseport.h>
  40#include <net/sock.h>
  41#include <net/snmp.h>
  42#include <net/ip.h>
  43#include <net/tcp_states.h>
  44#include <net/inet_ecn.h>
  45#include <net/dst.h>
  46#include <net/mptcp.h>
  47
  48#include <linux/seq_file.h>
  49#include <linux/memcontrol.h>
  50#include <linux/bpf-cgroup.h>
  51
  52extern struct inet_hashinfo tcp_hashinfo;
  53
  54extern struct percpu_counter tcp_orphan_count;
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS         48
  60#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW          32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS             88U
  70
  71/* The least MTU to use for probing */
  72#define TCP_BASE_MSS            1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL      600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD     8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS       16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE          14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID   0x0100
  91#define TCP_URG_NOTYET  0x0200
  92#define TCP_URG_READ    0x0400
  93
  94#define TCP_RETR1       3       /*
  95                                 * This is how many retries it does before it
  96                                 * tries to figure out if the gateway is
  97                                 * down. Minimal RFC value is 3; it corresponds
  98                                 * to ~3sec-8min depending on RTO.
  99                                 */
 100
 101#define TCP_RETR2       15      /*
 102                                 * This should take at least
 103                                 * 90 minutes to time out.
 104                                 * RFC1122 says that the limit is 100 sec.
 105                                 * 15 is ~13-30min depending on RTO.
 106                                 */
 107
 108#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 109                                 * when active opening a connection.
 110                                 * RFC1122 says the minimum retry MUST
 111                                 * be at least 180secs.  Nevertheless
 112                                 * this value is corresponding to
 113                                 * 63secs of retransmission with the
 114                                 * current initial RTO.
 115                                 */
 116
 117#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 118                                 * when passive opening a connection.
 119                                 * This is corresponding to 31secs of
 120                                 * retransmission with the current
 121                                 * initial RTO.
 122                                 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125                                  * state, about 60 seconds     */
 126#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128                                  * It used to be 3min, new value is 60sec,
 129                                  * to combine FIN-WAIT-2 timeout with
 130                                  * TIME-WAIT timer.
 131                                  */
 132
 133#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 134#if HZ >= 100
 135#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 136#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 137#else
 138#define TCP_DELACK_MIN  4U
 139#define TCP_ATO_MIN     4U
 140#endif
 141#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 142#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 143#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 146                                                 * used as a fallback RTO for the
 147                                                 * initial data transmission if no
 148                                                 * valid RTT sample has been acquired,
 149                                                 * most likely due to retrans in 3WHS.
 150                                                 */
 151
 152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 153                                                         * for local resources.
 154                                                         */
 155#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 156#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 157#define TCP_KEEPALIVE_INTVL     (75*HZ)
 158
 159#define MAX_TCP_KEEPIDLE        32767
 160#define MAX_TCP_KEEPINTVL       32767
 161#define MAX_TCP_KEEPCNT         127
 162#define MAX_TCP_SYNCNT          127
 163
 164#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 165
 166#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 167#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 168                                         * after this time. It should be equal
 169                                         * (or greater than) TCP_TIMEWAIT_LEN
 170                                         * to provide reliability equal to one
 171                                         * provided by timewait state.
 172                                         */
 173#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 174                                         * timestamps. It must be less than
 175                                         * minimal timewait lifetime.
 176                                         */
 177/*
 178 *      TCP option
 179 */
 180
 181#define TCPOPT_NOP              1       /* Padding */
 182#define TCPOPT_EOL              0       /* End of options */
 183#define TCPOPT_MSS              2       /* Segment size negotiating */
 184#define TCPOPT_WINDOW           3       /* Window scaling */
 185#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 186#define TCPOPT_SACK             5       /* SACK Block */
 187#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 188#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 189#define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
 190#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 191#define TCPOPT_EXP              254     /* Experimental */
 192/* Magic number to be after the option value for sharing TCP
 193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 194 */
 195#define TCPOPT_FASTOPEN_MAGIC   0xF989
 196#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 197
 198/*
 199 *     TCP option lengths
 200 */
 201
 202#define TCPOLEN_MSS            4
 203#define TCPOLEN_WINDOW         3
 204#define TCPOLEN_SACK_PERM      2
 205#define TCPOLEN_TIMESTAMP      10
 206#define TCPOLEN_MD5SIG         18
 207#define TCPOLEN_FASTOPEN_BASE  2
 208#define TCPOLEN_EXP_FASTOPEN_BASE  4
 209#define TCPOLEN_EXP_SMC_BASE   6
 210
 211/* But this is what stacks really send out. */
 212#define TCPOLEN_TSTAMP_ALIGNED          12
 213#define TCPOLEN_WSCALE_ALIGNED          4
 214#define TCPOLEN_SACKPERM_ALIGNED        4
 215#define TCPOLEN_SACK_BASE               2
 216#define TCPOLEN_SACK_BASE_ALIGNED       4
 217#define TCPOLEN_SACK_PERBLOCK           8
 218#define TCPOLEN_MD5SIG_ALIGNED          20
 219#define TCPOLEN_MSS_ALIGNED             4
 220#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 221
 222/* Flags in tp->nonagle */
 223#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 224#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 225#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 226
 227/* TCP thin-stream limits */
 228#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 229
 230/* TCP initial congestion window as per rfc6928 */
 231#define TCP_INIT_CWND           10
 232
 233/* Bit Flags for sysctl_tcp_fastopen */
 234#define TFO_CLIENT_ENABLE       1
 235#define TFO_SERVER_ENABLE       2
 236#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 237
 238/* Accept SYN data w/o any cookie option */
 239#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 240
 241/* Force enable TFO on all listeners, i.e., not requiring the
 242 * TCP_FASTOPEN socket option.
 243 */
 244#define TFO_SERVER_WO_SOCKOPT1  0x400
 245
 246
 247/* sysctl variables for tcp */
 248extern int sysctl_tcp_max_orphans;
 249extern long sysctl_tcp_mem[3];
 250
 251#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 252#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 253#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 254
 255extern atomic_long_t tcp_memory_allocated;
 256extern struct percpu_counter tcp_sockets_allocated;
 257extern unsigned long tcp_memory_pressure;
 258
 259/* optimized version of sk_under_memory_pressure() for TCP sockets */
 260static inline bool tcp_under_memory_pressure(const struct sock *sk)
 261{
 262        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 263            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 264                return true;
 265
 266        return READ_ONCE(tcp_memory_pressure);
 267}
 268/*
 269 * The next routines deal with comparing 32 bit unsigned ints
 270 * and worry about wraparound (automatic with unsigned arithmetic).
 271 */
 272
 273static inline bool before(__u32 seq1, __u32 seq2)
 274{
 275        return (__s32)(seq1-seq2) < 0;
 276}
 277#define after(seq2, seq1)       before(seq1, seq2)
 278
 279/* is s2<=s1<=s3 ? */
 280static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 281{
 282        return seq3 - seq2 >= seq1 - seq2;
 283}
 284
 285static inline bool tcp_out_of_memory(struct sock *sk)
 286{
 287        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 288            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 289                return true;
 290        return false;
 291}
 292
 293void sk_forced_mem_schedule(struct sock *sk, int size);
 294
 295static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 296{
 297        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 298        int orphans = percpu_counter_read_positive(ocp);
 299
 300        if (orphans << shift > sysctl_tcp_max_orphans) {
 301                orphans = percpu_counter_sum_positive(ocp);
 302                if (orphans << shift > sysctl_tcp_max_orphans)
 303                        return true;
 304        }
 305        return false;
 306}
 307
 308bool tcp_check_oom(struct sock *sk, int shift);
 309
 310
 311extern struct proto tcp_prot;
 312
 313#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 314#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 315#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 316#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 317
 318void tcp_tasklet_init(void);
 319
 320void tcp_v4_err(struct sk_buff *skb, u32);
 321
 322void tcp_shutdown(struct sock *sk, int how);
 323
 324int tcp_v4_early_demux(struct sk_buff *skb);
 325int tcp_v4_rcv(struct sk_buff *skb);
 326
 327void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
 328int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 329int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 330int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 331int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 332                 int flags);
 333int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 334                        size_t size, int flags);
 335struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 336                               struct page *page, int offset, size_t *size);
 337ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 338                 size_t size, int flags);
 339int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 340void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 341              int size_goal);
 342void tcp_release_cb(struct sock *sk);
 343void tcp_wfree(struct sk_buff *skb);
 344void tcp_write_timer_handler(struct sock *sk);
 345void tcp_delack_timer_handler(struct sock *sk);
 346int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 347int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 348void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 349void tcp_rcv_space_adjust(struct sock *sk);
 350int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 351void tcp_twsk_destructor(struct sock *sk);
 352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 353                        struct pipe_inode_info *pipe, size_t len,
 354                        unsigned int flags);
 355
 356void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 357static inline void tcp_dec_quickack_mode(struct sock *sk,
 358                                         const unsigned int pkts)
 359{
 360        struct inet_connection_sock *icsk = inet_csk(sk);
 361
 362        if (icsk->icsk_ack.quick) {
 363                if (pkts >= icsk->icsk_ack.quick) {
 364                        icsk->icsk_ack.quick = 0;
 365                        /* Leaving quickack mode we deflate ATO. */
 366                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 367                } else
 368                        icsk->icsk_ack.quick -= pkts;
 369        }
 370}
 371
 372#define TCP_ECN_OK              1
 373#define TCP_ECN_QUEUE_CWR       2
 374#define TCP_ECN_DEMAND_CWR      4
 375#define TCP_ECN_SEEN            8
 376
 377enum tcp_tw_status {
 378        TCP_TW_SUCCESS = 0,
 379        TCP_TW_RST = 1,
 380        TCP_TW_ACK = 2,
 381        TCP_TW_SYN = 3
 382};
 383
 384
 385enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 386                                              struct sk_buff *skb,
 387                                              const struct tcphdr *th);
 388struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 389                           struct request_sock *req, bool fastopen,
 390                           bool *lost_race);
 391int tcp_child_process(struct sock *parent, struct sock *child,
 392                      struct sk_buff *skb);
 393void tcp_enter_loss(struct sock *sk);
 394void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 395void tcp_clear_retrans(struct tcp_sock *tp);
 396void tcp_update_metrics(struct sock *sk);
 397void tcp_init_metrics(struct sock *sk);
 398void tcp_metrics_init(void);
 399bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 400void __tcp_close(struct sock *sk, long timeout);
 401void tcp_close(struct sock *sk, long timeout);
 402void tcp_init_sock(struct sock *sk);
 403void tcp_init_transfer(struct sock *sk, int bpf_op);
 404__poll_t tcp_poll(struct file *file, struct socket *sock,
 405                      struct poll_table_struct *wait);
 406int tcp_getsockopt(struct sock *sk, int level, int optname,
 407                   char __user *optval, int __user *optlen);
 408int tcp_setsockopt(struct sock *sk, int level, int optname,
 409                   char __user *optval, unsigned int optlen);
 410int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 411                          char __user *optval, int __user *optlen);
 412int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 413                          char __user *optval, unsigned int optlen);
 414void tcp_set_keepalive(struct sock *sk, int val);
 415void tcp_syn_ack_timeout(const struct request_sock *req);
 416int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 417                int flags, int *addr_len);
 418int tcp_set_rcvlowat(struct sock *sk, int val);
 419void tcp_data_ready(struct sock *sk);
 420int tcp_mmap(struct file *file, struct socket *sock,
 421             struct vm_area_struct *vma);
 422void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 423                       struct tcp_options_received *opt_rx,
 424                       int estab, struct tcp_fastopen_cookie *foc);
 425const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 426
 427/*
 428 *      BPF SKB-less helpers
 429 */
 430u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 431                         struct tcphdr *th, u32 *cookie);
 432u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 433                         struct tcphdr *th, u32 *cookie);
 434u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 435                          const struct tcp_request_sock_ops *af_ops,
 436                          struct sock *sk, struct tcphdr *th);
 437/*
 438 *      TCP v4 functions exported for the inet6 API
 439 */
 440
 441void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 442void tcp_v4_mtu_reduced(struct sock *sk);
 443void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 445struct sock *tcp_create_openreq_child(const struct sock *sk,
 446                                      struct request_sock *req,
 447                                      struct sk_buff *skb);
 448void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 449struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 450                                  struct request_sock *req,
 451                                  struct dst_entry *dst,
 452                                  struct request_sock *req_unhash,
 453                                  bool *own_req);
 454int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 455int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 456int tcp_connect(struct sock *sk);
 457enum tcp_synack_type {
 458        TCP_SYNACK_NORMAL,
 459        TCP_SYNACK_FASTOPEN,
 460        TCP_SYNACK_COOKIE,
 461};
 462struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 463                                struct request_sock *req,
 464                                struct tcp_fastopen_cookie *foc,
 465                                enum tcp_synack_type synack_type);
 466int tcp_disconnect(struct sock *sk, int flags);
 467
 468void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 469int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 470void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 471
 472/* From syncookies.c */
 473struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 474                                 struct request_sock *req,
 475                                 struct dst_entry *dst, u32 tsoff);
 476int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 477                      u32 cookie);
 478struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 479struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 480                                            struct sock *sk, struct sk_buff *skb);
 481#ifdef CONFIG_SYN_COOKIES
 482
 483/* Syncookies use a monotonic timer which increments every 60 seconds.
 484 * This counter is used both as a hash input and partially encoded into
 485 * the cookie value.  A cookie is only validated further if the delta
 486 * between the current counter value and the encoded one is less than this,
 487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 488 * the counter advances immediately after a cookie is generated).
 489 */
 490#define MAX_SYNCOOKIE_AGE       2
 491#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 492#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 493
 494/* syncookies: remember time of last synqueue overflow
 495 * But do not dirty this field too often (once per second is enough)
 496 * It is racy as we do not hold a lock, but race is very minor.
 497 */
 498static inline void tcp_synq_overflow(const struct sock *sk)
 499{
 500        unsigned int last_overflow;
 501        unsigned int now = jiffies;
 502
 503        if (sk->sk_reuseport) {
 504                struct sock_reuseport *reuse;
 505
 506                reuse = rcu_dereference(sk->sk_reuseport_cb);
 507                if (likely(reuse)) {
 508                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 509                        if (!time_between32(now, last_overflow,
 510                                            last_overflow + HZ))
 511                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 512                        return;
 513                }
 514        }
 515
 516        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 517        if (!time_between32(now, last_overflow, last_overflow + HZ))
 518                WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 519}
 520
 521/* syncookies: no recent synqueue overflow on this listening socket? */
 522static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 523{
 524        unsigned int last_overflow;
 525        unsigned int now = jiffies;
 526
 527        if (sk->sk_reuseport) {
 528                struct sock_reuseport *reuse;
 529
 530                reuse = rcu_dereference(sk->sk_reuseport_cb);
 531                if (likely(reuse)) {
 532                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 533                        return !time_between32(now, last_overflow - HZ,
 534                                               last_overflow +
 535                                               TCP_SYNCOOKIE_VALID);
 536                }
 537        }
 538
 539        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 540
 541        /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 542         * then we're under synflood. However, we have to use
 543         * 'last_overflow - HZ' as lower bound. That's because a concurrent
 544         * tcp_synq_overflow() could update .ts_recent_stamp after we read
 545         * jiffies but before we store .ts_recent_stamp into last_overflow,
 546         * which could lead to rejecting a valid syncookie.
 547         */
 548        return !time_between32(now, last_overflow - HZ,
 549                               last_overflow + TCP_SYNCOOKIE_VALID);
 550}
 551
 552static inline u32 tcp_cookie_time(void)
 553{
 554        u64 val = get_jiffies_64();
 555
 556        do_div(val, TCP_SYNCOOKIE_PERIOD);
 557        return val;
 558}
 559
 560u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 561                              u16 *mssp);
 562__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 563u64 cookie_init_timestamp(struct request_sock *req);
 564bool cookie_timestamp_decode(const struct net *net,
 565                             struct tcp_options_received *opt);
 566bool cookie_ecn_ok(const struct tcp_options_received *opt,
 567                   const struct net *net, const struct dst_entry *dst);
 568
 569/* From net/ipv6/syncookies.c */
 570int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 571                      u32 cookie);
 572struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 573
 574u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 575                              const struct tcphdr *th, u16 *mssp);
 576__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 577#endif
 578/* tcp_output.c */
 579
 580void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 581                               int nonagle);
 582int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 583int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 584void tcp_retransmit_timer(struct sock *sk);
 585void tcp_xmit_retransmit_queue(struct sock *);
 586void tcp_simple_retransmit(struct sock *);
 587void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 588int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 589enum tcp_queue {
 590        TCP_FRAG_IN_WRITE_QUEUE,
 591        TCP_FRAG_IN_RTX_QUEUE,
 592};
 593int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 594                 struct sk_buff *skb, u32 len,
 595                 unsigned int mss_now, gfp_t gfp);
 596
 597void tcp_send_probe0(struct sock *);
 598void tcp_send_partial(struct sock *);
 599int tcp_write_wakeup(struct sock *, int mib);
 600void tcp_send_fin(struct sock *sk);
 601void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 602int tcp_send_synack(struct sock *);
 603void tcp_push_one(struct sock *, unsigned int mss_now);
 604void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 605void tcp_send_ack(struct sock *sk);
 606void tcp_send_delayed_ack(struct sock *sk);
 607void tcp_send_loss_probe(struct sock *sk);
 608bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 609void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 610                             const struct sk_buff *next_skb);
 611
 612/* tcp_input.c */
 613void tcp_rearm_rto(struct sock *sk);
 614void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 615void tcp_reset(struct sock *sk);
 616void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 617void tcp_fin(struct sock *sk);
 618
 619/* tcp_timer.c */
 620void tcp_init_xmit_timers(struct sock *);
 621static inline void tcp_clear_xmit_timers(struct sock *sk)
 622{
 623        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 624                __sock_put(sk);
 625
 626        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 627                __sock_put(sk);
 628
 629        inet_csk_clear_xmit_timers(sk);
 630}
 631
 632unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 633unsigned int tcp_current_mss(struct sock *sk);
 634
 635/* Bound MSS / TSO packet size with the half of the window */
 636static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 637{
 638        int cutoff;
 639
 640        /* When peer uses tiny windows, there is no use in packetizing
 641         * to sub-MSS pieces for the sake of SWS or making sure there
 642         * are enough packets in the pipe for fast recovery.
 643         *
 644         * On the other hand, for extremely large MSS devices, handling
 645         * smaller than MSS windows in this way does make sense.
 646         */
 647        if (tp->max_window > TCP_MSS_DEFAULT)
 648                cutoff = (tp->max_window >> 1);
 649        else
 650                cutoff = tp->max_window;
 651
 652        if (cutoff && pktsize > cutoff)
 653                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 654        else
 655                return pktsize;
 656}
 657
 658/* tcp.c */
 659void tcp_get_info(struct sock *, struct tcp_info *);
 660
 661/* Read 'sendfile()'-style from a TCP socket */
 662int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 663                  sk_read_actor_t recv_actor);
 664
 665void tcp_initialize_rcv_mss(struct sock *sk);
 666
 667int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 668int tcp_mss_to_mtu(struct sock *sk, int mss);
 669void tcp_mtup_init(struct sock *sk);
 670void tcp_init_buffer_space(struct sock *sk);
 671
 672static inline void tcp_bound_rto(const struct sock *sk)
 673{
 674        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 675                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 676}
 677
 678static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 679{
 680        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 681}
 682
 683static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 684{
 685        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 686                               ntohl(TCP_FLAG_ACK) |
 687                               snd_wnd);
 688}
 689
 690static inline void tcp_fast_path_on(struct tcp_sock *tp)
 691{
 692        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 693}
 694
 695static inline void tcp_fast_path_check(struct sock *sk)
 696{
 697        struct tcp_sock *tp = tcp_sk(sk);
 698
 699        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 700            tp->rcv_wnd &&
 701            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 702            !tp->urg_data)
 703                tcp_fast_path_on(tp);
 704}
 705
 706/* Compute the actual rto_min value */
 707static inline u32 tcp_rto_min(struct sock *sk)
 708{
 709        const struct dst_entry *dst = __sk_dst_get(sk);
 710        u32 rto_min = TCP_RTO_MIN;
 711
 712        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 713                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 714        return rto_min;
 715}
 716
 717static inline u32 tcp_rto_min_us(struct sock *sk)
 718{
 719        return jiffies_to_usecs(tcp_rto_min(sk));
 720}
 721
 722static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 723{
 724        return dst_metric_locked(dst, RTAX_CC_ALGO);
 725}
 726
 727/* Minimum RTT in usec. ~0 means not available. */
 728static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 729{
 730        return minmax_get(&tp->rtt_min);
 731}
 732
 733/* Compute the actual receive window we are currently advertising.
 734 * Rcv_nxt can be after the window if our peer push more data
 735 * than the offered window.
 736 */
 737static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 738{
 739        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 740
 741        if (win < 0)
 742                win = 0;
 743        return (u32) win;
 744}
 745
 746/* Choose a new window, without checks for shrinking, and without
 747 * scaling applied to the result.  The caller does these things
 748 * if necessary.  This is a "raw" window selection.
 749 */
 750u32 __tcp_select_window(struct sock *sk);
 751
 752void tcp_send_window_probe(struct sock *sk);
 753
 754/* TCP uses 32bit jiffies to save some space.
 755 * Note that this is different from tcp_time_stamp, which
 756 * historically has been the same until linux-4.13.
 757 */
 758#define tcp_jiffies32 ((u32)jiffies)
 759
 760/*
 761 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 762 * It is no longer tied to jiffies, but to 1 ms clock.
 763 * Note: double check if you want to use tcp_jiffies32 instead of this.
 764 */
 765#define TCP_TS_HZ       1000
 766
 767static inline u64 tcp_clock_ns(void)
 768{
 769        return ktime_get_ns();
 770}
 771
 772static inline u64 tcp_clock_us(void)
 773{
 774        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 775}
 776
 777/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 778static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 779{
 780        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 781}
 782
 783/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 784static inline u32 tcp_time_stamp_raw(void)
 785{
 786        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 787}
 788
 789void tcp_mstamp_refresh(struct tcp_sock *tp);
 790
 791static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 792{
 793        return max_t(s64, t1 - t0, 0);
 794}
 795
 796static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 797{
 798        return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
 799}
 800
 801/* provide the departure time in us unit */
 802static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 803{
 804        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 805}
 806
 807
 808#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 809
 810#define TCPHDR_FIN 0x01
 811#define TCPHDR_SYN 0x02
 812#define TCPHDR_RST 0x04
 813#define TCPHDR_PSH 0x08
 814#define TCPHDR_ACK 0x10
 815#define TCPHDR_URG 0x20
 816#define TCPHDR_ECE 0x40
 817#define TCPHDR_CWR 0x80
 818
 819#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 820
 821/* This is what the send packet queuing engine uses to pass
 822 * TCP per-packet control information to the transmission code.
 823 * We also store the host-order sequence numbers in here too.
 824 * This is 44 bytes if IPV6 is enabled.
 825 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 826 */
 827struct tcp_skb_cb {
 828        __u32           seq;            /* Starting sequence number     */
 829        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 830        union {
 831                /* Note : tcp_tw_isn is used in input path only
 832                 *        (isn chosen by tcp_timewait_state_process())
 833                 *
 834                 *        tcp_gso_segs/size are used in write queue only,
 835                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 836                 */
 837                __u32           tcp_tw_isn;
 838                struct {
 839                        u16     tcp_gso_segs;
 840                        u16     tcp_gso_size;
 841                };
 842        };
 843        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 844
 845        __u8            sacked;         /* State flags for SACK.        */
 846#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 847#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 848#define TCPCB_LOST              0x04    /* SKB is lost                  */
 849#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 850#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 851#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 852#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 853                                TCPCB_REPAIRED)
 854
 855        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 856        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 857                        eor:1,          /* Is skb MSG_EOR marked? */
 858                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 859                        unused:5;
 860        __u32           ack_seq;        /* Sequence number ACK'd        */
 861        union {
 862                struct {
 863                        /* There is space for up to 24 bytes */
 864                        __u32 in_flight:30,/* Bytes in flight at transmit */
 865                              is_app_limited:1, /* cwnd not fully used? */
 866                              unused:1;
 867                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 868                        __u32 delivered;
 869                        /* start of send pipeline phase */
 870                        u64 first_tx_mstamp;
 871                        /* when we reached the "delivered" count */
 872                        u64 delivered_mstamp;
 873                } tx;   /* only used for outgoing skbs */
 874                union {
 875                        struct inet_skb_parm    h4;
 876#if IS_ENABLED(CONFIG_IPV6)
 877                        struct inet6_skb_parm   h6;
 878#endif
 879                } header;       /* For incoming skbs */
 880                struct {
 881                        __u32 flags;
 882                        struct sock *sk_redir;
 883                        void *data_end;
 884                } bpf;
 885        };
 886};
 887
 888#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 889
 890static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 891{
 892        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 893}
 894
 895static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 896{
 897        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 898}
 899
 900static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 901{
 902        return TCP_SKB_CB(skb)->bpf.sk_redir;
 903}
 904
 905static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 906{
 907        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 908}
 909
 910extern const struct inet_connection_sock_af_ops ipv4_specific;
 911
 912#if IS_ENABLED(CONFIG_IPV6)
 913/* This is the variant of inet6_iif() that must be used by TCP,
 914 * as TCP moves IP6CB into a different location in skb->cb[]
 915 */
 916static inline int tcp_v6_iif(const struct sk_buff *skb)
 917{
 918        return TCP_SKB_CB(skb)->header.h6.iif;
 919}
 920
 921static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 922{
 923        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 924
 925        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 926}
 927
 928/* TCP_SKB_CB reference means this can not be used from early demux */
 929static inline int tcp_v6_sdif(const struct sk_buff *skb)
 930{
 931#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 932        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 933                return TCP_SKB_CB(skb)->header.h6.iif;
 934#endif
 935        return 0;
 936}
 937
 938extern const struct inet_connection_sock_af_ops ipv6_specific;
 939
 940#endif
 941
 942/* TCP_SKB_CB reference means this can not be used from early demux */
 943static inline int tcp_v4_sdif(struct sk_buff *skb)
 944{
 945#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 946        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 947                return TCP_SKB_CB(skb)->header.h4.iif;
 948#endif
 949        return 0;
 950}
 951
 952/* Due to TSO, an SKB can be composed of multiple actual
 953 * packets.  To keep these tracked properly, we use this.
 954 */
 955static inline int tcp_skb_pcount(const struct sk_buff *skb)
 956{
 957        return TCP_SKB_CB(skb)->tcp_gso_segs;
 958}
 959
 960static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 961{
 962        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 963}
 964
 965static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 966{
 967        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 968}
 969
 970/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 971static inline int tcp_skb_mss(const struct sk_buff *skb)
 972{
 973        return TCP_SKB_CB(skb)->tcp_gso_size;
 974}
 975
 976static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 977{
 978        return likely(!TCP_SKB_CB(skb)->eor);
 979}
 980
 981static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 982                                        const struct sk_buff *from)
 983{
 984        return likely(tcp_skb_can_collapse_to(to) &&
 985                      mptcp_skb_can_collapse(to, from));
 986}
 987
 988/* Events passed to congestion control interface */
 989enum tcp_ca_event {
 990        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 991        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 992        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 993        CA_EVENT_LOSS,          /* loss timeout */
 994        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 995        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 996};
 997
 998/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 999enum tcp_ca_ack_event_flags {
1000        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
1001        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
1002        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
1003};
1004
1005/*
1006 * Interface for adding new TCP congestion control handlers
1007 */
1008#define TCP_CA_NAME_MAX 16
1009#define TCP_CA_MAX      128
1010#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1011
1012#define TCP_CA_UNSPEC   0
1013
1014/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1015#define TCP_CONG_NON_RESTRICTED 0x1
1016/* Requires ECN/ECT set on all packets */
1017#define TCP_CONG_NEEDS_ECN      0x2
1018#define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1019
1020union tcp_cc_info;
1021
1022struct ack_sample {
1023        u32 pkts_acked;
1024        s32 rtt_us;
1025        u32 in_flight;
1026};
1027
1028/* A rate sample measures the number of (original/retransmitted) data
1029 * packets delivered "delivered" over an interval of time "interval_us".
1030 * The tcp_rate.c code fills in the rate sample, and congestion
1031 * control modules that define a cong_control function to run at the end
1032 * of ACK processing can optionally chose to consult this sample when
1033 * setting cwnd and pacing rate.
1034 * A sample is invalid if "delivered" or "interval_us" is negative.
1035 */
1036struct rate_sample {
1037        u64  prior_mstamp; /* starting timestamp for interval */
1038        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1039        s32  delivered;         /* number of packets delivered over interval */
1040        long interval_us;       /* time for tp->delivered to incr "delivered" */
1041        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1042        int  losses;            /* number of packets marked lost upon ACK */
1043        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1044        u32  prior_in_flight;   /* in flight before this ACK */
1045        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1046        bool is_retrans;        /* is sample from retransmission? */
1047        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1048};
1049
1050struct tcp_congestion_ops {
1051        struct list_head        list;
1052        u32 key;
1053        u32 flags;
1054
1055        /* initialize private data (optional) */
1056        void (*init)(struct sock *sk);
1057        /* cleanup private data  (optional) */
1058        void (*release)(struct sock *sk);
1059
1060        /* return slow start threshold (required) */
1061        u32 (*ssthresh)(struct sock *sk);
1062        /* do new cwnd calculation (required) */
1063        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1064        /* call before changing ca_state (optional) */
1065        void (*set_state)(struct sock *sk, u8 new_state);
1066        /* call when cwnd event occurs (optional) */
1067        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1068        /* call when ack arrives (optional) */
1069        void (*in_ack_event)(struct sock *sk, u32 flags);
1070        /* new value of cwnd after loss (required) */
1071        u32  (*undo_cwnd)(struct sock *sk);
1072        /* hook for packet ack accounting (optional) */
1073        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1074        /* override sysctl_tcp_min_tso_segs */
1075        u32 (*min_tso_segs)(struct sock *sk);
1076        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1077        u32 (*sndbuf_expand)(struct sock *sk);
1078        /* call when packets are delivered to update cwnd and pacing rate,
1079         * after all the ca_state processing. (optional)
1080         */
1081        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1082        /* get info for inet_diag (optional) */
1083        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1084                           union tcp_cc_info *info);
1085
1086        char            name[TCP_CA_NAME_MAX];
1087        struct module   *owner;
1088};
1089
1090int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1091void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1092
1093void tcp_assign_congestion_control(struct sock *sk);
1094void tcp_init_congestion_control(struct sock *sk);
1095void tcp_cleanup_congestion_control(struct sock *sk);
1096int tcp_set_default_congestion_control(struct net *net, const char *name);
1097void tcp_get_default_congestion_control(struct net *net, char *name);
1098void tcp_get_available_congestion_control(char *buf, size_t len);
1099void tcp_get_allowed_congestion_control(char *buf, size_t len);
1100int tcp_set_allowed_congestion_control(char *allowed);
1101int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1102                               bool reinit, bool cap_net_admin);
1103u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1104void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1105
1106u32 tcp_reno_ssthresh(struct sock *sk);
1107u32 tcp_reno_undo_cwnd(struct sock *sk);
1108void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1109extern struct tcp_congestion_ops tcp_reno;
1110
1111struct tcp_congestion_ops *tcp_ca_find(const char *name);
1112struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1113u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1114#ifdef CONFIG_INET
1115char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1116#else
1117static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1118{
1119        return NULL;
1120}
1121#endif
1122
1123static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1124{
1125        const struct inet_connection_sock *icsk = inet_csk(sk);
1126
1127        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1128}
1129
1130static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1131{
1132        struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134        if (icsk->icsk_ca_ops->set_state)
1135                icsk->icsk_ca_ops->set_state(sk, ca_state);
1136        icsk->icsk_ca_state = ca_state;
1137}
1138
1139static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1140{
1141        const struct inet_connection_sock *icsk = inet_csk(sk);
1142
1143        if (icsk->icsk_ca_ops->cwnd_event)
1144                icsk->icsk_ca_ops->cwnd_event(sk, event);
1145}
1146
1147/* From tcp_rate.c */
1148void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1149void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1150                            struct rate_sample *rs);
1151void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1152                  bool is_sack_reneg, struct rate_sample *rs);
1153void tcp_rate_check_app_limited(struct sock *sk);
1154
1155/* These functions determine how the current flow behaves in respect of SACK
1156 * handling. SACK is negotiated with the peer, and therefore it can vary
1157 * between different flows.
1158 *
1159 * tcp_is_sack - SACK enabled
1160 * tcp_is_reno - No SACK
1161 */
1162static inline int tcp_is_sack(const struct tcp_sock *tp)
1163{
1164        return likely(tp->rx_opt.sack_ok);
1165}
1166
1167static inline bool tcp_is_reno(const struct tcp_sock *tp)
1168{
1169        return !tcp_is_sack(tp);
1170}
1171
1172static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1173{
1174        return tp->sacked_out + tp->lost_out;
1175}
1176
1177/* This determines how many packets are "in the network" to the best
1178 * of our knowledge.  In many cases it is conservative, but where
1179 * detailed information is available from the receiver (via SACK
1180 * blocks etc.) we can make more aggressive calculations.
1181 *
1182 * Use this for decisions involving congestion control, use just
1183 * tp->packets_out to determine if the send queue is empty or not.
1184 *
1185 * Read this equation as:
1186 *
1187 *      "Packets sent once on transmission queue" MINUS
1188 *      "Packets left network, but not honestly ACKed yet" PLUS
1189 *      "Packets fast retransmitted"
1190 */
1191static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1192{
1193        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1194}
1195
1196#define TCP_INFINITE_SSTHRESH   0x7fffffff
1197
1198static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1199{
1200        return tp->snd_cwnd < tp->snd_ssthresh;
1201}
1202
1203static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1204{
1205        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1206}
1207
1208static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1209{
1210        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1211               (1 << inet_csk(sk)->icsk_ca_state);
1212}
1213
1214/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1215 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1216 * ssthresh.
1217 */
1218static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1219{
1220        const struct tcp_sock *tp = tcp_sk(sk);
1221
1222        if (tcp_in_cwnd_reduction(sk))
1223                return tp->snd_ssthresh;
1224        else
1225                return max(tp->snd_ssthresh,
1226                           ((tp->snd_cwnd >> 1) +
1227                            (tp->snd_cwnd >> 2)));
1228}
1229
1230/* Use define here intentionally to get WARN_ON location shown at the caller */
1231#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1232
1233void tcp_enter_cwr(struct sock *sk);
1234__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1235
1236/* The maximum number of MSS of available cwnd for which TSO defers
1237 * sending if not using sysctl_tcp_tso_win_divisor.
1238 */
1239static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1240{
1241        return 3;
1242}
1243
1244/* Returns end sequence number of the receiver's advertised window */
1245static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1246{
1247        return tp->snd_una + tp->snd_wnd;
1248}
1249
1250/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1251 * flexible approach. The RFC suggests cwnd should not be raised unless
1252 * it was fully used previously. And that's exactly what we do in
1253 * congestion avoidance mode. But in slow start we allow cwnd to grow
1254 * as long as the application has used half the cwnd.
1255 * Example :
1256 *    cwnd is 10 (IW10), but application sends 9 frames.
1257 *    We allow cwnd to reach 18 when all frames are ACKed.
1258 * This check is safe because it's as aggressive as slow start which already
1259 * risks 100% overshoot. The advantage is that we discourage application to
1260 * either send more filler packets or data to artificially blow up the cwnd
1261 * usage, and allow application-limited process to probe bw more aggressively.
1262 */
1263static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1264{
1265        const struct tcp_sock *tp = tcp_sk(sk);
1266
1267        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1268        if (tcp_in_slow_start(tp))
1269                return tp->snd_cwnd < 2 * tp->max_packets_out;
1270
1271        return tp->is_cwnd_limited;
1272}
1273
1274/* BBR congestion control needs pacing.
1275 * Same remark for SO_MAX_PACING_RATE.
1276 * sch_fq packet scheduler is efficiently handling pacing,
1277 * but is not always installed/used.
1278 * Return true if TCP stack should pace packets itself.
1279 */
1280static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1281{
1282        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1283}
1284
1285/* Estimates in how many jiffies next packet for this flow can be sent.
1286 * Scheduling a retransmit timer too early would be silly.
1287 */
1288static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1289{
1290        s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1291
1292        return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1293}
1294
1295static inline void tcp_reset_xmit_timer(struct sock *sk,
1296                                        const int what,
1297                                        unsigned long when,
1298                                        const unsigned long max_when)
1299{
1300        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1301                                  max_when);
1302}
1303
1304/* Something is really bad, we could not queue an additional packet,
1305 * because qdisc is full or receiver sent a 0 window, or we are paced.
1306 * We do not want to add fuel to the fire, or abort too early,
1307 * so make sure the timer we arm now is at least 200ms in the future,
1308 * regardless of current icsk_rto value (as it could be ~2ms)
1309 */
1310static inline unsigned long tcp_probe0_base(const struct sock *sk)
1311{
1312        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1313}
1314
1315/* Variant of inet_csk_rto_backoff() used for zero window probes */
1316static inline unsigned long tcp_probe0_when(const struct sock *sk,
1317                                            unsigned long max_when)
1318{
1319        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1320
1321        return (unsigned long)min_t(u64, when, max_when);
1322}
1323
1324static inline void tcp_check_probe_timer(struct sock *sk)
1325{
1326        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1327                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1328                                     tcp_probe0_base(sk), TCP_RTO_MAX);
1329}
1330
1331static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1332{
1333        tp->snd_wl1 = seq;
1334}
1335
1336static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1337{
1338        tp->snd_wl1 = seq;
1339}
1340
1341/*
1342 * Calculate(/check) TCP checksum
1343 */
1344static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1345                                   __be32 daddr, __wsum base)
1346{
1347        return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1348}
1349
1350static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1351{
1352        return __skb_checksum_complete(skb);
1353}
1354
1355static inline bool tcp_checksum_complete(struct sk_buff *skb)
1356{
1357        return !skb_csum_unnecessary(skb) &&
1358                __tcp_checksum_complete(skb);
1359}
1360
1361bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1362int tcp_filter(struct sock *sk, struct sk_buff *skb);
1363
1364#undef STATE_TRACE
1365
1366#ifdef STATE_TRACE
1367static const char *statename[]={
1368        "Unused","Established","Syn Sent","Syn Recv",
1369        "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1370        "Close Wait","Last ACK","Listen","Closing"
1371};
1372#endif
1373void tcp_set_state(struct sock *sk, int state);
1374
1375void tcp_done(struct sock *sk);
1376
1377int tcp_abort(struct sock *sk, int err);
1378
1379static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1380{
1381        rx_opt->dsack = 0;
1382        rx_opt->num_sacks = 0;
1383}
1384
1385u32 tcp_default_init_rwnd(u32 mss);
1386void tcp_cwnd_restart(struct sock *sk, s32 delta);
1387
1388static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1389{
1390        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1391        struct tcp_sock *tp = tcp_sk(sk);
1392        s32 delta;
1393
1394        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1395            ca_ops->cong_control)
1396                return;
1397        delta = tcp_jiffies32 - tp->lsndtime;
1398        if (delta > inet_csk(sk)->icsk_rto)
1399                tcp_cwnd_restart(sk, delta);
1400}
1401
1402/* Determine a window scaling and initial window to offer. */
1403void tcp_select_initial_window(const struct sock *sk, int __space,
1404                               __u32 mss, __u32 *rcv_wnd,
1405                               __u32 *window_clamp, int wscale_ok,
1406                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1407
1408static inline int tcp_win_from_space(const struct sock *sk, int space)
1409{
1410        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1411
1412        return tcp_adv_win_scale <= 0 ?
1413                (space>>(-tcp_adv_win_scale)) :
1414                space - (space>>tcp_adv_win_scale);
1415}
1416
1417/* Note: caller must be prepared to deal with negative returns */
1418static inline int tcp_space(const struct sock *sk)
1419{
1420        return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1421                                  atomic_read(&sk->sk_rmem_alloc));
1422}
1423
1424static inline int tcp_full_space(const struct sock *sk)
1425{
1426        return tcp_win_from_space(sk, sk->sk_rcvbuf);
1427}
1428
1429/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1430 * If 87.5 % (7/8) of the space has been consumed, we want to override
1431 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1432 * len/truesize ratio.
1433 */
1434static inline bool tcp_rmem_pressure(const struct sock *sk)
1435{
1436        int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1437        int threshold = rcvbuf - (rcvbuf >> 3);
1438
1439        return atomic_read(&sk->sk_rmem_alloc) > threshold;
1440}
1441
1442void tcp_cleanup_rbuf(struct sock *sk, int copied);
1443
1444extern void tcp_openreq_init_rwin(struct request_sock *req,
1445                                  const struct sock *sk_listener,
1446                                  const struct dst_entry *dst);
1447
1448void tcp_enter_memory_pressure(struct sock *sk);
1449void tcp_leave_memory_pressure(struct sock *sk);
1450
1451static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1452{
1453        struct net *net = sock_net((struct sock *)tp);
1454
1455        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1456}
1457
1458static inline int keepalive_time_when(const struct tcp_sock *tp)
1459{
1460        struct net *net = sock_net((struct sock *)tp);
1461
1462        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1463}
1464
1465static inline int keepalive_probes(const struct tcp_sock *tp)
1466{
1467        struct net *net = sock_net((struct sock *)tp);
1468
1469        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1470}
1471
1472static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1473{
1474        const struct inet_connection_sock *icsk = &tp->inet_conn;
1475
1476        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1477                          tcp_jiffies32 - tp->rcv_tstamp);
1478}
1479
1480static inline int tcp_fin_time(const struct sock *sk)
1481{
1482        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1483        const int rto = inet_csk(sk)->icsk_rto;
1484
1485        if (fin_timeout < (rto << 2) - (rto >> 1))
1486                fin_timeout = (rto << 2) - (rto >> 1);
1487
1488        return fin_timeout;
1489}
1490
1491static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1492                                  int paws_win)
1493{
1494        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1495                return true;
1496        if (unlikely(!time_before32(ktime_get_seconds(),
1497                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1498                return true;
1499        /*
1500         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1501         * then following tcp messages have valid values. Ignore 0 value,
1502         * or else 'negative' tsval might forbid us to accept their packets.
1503         */
1504        if (!rx_opt->ts_recent)
1505                return true;
1506        return false;
1507}
1508
1509static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1510                                   int rst)
1511{
1512        if (tcp_paws_check(rx_opt, 0))
1513                return false;
1514
1515        /* RST segments are not recommended to carry timestamp,
1516           and, if they do, it is recommended to ignore PAWS because
1517           "their cleanup function should take precedence over timestamps."
1518           Certainly, it is mistake. It is necessary to understand the reasons
1519           of this constraint to relax it: if peer reboots, clock may go
1520           out-of-sync and half-open connections will not be reset.
1521           Actually, the problem would be not existing if all
1522           the implementations followed draft about maintaining clock
1523           via reboots. Linux-2.2 DOES NOT!
1524
1525           However, we can relax time bounds for RST segments to MSL.
1526         */
1527        if (rst && !time_before32(ktime_get_seconds(),
1528                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1529                return false;
1530        return true;
1531}
1532
1533bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1534                          int mib_idx, u32 *last_oow_ack_time);
1535
1536static inline void tcp_mib_init(struct net *net)
1537{
1538        /* See RFC 2012 */
1539        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1540        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1541        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1542        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1543}
1544
1545/* from STCP */
1546static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1547{
1548        tp->lost_skb_hint = NULL;
1549}
1550
1551static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1552{
1553        tcp_clear_retrans_hints_partial(tp);
1554        tp->retransmit_skb_hint = NULL;
1555}
1556
1557union tcp_md5_addr {
1558        struct in_addr  a4;
1559#if IS_ENABLED(CONFIG_IPV6)
1560        struct in6_addr a6;
1561#endif
1562};
1563
1564/* - key database */
1565struct tcp_md5sig_key {
1566        struct hlist_node       node;
1567        u8                      keylen;
1568        u8                      family; /* AF_INET or AF_INET6 */
1569        union tcp_md5_addr      addr;
1570        u8                      prefixlen;
1571        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1572        struct rcu_head         rcu;
1573};
1574
1575/* - sock block */
1576struct tcp_md5sig_info {
1577        struct hlist_head       head;
1578        struct rcu_head         rcu;
1579};
1580
1581/* - pseudo header */
1582struct tcp4_pseudohdr {
1583        __be32          saddr;
1584        __be32          daddr;
1585        __u8            pad;
1586        __u8            protocol;
1587        __be16          len;
1588};
1589
1590struct tcp6_pseudohdr {
1591        struct in6_addr saddr;
1592        struct in6_addr daddr;
1593        __be32          len;
1594        __be32          protocol;       /* including padding */
1595};
1596
1597union tcp_md5sum_block {
1598        struct tcp4_pseudohdr ip4;
1599#if IS_ENABLED(CONFIG_IPV6)
1600        struct tcp6_pseudohdr ip6;
1601#endif
1602};
1603
1604/* - pool: digest algorithm, hash description and scratch buffer */
1605struct tcp_md5sig_pool {
1606        struct ahash_request    *md5_req;
1607        void                    *scratch;
1608};
1609
1610/* - functions */
1611int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1612                        const struct sock *sk, const struct sk_buff *skb);
1613int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1614                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1615                   gfp_t gfp);
1616int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1617                   int family, u8 prefixlen);
1618struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1619                                         const struct sock *addr_sk);
1620
1621#ifdef CONFIG_TCP_MD5SIG
1622struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1623                                         const union tcp_md5_addr *addr,
1624                                         int family);
1625#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1626#else
1627static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1628                                         const union tcp_md5_addr *addr,
1629                                         int family)
1630{
1631        return NULL;
1632}
1633#define tcp_twsk_md5_key(twsk)  NULL
1634#endif
1635
1636bool tcp_alloc_md5sig_pool(void);
1637
1638struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1639static inline void tcp_put_md5sig_pool(void)
1640{
1641        local_bh_enable();
1642}
1643
1644int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1645                          unsigned int header_len);
1646int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1647                     const struct tcp_md5sig_key *key);
1648
1649/* From tcp_fastopen.c */
1650void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1651                            struct tcp_fastopen_cookie *cookie);
1652void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1653                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1654                            u16 try_exp);
1655struct tcp_fastopen_request {
1656        /* Fast Open cookie. Size 0 means a cookie request */
1657        struct tcp_fastopen_cookie      cookie;
1658        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1659        size_t                          size;
1660        int                             copied; /* queued in tcp_connect() */
1661};
1662void tcp_free_fastopen_req(struct tcp_sock *tp);
1663void tcp_fastopen_destroy_cipher(struct sock *sk);
1664void tcp_fastopen_ctx_destroy(struct net *net);
1665int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1666                              void *key, unsigned int len);
1667void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1668struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1669                              struct request_sock *req,
1670                              struct tcp_fastopen_cookie *foc,
1671                              const struct dst_entry *dst);
1672void tcp_fastopen_init_key_once(struct net *net);
1673bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1674                             struct tcp_fastopen_cookie *cookie);
1675bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1676#define TCP_FASTOPEN_KEY_LENGTH 16
1677
1678/* Fastopen key context */
1679struct tcp_fastopen_context {
1680        struct crypto_cipher    *tfm;
1681        __u8                    key[TCP_FASTOPEN_KEY_LENGTH];
1682        struct rcu_head         rcu;
1683};
1684
1685extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1686void tcp_fastopen_active_disable(struct sock *sk);
1687bool tcp_fastopen_active_should_disable(struct sock *sk);
1688void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1689void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1690
1691/* Latencies incurred by various limits for a sender. They are
1692 * chronograph-like stats that are mutually exclusive.
1693 */
1694enum tcp_chrono {
1695        TCP_CHRONO_UNSPEC,
1696        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1697        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1698        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1699        __TCP_CHRONO_MAX,
1700};
1701
1702void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1703void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1704
1705/* This helper is needed, because skb->tcp_tsorted_anchor uses
1706 * the same memory storage than skb->destructor/_skb_refdst
1707 */
1708static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1709{
1710        skb->destructor = NULL;
1711        skb->_skb_refdst = 0UL;
1712}
1713
1714#define tcp_skb_tsorted_save(skb) {             \
1715        unsigned long _save = skb->_skb_refdst; \
1716        skb->_skb_refdst = 0UL;
1717
1718#define tcp_skb_tsorted_restore(skb)            \
1719        skb->_skb_refdst = _save;               \
1720}
1721
1722void tcp_write_queue_purge(struct sock *sk);
1723
1724static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1725{
1726        return skb_rb_first(&sk->tcp_rtx_queue);
1727}
1728
1729static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1730{
1731        return skb_rb_last(&sk->tcp_rtx_queue);
1732}
1733
1734static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1735{
1736        return skb_peek(&sk->sk_write_queue);
1737}
1738
1739static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1740{
1741        return skb_peek_tail(&sk->sk_write_queue);
1742}
1743
1744#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1745        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1746
1747static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1748{
1749        return skb_peek(&sk->sk_write_queue);
1750}
1751
1752static inline bool tcp_skb_is_last(const struct sock *sk,
1753                                   const struct sk_buff *skb)
1754{
1755        return skb_queue_is_last(&sk->sk_write_queue, skb);
1756}
1757
1758/**
1759 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1760 * @sk: socket
1761 *
1762 * Since the write queue can have a temporary empty skb in it,
1763 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1764 */
1765static inline bool tcp_write_queue_empty(const struct sock *sk)
1766{
1767        const struct tcp_sock *tp = tcp_sk(sk);
1768
1769        return tp->write_seq == tp->snd_nxt;
1770}
1771
1772static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1773{
1774        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1775}
1776
1777static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1778{
1779        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1780}
1781
1782static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1783{
1784        __skb_queue_tail(&sk->sk_write_queue, skb);
1785}
1786
1787static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1788{
1789        __tcp_add_write_queue_tail(sk, skb);
1790
1791        /* Queue it, remembering where we must start sending. */
1792        if (sk->sk_write_queue.next == skb)
1793                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1794}
1795
1796/* Insert new before skb on the write queue of sk.  */
1797static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1798                                                  struct sk_buff *skb,
1799                                                  struct sock *sk)
1800{
1801        __skb_queue_before(&sk->sk_write_queue, skb, new);
1802}
1803
1804static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1805{
1806        tcp_skb_tsorted_anchor_cleanup(skb);
1807        __skb_unlink(skb, &sk->sk_write_queue);
1808}
1809
1810void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1811
1812static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1813{
1814        tcp_skb_tsorted_anchor_cleanup(skb);
1815        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1816}
1817
1818static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1819{
1820        list_del(&skb->tcp_tsorted_anchor);
1821        tcp_rtx_queue_unlink(skb, sk);
1822        sk_wmem_free_skb(sk, skb);
1823}
1824
1825static inline void tcp_push_pending_frames(struct sock *sk)
1826{
1827        if (tcp_send_head(sk)) {
1828                struct tcp_sock *tp = tcp_sk(sk);
1829
1830                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1831        }
1832}
1833
1834/* Start sequence of the skb just after the highest skb with SACKed
1835 * bit, valid only if sacked_out > 0 or when the caller has ensured
1836 * validity by itself.
1837 */
1838static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1839{
1840        if (!tp->sacked_out)
1841                return tp->snd_una;
1842
1843        if (tp->highest_sack == NULL)
1844                return tp->snd_nxt;
1845
1846        return TCP_SKB_CB(tp->highest_sack)->seq;
1847}
1848
1849static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1850{
1851        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1852}
1853
1854static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1855{
1856        return tcp_sk(sk)->highest_sack;
1857}
1858
1859static inline void tcp_highest_sack_reset(struct sock *sk)
1860{
1861        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1862}
1863
1864/* Called when old skb is about to be deleted and replaced by new skb */
1865static inline void tcp_highest_sack_replace(struct sock *sk,
1866                                            struct sk_buff *old,
1867                                            struct sk_buff *new)
1868{
1869        if (old == tcp_highest_sack(sk))
1870                tcp_sk(sk)->highest_sack = new;
1871}
1872
1873/* This helper checks if socket has IP_TRANSPARENT set */
1874static inline bool inet_sk_transparent(const struct sock *sk)
1875{
1876        switch (sk->sk_state) {
1877        case TCP_TIME_WAIT:
1878                return inet_twsk(sk)->tw_transparent;
1879        case TCP_NEW_SYN_RECV:
1880                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1881        }
1882        return inet_sk(sk)->transparent;
1883}
1884
1885/* Determines whether this is a thin stream (which may suffer from
1886 * increased latency). Used to trigger latency-reducing mechanisms.
1887 */
1888static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1889{
1890        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1891}
1892
1893/* /proc */
1894enum tcp_seq_states {
1895        TCP_SEQ_STATE_LISTENING,
1896        TCP_SEQ_STATE_ESTABLISHED,
1897};
1898
1899void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1900void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1901void tcp_seq_stop(struct seq_file *seq, void *v);
1902
1903struct tcp_seq_afinfo {
1904        sa_family_t                     family;
1905};
1906
1907struct tcp_iter_state {
1908        struct seq_net_private  p;
1909        enum tcp_seq_states     state;
1910        struct sock             *syn_wait_sk;
1911        struct tcp_seq_afinfo   *bpf_seq_afinfo;
1912        int                     bucket, offset, sbucket, num;
1913        loff_t                  last_pos;
1914};
1915
1916extern struct request_sock_ops tcp_request_sock_ops;
1917extern struct request_sock_ops tcp6_request_sock_ops;
1918
1919void tcp_v4_destroy_sock(struct sock *sk);
1920
1921struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1922                                netdev_features_t features);
1923struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1924int tcp_gro_complete(struct sk_buff *skb);
1925
1926void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1927
1928static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1929{
1930        struct net *net = sock_net((struct sock *)tp);
1931        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1932}
1933
1934/* @wake is one when sk_stream_write_space() calls us.
1935 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1936 * This mimics the strategy used in sock_def_write_space().
1937 */
1938static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1939{
1940        const struct tcp_sock *tp = tcp_sk(sk);
1941        u32 notsent_bytes = READ_ONCE(tp->write_seq) - tp->snd_nxt;
1942
1943        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1944}
1945
1946#ifdef CONFIG_PROC_FS
1947int tcp4_proc_init(void);
1948void tcp4_proc_exit(void);
1949#endif
1950
1951int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1952int tcp_conn_request(struct request_sock_ops *rsk_ops,
1953                     const struct tcp_request_sock_ops *af_ops,
1954                     struct sock *sk, struct sk_buff *skb);
1955
1956/* TCP af-specific functions */
1957struct tcp_sock_af_ops {
1958#ifdef CONFIG_TCP_MD5SIG
1959        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1960                                                const struct sock *addr_sk);
1961        int             (*calc_md5_hash)(char *location,
1962                                         const struct tcp_md5sig_key *md5,
1963                                         const struct sock *sk,
1964                                         const struct sk_buff *skb);
1965        int             (*md5_parse)(struct sock *sk,
1966                                     int optname,
1967                                     char __user *optval,
1968                                     int optlen);
1969#endif
1970};
1971
1972struct tcp_request_sock_ops {
1973        u16 mss_clamp;
1974#ifdef CONFIG_TCP_MD5SIG
1975        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1976                                                 const struct sock *addr_sk);
1977        int             (*calc_md5_hash) (char *location,
1978                                          const struct tcp_md5sig_key *md5,
1979                                          const struct sock *sk,
1980                                          const struct sk_buff *skb);
1981#endif
1982#ifdef CONFIG_SYN_COOKIES
1983        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1984                                 __u16 *mss);
1985#endif
1986        struct dst_entry *(*route_req)(const struct sock *sk,
1987                                       struct sk_buff *skb,
1988                                       struct flowi *fl,
1989                                       struct request_sock *req);
1990        u32 (*init_seq)(const struct sk_buff *skb);
1991        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1992        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1993                           struct flowi *fl, struct request_sock *req,
1994                           struct tcp_fastopen_cookie *foc,
1995                           enum tcp_synack_type synack_type);
1996};
1997
1998extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
1999#if IS_ENABLED(CONFIG_IPV6)
2000extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2001#endif
2002
2003#ifdef CONFIG_SYN_COOKIES
2004static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2005                                         const struct sock *sk, struct sk_buff *skb,
2006                                         __u16 *mss)
2007{
2008        tcp_synq_overflow(sk);
2009        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2010        return ops->cookie_init_seq(skb, mss);
2011}
2012#else
2013static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2014                                         const struct sock *sk, struct sk_buff *skb,
2015                                         __u16 *mss)
2016{
2017        return 0;
2018}
2019#endif
2020
2021int tcpv4_offload_init(void);
2022
2023void tcp_v4_init(void);
2024void tcp_init(void);
2025
2026/* tcp_recovery.c */
2027void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2028void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2029extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2030                                u32 reo_wnd);
2031extern void tcp_rack_mark_lost(struct sock *sk);
2032extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2033                             u64 xmit_time);
2034extern void tcp_rack_reo_timeout(struct sock *sk);
2035extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2036
2037/* At how many usecs into the future should the RTO fire? */
2038static inline s64 tcp_rto_delta_us(const struct sock *sk)
2039{
2040        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2041        u32 rto = inet_csk(sk)->icsk_rto;
2042        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2043
2044        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2045}
2046
2047/*
2048 * Save and compile IPv4 options, return a pointer to it
2049 */
2050static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2051                                                         struct sk_buff *skb)
2052{
2053        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2054        struct ip_options_rcu *dopt = NULL;
2055
2056        if (opt->optlen) {
2057                int opt_size = sizeof(*dopt) + opt->optlen;
2058
2059                dopt = kmalloc(opt_size, GFP_ATOMIC);
2060                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2061                        kfree(dopt);
2062                        dopt = NULL;
2063                }
2064        }
2065        return dopt;
2066}
2067
2068/* locally generated TCP pure ACKs have skb->truesize == 2
2069 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2070 * This is much faster than dissecting the packet to find out.
2071 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2072 */
2073static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2074{
2075        return skb->truesize == 2;
2076}
2077
2078static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2079{
2080        skb->truesize = 2;
2081}
2082
2083static inline int tcp_inq(struct sock *sk)
2084{
2085        struct tcp_sock *tp = tcp_sk(sk);
2086        int answ;
2087
2088        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2089                answ = 0;
2090        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2091                   !tp->urg_data ||
2092                   before(tp->urg_seq, tp->copied_seq) ||
2093                   !before(tp->urg_seq, tp->rcv_nxt)) {
2094
2095                answ = tp->rcv_nxt - tp->copied_seq;
2096
2097                /* Subtract 1, if FIN was received */
2098                if (answ && sock_flag(sk, SOCK_DONE))
2099                        answ--;
2100        } else {
2101                answ = tp->urg_seq - tp->copied_seq;
2102        }
2103
2104        return answ;
2105}
2106
2107int tcp_peek_len(struct socket *sock);
2108
2109static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2110{
2111        u16 segs_in;
2112
2113        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2114        tp->segs_in += segs_in;
2115        if (skb->len > tcp_hdrlen(skb))
2116                tp->data_segs_in += segs_in;
2117}
2118
2119/*
2120 * TCP listen path runs lockless.
2121 * We forced "struct sock" to be const qualified to make sure
2122 * we don't modify one of its field by mistake.
2123 * Here, we increment sk_drops which is an atomic_t, so we can safely
2124 * make sock writable again.
2125 */
2126static inline void tcp_listendrop(const struct sock *sk)
2127{
2128        atomic_inc(&((struct sock *)sk)->sk_drops);
2129        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2130}
2131
2132enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2133
2134/*
2135 * Interface for adding Upper Level Protocols over TCP
2136 */
2137
2138#define TCP_ULP_NAME_MAX        16
2139#define TCP_ULP_MAX             128
2140#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2141
2142struct tcp_ulp_ops {
2143        struct list_head        list;
2144
2145        /* initialize ulp */
2146        int (*init)(struct sock *sk);
2147        /* update ulp */
2148        void (*update)(struct sock *sk, struct proto *p,
2149                       void (*write_space)(struct sock *sk));
2150        /* cleanup ulp */
2151        void (*release)(struct sock *sk);
2152        /* diagnostic */
2153        int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2154        size_t (*get_info_size)(const struct sock *sk);
2155        /* clone ulp */
2156        void (*clone)(const struct request_sock *req, struct sock *newsk,
2157                      const gfp_t priority);
2158
2159        char            name[TCP_ULP_NAME_MAX];
2160        struct module   *owner;
2161};
2162int tcp_register_ulp(struct tcp_ulp_ops *type);
2163void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2164int tcp_set_ulp(struct sock *sk, const char *name);
2165void tcp_get_available_ulp(char *buf, size_t len);
2166void tcp_cleanup_ulp(struct sock *sk);
2167void tcp_update_ulp(struct sock *sk, struct proto *p,
2168                    void (*write_space)(struct sock *sk));
2169
2170#define MODULE_ALIAS_TCP_ULP(name)                              \
2171        __MODULE_INFO(alias, alias_userspace, name);            \
2172        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2173
2174struct sk_msg;
2175struct sk_psock;
2176
2177#ifdef CONFIG_BPF_STREAM_PARSER
2178struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2179void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2180#else
2181static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2182{
2183}
2184#endif /* CONFIG_BPF_STREAM_PARSER */
2185
2186#ifdef CONFIG_NET_SOCK_MSG
2187int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2188                          int flags);
2189int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2190                      struct msghdr *msg, int len, int flags);
2191#endif /* CONFIG_NET_SOCK_MSG */
2192
2193/* Call BPF_SOCK_OPS program that returns an int. If the return value
2194 * is < 0, then the BPF op failed (for example if the loaded BPF
2195 * program does not support the chosen operation or there is no BPF
2196 * program loaded).
2197 */
2198#ifdef CONFIG_BPF
2199static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2200{
2201        struct bpf_sock_ops_kern sock_ops;
2202        int ret;
2203
2204        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2205        if (sk_fullsock(sk)) {
2206                sock_ops.is_fullsock = 1;
2207                sock_owned_by_me(sk);
2208        }
2209
2210        sock_ops.sk = sk;
2211        sock_ops.op = op;
2212        if (nargs > 0)
2213                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2214
2215        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2216        if (ret == 0)
2217                ret = sock_ops.reply;
2218        else
2219                ret = -1;
2220        return ret;
2221}
2222
2223static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2224{
2225        u32 args[2] = {arg1, arg2};
2226
2227        return tcp_call_bpf(sk, op, 2, args);
2228}
2229
2230static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2231                                    u32 arg3)
2232{
2233        u32 args[3] = {arg1, arg2, arg3};
2234
2235        return tcp_call_bpf(sk, op, 3, args);
2236}
2237
2238#else
2239static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2240{
2241        return -EPERM;
2242}
2243
2244static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2245{
2246        return -EPERM;
2247}
2248
2249static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2250                                    u32 arg3)
2251{
2252        return -EPERM;
2253}
2254
2255#endif
2256
2257static inline u32 tcp_timeout_init(struct sock *sk)
2258{
2259        int timeout;
2260
2261        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2262
2263        if (timeout <= 0)
2264                timeout = TCP_TIMEOUT_INIT;
2265        return timeout;
2266}
2267
2268static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2269{
2270        int rwnd;
2271
2272        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2273
2274        if (rwnd < 0)
2275                rwnd = 0;
2276        return rwnd;
2277}
2278
2279static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2280{
2281        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2282}
2283
2284static inline void tcp_bpf_rtt(struct sock *sk)
2285{
2286        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2287                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2288}
2289
2290#if IS_ENABLED(CONFIG_SMC)
2291extern struct static_key_false tcp_have_smc;
2292#endif
2293
2294#if IS_ENABLED(CONFIG_TLS_DEVICE)
2295void clean_acked_data_enable(struct inet_connection_sock *icsk,
2296                             void (*cad)(struct sock *sk, u32 ack_seq));
2297void clean_acked_data_disable(struct inet_connection_sock *icsk);
2298
2299#endif
2300
2301#endif  /* _TCP_H */
2302