linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
  49#include "clockid.h"
  50
  51#include <linux/ctype.h>
  52#include <internal/lib.h>
  53
  54/*
  55 * magic2 = "PERFILE2"
  56 * must be a numerical value to let the endianness
  57 * determine the memory layout. That way we are able
  58 * to detect endianness when reading the perf.data file
  59 * back.
  60 *
  61 * we check for legacy (PERFFILE) format.
  62 */
  63static const char *__perf_magic1 = "PERFFILE";
  64static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  65static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  66
  67#define PERF_MAGIC      __perf_magic2
  68
  69const char perf_version_string[] = PERF_VERSION;
  70
  71struct perf_file_attr {
  72        struct perf_event_attr  attr;
  73        struct perf_file_section        ids;
  74};
  75
  76void perf_header__set_feat(struct perf_header *header, int feat)
  77{
  78        set_bit(feat, header->adds_features);
  79}
  80
  81void perf_header__clear_feat(struct perf_header *header, int feat)
  82{
  83        clear_bit(feat, header->adds_features);
  84}
  85
  86bool perf_header__has_feat(const struct perf_header *header, int feat)
  87{
  88        return test_bit(feat, header->adds_features);
  89}
  90
  91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  92{
  93        ssize_t ret = writen(ff->fd, buf, size);
  94
  95        if (ret != (ssize_t)size)
  96                return ret < 0 ? (int)ret : -1;
  97        return 0;
  98}
  99
 100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 101{
 102        /* struct perf_event_header::size is u16 */
 103        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 104        size_t new_size = ff->size;
 105        void *addr;
 106
 107        if (size + ff->offset > max_size)
 108                return -E2BIG;
 109
 110        while (size > (new_size - ff->offset))
 111                new_size <<= 1;
 112        new_size = min(max_size, new_size);
 113
 114        if (ff->size < new_size) {
 115                addr = realloc(ff->buf, new_size);
 116                if (!addr)
 117                        return -ENOMEM;
 118                ff->buf = addr;
 119                ff->size = new_size;
 120        }
 121
 122        memcpy(ff->buf + ff->offset, buf, size);
 123        ff->offset += size;
 124
 125        return 0;
 126}
 127
 128/* Return: 0 if succeded, -ERR if failed. */
 129int do_write(struct feat_fd *ff, const void *buf, size_t size)
 130{
 131        if (!ff->buf)
 132                return __do_write_fd(ff, buf, size);
 133        return __do_write_buf(ff, buf, size);
 134}
 135
 136/* Return: 0 if succeded, -ERR if failed. */
 137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 138{
 139        u64 *p = (u64 *) set;
 140        int i, ret;
 141
 142        ret = do_write(ff, &size, sizeof(size));
 143        if (ret < 0)
 144                return ret;
 145
 146        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 147                ret = do_write(ff, p + i, sizeof(*p));
 148                if (ret < 0)
 149                        return ret;
 150        }
 151
 152        return 0;
 153}
 154
 155/* Return: 0 if succeded, -ERR if failed. */
 156int write_padded(struct feat_fd *ff, const void *bf,
 157                 size_t count, size_t count_aligned)
 158{
 159        static const char zero_buf[NAME_ALIGN];
 160        int err = do_write(ff, bf, count);
 161
 162        if (!err)
 163                err = do_write(ff, zero_buf, count_aligned - count);
 164
 165        return err;
 166}
 167
 168#define string_size(str)                                                \
 169        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 170
 171/* Return: 0 if succeded, -ERR if failed. */
 172static int do_write_string(struct feat_fd *ff, const char *str)
 173{
 174        u32 len, olen;
 175        int ret;
 176
 177        olen = strlen(str) + 1;
 178        len = PERF_ALIGN(olen, NAME_ALIGN);
 179
 180        /* write len, incl. \0 */
 181        ret = do_write(ff, &len, sizeof(len));
 182        if (ret < 0)
 183                return ret;
 184
 185        return write_padded(ff, str, olen, len);
 186}
 187
 188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 189{
 190        ssize_t ret = readn(ff->fd, addr, size);
 191
 192        if (ret != size)
 193                return ret < 0 ? (int)ret : -1;
 194        return 0;
 195}
 196
 197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 198{
 199        if (size > (ssize_t)ff->size - ff->offset)
 200                return -1;
 201
 202        memcpy(addr, ff->buf + ff->offset, size);
 203        ff->offset += size;
 204
 205        return 0;
 206
 207}
 208
 209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 210{
 211        if (!ff->buf)
 212                return __do_read_fd(ff, addr, size);
 213        return __do_read_buf(ff, addr, size);
 214}
 215
 216static int do_read_u32(struct feat_fd *ff, u32 *addr)
 217{
 218        int ret;
 219
 220        ret = __do_read(ff, addr, sizeof(*addr));
 221        if (ret)
 222                return ret;
 223
 224        if (ff->ph->needs_swap)
 225                *addr = bswap_32(*addr);
 226        return 0;
 227}
 228
 229static int do_read_u64(struct feat_fd *ff, u64 *addr)
 230{
 231        int ret;
 232
 233        ret = __do_read(ff, addr, sizeof(*addr));
 234        if (ret)
 235                return ret;
 236
 237        if (ff->ph->needs_swap)
 238                *addr = bswap_64(*addr);
 239        return 0;
 240}
 241
 242static char *do_read_string(struct feat_fd *ff)
 243{
 244        u32 len;
 245        char *buf;
 246
 247        if (do_read_u32(ff, &len))
 248                return NULL;
 249
 250        buf = malloc(len);
 251        if (!buf)
 252                return NULL;
 253
 254        if (!__do_read(ff, buf, len)) {
 255                /*
 256                 * strings are padded by zeroes
 257                 * thus the actual strlen of buf
 258                 * may be less than len
 259                 */
 260                return buf;
 261        }
 262
 263        free(buf);
 264        return NULL;
 265}
 266
 267/* Return: 0 if succeded, -ERR if failed. */
 268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 269{
 270        unsigned long *set;
 271        u64 size, *p;
 272        int i, ret;
 273
 274        ret = do_read_u64(ff, &size);
 275        if (ret)
 276                return ret;
 277
 278        set = bitmap_alloc(size);
 279        if (!set)
 280                return -ENOMEM;
 281
 282        p = (u64 *) set;
 283
 284        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 285                ret = do_read_u64(ff, p + i);
 286                if (ret < 0) {
 287                        free(set);
 288                        return ret;
 289                }
 290        }
 291
 292        *pset  = set;
 293        *psize = size;
 294        return 0;
 295}
 296
 297static int write_tracing_data(struct feat_fd *ff,
 298                              struct evlist *evlist)
 299{
 300        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 301                return -1;
 302
 303        return read_tracing_data(ff->fd, &evlist->core.entries);
 304}
 305
 306static int write_build_id(struct feat_fd *ff,
 307                          struct evlist *evlist __maybe_unused)
 308{
 309        struct perf_session *session;
 310        int err;
 311
 312        session = container_of(ff->ph, struct perf_session, header);
 313
 314        if (!perf_session__read_build_ids(session, true))
 315                return -1;
 316
 317        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 318                return -1;
 319
 320        err = perf_session__write_buildid_table(session, ff);
 321        if (err < 0) {
 322                pr_debug("failed to write buildid table\n");
 323                return err;
 324        }
 325        perf_session__cache_build_ids(session);
 326
 327        return 0;
 328}
 329
 330static int write_hostname(struct feat_fd *ff,
 331                          struct evlist *evlist __maybe_unused)
 332{
 333        struct utsname uts;
 334        int ret;
 335
 336        ret = uname(&uts);
 337        if (ret < 0)
 338                return -1;
 339
 340        return do_write_string(ff, uts.nodename);
 341}
 342
 343static int write_osrelease(struct feat_fd *ff,
 344                           struct evlist *evlist __maybe_unused)
 345{
 346        struct utsname uts;
 347        int ret;
 348
 349        ret = uname(&uts);
 350        if (ret < 0)
 351                return -1;
 352
 353        return do_write_string(ff, uts.release);
 354}
 355
 356static int write_arch(struct feat_fd *ff,
 357                      struct evlist *evlist __maybe_unused)
 358{
 359        struct utsname uts;
 360        int ret;
 361
 362        ret = uname(&uts);
 363        if (ret < 0)
 364                return -1;
 365
 366        return do_write_string(ff, uts.machine);
 367}
 368
 369static int write_version(struct feat_fd *ff,
 370                         struct evlist *evlist __maybe_unused)
 371{
 372        return do_write_string(ff, perf_version_string);
 373}
 374
 375static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 376{
 377        FILE *file;
 378        char *buf = NULL;
 379        char *s, *p;
 380        const char *search = cpuinfo_proc;
 381        size_t len = 0;
 382        int ret = -1;
 383
 384        if (!search)
 385                return -1;
 386
 387        file = fopen("/proc/cpuinfo", "r");
 388        if (!file)
 389                return -1;
 390
 391        while (getline(&buf, &len, file) > 0) {
 392                ret = strncmp(buf, search, strlen(search));
 393                if (!ret)
 394                        break;
 395        }
 396
 397        if (ret) {
 398                ret = -1;
 399                goto done;
 400        }
 401
 402        s = buf;
 403
 404        p = strchr(buf, ':');
 405        if (p && *(p+1) == ' ' && *(p+2))
 406                s = p + 2;
 407        p = strchr(s, '\n');
 408        if (p)
 409                *p = '\0';
 410
 411        /* squash extra space characters (branding string) */
 412        p = s;
 413        while (*p) {
 414                if (isspace(*p)) {
 415                        char *r = p + 1;
 416                        char *q = skip_spaces(r);
 417                        *p = ' ';
 418                        if (q != (p+1))
 419                                while ((*r++ = *q++));
 420                }
 421                p++;
 422        }
 423        ret = do_write_string(ff, s);
 424done:
 425        free(buf);
 426        fclose(file);
 427        return ret;
 428}
 429
 430static int write_cpudesc(struct feat_fd *ff,
 431                       struct evlist *evlist __maybe_unused)
 432{
 433#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 434#define CPUINFO_PROC    { "cpu", }
 435#elif defined(__s390__)
 436#define CPUINFO_PROC    { "vendor_id", }
 437#elif defined(__sh__)
 438#define CPUINFO_PROC    { "cpu type", }
 439#elif defined(__alpha__) || defined(__mips__)
 440#define CPUINFO_PROC    { "cpu model", }
 441#elif defined(__arm__)
 442#define CPUINFO_PROC    { "model name", "Processor", }
 443#elif defined(__arc__)
 444#define CPUINFO_PROC    { "Processor", }
 445#elif defined(__xtensa__)
 446#define CPUINFO_PROC    { "core ID", }
 447#else
 448#define CPUINFO_PROC    { "model name", }
 449#endif
 450        const char *cpuinfo_procs[] = CPUINFO_PROC;
 451#undef CPUINFO_PROC
 452        unsigned int i;
 453
 454        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 455                int ret;
 456                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 457                if (ret >= 0)
 458                        return ret;
 459        }
 460        return -1;
 461}
 462
 463
 464static int write_nrcpus(struct feat_fd *ff,
 465                        struct evlist *evlist __maybe_unused)
 466{
 467        long nr;
 468        u32 nrc, nra;
 469        int ret;
 470
 471        nrc = cpu__max_present_cpu();
 472
 473        nr = sysconf(_SC_NPROCESSORS_ONLN);
 474        if (nr < 0)
 475                return -1;
 476
 477        nra = (u32)(nr & UINT_MAX);
 478
 479        ret = do_write(ff, &nrc, sizeof(nrc));
 480        if (ret < 0)
 481                return ret;
 482
 483        return do_write(ff, &nra, sizeof(nra));
 484}
 485
 486static int write_event_desc(struct feat_fd *ff,
 487                            struct evlist *evlist)
 488{
 489        struct evsel *evsel;
 490        u32 nre, nri, sz;
 491        int ret;
 492
 493        nre = evlist->core.nr_entries;
 494
 495        /*
 496         * write number of events
 497         */
 498        ret = do_write(ff, &nre, sizeof(nre));
 499        if (ret < 0)
 500                return ret;
 501
 502        /*
 503         * size of perf_event_attr struct
 504         */
 505        sz = (u32)sizeof(evsel->core.attr);
 506        ret = do_write(ff, &sz, sizeof(sz));
 507        if (ret < 0)
 508                return ret;
 509
 510        evlist__for_each_entry(evlist, evsel) {
 511                ret = do_write(ff, &evsel->core.attr, sz);
 512                if (ret < 0)
 513                        return ret;
 514                /*
 515                 * write number of unique id per event
 516                 * there is one id per instance of an event
 517                 *
 518                 * copy into an nri to be independent of the
 519                 * type of ids,
 520                 */
 521                nri = evsel->core.ids;
 522                ret = do_write(ff, &nri, sizeof(nri));
 523                if (ret < 0)
 524                        return ret;
 525
 526                /*
 527                 * write event string as passed on cmdline
 528                 */
 529                ret = do_write_string(ff, evsel__name(evsel));
 530                if (ret < 0)
 531                        return ret;
 532                /*
 533                 * write unique ids for this event
 534                 */
 535                ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 536                if (ret < 0)
 537                        return ret;
 538        }
 539        return 0;
 540}
 541
 542static int write_cmdline(struct feat_fd *ff,
 543                         struct evlist *evlist __maybe_unused)
 544{
 545        char pbuf[MAXPATHLEN], *buf;
 546        int i, ret, n;
 547
 548        /* actual path to perf binary */
 549        buf = perf_exe(pbuf, MAXPATHLEN);
 550
 551        /* account for binary path */
 552        n = perf_env.nr_cmdline + 1;
 553
 554        ret = do_write(ff, &n, sizeof(n));
 555        if (ret < 0)
 556                return ret;
 557
 558        ret = do_write_string(ff, buf);
 559        if (ret < 0)
 560                return ret;
 561
 562        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 563                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 564                if (ret < 0)
 565                        return ret;
 566        }
 567        return 0;
 568}
 569
 570
 571static int write_cpu_topology(struct feat_fd *ff,
 572                              struct evlist *evlist __maybe_unused)
 573{
 574        struct cpu_topology *tp;
 575        u32 i;
 576        int ret, j;
 577
 578        tp = cpu_topology__new();
 579        if (!tp)
 580                return -1;
 581
 582        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 583        if (ret < 0)
 584                goto done;
 585
 586        for (i = 0; i < tp->core_sib; i++) {
 587                ret = do_write_string(ff, tp->core_siblings[i]);
 588                if (ret < 0)
 589                        goto done;
 590        }
 591        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 592        if (ret < 0)
 593                goto done;
 594
 595        for (i = 0; i < tp->thread_sib; i++) {
 596                ret = do_write_string(ff, tp->thread_siblings[i]);
 597                if (ret < 0)
 598                        break;
 599        }
 600
 601        ret = perf_env__read_cpu_topology_map(&perf_env);
 602        if (ret < 0)
 603                goto done;
 604
 605        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 606                ret = do_write(ff, &perf_env.cpu[j].core_id,
 607                               sizeof(perf_env.cpu[j].core_id));
 608                if (ret < 0)
 609                        return ret;
 610                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 611                               sizeof(perf_env.cpu[j].socket_id));
 612                if (ret < 0)
 613                        return ret;
 614        }
 615
 616        if (!tp->die_sib)
 617                goto done;
 618
 619        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 620        if (ret < 0)
 621                goto done;
 622
 623        for (i = 0; i < tp->die_sib; i++) {
 624                ret = do_write_string(ff, tp->die_siblings[i]);
 625                if (ret < 0)
 626                        goto done;
 627        }
 628
 629        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 630                ret = do_write(ff, &perf_env.cpu[j].die_id,
 631                               sizeof(perf_env.cpu[j].die_id));
 632                if (ret < 0)
 633                        return ret;
 634        }
 635
 636done:
 637        cpu_topology__delete(tp);
 638        return ret;
 639}
 640
 641
 642
 643static int write_total_mem(struct feat_fd *ff,
 644                           struct evlist *evlist __maybe_unused)
 645{
 646        char *buf = NULL;
 647        FILE *fp;
 648        size_t len = 0;
 649        int ret = -1, n;
 650        uint64_t mem;
 651
 652        fp = fopen("/proc/meminfo", "r");
 653        if (!fp)
 654                return -1;
 655
 656        while (getline(&buf, &len, fp) > 0) {
 657                ret = strncmp(buf, "MemTotal:", 9);
 658                if (!ret)
 659                        break;
 660        }
 661        if (!ret) {
 662                n = sscanf(buf, "%*s %"PRIu64, &mem);
 663                if (n == 1)
 664                        ret = do_write(ff, &mem, sizeof(mem));
 665        } else
 666                ret = -1;
 667        free(buf);
 668        fclose(fp);
 669        return ret;
 670}
 671
 672static int write_numa_topology(struct feat_fd *ff,
 673                               struct evlist *evlist __maybe_unused)
 674{
 675        struct numa_topology *tp;
 676        int ret = -1;
 677        u32 i;
 678
 679        tp = numa_topology__new();
 680        if (!tp)
 681                return -ENOMEM;
 682
 683        ret = do_write(ff, &tp->nr, sizeof(u32));
 684        if (ret < 0)
 685                goto err;
 686
 687        for (i = 0; i < tp->nr; i++) {
 688                struct numa_topology_node *n = &tp->nodes[i];
 689
 690                ret = do_write(ff, &n->node, sizeof(u32));
 691                if (ret < 0)
 692                        goto err;
 693
 694                ret = do_write(ff, &n->mem_total, sizeof(u64));
 695                if (ret)
 696                        goto err;
 697
 698                ret = do_write(ff, &n->mem_free, sizeof(u64));
 699                if (ret)
 700                        goto err;
 701
 702                ret = do_write_string(ff, n->cpus);
 703                if (ret < 0)
 704                        goto err;
 705        }
 706
 707        ret = 0;
 708
 709err:
 710        numa_topology__delete(tp);
 711        return ret;
 712}
 713
 714/*
 715 * File format:
 716 *
 717 * struct pmu_mappings {
 718 *      u32     pmu_num;
 719 *      struct pmu_map {
 720 *              u32     type;
 721 *              char    name[];
 722 *      }[pmu_num];
 723 * };
 724 */
 725
 726static int write_pmu_mappings(struct feat_fd *ff,
 727                              struct evlist *evlist __maybe_unused)
 728{
 729        struct perf_pmu *pmu = NULL;
 730        u32 pmu_num = 0;
 731        int ret;
 732
 733        /*
 734         * Do a first pass to count number of pmu to avoid lseek so this
 735         * works in pipe mode as well.
 736         */
 737        while ((pmu = perf_pmu__scan(pmu))) {
 738                if (!pmu->name)
 739                        continue;
 740                pmu_num++;
 741        }
 742
 743        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 744        if (ret < 0)
 745                return ret;
 746
 747        while ((pmu = perf_pmu__scan(pmu))) {
 748                if (!pmu->name)
 749                        continue;
 750
 751                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 752                if (ret < 0)
 753                        return ret;
 754
 755                ret = do_write_string(ff, pmu->name);
 756                if (ret < 0)
 757                        return ret;
 758        }
 759
 760        return 0;
 761}
 762
 763/*
 764 * File format:
 765 *
 766 * struct group_descs {
 767 *      u32     nr_groups;
 768 *      struct group_desc {
 769 *              char    name[];
 770 *              u32     leader_idx;
 771 *              u32     nr_members;
 772 *      }[nr_groups];
 773 * };
 774 */
 775static int write_group_desc(struct feat_fd *ff,
 776                            struct evlist *evlist)
 777{
 778        u32 nr_groups = evlist->nr_groups;
 779        struct evsel *evsel;
 780        int ret;
 781
 782        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 783        if (ret < 0)
 784                return ret;
 785
 786        evlist__for_each_entry(evlist, evsel) {
 787                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 788                        const char *name = evsel->group_name ?: "{anon_group}";
 789                        u32 leader_idx = evsel->idx;
 790                        u32 nr_members = evsel->core.nr_members;
 791
 792                        ret = do_write_string(ff, name);
 793                        if (ret < 0)
 794                                return ret;
 795
 796                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797                        if (ret < 0)
 798                                return ret;
 799
 800                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 801                        if (ret < 0)
 802                                return ret;
 803                }
 804        }
 805        return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816        return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825        regex_t re;
 826        regmatch_t pmatch[1];
 827        int match;
 828
 829        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830                /* Warn unable to generate match particular string. */
 831                pr_info("Invalid regular expression %s\n", mapcpuid);
 832                return 1;
 833        }
 834
 835        match = !regexec(&re, cpuid, 1, pmatch, 0);
 836        regfree(&re);
 837        if (match) {
 838                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840                /* Verify the entire string matched. */
 841                if (match_len == strlen(cpuid))
 842                        return 0;
 843        }
 844        return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853        return ENOSYS; /* Not implemented */
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857                       struct evlist *evlist __maybe_unused)
 858{
 859        char buffer[64];
 860        int ret;
 861
 862        ret = get_cpuid(buffer, sizeof(buffer));
 863        if (ret)
 864                return -1;
 865
 866        return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870                              struct evlist *evlist __maybe_unused)
 871{
 872        return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876                          struct evlist *evlist __maybe_unused)
 877{
 878        struct perf_session *session;
 879        int err;
 880
 881        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882                return -1;
 883
 884        session = container_of(ff->ph, struct perf_session, header);
 885
 886        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887        if (err < 0)
 888                pr_err("Failed to write auxtrace index\n");
 889        return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893                         struct evlist *evlist __maybe_unused)
 894{
 895        return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 896                        sizeof(ff->ph->env.clock.clockid_res_ns));
 897}
 898
 899static int write_clock_data(struct feat_fd *ff,
 900                            struct evlist *evlist __maybe_unused)
 901{
 902        u64 *data64;
 903        u32 data32;
 904        int ret;
 905
 906        /* version */
 907        data32 = 1;
 908
 909        ret = do_write(ff, &data32, sizeof(data32));
 910        if (ret < 0)
 911                return ret;
 912
 913        /* clockid */
 914        data32 = ff->ph->env.clock.clockid;
 915
 916        ret = do_write(ff, &data32, sizeof(data32));
 917        if (ret < 0)
 918                return ret;
 919
 920        /* TOD ref time */
 921        data64 = &ff->ph->env.clock.tod_ns;
 922
 923        ret = do_write(ff, data64, sizeof(*data64));
 924        if (ret < 0)
 925                return ret;
 926
 927        /* clockid ref time */
 928        data64 = &ff->ph->env.clock.clockid_ns;
 929
 930        return do_write(ff, data64, sizeof(*data64));
 931}
 932
 933static int write_dir_format(struct feat_fd *ff,
 934                            struct evlist *evlist __maybe_unused)
 935{
 936        struct perf_session *session;
 937        struct perf_data *data;
 938
 939        session = container_of(ff->ph, struct perf_session, header);
 940        data = session->data;
 941
 942        if (WARN_ON(!perf_data__is_dir(data)))
 943                return -1;
 944
 945        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 946}
 947
 948#ifdef HAVE_LIBBPF_SUPPORT
 949static int write_bpf_prog_info(struct feat_fd *ff,
 950                               struct evlist *evlist __maybe_unused)
 951{
 952        struct perf_env *env = &ff->ph->env;
 953        struct rb_root *root;
 954        struct rb_node *next;
 955        int ret;
 956
 957        down_read(&env->bpf_progs.lock);
 958
 959        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 960                       sizeof(env->bpf_progs.infos_cnt));
 961        if (ret < 0)
 962                goto out;
 963
 964        root = &env->bpf_progs.infos;
 965        next = rb_first(root);
 966        while (next) {
 967                struct bpf_prog_info_node *node;
 968                size_t len;
 969
 970                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 971                next = rb_next(&node->rb_node);
 972                len = sizeof(struct bpf_prog_info_linear) +
 973                        node->info_linear->data_len;
 974
 975                /* before writing to file, translate address to offset */
 976                bpf_program__bpil_addr_to_offs(node->info_linear);
 977                ret = do_write(ff, node->info_linear, len);
 978                /*
 979                 * translate back to address even when do_write() fails,
 980                 * so that this function never changes the data.
 981                 */
 982                bpf_program__bpil_offs_to_addr(node->info_linear);
 983                if (ret < 0)
 984                        goto out;
 985        }
 986out:
 987        up_read(&env->bpf_progs.lock);
 988        return ret;
 989}
 990#else // HAVE_LIBBPF_SUPPORT
 991static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 992                               struct evlist *evlist __maybe_unused)
 993{
 994        return 0;
 995}
 996#endif // HAVE_LIBBPF_SUPPORT
 997
 998static int write_bpf_btf(struct feat_fd *ff,
 999                         struct evlist *evlist __maybe_unused)
1000{
1001        struct perf_env *env = &ff->ph->env;
1002        struct rb_root *root;
1003        struct rb_node *next;
1004        int ret;
1005
1006        down_read(&env->bpf_progs.lock);
1007
1008        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009                       sizeof(env->bpf_progs.btfs_cnt));
1010
1011        if (ret < 0)
1012                goto out;
1013
1014        root = &env->bpf_progs.btfs;
1015        next = rb_first(root);
1016        while (next) {
1017                struct btf_node *node;
1018
1019                node = rb_entry(next, struct btf_node, rb_node);
1020                next = rb_next(&node->rb_node);
1021                ret = do_write(ff, &node->id,
1022                               sizeof(u32) * 2 + node->data_size);
1023                if (ret < 0)
1024                        goto out;
1025        }
1026out:
1027        up_read(&env->bpf_progs.lock);
1028        return ret;
1029}
1030
1031static int cpu_cache_level__sort(const void *a, const void *b)
1032{
1033        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036        return cache_a->level - cache_b->level;
1037}
1038
1039static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040{
1041        if (a->level != b->level)
1042                return false;
1043
1044        if (a->line_size != b->line_size)
1045                return false;
1046
1047        if (a->sets != b->sets)
1048                return false;
1049
1050        if (a->ways != b->ways)
1051                return false;
1052
1053        if (strcmp(a->type, b->type))
1054                return false;
1055
1056        if (strcmp(a->size, b->size))
1057                return false;
1058
1059        if (strcmp(a->map, b->map))
1060                return false;
1061
1062        return true;
1063}
1064
1065static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066{
1067        char path[PATH_MAX], file[PATH_MAX];
1068        struct stat st;
1069        size_t len;
1070
1071        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074        if (stat(file, &st))
1075                return 1;
1076
1077        scnprintf(file, PATH_MAX, "%s/level", path);
1078        if (sysfs__read_int(file, (int *) &cache->level))
1079                return -1;
1080
1081        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082        if (sysfs__read_int(file, (int *) &cache->line_size))
1083                return -1;
1084
1085        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086        if (sysfs__read_int(file, (int *) &cache->sets))
1087                return -1;
1088
1089        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090        if (sysfs__read_int(file, (int *) &cache->ways))
1091                return -1;
1092
1093        scnprintf(file, PATH_MAX, "%s/type", path);
1094        if (sysfs__read_str(file, &cache->type, &len))
1095                return -1;
1096
1097        cache->type[len] = 0;
1098        cache->type = strim(cache->type);
1099
1100        scnprintf(file, PATH_MAX, "%s/size", path);
1101        if (sysfs__read_str(file, &cache->size, &len)) {
1102                zfree(&cache->type);
1103                return -1;
1104        }
1105
1106        cache->size[len] = 0;
1107        cache->size = strim(cache->size);
1108
1109        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110        if (sysfs__read_str(file, &cache->map, &len)) {
1111                zfree(&cache->size);
1112                zfree(&cache->type);
1113                return -1;
1114        }
1115
1116        cache->map[len] = 0;
1117        cache->map = strim(cache->map);
1118        return 0;
1119}
1120
1121static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122{
1123        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124}
1125
1126#define MAX_CACHE_LVL 4
1127
1128static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129{
1130        u32 i, cnt = 0;
1131        u32 nr, cpu;
1132        u16 level;
1133
1134        nr = cpu__max_cpu();
1135
1136        for (cpu = 0; cpu < nr; cpu++) {
1137                for (level = 0; level < MAX_CACHE_LVL; level++) {
1138                        struct cpu_cache_level c;
1139                        int err;
1140
1141                        err = cpu_cache_level__read(&c, cpu, level);
1142                        if (err < 0)
1143                                return err;
1144
1145                        if (err == 1)
1146                                break;
1147
1148                        for (i = 0; i < cnt; i++) {
1149                                if (cpu_cache_level__cmp(&c, &caches[i]))
1150                                        break;
1151                        }
1152
1153                        if (i == cnt)
1154                                caches[cnt++] = c;
1155                        else
1156                                cpu_cache_level__free(&c);
1157                }
1158        }
1159        *cntp = cnt;
1160        return 0;
1161}
1162
1163static int write_cache(struct feat_fd *ff,
1164                       struct evlist *evlist __maybe_unused)
1165{
1166        u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167        struct cpu_cache_level caches[max_caches];
1168        u32 cnt = 0, i, version = 1;
1169        int ret;
1170
1171        ret = build_caches(caches, &cnt);
1172        if (ret)
1173                goto out;
1174
1175        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177        ret = do_write(ff, &version, sizeof(u32));
1178        if (ret < 0)
1179                goto out;
1180
1181        ret = do_write(ff, &cnt, sizeof(u32));
1182        if (ret < 0)
1183                goto out;
1184
1185        for (i = 0; i < cnt; i++) {
1186                struct cpu_cache_level *c = &caches[i];
1187
1188                #define _W(v)                                   \
1189                        ret = do_write(ff, &c->v, sizeof(u32)); \
1190                        if (ret < 0)                            \
1191                                goto out;
1192
1193                _W(level)
1194                _W(line_size)
1195                _W(sets)
1196                _W(ways)
1197                #undef _W
1198
1199                #define _W(v)                                           \
1200                        ret = do_write_string(ff, (const char *) c->v); \
1201                        if (ret < 0)                                    \
1202                                goto out;
1203
1204                _W(type)
1205                _W(size)
1206                _W(map)
1207                #undef _W
1208        }
1209
1210out:
1211        for (i = 0; i < cnt; i++)
1212                cpu_cache_level__free(&caches[i]);
1213        return ret;
1214}
1215
1216static int write_stat(struct feat_fd *ff __maybe_unused,
1217                      struct evlist *evlist __maybe_unused)
1218{
1219        return 0;
1220}
1221
1222static int write_sample_time(struct feat_fd *ff,
1223                             struct evlist *evlist)
1224{
1225        int ret;
1226
1227        ret = do_write(ff, &evlist->first_sample_time,
1228                       sizeof(evlist->first_sample_time));
1229        if (ret < 0)
1230                return ret;
1231
1232        return do_write(ff, &evlist->last_sample_time,
1233                        sizeof(evlist->last_sample_time));
1234}
1235
1236
1237static int memory_node__read(struct memory_node *n, unsigned long idx)
1238{
1239        unsigned int phys, size = 0;
1240        char path[PATH_MAX];
1241        struct dirent *ent;
1242        DIR *dir;
1243
1244#define for_each_memory(mem, dir)                                       \
1245        while ((ent = readdir(dir)))                                    \
1246                if (strcmp(ent->d_name, ".") &&                         \
1247                    strcmp(ent->d_name, "..") &&                        \
1248                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250        scnprintf(path, PATH_MAX,
1251                  "%s/devices/system/node/node%lu",
1252                  sysfs__mountpoint(), idx);
1253
1254        dir = opendir(path);
1255        if (!dir) {
1256                pr_warning("failed: cant' open memory sysfs data\n");
1257                return -1;
1258        }
1259
1260        for_each_memory(phys, dir) {
1261                size = max(phys, size);
1262        }
1263
1264        size++;
1265
1266        n->set = bitmap_alloc(size);
1267        if (!n->set) {
1268                closedir(dir);
1269                return -ENOMEM;
1270        }
1271
1272        n->node = idx;
1273        n->size = size;
1274
1275        rewinddir(dir);
1276
1277        for_each_memory(phys, dir) {
1278                set_bit(phys, n->set);
1279        }
1280
1281        closedir(dir);
1282        return 0;
1283}
1284
1285static int memory_node__sort(const void *a, const void *b)
1286{
1287        const struct memory_node *na = a;
1288        const struct memory_node *nb = b;
1289
1290        return na->node - nb->node;
1291}
1292
1293static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294{
1295        char path[PATH_MAX];
1296        struct dirent *ent;
1297        DIR *dir;
1298        u64 cnt = 0;
1299        int ret = 0;
1300
1301        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302                  sysfs__mountpoint());
1303
1304        dir = opendir(path);
1305        if (!dir) {
1306                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307                          __func__, path);
1308                return -1;
1309        }
1310
1311        while (!ret && (ent = readdir(dir))) {
1312                unsigned int idx;
1313                int r;
1314
1315                if (!strcmp(ent->d_name, ".") ||
1316                    !strcmp(ent->d_name, ".."))
1317                        continue;
1318
1319                r = sscanf(ent->d_name, "node%u", &idx);
1320                if (r != 1)
1321                        continue;
1322
1323                if (WARN_ONCE(cnt >= size,
1324                        "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325                        closedir(dir);
1326                        return -1;
1327                }
1328
1329                ret = memory_node__read(&nodes[cnt++], idx);
1330        }
1331
1332        *cntp = cnt;
1333        closedir(dir);
1334
1335        if (!ret)
1336                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338        return ret;
1339}
1340
1341#define MAX_MEMORY_NODES 2000
1342
1343/*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 *  0 - version          | for future changes
1348 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count            | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id          | node index
1355 * 40 - size             | size of bitmap
1356 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357 */
1358static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359                              struct evlist *evlist __maybe_unused)
1360{
1361        static struct memory_node nodes[MAX_MEMORY_NODES];
1362        u64 bsize, version = 1, i, nr;
1363        int ret;
1364
1365        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366                              (unsigned long long *) &bsize);
1367        if (ret)
1368                return ret;
1369
1370        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371        if (ret)
1372                return ret;
1373
1374        ret = do_write(ff, &version, sizeof(version));
1375        if (ret < 0)
1376                goto out;
1377
1378        ret = do_write(ff, &bsize, sizeof(bsize));
1379        if (ret < 0)
1380                goto out;
1381
1382        ret = do_write(ff, &nr, sizeof(nr));
1383        if (ret < 0)
1384                goto out;
1385
1386        for (i = 0; i < nr; i++) {
1387                struct memory_node *n = &nodes[i];
1388
1389                #define _W(v)                                           \
1390                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1391                        if (ret < 0)                                    \
1392                                goto out;
1393
1394                _W(node)
1395                _W(size)
1396
1397                #undef _W
1398
1399                ret = do_write_bitmap(ff, n->set, n->size);
1400                if (ret < 0)
1401                        goto out;
1402        }
1403
1404out:
1405        return ret;
1406}
1407
1408static int write_compressed(struct feat_fd *ff __maybe_unused,
1409                            struct evlist *evlist __maybe_unused)
1410{
1411        int ret;
1412
1413        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414        if (ret)
1415                return ret;
1416
1417        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418        if (ret)
1419                return ret;
1420
1421        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422        if (ret)
1423                return ret;
1424
1425        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426        if (ret)
1427                return ret;
1428
1429        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430}
1431
1432static int write_cpu_pmu_caps(struct feat_fd *ff,
1433                              struct evlist *evlist __maybe_unused)
1434{
1435        struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436        struct perf_pmu_caps *caps = NULL;
1437        int nr_caps;
1438        int ret;
1439
1440        if (!cpu_pmu)
1441                return -ENOENT;
1442
1443        nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444        if (nr_caps < 0)
1445                return nr_caps;
1446
1447        ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448        if (ret < 0)
1449                return ret;
1450
1451        list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452                ret = do_write_string(ff, caps->name);
1453                if (ret < 0)
1454                        return ret;
1455
1456                ret = do_write_string(ff, caps->value);
1457                if (ret < 0)
1458                        return ret;
1459        }
1460
1461        return ret;
1462}
1463
1464static void print_hostname(struct feat_fd *ff, FILE *fp)
1465{
1466        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467}
1468
1469static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470{
1471        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472}
1473
1474static void print_arch(struct feat_fd *ff, FILE *fp)
1475{
1476        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477}
1478
1479static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480{
1481        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482}
1483
1484static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485{
1486        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488}
1489
1490static void print_version(struct feat_fd *ff, FILE *fp)
1491{
1492        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493}
1494
1495static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496{
1497        int nr, i;
1498
1499        nr = ff->ph->env.nr_cmdline;
1500
1501        fprintf(fp, "# cmdline : ");
1502
1503        for (i = 0; i < nr; i++) {
1504                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505                if (!argv_i) {
1506                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507                } else {
1508                        char *mem = argv_i;
1509                        do {
1510                                char *quote = strchr(argv_i, '\'');
1511                                if (!quote)
1512                                        break;
1513                                *quote++ = '\0';
1514                                fprintf(fp, "%s\\\'", argv_i);
1515                                argv_i = quote;
1516                        } while (1);
1517                        fprintf(fp, "%s ", argv_i);
1518                        free(mem);
1519                }
1520        }
1521        fputc('\n', fp);
1522}
1523
1524static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525{
1526        struct perf_header *ph = ff->ph;
1527        int cpu_nr = ph->env.nr_cpus_avail;
1528        int nr, i;
1529        char *str;
1530
1531        nr = ph->env.nr_sibling_cores;
1532        str = ph->env.sibling_cores;
1533
1534        for (i = 0; i < nr; i++) {
1535                fprintf(fp, "# sibling sockets : %s\n", str);
1536                str += strlen(str) + 1;
1537        }
1538
1539        if (ph->env.nr_sibling_dies) {
1540                nr = ph->env.nr_sibling_dies;
1541                str = ph->env.sibling_dies;
1542
1543                for (i = 0; i < nr; i++) {
1544                        fprintf(fp, "# sibling dies    : %s\n", str);
1545                        str += strlen(str) + 1;
1546                }
1547        }
1548
1549        nr = ph->env.nr_sibling_threads;
1550        str = ph->env.sibling_threads;
1551
1552        for (i = 0; i < nr; i++) {
1553                fprintf(fp, "# sibling threads : %s\n", str);
1554                str += strlen(str) + 1;
1555        }
1556
1557        if (ph->env.nr_sibling_dies) {
1558                if (ph->env.cpu != NULL) {
1559                        for (i = 0; i < cpu_nr; i++)
1560                                fprintf(fp, "# CPU %d: Core ID %d, "
1561                                            "Die ID %d, Socket ID %d\n",
1562                                            i, ph->env.cpu[i].core_id,
1563                                            ph->env.cpu[i].die_id,
1564                                            ph->env.cpu[i].socket_id);
1565                } else
1566                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1567                                    "information is not available\n");
1568        } else {
1569                if (ph->env.cpu != NULL) {
1570                        for (i = 0; i < cpu_nr; i++)
1571                                fprintf(fp, "# CPU %d: Core ID %d, "
1572                                            "Socket ID %d\n",
1573                                            i, ph->env.cpu[i].core_id,
1574                                            ph->env.cpu[i].socket_id);
1575                } else
1576                        fprintf(fp, "# Core ID and Socket ID "
1577                                    "information is not available\n");
1578        }
1579}
1580
1581static void print_clockid(struct feat_fd *ff, FILE *fp)
1582{
1583        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584                ff->ph->env.clock.clockid_res_ns * 1000);
1585}
1586
1587static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588{
1589        struct timespec clockid_ns;
1590        char tstr[64], date[64];
1591        struct timeval tod_ns;
1592        clockid_t clockid;
1593        struct tm ltime;
1594        u64 ref;
1595
1596        if (!ff->ph->env.clock.enabled) {
1597                fprintf(fp, "# reference time disabled\n");
1598                return;
1599        }
1600
1601        /* Compute TOD time. */
1602        ref = ff->ph->env.clock.tod_ns;
1603        tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604        ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605        tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607        /* Compute clockid time. */
1608        ref = ff->ph->env.clock.clockid_ns;
1609        clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610        ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611        clockid_ns.tv_nsec = ref;
1612
1613        clockid = ff->ph->env.clock.clockid;
1614
1615        if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616                snprintf(tstr, sizeof(tstr), "<error>");
1617        else {
1618                strftime(date, sizeof(date), "%F %T", &ltime);
1619                scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620                          date, (int) tod_ns.tv_usec);
1621        }
1622
1623        fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624        fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625                    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626                    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627                    clockid_name(clockid));
1628}
1629
1630static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631{
1632        struct perf_session *session;
1633        struct perf_data *data;
1634
1635        session = container_of(ff->ph, struct perf_session, header);
1636        data = session->data;
1637
1638        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639}
1640
1641static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642{
1643        struct perf_env *env = &ff->ph->env;
1644        struct rb_root *root;
1645        struct rb_node *next;
1646
1647        down_read(&env->bpf_progs.lock);
1648
1649        root = &env->bpf_progs.infos;
1650        next = rb_first(root);
1651
1652        while (next) {
1653                struct bpf_prog_info_node *node;
1654
1655                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656                next = rb_next(&node->rb_node);
1657
1658                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659                                               env, fp);
1660        }
1661
1662        up_read(&env->bpf_progs.lock);
1663}
1664
1665static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666{
1667        struct perf_env *env = &ff->ph->env;
1668        struct rb_root *root;
1669        struct rb_node *next;
1670
1671        down_read(&env->bpf_progs.lock);
1672
1673        root = &env->bpf_progs.btfs;
1674        next = rb_first(root);
1675
1676        while (next) {
1677                struct btf_node *node;
1678
1679                node = rb_entry(next, struct btf_node, rb_node);
1680                next = rb_next(&node->rb_node);
1681                fprintf(fp, "# btf info of id %u\n", node->id);
1682        }
1683
1684        up_read(&env->bpf_progs.lock);
1685}
1686
1687static void free_event_desc(struct evsel *events)
1688{
1689        struct evsel *evsel;
1690
1691        if (!events)
1692                return;
1693
1694        for (evsel = events; evsel->core.attr.size; evsel++) {
1695                zfree(&evsel->name);
1696                zfree(&evsel->core.id);
1697        }
1698
1699        free(events);
1700}
1701
1702static bool perf_attr_check(struct perf_event_attr *attr)
1703{
1704        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705                pr_warning("Reserved bits are set unexpectedly. "
1706                           "Please update perf tool.\n");
1707                return false;
1708        }
1709
1710        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711                pr_warning("Unknown sample type (0x%llx) is detected. "
1712                           "Please update perf tool.\n",
1713                           attr->sample_type);
1714                return false;
1715        }
1716
1717        if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718                pr_warning("Unknown read format (0x%llx) is detected. "
1719                           "Please update perf tool.\n",
1720                           attr->read_format);
1721                return false;
1722        }
1723
1724        if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725            (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726                pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727                           "Please update perf tool.\n",
1728                           attr->branch_sample_type);
1729
1730                return false;
1731        }
1732
1733        return true;
1734}
1735
1736static struct evsel *read_event_desc(struct feat_fd *ff)
1737{
1738        struct evsel *evsel, *events = NULL;
1739        u64 *id;
1740        void *buf = NULL;
1741        u32 nre, sz, nr, i, j;
1742        size_t msz;
1743
1744        /* number of events */
1745        if (do_read_u32(ff, &nre))
1746                goto error;
1747
1748        if (do_read_u32(ff, &sz))
1749                goto error;
1750
1751        /* buffer to hold on file attr struct */
1752        buf = malloc(sz);
1753        if (!buf)
1754                goto error;
1755
1756        /* the last event terminates with evsel->core.attr.size == 0: */
1757        events = calloc(nre + 1, sizeof(*events));
1758        if (!events)
1759                goto error;
1760
1761        msz = sizeof(evsel->core.attr);
1762        if (sz < msz)
1763                msz = sz;
1764
1765        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766                evsel->idx = i;
1767
1768                /*
1769                 * must read entire on-file attr struct to
1770                 * sync up with layout.
1771                 */
1772                if (__do_read(ff, buf, sz))
1773                        goto error;
1774
1775                if (ff->ph->needs_swap)
1776                        perf_event__attr_swap(buf);
1777
1778                memcpy(&evsel->core.attr, buf, msz);
1779
1780                if (!perf_attr_check(&evsel->core.attr))
1781                        goto error;
1782
1783                if (do_read_u32(ff, &nr))
1784                        goto error;
1785
1786                if (ff->ph->needs_swap)
1787                        evsel->needs_swap = true;
1788
1789                evsel->name = do_read_string(ff);
1790                if (!evsel->name)
1791                        goto error;
1792
1793                if (!nr)
1794                        continue;
1795
1796                id = calloc(nr, sizeof(*id));
1797                if (!id)
1798                        goto error;
1799                evsel->core.ids = nr;
1800                evsel->core.id = id;
1801
1802                for (j = 0 ; j < nr; j++) {
1803                        if (do_read_u64(ff, id))
1804                                goto error;
1805                        id++;
1806                }
1807        }
1808out:
1809        free(buf);
1810        return events;
1811error:
1812        free_event_desc(events);
1813        events = NULL;
1814        goto out;
1815}
1816
1817static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818                                void *priv __maybe_unused)
1819{
1820        return fprintf(fp, ", %s = %s", name, val);
1821}
1822
1823static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824{
1825        struct evsel *evsel, *events;
1826        u32 j;
1827        u64 *id;
1828
1829        if (ff->events)
1830                events = ff->events;
1831        else
1832                events = read_event_desc(ff);
1833
1834        if (!events) {
1835                fprintf(fp, "# event desc: not available or unable to read\n");
1836                return;
1837        }
1838
1839        for (evsel = events; evsel->core.attr.size; evsel++) {
1840                fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842                if (evsel->core.ids) {
1843                        fprintf(fp, ", id = {");
1844                        for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845                                if (j)
1846                                        fputc(',', fp);
1847                                fprintf(fp, " %"PRIu64, *id);
1848                        }
1849                        fprintf(fp, " }");
1850                }
1851
1852                perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854                fputc('\n', fp);
1855        }
1856
1857        free_event_desc(events);
1858        ff->events = NULL;
1859}
1860
1861static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862{
1863        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864}
1865
1866static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867{
1868        int i;
1869        struct numa_node *n;
1870
1871        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872                n = &ff->ph->env.numa_nodes[i];
1873
1874                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875                            " free = %"PRIu64" kB\n",
1876                        n->node, n->mem_total, n->mem_free);
1877
1878                fprintf(fp, "# node%u cpu list : ", n->node);
1879                cpu_map__fprintf(n->map, fp);
1880        }
1881}
1882
1883static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884{
1885        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886}
1887
1888static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889{
1890        fprintf(fp, "# contains samples with branch stack\n");
1891}
1892
1893static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894{
1895        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896}
1897
1898static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899{
1900        fprintf(fp, "# contains stat data\n");
1901}
1902
1903static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904{
1905        int i;
1906
1907        fprintf(fp, "# CPU cache info:\n");
1908        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909                fprintf(fp, "#  ");
1910                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911        }
1912}
1913
1914static void print_compressed(struct feat_fd *ff, FILE *fp)
1915{
1916        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919}
1920
1921static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922{
1923        const char *delimiter = "# cpu pmu capabilities: ";
1924        u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925        char *str;
1926
1927        if (!nr_caps) {
1928                fprintf(fp, "# cpu pmu capabilities: not available\n");
1929                return;
1930        }
1931
1932        str = ff->ph->env.cpu_pmu_caps;
1933        while (nr_caps--) {
1934                fprintf(fp, "%s%s", delimiter, str);
1935                delimiter = ", ";
1936                str += strlen(str) + 1;
1937        }
1938
1939        fprintf(fp, "\n");
1940}
1941
1942static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943{
1944        const char *delimiter = "# pmu mappings: ";
1945        char *str, *tmp;
1946        u32 pmu_num;
1947        u32 type;
1948
1949        pmu_num = ff->ph->env.nr_pmu_mappings;
1950        if (!pmu_num) {
1951                fprintf(fp, "# pmu mappings: not available\n");
1952                return;
1953        }
1954
1955        str = ff->ph->env.pmu_mappings;
1956
1957        while (pmu_num) {
1958                type = strtoul(str, &tmp, 0);
1959                if (*tmp != ':')
1960                        goto error;
1961
1962                str = tmp + 1;
1963                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965                delimiter = ", ";
1966                str += strlen(str) + 1;
1967                pmu_num--;
1968        }
1969
1970        fprintf(fp, "\n");
1971
1972        if (!pmu_num)
1973                return;
1974error:
1975        fprintf(fp, "# pmu mappings: unable to read\n");
1976}
1977
1978static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979{
1980        struct perf_session *session;
1981        struct evsel *evsel;
1982        u32 nr = 0;
1983
1984        session = container_of(ff->ph, struct perf_session, header);
1985
1986        evlist__for_each_entry(session->evlist, evsel) {
1987                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990                        nr = evsel->core.nr_members - 1;
1991                } else if (nr) {
1992                        fprintf(fp, ",%s", evsel__name(evsel));
1993
1994                        if (--nr == 0)
1995                                fprintf(fp, "}\n");
1996                }
1997        }
1998}
1999
2000static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001{
2002        struct perf_session *session;
2003        char time_buf[32];
2004        double d;
2005
2006        session = container_of(ff->ph, struct perf_session, header);
2007
2008        timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009                                  time_buf, sizeof(time_buf));
2010        fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012        timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013                                  time_buf, sizeof(time_buf));
2014        fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016        d = (double)(session->evlist->last_sample_time -
2017                session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019        fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020}
2021
2022static void memory_node__fprintf(struct memory_node *n,
2023                                 unsigned long long bsize, FILE *fp)
2024{
2025        char buf_map[100], buf_size[50];
2026        unsigned long long size;
2027
2028        size = bsize * bitmap_weight(n->set, n->size);
2029        unit_number__scnprintf(buf_size, 50, size);
2030
2031        bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033}
2034
2035static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036{
2037        struct memory_node *nodes;
2038        int i, nr;
2039
2040        nodes = ff->ph->env.memory_nodes;
2041        nr    = ff->ph->env.nr_memory_nodes;
2042
2043        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044                nr, ff->ph->env.memory_bsize);
2045
2046        for (i = 0; i < nr; i++) {
2047                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048        }
2049}
2050
2051static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052                                    char *filename,
2053                                    struct perf_session *session)
2054{
2055        int err = -1;
2056        struct machine *machine;
2057        u16 cpumode;
2058        struct dso *dso;
2059        enum dso_space_type dso_space;
2060
2061        machine = perf_session__findnew_machine(session, bev->pid);
2062        if (!machine)
2063                goto out;
2064
2065        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067        switch (cpumode) {
2068        case PERF_RECORD_MISC_KERNEL:
2069                dso_space = DSO_SPACE__KERNEL;
2070                break;
2071        case PERF_RECORD_MISC_GUEST_KERNEL:
2072                dso_space = DSO_SPACE__KERNEL_GUEST;
2073                break;
2074        case PERF_RECORD_MISC_USER:
2075        case PERF_RECORD_MISC_GUEST_USER:
2076                dso_space = DSO_SPACE__USER;
2077                break;
2078        default:
2079                goto out;
2080        }
2081
2082        dso = machine__findnew_dso(machine, filename);
2083        if (dso != NULL) {
2084                char sbuild_id[SBUILD_ID_SIZE];
2085                struct build_id bid;
2086                size_t size = BUILD_ID_SIZE;
2087
2088                if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089                        size = bev->size;
2090
2091                build_id__init(&bid, bev->data, size);
2092                dso__set_build_id(dso, &bid);
2093
2094                if (dso_space != DSO_SPACE__USER) {
2095                        struct kmod_path m = { .name = NULL, };
2096
2097                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098                                dso__set_module_info(dso, &m, machine);
2099
2100                        dso->kernel = dso_space;
2101                        free(m.name);
2102                }
2103
2104                build_id__sprintf(&dso->bid, sbuild_id);
2105                pr_debug("build id event received for %s: %s [%zu]\n",
2106                         dso->long_name, sbuild_id, size);
2107                dso__put(dso);
2108        }
2109
2110        err = 0;
2111out:
2112        return err;
2113}
2114
2115static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2116                                                 int input, u64 offset, u64 size)
2117{
2118        struct perf_session *session = container_of(header, struct perf_session, header);
2119        struct {
2120                struct perf_event_header   header;
2121                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122                char                       filename[0];
2123        } old_bev;
2124        struct perf_record_header_build_id bev;
2125        char filename[PATH_MAX];
2126        u64 limit = offset + size;
2127
2128        while (offset < limit) {
2129                ssize_t len;
2130
2131                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132                        return -1;
2133
2134                if (header->needs_swap)
2135                        perf_event_header__bswap(&old_bev.header);
2136
2137                len = old_bev.header.size - sizeof(old_bev);
2138                if (readn(input, filename, len) != len)
2139                        return -1;
2140
2141                bev.header = old_bev.header;
2142
2143                /*
2144                 * As the pid is the missing value, we need to fill
2145                 * it properly. The header.misc value give us nice hint.
2146                 */
2147                bev.pid = HOST_KERNEL_ID;
2148                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2149                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2150                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
2151
2152                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2153                __event_process_build_id(&bev, filename, session);
2154
2155                offset += bev.header.size;
2156        }
2157
2158        return 0;
2159}
2160
2161static int perf_header__read_build_ids(struct perf_header *header,
2162                                       int input, u64 offset, u64 size)
2163{
2164        struct perf_session *session = container_of(header, struct perf_session, header);
2165        struct perf_record_header_build_id bev;
2166        char filename[PATH_MAX];
2167        u64 limit = offset + size, orig_offset = offset;
2168        int err = -1;
2169
2170        while (offset < limit) {
2171                ssize_t len;
2172
2173                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174                        goto out;
2175
2176                if (header->needs_swap)
2177                        perf_event_header__bswap(&bev.header);
2178
2179                len = bev.header.size - sizeof(bev);
2180                if (readn(input, filename, len) != len)
2181                        goto out;
2182                /*
2183                 * The a1645ce1 changeset:
2184                 *
2185                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2186                 *
2187                 * Added a field to struct perf_record_header_build_id that broke the file
2188                 * format.
2189                 *
2190                 * Since the kernel build-id is the first entry, process the
2191                 * table using the old format if the well known
2192                 * '[kernel.kallsyms]' string for the kernel build-id has the
2193                 * first 4 characters chopped off (where the pid_t sits).
2194                 */
2195                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2196                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2197                                return -1;
2198                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199                }
2200
2201                __event_process_build_id(&bev, filename, session);
2202
2203                offset += bev.header.size;
2204        }
2205        err = 0;
2206out:
2207        return err;
2208}
2209
2210/* Macro for features that simply need to read and store a string. */
2211#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213{\
2214        ff->ph->env.__feat_env = do_read_string(ff); \
2215        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216}
2217
2218FEAT_PROCESS_STR_FUN(hostname, hostname);
2219FEAT_PROCESS_STR_FUN(osrelease, os_release);
2220FEAT_PROCESS_STR_FUN(version, version);
2221FEAT_PROCESS_STR_FUN(arch, arch);
2222FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2223FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2224
2225static int process_tracing_data(struct feat_fd *ff, void *data)
2226{
2227        ssize_t ret = trace_report(ff->fd, data, false);
2228
2229        return ret < 0 ? -1 : 0;
2230}
2231
2232static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233{
2234        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235                pr_debug("Failed to read buildids, continuing...\n");
2236        return 0;
2237}
2238
2239static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240{
2241        int ret;
2242        u32 nr_cpus_avail, nr_cpus_online;
2243
2244        ret = do_read_u32(ff, &nr_cpus_avail);
2245        if (ret)
2246                return ret;
2247
2248        ret = do_read_u32(ff, &nr_cpus_online);
2249        if (ret)
2250                return ret;
2251        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2252        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253        return 0;
2254}
2255
2256static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257{
2258        u64 total_mem;
2259        int ret;
2260
2261        ret = do_read_u64(ff, &total_mem);
2262        if (ret)
2263                return -1;
2264        ff->ph->env.total_mem = (unsigned long long)total_mem;
2265        return 0;
2266}
2267
2268static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2269{
2270        struct evsel *evsel;
2271
2272        evlist__for_each_entry(evlist, evsel) {
2273                if (evsel->idx == idx)
2274                        return evsel;
2275        }
2276
2277        return NULL;
2278}
2279
2280static void
2281perf_evlist__set_event_name(struct evlist *evlist,
2282                            struct evsel *event)
2283{
2284        struct evsel *evsel;
2285
2286        if (!event->name)
2287                return;
2288
2289        evsel = evlist__find_by_index(evlist, event->idx);
2290        if (!evsel)
2291                return;
2292
2293        if (evsel->name)
2294                return;
2295
2296        evsel->name = strdup(event->name);
2297}
2298
2299static int
2300process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2301{
2302        struct perf_session *session;
2303        struct evsel *evsel, *events = read_event_desc(ff);
2304
2305        if (!events)
2306                return 0;
2307
2308        session = container_of(ff->ph, struct perf_session, header);
2309
2310        if (session->data->is_pipe) {
2311                /* Save events for reading later by print_event_desc,
2312                 * since they can't be read again in pipe mode. */
2313                ff->events = events;
2314        }
2315
2316        for (evsel = events; evsel->core.attr.size; evsel++)
2317                perf_evlist__set_event_name(session->evlist, evsel);
2318
2319        if (!session->data->is_pipe)
2320                free_event_desc(events);
2321
2322        return 0;
2323}
2324
2325static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2326{
2327        char *str, *cmdline = NULL, **argv = NULL;
2328        u32 nr, i, len = 0;
2329
2330        if (do_read_u32(ff, &nr))
2331                return -1;
2332
2333        ff->ph->env.nr_cmdline = nr;
2334
2335        cmdline = zalloc(ff->size + nr + 1);
2336        if (!cmdline)
2337                return -1;
2338
2339        argv = zalloc(sizeof(char *) * (nr + 1));
2340        if (!argv)
2341                goto error;
2342
2343        for (i = 0; i < nr; i++) {
2344                str = do_read_string(ff);
2345                if (!str)
2346                        goto error;
2347
2348                argv[i] = cmdline + len;
2349                memcpy(argv[i], str, strlen(str) + 1);
2350                len += strlen(str) + 1;
2351                free(str);
2352        }
2353        ff->ph->env.cmdline = cmdline;
2354        ff->ph->env.cmdline_argv = (const char **) argv;
2355        return 0;
2356
2357error:
2358        free(argv);
2359        free(cmdline);
2360        return -1;
2361}
2362
2363static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2364{
2365        u32 nr, i;
2366        char *str;
2367        struct strbuf sb;
2368        int cpu_nr = ff->ph->env.nr_cpus_avail;
2369        u64 size = 0;
2370        struct perf_header *ph = ff->ph;
2371        bool do_core_id_test = true;
2372
2373        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2374        if (!ph->env.cpu)
2375                return -1;
2376
2377        if (do_read_u32(ff, &nr))
2378                goto free_cpu;
2379
2380        ph->env.nr_sibling_cores = nr;
2381        size += sizeof(u32);
2382        if (strbuf_init(&sb, 128) < 0)
2383                goto free_cpu;
2384
2385        for (i = 0; i < nr; i++) {
2386                str = do_read_string(ff);
2387                if (!str)
2388                        goto error;
2389
2390                /* include a NULL character at the end */
2391                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2392                        goto error;
2393                size += string_size(str);
2394                free(str);
2395        }
2396        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2397
2398        if (do_read_u32(ff, &nr))
2399                return -1;
2400
2401        ph->env.nr_sibling_threads = nr;
2402        size += sizeof(u32);
2403
2404        for (i = 0; i < nr; i++) {
2405                str = do_read_string(ff);
2406                if (!str)
2407                        goto error;
2408
2409                /* include a NULL character at the end */
2410                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2411                        goto error;
2412                size += string_size(str);
2413                free(str);
2414        }
2415        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2416
2417        /*
2418         * The header may be from old perf,
2419         * which doesn't include core id and socket id information.
2420         */
2421        if (ff->size <= size) {
2422                zfree(&ph->env.cpu);
2423                return 0;
2424        }
2425
2426        /* On s390 the socket_id number is not related to the numbers of cpus.
2427         * The socket_id number might be higher than the numbers of cpus.
2428         * This depends on the configuration.
2429         * AArch64 is the same.
2430         */
2431        if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2432                          || !strncmp(ph->env.arch, "aarch64", 7)))
2433                do_core_id_test = false;
2434
2435        for (i = 0; i < (u32)cpu_nr; i++) {
2436                if (do_read_u32(ff, &nr))
2437                        goto free_cpu;
2438
2439                ph->env.cpu[i].core_id = nr;
2440                size += sizeof(u32);
2441
2442                if (do_read_u32(ff, &nr))
2443                        goto free_cpu;
2444
2445                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2446                        pr_debug("socket_id number is too big."
2447                                 "You may need to upgrade the perf tool.\n");
2448                        goto free_cpu;
2449                }
2450
2451                ph->env.cpu[i].socket_id = nr;
2452                size += sizeof(u32);
2453        }
2454
2455        /*
2456         * The header may be from old perf,
2457         * which doesn't include die information.
2458         */
2459        if (ff->size <= size)
2460                return 0;
2461
2462        if (do_read_u32(ff, &nr))
2463                return -1;
2464
2465        ph->env.nr_sibling_dies = nr;
2466        size += sizeof(u32);
2467
2468        for (i = 0; i < nr; i++) {
2469                str = do_read_string(ff);
2470                if (!str)
2471                        goto error;
2472
2473                /* include a NULL character at the end */
2474                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2475                        goto error;
2476                size += string_size(str);
2477                free(str);
2478        }
2479        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2480
2481        for (i = 0; i < (u32)cpu_nr; i++) {
2482                if (do_read_u32(ff, &nr))
2483                        goto free_cpu;
2484
2485                ph->env.cpu[i].die_id = nr;
2486        }
2487
2488        return 0;
2489
2490error:
2491        strbuf_release(&sb);
2492free_cpu:
2493        zfree(&ph->env.cpu);
2494        return -1;
2495}
2496
2497static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2498{
2499        struct numa_node *nodes, *n;
2500        u32 nr, i;
2501        char *str;
2502
2503        /* nr nodes */
2504        if (do_read_u32(ff, &nr))
2505                return -1;
2506
2507        nodes = zalloc(sizeof(*nodes) * nr);
2508        if (!nodes)
2509                return -ENOMEM;
2510
2511        for (i = 0; i < nr; i++) {
2512                n = &nodes[i];
2513
2514                /* node number */
2515                if (do_read_u32(ff, &n->node))
2516                        goto error;
2517
2518                if (do_read_u64(ff, &n->mem_total))
2519                        goto error;
2520
2521                if (do_read_u64(ff, &n->mem_free))
2522                        goto error;
2523
2524                str = do_read_string(ff);
2525                if (!str)
2526                        goto error;
2527
2528                n->map = perf_cpu_map__new(str);
2529                if (!n->map)
2530                        goto error;
2531
2532                free(str);
2533        }
2534        ff->ph->env.nr_numa_nodes = nr;
2535        ff->ph->env.numa_nodes = nodes;
2536        return 0;
2537
2538error:
2539        free(nodes);
2540        return -1;
2541}
2542
2543static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2544{
2545        char *name;
2546        u32 pmu_num;
2547        u32 type;
2548        struct strbuf sb;
2549
2550        if (do_read_u32(ff, &pmu_num))
2551                return -1;
2552
2553        if (!pmu_num) {
2554                pr_debug("pmu mappings not available\n");
2555                return 0;
2556        }
2557
2558        ff->ph->env.nr_pmu_mappings = pmu_num;
2559        if (strbuf_init(&sb, 128) < 0)
2560                return -1;
2561
2562        while (pmu_num) {
2563                if (do_read_u32(ff, &type))
2564                        goto error;
2565
2566                name = do_read_string(ff);
2567                if (!name)
2568                        goto error;
2569
2570                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2571                        goto error;
2572                /* include a NULL character at the end */
2573                if (strbuf_add(&sb, "", 1) < 0)
2574                        goto error;
2575
2576                if (!strcmp(name, "msr"))
2577                        ff->ph->env.msr_pmu_type = type;
2578
2579                free(name);
2580                pmu_num--;
2581        }
2582        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2583        return 0;
2584
2585error:
2586        strbuf_release(&sb);
2587        return -1;
2588}
2589
2590static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2591{
2592        size_t ret = -1;
2593        u32 i, nr, nr_groups;
2594        struct perf_session *session;
2595        struct evsel *evsel, *leader = NULL;
2596        struct group_desc {
2597                char *name;
2598                u32 leader_idx;
2599                u32 nr_members;
2600        } *desc;
2601
2602        if (do_read_u32(ff, &nr_groups))
2603                return -1;
2604
2605        ff->ph->env.nr_groups = nr_groups;
2606        if (!nr_groups) {
2607                pr_debug("group desc not available\n");
2608                return 0;
2609        }
2610
2611        desc = calloc(nr_groups, sizeof(*desc));
2612        if (!desc)
2613                return -1;
2614
2615        for (i = 0; i < nr_groups; i++) {
2616                desc[i].name = do_read_string(ff);
2617                if (!desc[i].name)
2618                        goto out_free;
2619
2620                if (do_read_u32(ff, &desc[i].leader_idx))
2621                        goto out_free;
2622
2623                if (do_read_u32(ff, &desc[i].nr_members))
2624                        goto out_free;
2625        }
2626
2627        /*
2628         * Rebuild group relationship based on the group_desc
2629         */
2630        session = container_of(ff->ph, struct perf_session, header);
2631        session->evlist->nr_groups = nr_groups;
2632
2633        i = nr = 0;
2634        evlist__for_each_entry(session->evlist, evsel) {
2635                if (evsel->idx == (int) desc[i].leader_idx) {
2636                        evsel->leader = evsel;
2637                        /* {anon_group} is a dummy name */
2638                        if (strcmp(desc[i].name, "{anon_group}")) {
2639                                evsel->group_name = desc[i].name;
2640                                desc[i].name = NULL;
2641                        }
2642                        evsel->core.nr_members = desc[i].nr_members;
2643
2644                        if (i >= nr_groups || nr > 0) {
2645                                pr_debug("invalid group desc\n");
2646                                goto out_free;
2647                        }
2648
2649                        leader = evsel;
2650                        nr = evsel->core.nr_members - 1;
2651                        i++;
2652                } else if (nr) {
2653                        /* This is a group member */
2654                        evsel->leader = leader;
2655
2656                        nr--;
2657                }
2658        }
2659
2660        if (i != nr_groups || nr != 0) {
2661                pr_debug("invalid group desc\n");
2662                goto out_free;
2663        }
2664
2665        ret = 0;
2666out_free:
2667        for (i = 0; i < nr_groups; i++)
2668                zfree(&desc[i].name);
2669        free(desc);
2670
2671        return ret;
2672}
2673
2674static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2675{
2676        struct perf_session *session;
2677        int err;
2678
2679        session = container_of(ff->ph, struct perf_session, header);
2680
2681        err = auxtrace_index__process(ff->fd, ff->size, session,
2682                                      ff->ph->needs_swap);
2683        if (err < 0)
2684                pr_err("Failed to process auxtrace index\n");
2685        return err;
2686}
2687
2688static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2689{
2690        struct cpu_cache_level *caches;
2691        u32 cnt, i, version;
2692
2693        if (do_read_u32(ff, &version))
2694                return -1;
2695
2696        if (version != 1)
2697                return -1;
2698
2699        if (do_read_u32(ff, &cnt))
2700                return -1;
2701
2702        caches = zalloc(sizeof(*caches) * cnt);
2703        if (!caches)
2704                return -1;
2705
2706        for (i = 0; i < cnt; i++) {
2707                struct cpu_cache_level c;
2708
2709                #define _R(v)                                           \
2710                        if (do_read_u32(ff, &c.v))\
2711                                goto out_free_caches;                   \
2712
2713                _R(level)
2714                _R(line_size)
2715                _R(sets)
2716                _R(ways)
2717                #undef _R
2718
2719                #define _R(v)                                   \
2720                        c.v = do_read_string(ff);               \
2721                        if (!c.v)                               \
2722                                goto out_free_caches;
2723
2724                _R(type)
2725                _R(size)
2726                _R(map)
2727                #undef _R
2728
2729                caches[i] = c;
2730        }
2731
2732        ff->ph->env.caches = caches;
2733        ff->ph->env.caches_cnt = cnt;
2734        return 0;
2735out_free_caches:
2736        free(caches);
2737        return -1;
2738}
2739
2740static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2741{
2742        struct perf_session *session;
2743        u64 first_sample_time, last_sample_time;
2744        int ret;
2745
2746        session = container_of(ff->ph, struct perf_session, header);
2747
2748        ret = do_read_u64(ff, &first_sample_time);
2749        if (ret)
2750                return -1;
2751
2752        ret = do_read_u64(ff, &last_sample_time);
2753        if (ret)
2754                return -1;
2755
2756        session->evlist->first_sample_time = first_sample_time;
2757        session->evlist->last_sample_time = last_sample_time;
2758        return 0;
2759}
2760
2761static int process_mem_topology(struct feat_fd *ff,
2762                                void *data __maybe_unused)
2763{
2764        struct memory_node *nodes;
2765        u64 version, i, nr, bsize;
2766        int ret = -1;
2767
2768        if (do_read_u64(ff, &version))
2769                return -1;
2770
2771        if (version != 1)
2772                return -1;
2773
2774        if (do_read_u64(ff, &bsize))
2775                return -1;
2776
2777        if (do_read_u64(ff, &nr))
2778                return -1;
2779
2780        nodes = zalloc(sizeof(*nodes) * nr);
2781        if (!nodes)
2782                return -1;
2783
2784        for (i = 0; i < nr; i++) {
2785                struct memory_node n;
2786
2787                #define _R(v)                           \
2788                        if (do_read_u64(ff, &n.v))      \
2789                                goto out;               \
2790
2791                _R(node)
2792                _R(size)
2793
2794                #undef _R
2795
2796                if (do_read_bitmap(ff, &n.set, &n.size))
2797                        goto out;
2798
2799                nodes[i] = n;
2800        }
2801
2802        ff->ph->env.memory_bsize    = bsize;
2803        ff->ph->env.memory_nodes    = nodes;
2804        ff->ph->env.nr_memory_nodes = nr;
2805        ret = 0;
2806
2807out:
2808        if (ret)
2809                free(nodes);
2810        return ret;
2811}
2812
2813static int process_clockid(struct feat_fd *ff,
2814                           void *data __maybe_unused)
2815{
2816        if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2817                return -1;
2818
2819        return 0;
2820}
2821
2822static int process_clock_data(struct feat_fd *ff,
2823                              void *_data __maybe_unused)
2824{
2825        u32 data32;
2826        u64 data64;
2827
2828        /* version */
2829        if (do_read_u32(ff, &data32))
2830                return -1;
2831
2832        if (data32 != 1)
2833                return -1;
2834
2835        /* clockid */
2836        if (do_read_u32(ff, &data32))
2837                return -1;
2838
2839        ff->ph->env.clock.clockid = data32;
2840
2841        /* TOD ref time */
2842        if (do_read_u64(ff, &data64))
2843                return -1;
2844
2845        ff->ph->env.clock.tod_ns = data64;
2846
2847        /* clockid ref time */
2848        if (do_read_u64(ff, &data64))
2849                return -1;
2850
2851        ff->ph->env.clock.clockid_ns = data64;
2852        ff->ph->env.clock.enabled = true;
2853        return 0;
2854}
2855
2856static int process_dir_format(struct feat_fd *ff,
2857                              void *_data __maybe_unused)
2858{
2859        struct perf_session *session;
2860        struct perf_data *data;
2861
2862        session = container_of(ff->ph, struct perf_session, header);
2863        data = session->data;
2864
2865        if (WARN_ON(!perf_data__is_dir(data)))
2866                return -1;
2867
2868        return do_read_u64(ff, &data->dir.version);
2869}
2870
2871#ifdef HAVE_LIBBPF_SUPPORT
2872static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2873{
2874        struct bpf_prog_info_linear *info_linear;
2875        struct bpf_prog_info_node *info_node;
2876        struct perf_env *env = &ff->ph->env;
2877        u32 count, i;
2878        int err = -1;
2879
2880        if (ff->ph->needs_swap) {
2881                pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2882                return 0;
2883        }
2884
2885        if (do_read_u32(ff, &count))
2886                return -1;
2887
2888        down_write(&env->bpf_progs.lock);
2889
2890        for (i = 0; i < count; ++i) {
2891                u32 info_len, data_len;
2892
2893                info_linear = NULL;
2894                info_node = NULL;
2895                if (do_read_u32(ff, &info_len))
2896                        goto out;
2897                if (do_read_u32(ff, &data_len))
2898                        goto out;
2899
2900                if (info_len > sizeof(struct bpf_prog_info)) {
2901                        pr_warning("detected invalid bpf_prog_info\n");
2902                        goto out;
2903                }
2904
2905                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2906                                     data_len);
2907                if (!info_linear)
2908                        goto out;
2909                info_linear->info_len = sizeof(struct bpf_prog_info);
2910                info_linear->data_len = data_len;
2911                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2912                        goto out;
2913                if (__do_read(ff, &info_linear->info, info_len))
2914                        goto out;
2915                if (info_len < sizeof(struct bpf_prog_info))
2916                        memset(((void *)(&info_linear->info)) + info_len, 0,
2917                               sizeof(struct bpf_prog_info) - info_len);
2918
2919                if (__do_read(ff, info_linear->data, data_len))
2920                        goto out;
2921
2922                info_node = malloc(sizeof(struct bpf_prog_info_node));
2923                if (!info_node)
2924                        goto out;
2925
2926                /* after reading from file, translate offset to address */
2927                bpf_program__bpil_offs_to_addr(info_linear);
2928                info_node->info_linear = info_linear;
2929                perf_env__insert_bpf_prog_info(env, info_node);
2930        }
2931
2932        up_write(&env->bpf_progs.lock);
2933        return 0;
2934out:
2935        free(info_linear);
2936        free(info_node);
2937        up_write(&env->bpf_progs.lock);
2938        return err;
2939}
2940#else // HAVE_LIBBPF_SUPPORT
2941static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2942{
2943        return 0;
2944}
2945#endif // HAVE_LIBBPF_SUPPORT
2946
2947static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2948{
2949        struct perf_env *env = &ff->ph->env;
2950        struct btf_node *node = NULL;
2951        u32 count, i;
2952        int err = -1;
2953
2954        if (ff->ph->needs_swap) {
2955                pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2956                return 0;
2957        }
2958
2959        if (do_read_u32(ff, &count))
2960                return -1;
2961
2962        down_write(&env->bpf_progs.lock);
2963
2964        for (i = 0; i < count; ++i) {
2965                u32 id, data_size;
2966
2967                if (do_read_u32(ff, &id))
2968                        goto out;
2969                if (do_read_u32(ff, &data_size))
2970                        goto out;
2971
2972                node = malloc(sizeof(struct btf_node) + data_size);
2973                if (!node)
2974                        goto out;
2975
2976                node->id = id;
2977                node->data_size = data_size;
2978
2979                if (__do_read(ff, node->data, data_size))
2980                        goto out;
2981
2982                perf_env__insert_btf(env, node);
2983                node = NULL;
2984        }
2985
2986        err = 0;
2987out:
2988        up_write(&env->bpf_progs.lock);
2989        free(node);
2990        return err;
2991}
2992
2993static int process_compressed(struct feat_fd *ff,
2994                              void *data __maybe_unused)
2995{
2996        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2997                return -1;
2998
2999        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3000                return -1;
3001
3002        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3003                return -1;
3004
3005        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3006                return -1;
3007
3008        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3009                return -1;
3010
3011        return 0;
3012}
3013
3014static int process_cpu_pmu_caps(struct feat_fd *ff,
3015                                void *data __maybe_unused)
3016{
3017        char *name, *value;
3018        struct strbuf sb;
3019        u32 nr_caps;
3020
3021        if (do_read_u32(ff, &nr_caps))
3022                return -1;
3023
3024        if (!nr_caps) {
3025                pr_debug("cpu pmu capabilities not available\n");
3026                return 0;
3027        }
3028
3029        ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3030
3031        if (strbuf_init(&sb, 128) < 0)
3032                return -1;
3033
3034        while (nr_caps--) {
3035                name = do_read_string(ff);
3036                if (!name)
3037                        goto error;
3038
3039                value = do_read_string(ff);
3040                if (!value)
3041                        goto free_name;
3042
3043                if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3044                        goto free_value;
3045
3046                /* include a NULL character at the end */
3047                if (strbuf_add(&sb, "", 1) < 0)
3048                        goto free_value;
3049
3050                if (!strcmp(name, "branches"))
3051                        ff->ph->env.max_branches = atoi(value);
3052
3053                free(value);
3054                free(name);
3055        }
3056        ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3057        return 0;
3058
3059free_value:
3060        free(value);
3061free_name:
3062        free(name);
3063error:
3064        strbuf_release(&sb);
3065        return -1;
3066}
3067
3068#define FEAT_OPR(n, func, __full_only) \
3069        [HEADER_##n] = {                                        \
3070                .name       = __stringify(n),                   \
3071                .write      = write_##func,                     \
3072                .print      = print_##func,                     \
3073                .full_only  = __full_only,                      \
3074                .process    = process_##func,                   \
3075                .synthesize = true                              \
3076        }
3077
3078#define FEAT_OPN(n, func, __full_only) \
3079        [HEADER_##n] = {                                        \
3080                .name       = __stringify(n),                   \
3081                .write      = write_##func,                     \
3082                .print      = print_##func,                     \
3083                .full_only  = __full_only,                      \
3084                .process    = process_##func                    \
3085        }
3086
3087/* feature_ops not implemented: */
3088#define print_tracing_data      NULL
3089#define print_build_id          NULL
3090
3091#define process_branch_stack    NULL
3092#define process_stat            NULL
3093
3094// Only used in util/synthetic-events.c
3095const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3096
3097const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3098        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3099        FEAT_OPN(BUILD_ID,      build_id,       false),
3100        FEAT_OPR(HOSTNAME,      hostname,       false),
3101        FEAT_OPR(OSRELEASE,     osrelease,      false),
3102        FEAT_OPR(VERSION,       version,        false),
3103        FEAT_OPR(ARCH,          arch,           false),
3104        FEAT_OPR(NRCPUS,        nrcpus,         false),
3105        FEAT_OPR(CPUDESC,       cpudesc,        false),
3106        FEAT_OPR(CPUID,         cpuid,          false),
3107        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3108        FEAT_OPR(EVENT_DESC,    event_desc,     false),
3109        FEAT_OPR(CMDLINE,       cmdline,        false),
3110        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3111        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3112        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3113        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3114        FEAT_OPR(GROUP_DESC,    group_desc,     false),
3115        FEAT_OPN(AUXTRACE,      auxtrace,       false),
3116        FEAT_OPN(STAT,          stat,           false),
3117        FEAT_OPN(CACHE,         cache,          true),
3118        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3119        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3120        FEAT_OPR(CLOCKID,       clockid,        false),
3121        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3122        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3123        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3124        FEAT_OPR(COMPRESSED,    compressed,     false),
3125        FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3126        FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3127};
3128
3129struct header_print_data {
3130        FILE *fp;
3131        bool full; /* extended list of headers */
3132};
3133
3134static int perf_file_section__fprintf_info(struct perf_file_section *section,
3135                                           struct perf_header *ph,
3136                                           int feat, int fd, void *data)
3137{
3138        struct header_print_data *hd = data;
3139        struct feat_fd ff;
3140
3141        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3142                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3143                                "%d, continuing...\n", section->offset, feat);
3144                return 0;
3145        }
3146        if (feat >= HEADER_LAST_FEATURE) {
3147                pr_warning("unknown feature %d\n", feat);
3148                return 0;
3149        }
3150        if (!feat_ops[feat].print)
3151                return 0;
3152
3153        ff = (struct  feat_fd) {
3154                .fd = fd,
3155                .ph = ph,
3156        };
3157
3158        if (!feat_ops[feat].full_only || hd->full)
3159                feat_ops[feat].print(&ff, hd->fp);
3160        else
3161                fprintf(hd->fp, "# %s info available, use -I to display\n",
3162                        feat_ops[feat].name);
3163
3164        return 0;
3165}
3166
3167int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3168{
3169        struct header_print_data hd;
3170        struct perf_header *header = &session->header;
3171        int fd = perf_data__fd(session->data);
3172        struct stat st;
3173        time_t stctime;
3174        int ret, bit;
3175
3176        hd.fp = fp;
3177        hd.full = full;
3178
3179        ret = fstat(fd, &st);
3180        if (ret == -1)
3181                return -1;
3182
3183        stctime = st.st_mtime;
3184        fprintf(fp, "# captured on    : %s", ctime(&stctime));
3185
3186        fprintf(fp, "# header version : %u\n", header->version);
3187        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3188        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3189        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3190
3191        perf_header__process_sections(header, fd, &hd,
3192                                      perf_file_section__fprintf_info);
3193
3194        if (session->data->is_pipe)
3195                return 0;
3196
3197        fprintf(fp, "# missing features: ");
3198        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3199                if (bit)
3200                        fprintf(fp, "%s ", feat_ops[bit].name);
3201        }
3202
3203        fprintf(fp, "\n");
3204        return 0;
3205}
3206
3207static int do_write_feat(struct feat_fd *ff, int type,
3208                         struct perf_file_section **p,
3209                         struct evlist *evlist)
3210{
3211        int err;
3212        int ret = 0;
3213
3214        if (perf_header__has_feat(ff->ph, type)) {
3215                if (!feat_ops[type].write)
3216                        return -1;
3217
3218                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3219                        return -1;
3220
3221                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3222
3223                err = feat_ops[type].write(ff, evlist);
3224                if (err < 0) {
3225                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
3226
3227                        /* undo anything written */
3228                        lseek(ff->fd, (*p)->offset, SEEK_SET);
3229
3230                        return -1;
3231                }
3232                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3233                (*p)++;
3234        }
3235        return ret;
3236}
3237
3238static int perf_header__adds_write(struct perf_header *header,
3239                                   struct evlist *evlist, int fd)
3240{
3241        int nr_sections;
3242        struct feat_fd ff;
3243        struct perf_file_section *feat_sec, *p;
3244        int sec_size;
3245        u64 sec_start;
3246        int feat;
3247        int err;
3248
3249        ff = (struct feat_fd){
3250                .fd  = fd,
3251                .ph = header,
3252        };
3253
3254        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3255        if (!nr_sections)
3256                return 0;
3257
3258        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3259        if (feat_sec == NULL)
3260                return -ENOMEM;
3261
3262        sec_size = sizeof(*feat_sec) * nr_sections;
3263
3264        sec_start = header->feat_offset;
3265        lseek(fd, sec_start + sec_size, SEEK_SET);
3266
3267        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3268                if (do_write_feat(&ff, feat, &p, evlist))
3269                        perf_header__clear_feat(header, feat);
3270        }
3271
3272        lseek(fd, sec_start, SEEK_SET);
3273        /*
3274         * may write more than needed due to dropped feature, but
3275         * this is okay, reader will skip the missing entries
3276         */
3277        err = do_write(&ff, feat_sec, sec_size);
3278        if (err < 0)
3279                pr_debug("failed to write feature section\n");
3280        free(feat_sec);
3281        return err;
3282}
3283
3284int perf_header__write_pipe(int fd)
3285{
3286        struct perf_pipe_file_header f_header;
3287        struct feat_fd ff;
3288        int err;
3289
3290        ff = (struct feat_fd){ .fd = fd };
3291
3292        f_header = (struct perf_pipe_file_header){
3293                .magic     = PERF_MAGIC,
3294                .size      = sizeof(f_header),
3295        };
3296
3297        err = do_write(&ff, &f_header, sizeof(f_header));
3298        if (err < 0) {
3299                pr_debug("failed to write perf pipe header\n");
3300                return err;
3301        }
3302
3303        return 0;
3304}
3305
3306int perf_session__write_header(struct perf_session *session,
3307                               struct evlist *evlist,
3308                               int fd, bool at_exit)
3309{
3310        struct perf_file_header f_header;
3311        struct perf_file_attr   f_attr;
3312        struct perf_header *header = &session->header;
3313        struct evsel *evsel;
3314        struct feat_fd ff;
3315        u64 attr_offset;
3316        int err;
3317
3318        ff = (struct feat_fd){ .fd = fd};
3319        lseek(fd, sizeof(f_header), SEEK_SET);
3320
3321        evlist__for_each_entry(session->evlist, evsel) {
3322                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3323                err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3324                if (err < 0) {
3325                        pr_debug("failed to write perf header\n");
3326                        return err;
3327                }
3328        }
3329
3330        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3331
3332        evlist__for_each_entry(evlist, evsel) {
3333                f_attr = (struct perf_file_attr){
3334                        .attr = evsel->core.attr,
3335                        .ids  = {
3336                                .offset = evsel->id_offset,
3337                                .size   = evsel->core.ids * sizeof(u64),
3338                        }
3339                };
3340                err = do_write(&ff, &f_attr, sizeof(f_attr));
3341                if (err < 0) {
3342                        pr_debug("failed to write perf header attribute\n");
3343                        return err;
3344                }
3345        }
3346
3347        if (!header->data_offset)
3348                header->data_offset = lseek(fd, 0, SEEK_CUR);
3349        header->feat_offset = header->data_offset + header->data_size;
3350
3351        if (at_exit) {
3352                err = perf_header__adds_write(header, evlist, fd);
3353                if (err < 0)
3354                        return err;
3355        }
3356
3357        f_header = (struct perf_file_header){
3358                .magic     = PERF_MAGIC,
3359                .size      = sizeof(f_header),
3360                .attr_size = sizeof(f_attr),
3361                .attrs = {
3362                        .offset = attr_offset,
3363                        .size   = evlist->core.nr_entries * sizeof(f_attr),
3364                },
3365                .data = {
3366                        .offset = header->data_offset,
3367                        .size   = header->data_size,
3368                },
3369                /* event_types is ignored, store zeros */
3370        };
3371
3372        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3373
3374        lseek(fd, 0, SEEK_SET);
3375        err = do_write(&ff, &f_header, sizeof(f_header));
3376        if (err < 0) {
3377                pr_debug("failed to write perf header\n");
3378                return err;
3379        }
3380        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3381
3382        return 0;
3383}
3384
3385static int perf_header__getbuffer64(struct perf_header *header,
3386                                    int fd, void *buf, size_t size)
3387{
3388        if (readn(fd, buf, size) <= 0)
3389                return -1;
3390
3391        if (header->needs_swap)
3392                mem_bswap_64(buf, size);
3393
3394        return 0;
3395}
3396
3397int perf_header__process_sections(struct perf_header *header, int fd,
3398                                  void *data,
3399                                  int (*process)(struct perf_file_section *section,
3400                                                 struct perf_header *ph,
3401                                                 int feat, int fd, void *data))
3402{
3403        struct perf_file_section *feat_sec, *sec;
3404        int nr_sections;
3405        int sec_size;
3406        int feat;
3407        int err;
3408
3409        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3410        if (!nr_sections)
3411                return 0;
3412
3413        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3414        if (!feat_sec)
3415                return -1;
3416
3417        sec_size = sizeof(*feat_sec) * nr_sections;
3418
3419        lseek(fd, header->feat_offset, SEEK_SET);
3420
3421        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3422        if (err < 0)
3423                goto out_free;
3424
3425        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3426                err = process(sec++, header, feat, fd, data);
3427                if (err < 0)
3428                        goto out_free;
3429        }
3430        err = 0;
3431out_free:
3432        free(feat_sec);
3433        return err;
3434}
3435
3436static const int attr_file_abi_sizes[] = {
3437        [0] = PERF_ATTR_SIZE_VER0,
3438        [1] = PERF_ATTR_SIZE_VER1,
3439        [2] = PERF_ATTR_SIZE_VER2,
3440        [3] = PERF_ATTR_SIZE_VER3,
3441        [4] = PERF_ATTR_SIZE_VER4,
3442        0,
3443};
3444
3445/*
3446 * In the legacy file format, the magic number is not used to encode endianness.
3447 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3448 * on ABI revisions, we need to try all combinations for all endianness to
3449 * detect the endianness.
3450 */
3451static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3452{
3453        uint64_t ref_size, attr_size;
3454        int i;
3455
3456        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3457                ref_size = attr_file_abi_sizes[i]
3458                         + sizeof(struct perf_file_section);
3459                if (hdr_sz != ref_size) {
3460                        attr_size = bswap_64(hdr_sz);
3461                        if (attr_size != ref_size)
3462                                continue;
3463
3464                        ph->needs_swap = true;
3465                }
3466                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3467                         i,
3468                         ph->needs_swap);
3469                return 0;
3470        }
3471        /* could not determine endianness */
3472        return -1;
3473}
3474
3475#define PERF_PIPE_HDR_VER0      16
3476
3477static const size_t attr_pipe_abi_sizes[] = {
3478        [0] = PERF_PIPE_HDR_VER0,
3479        0,
3480};
3481
3482/*
3483 * In the legacy pipe format, there is an implicit assumption that endiannesss
3484 * between host recording the samples, and host parsing the samples is the
3485 * same. This is not always the case given that the pipe output may always be
3486 * redirected into a file and analyzed on a different machine with possibly a
3487 * different endianness and perf_event ABI revsions in the perf tool itself.
3488 */
3489static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3490{
3491        u64 attr_size;
3492        int i;
3493
3494        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3495                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3496                        attr_size = bswap_64(hdr_sz);
3497                        if (attr_size != hdr_sz)
3498                                continue;
3499
3500                        ph->needs_swap = true;
3501                }
3502                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3503                return 0;
3504        }
3505        return -1;
3506}
3507
3508bool is_perf_magic(u64 magic)
3509{
3510        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3511                || magic == __perf_magic2
3512                || magic == __perf_magic2_sw)
3513                return true;
3514
3515        return false;
3516}
3517
3518static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3519                              bool is_pipe, struct perf_header *ph)
3520{
3521        int ret;
3522
3523        /* check for legacy format */
3524        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3525        if (ret == 0) {
3526                ph->version = PERF_HEADER_VERSION_1;
3527                pr_debug("legacy perf.data format\n");
3528                if (is_pipe)
3529                        return try_all_pipe_abis(hdr_sz, ph);
3530
3531                return try_all_file_abis(hdr_sz, ph);
3532        }
3533        /*
3534         * the new magic number serves two purposes:
3535         * - unique number to identify actual perf.data files
3536         * - encode endianness of file
3537         */
3538        ph->version = PERF_HEADER_VERSION_2;
3539
3540        /* check magic number with one endianness */
3541        if (magic == __perf_magic2)
3542                return 0;
3543
3544        /* check magic number with opposite endianness */
3545        if (magic != __perf_magic2_sw)
3546                return -1;
3547
3548        ph->needs_swap = true;
3549
3550        return 0;
3551}
3552
3553int perf_file_header__read(struct perf_file_header *header,
3554                           struct perf_header *ph, int fd)
3555{
3556        ssize_t ret;
3557
3558        lseek(fd, 0, SEEK_SET);
3559
3560        ret = readn(fd, header, sizeof(*header));
3561        if (ret <= 0)
3562                return -1;
3563
3564        if (check_magic_endian(header->magic,
3565                               header->attr_size, false, ph) < 0) {
3566                pr_debug("magic/endian check failed\n");
3567                return -1;
3568        }
3569
3570        if (ph->needs_swap) {
3571                mem_bswap_64(header, offsetof(struct perf_file_header,
3572                             adds_features));
3573        }
3574
3575        if (header->size != sizeof(*header)) {
3576                /* Support the previous format */
3577                if (header->size == offsetof(typeof(*header), adds_features))
3578                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3579                else
3580                        return -1;
3581        } else if (ph->needs_swap) {
3582                /*
3583                 * feature bitmap is declared as an array of unsigned longs --
3584                 * not good since its size can differ between the host that
3585                 * generated the data file and the host analyzing the file.
3586                 *
3587                 * We need to handle endianness, but we don't know the size of
3588                 * the unsigned long where the file was generated. Take a best
3589                 * guess at determining it: try 64-bit swap first (ie., file
3590                 * created on a 64-bit host), and check if the hostname feature
3591                 * bit is set (this feature bit is forced on as of fbe96f2).
3592                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3593                 * swap. If the hostname bit is still not set (e.g., older data
3594                 * file), punt and fallback to the original behavior --
3595                 * clearing all feature bits and setting buildid.
3596                 */
3597                mem_bswap_64(&header->adds_features,
3598                            BITS_TO_U64(HEADER_FEAT_BITS));
3599
3600                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3601                        /* unswap as u64 */
3602                        mem_bswap_64(&header->adds_features,
3603                                    BITS_TO_U64(HEADER_FEAT_BITS));
3604
3605                        /* unswap as u32 */
3606                        mem_bswap_32(&header->adds_features,
3607                                    BITS_TO_U32(HEADER_FEAT_BITS));
3608                }
3609
3610                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3611                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3612                        set_bit(HEADER_BUILD_ID, header->adds_features);
3613                }
3614        }
3615
3616        memcpy(&ph->adds_features, &header->adds_features,
3617               sizeof(ph->adds_features));
3618
3619        ph->data_offset  = header->data.offset;
3620        ph->data_size    = header->data.size;
3621        ph->feat_offset  = header->data.offset + header->data.size;
3622        return 0;
3623}
3624
3625static int perf_file_section__process(struct perf_file_section *section,
3626                                      struct perf_header *ph,
3627                                      int feat, int fd, void *data)
3628{
3629        struct feat_fd fdd = {
3630                .fd     = fd,
3631                .ph     = ph,
3632                .size   = section->size,
3633                .offset = section->offset,
3634        };
3635
3636        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3637                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3638                          "%d, continuing...\n", section->offset, feat);
3639                return 0;
3640        }
3641
3642        if (feat >= HEADER_LAST_FEATURE) {
3643                pr_debug("unknown feature %d, continuing...\n", feat);
3644                return 0;
3645        }
3646
3647        if (!feat_ops[feat].process)
3648                return 0;
3649
3650        return feat_ops[feat].process(&fdd, data);
3651}
3652
3653static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3654                                       struct perf_header *ph, int fd,
3655                                       bool repipe)
3656{
3657        struct feat_fd ff = {
3658                .fd = STDOUT_FILENO,
3659                .ph = ph,
3660        };
3661        ssize_t ret;
3662
3663        ret = readn(fd, header, sizeof(*header));
3664        if (ret <= 0)
3665                return -1;
3666
3667        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3668                pr_debug("endian/magic failed\n");
3669                return -1;
3670        }
3671
3672        if (ph->needs_swap)
3673                header->size = bswap_64(header->size);
3674
3675        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3676                return -1;
3677
3678        return 0;
3679}
3680
3681static int perf_header__read_pipe(struct perf_session *session)
3682{
3683        struct perf_header *header = &session->header;
3684        struct perf_pipe_file_header f_header;
3685
3686        if (perf_file_header__read_pipe(&f_header, header,
3687                                        perf_data__fd(session->data),
3688                                        session->repipe) < 0) {
3689                pr_debug("incompatible file format\n");
3690                return -EINVAL;
3691        }
3692
3693        return f_header.size == sizeof(f_header) ? 0 : -1;
3694}
3695
3696static int read_attr(int fd, struct perf_header *ph,
3697                     struct perf_file_attr *f_attr)
3698{
3699        struct perf_event_attr *attr = &f_attr->attr;
3700        size_t sz, left;
3701        size_t our_sz = sizeof(f_attr->attr);
3702        ssize_t ret;
3703
3704        memset(f_attr, 0, sizeof(*f_attr));
3705
3706        /* read minimal guaranteed structure */
3707        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3708        if (ret <= 0) {
3709                pr_debug("cannot read %d bytes of header attr\n",
3710                         PERF_ATTR_SIZE_VER0);
3711                return -1;
3712        }
3713
3714        /* on file perf_event_attr size */
3715        sz = attr->size;
3716
3717        if (ph->needs_swap)
3718                sz = bswap_32(sz);
3719
3720        if (sz == 0) {
3721                /* assume ABI0 */
3722                sz =  PERF_ATTR_SIZE_VER0;
3723        } else if (sz > our_sz) {
3724                pr_debug("file uses a more recent and unsupported ABI"
3725                         " (%zu bytes extra)\n", sz - our_sz);
3726                return -1;
3727        }
3728        /* what we have not yet read and that we know about */
3729        left = sz - PERF_ATTR_SIZE_VER0;
3730        if (left) {
3731                void *ptr = attr;
3732                ptr += PERF_ATTR_SIZE_VER0;
3733
3734                ret = readn(fd, ptr, left);
3735        }
3736        /* read perf_file_section, ids are read in caller */
3737        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3738
3739        return ret <= 0 ? -1 : 0;
3740}
3741
3742static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3743                                                struct tep_handle *pevent)
3744{
3745        struct tep_event *event;
3746        char bf[128];
3747
3748        /* already prepared */
3749        if (evsel->tp_format)
3750                return 0;
3751
3752        if (pevent == NULL) {
3753                pr_debug("broken or missing trace data\n");
3754                return -1;
3755        }
3756
3757        event = tep_find_event(pevent, evsel->core.attr.config);
3758        if (event == NULL) {
3759                pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3760                return -1;
3761        }
3762
3763        if (!evsel->name) {
3764                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3765                evsel->name = strdup(bf);
3766                if (evsel->name == NULL)
3767                        return -1;
3768        }
3769
3770        evsel->tp_format = event;
3771        return 0;
3772}
3773
3774static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3775                                                  struct tep_handle *pevent)
3776{
3777        struct evsel *pos;
3778
3779        evlist__for_each_entry(evlist, pos) {
3780                if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3781                    perf_evsel__prepare_tracepoint_event(pos, pevent))
3782                        return -1;
3783        }
3784
3785        return 0;
3786}
3787
3788int perf_session__read_header(struct perf_session *session)
3789{
3790        struct perf_data *data = session->data;
3791        struct perf_header *header = &session->header;
3792        struct perf_file_header f_header;
3793        struct perf_file_attr   f_attr;
3794        u64                     f_id;
3795        int nr_attrs, nr_ids, i, j, err;
3796        int fd = perf_data__fd(data);
3797
3798        session->evlist = evlist__new();
3799        if (session->evlist == NULL)
3800                return -ENOMEM;
3801
3802        session->evlist->env = &header->env;
3803        session->machines.host.env = &header->env;
3804
3805        /*
3806         * We can read 'pipe' data event from regular file,
3807         * check for the pipe header regardless of source.
3808         */
3809        err = perf_header__read_pipe(session);
3810        if (!err || (err && perf_data__is_pipe(data))) {
3811                data->is_pipe = true;
3812                return err;
3813        }
3814
3815        if (perf_file_header__read(&f_header, header, fd) < 0)
3816                return -EINVAL;
3817
3818        /*
3819         * Sanity check that perf.data was written cleanly; data size is
3820         * initialized to 0 and updated only if the on_exit function is run.
3821         * If data size is still 0 then the file contains only partial
3822         * information.  Just warn user and process it as much as it can.
3823         */
3824        if (f_header.data.size == 0) {
3825                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3826                           "Was the 'perf record' command properly terminated?\n",
3827                           data->file.path);
3828        }
3829
3830        if (f_header.attr_size == 0) {
3831                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3832                       "Was the 'perf record' command properly terminated?\n",
3833                       data->file.path);
3834                return -EINVAL;
3835        }
3836
3837        nr_attrs = f_header.attrs.size / f_header.attr_size;
3838        lseek(fd, f_header.attrs.offset, SEEK_SET);
3839
3840        for (i = 0; i < nr_attrs; i++) {
3841                struct evsel *evsel;
3842                off_t tmp;
3843
3844                if (read_attr(fd, header, &f_attr) < 0)
3845                        goto out_errno;
3846
3847                if (header->needs_swap) {
3848                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
3849                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3850                        perf_event__attr_swap(&f_attr.attr);
3851                }
3852
3853                tmp = lseek(fd, 0, SEEK_CUR);
3854                evsel = evsel__new(&f_attr.attr);
3855
3856                if (evsel == NULL)
3857                        goto out_delete_evlist;
3858
3859                evsel->needs_swap = header->needs_swap;
3860                /*
3861                 * Do it before so that if perf_evsel__alloc_id fails, this
3862                 * entry gets purged too at evlist__delete().
3863                 */
3864                evlist__add(session->evlist, evsel);
3865
3866                nr_ids = f_attr.ids.size / sizeof(u64);
3867                /*
3868                 * We don't have the cpu and thread maps on the header, so
3869                 * for allocating the perf_sample_id table we fake 1 cpu and
3870                 * hattr->ids threads.
3871                 */
3872                if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3873                        goto out_delete_evlist;
3874
3875                lseek(fd, f_attr.ids.offset, SEEK_SET);
3876
3877                for (j = 0; j < nr_ids; j++) {
3878                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3879                                goto out_errno;
3880
3881                        perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3882                }
3883
3884                lseek(fd, tmp, SEEK_SET);
3885        }
3886
3887        perf_header__process_sections(header, fd, &session->tevent,
3888                                      perf_file_section__process);
3889
3890        if (perf_evlist__prepare_tracepoint_events(session->evlist,
3891                                                   session->tevent.pevent))
3892                goto out_delete_evlist;
3893
3894        return 0;
3895out_errno:
3896        return -errno;
3897
3898out_delete_evlist:
3899        evlist__delete(session->evlist);
3900        session->evlist = NULL;
3901        return -ENOMEM;
3902}
3903
3904int perf_event__process_feature(struct perf_session *session,
3905                                union perf_event *event)
3906{
3907        struct perf_tool *tool = session->tool;
3908        struct feat_fd ff = { .fd = 0 };
3909        struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3910        int type = fe->header.type;
3911        u64 feat = fe->feat_id;
3912
3913        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3914                pr_warning("invalid record type %d in pipe-mode\n", type);
3915                return 0;
3916        }
3917        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3918                pr_warning("invalid record type %d in pipe-mode\n", type);
3919                return -1;
3920        }
3921
3922        if (!feat_ops[feat].process)
3923                return 0;
3924
3925        ff.buf  = (void *)fe->data;
3926        ff.size = event->header.size - sizeof(*fe);
3927        ff.ph = &session->header;
3928
3929        if (feat_ops[feat].process(&ff, NULL))
3930                return -1;
3931
3932        if (!feat_ops[feat].print || !tool->show_feat_hdr)
3933                return 0;
3934
3935        if (!feat_ops[feat].full_only ||
3936            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3937                feat_ops[feat].print(&ff, stdout);
3938        } else {
3939                fprintf(stdout, "# %s info available, use -I to display\n",
3940                        feat_ops[feat].name);
3941        }
3942
3943        return 0;
3944}
3945
3946size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3947{
3948        struct perf_record_event_update *ev = &event->event_update;
3949        struct perf_record_event_update_scale *ev_scale;
3950        struct perf_record_event_update_cpus *ev_cpus;
3951        struct perf_cpu_map *map;
3952        size_t ret;
3953
3954        ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3955
3956        switch (ev->type) {
3957        case PERF_EVENT_UPDATE__SCALE:
3958                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3959                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3960                break;
3961        case PERF_EVENT_UPDATE__UNIT:
3962                ret += fprintf(fp, "... unit:  %s\n", ev->data);
3963                break;
3964        case PERF_EVENT_UPDATE__NAME:
3965                ret += fprintf(fp, "... name:  %s\n", ev->data);
3966                break;
3967        case PERF_EVENT_UPDATE__CPUS:
3968                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3969                ret += fprintf(fp, "... ");
3970
3971                map = cpu_map__new_data(&ev_cpus->cpus);
3972                if (map)
3973                        ret += cpu_map__fprintf(map, fp);
3974                else
3975                        ret += fprintf(fp, "failed to get cpus\n");
3976                break;
3977        default:
3978                ret += fprintf(fp, "... unknown type\n");
3979                break;
3980        }
3981
3982        return ret;
3983}
3984
3985int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3986                             union perf_event *event,
3987                             struct evlist **pevlist)
3988{
3989        u32 i, ids, n_ids;
3990        struct evsel *evsel;
3991        struct evlist *evlist = *pevlist;
3992
3993        if (evlist == NULL) {
3994                *pevlist = evlist = evlist__new();
3995                if (evlist == NULL)
3996                        return -ENOMEM;
3997        }
3998
3999        evsel = evsel__new(&event->attr.attr);
4000        if (evsel == NULL)
4001                return -ENOMEM;
4002
4003        evlist__add(evlist, evsel);
4004
4005        ids = event->header.size;
4006        ids -= (void *)&event->attr.id - (void *)event;
4007        n_ids = ids / sizeof(u64);
4008        /*
4009         * We don't have the cpu and thread maps on the header, so
4010         * for allocating the perf_sample_id table we fake 1 cpu and
4011         * hattr->ids threads.
4012         */
4013        if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4014                return -ENOMEM;
4015
4016        for (i = 0; i < n_ids; i++) {
4017                perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4018        }
4019
4020        return 0;
4021}
4022
4023int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4024                                     union perf_event *event,
4025                                     struct evlist **pevlist)
4026{
4027        struct perf_record_event_update *ev = &event->event_update;
4028        struct perf_record_event_update_scale *ev_scale;
4029        struct perf_record_event_update_cpus *ev_cpus;
4030        struct evlist *evlist;
4031        struct evsel *evsel;
4032        struct perf_cpu_map *map;
4033
4034        if (!pevlist || *pevlist == NULL)
4035                return -EINVAL;
4036
4037        evlist = *pevlist;
4038
4039        evsel = perf_evlist__id2evsel(evlist, ev->id);
4040        if (evsel == NULL)
4041                return -EINVAL;
4042
4043        switch (ev->type) {
4044        case PERF_EVENT_UPDATE__UNIT:
4045                evsel->unit = strdup(ev->data);
4046                break;
4047        case PERF_EVENT_UPDATE__NAME:
4048                evsel->name = strdup(ev->data);
4049                break;
4050        case PERF_EVENT_UPDATE__SCALE:
4051                ev_scale = (struct perf_record_event_update_scale *)ev->data;
4052                evsel->scale = ev_scale->scale;
4053                break;
4054        case PERF_EVENT_UPDATE__CPUS:
4055                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4056
4057                map = cpu_map__new_data(&ev_cpus->cpus);
4058                if (map)
4059                        evsel->core.own_cpus = map;
4060                else
4061                        pr_err("failed to get event_update cpus\n");
4062        default:
4063                break;
4064        }
4065
4066        return 0;
4067}
4068
4069int perf_event__process_tracing_data(struct perf_session *session,
4070                                     union perf_event *event)
4071{
4072        ssize_t size_read, padding, size = event->tracing_data.size;
4073        int fd = perf_data__fd(session->data);
4074        char buf[BUFSIZ];
4075
4076        /*
4077         * The pipe fd is already in proper place and in any case
4078         * we can't move it, and we'd screw the case where we read
4079         * 'pipe' data from regular file. The trace_report reads
4080         * data from 'fd' so we need to set it directly behind the
4081         * event, where the tracing data starts.
4082         */
4083        if (!perf_data__is_pipe(session->data)) {
4084                off_t offset = lseek(fd, 0, SEEK_CUR);
4085
4086                /* setup for reading amidst mmap */
4087                lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4088                      SEEK_SET);
4089        }
4090
4091        size_read = trace_report(fd, &session->tevent,
4092                                 session->repipe);
4093        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4094
4095        if (readn(fd, buf, padding) < 0) {
4096                pr_err("%s: reading input file", __func__);
4097                return -1;
4098        }
4099        if (session->repipe) {
4100                int retw = write(STDOUT_FILENO, buf, padding);
4101                if (retw <= 0 || retw != padding) {
4102                        pr_err("%s: repiping tracing data padding", __func__);
4103                        return -1;
4104                }
4105        }
4106
4107        if (size_read + padding != size) {
4108                pr_err("%s: tracing data size mismatch", __func__);
4109                return -1;
4110        }
4111
4112        perf_evlist__prepare_tracepoint_events(session->evlist,
4113                                               session->tevent.pevent);
4114
4115        return size_read + padding;
4116}
4117
4118int perf_event__process_build_id(struct perf_session *session,
4119                                 union perf_event *event)
4120{
4121        __event_process_build_id(&event->build_id,
4122                                 event->build_id.filename,
4123                                 session);
4124        return 0;
4125}
4126