linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/genalloc.h>
  15#include <linux/gfp.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/dma-direct.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46        struct device *dev;
  47        size_t size;
  48        gfp_t gfp;
  49        pgprot_t prot;
  50        const void *caller;
  51        bool want_vaddr;
  52        int coherent_flag;
  53};
  54
  55struct arm_dma_free_args {
  56        struct device *dev;
  57        size_t size;
  58        void *cpu_addr;
  59        struct page *page;
  60        bool want_vaddr;
  61};
  62
  63#define NORMAL      0
  64#define COHERENT    1
  65
  66struct arm_dma_allocator {
  67        void *(*alloc)(struct arm_dma_alloc_args *args,
  68                       struct page **ret_page);
  69        void (*free)(struct arm_dma_free_args *args);
  70};
  71
  72struct arm_dma_buffer {
  73        struct list_head list;
  74        void *virt;
  75        struct arm_dma_allocator *allocator;
  76};
  77
  78static LIST_HEAD(arm_dma_bufs);
  79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  80
  81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  82{
  83        struct arm_dma_buffer *buf, *found = NULL;
  84        unsigned long flags;
  85
  86        spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  87        list_for_each_entry(buf, &arm_dma_bufs, list) {
  88                if (buf->virt == virt) {
  89                        list_del(&buf->list);
  90                        found = buf;
  91                        break;
  92                }
  93        }
  94        spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  95        return found;
  96}
  97
  98/*
  99 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 100 * is either exclusively owned by the CPU (and therefore may be accessed
 101 * by it) or exclusively owned by the DMA device.  These helper functions
 102 * represent the transitions between these two ownership states.
 103 *
 104 * Note, however, that on later ARMs, this notion does not work due to
 105 * speculative prefetches.  We model our approach on the assumption that
 106 * the CPU does do speculative prefetches, which means we clean caches
 107 * before transfers and delay cache invalidation until transfer completion.
 108 *
 109 */
 110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 111                size_t, enum dma_data_direction);
 112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 113                size_t, enum dma_data_direction);
 114
 115/**
 116 * arm_dma_map_page - map a portion of a page for streaming DMA
 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 118 * @page: page that buffer resides in
 119 * @offset: offset into page for start of buffer
 120 * @size: size of buffer to map
 121 * @dir: DMA transfer direction
 122 *
 123 * Ensure that any data held in the cache is appropriately discarded
 124 * or written back.
 125 *
 126 * The device owns this memory once this call has completed.  The CPU
 127 * can regain ownership by calling dma_unmap_page().
 128 */
 129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 130             unsigned long offset, size_t size, enum dma_data_direction dir,
 131             unsigned long attrs)
 132{
 133        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 134                __dma_page_cpu_to_dev(page, offset, size, dir);
 135        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 136}
 137
 138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 139             unsigned long offset, size_t size, enum dma_data_direction dir,
 140             unsigned long attrs)
 141{
 142        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 143}
 144
 145/**
 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 148 * @handle: DMA address of buffer
 149 * @size: size of buffer (same as passed to dma_map_page)
 150 * @dir: DMA transfer direction (same as passed to dma_map_page)
 151 *
 152 * Unmap a page streaming mode DMA translation.  The handle and size
 153 * must match what was provided in the previous dma_map_page() call.
 154 * All other usages are undefined.
 155 *
 156 * After this call, reads by the CPU to the buffer are guaranteed to see
 157 * whatever the device wrote there.
 158 */
 159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 160                size_t size, enum dma_data_direction dir, unsigned long attrs)
 161{
 162        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 163                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 164                                      handle & ~PAGE_MASK, size, dir);
 165}
 166
 167static void arm_dma_sync_single_for_cpu(struct device *dev,
 168                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 169{
 170        unsigned int offset = handle & (PAGE_SIZE - 1);
 171        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 172        __dma_page_dev_to_cpu(page, offset, size, dir);
 173}
 174
 175static void arm_dma_sync_single_for_device(struct device *dev,
 176                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 177{
 178        unsigned int offset = handle & (PAGE_SIZE - 1);
 179        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 180        __dma_page_cpu_to_dev(page, offset, size, dir);
 181}
 182
 183static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 184{
 185        return dma_addr == ARM_MAPPING_ERROR;
 186}
 187
 188const struct dma_map_ops arm_dma_ops = {
 189        .alloc                  = arm_dma_alloc,
 190        .free                   = arm_dma_free,
 191        .alloc_pages            = dma_direct_alloc_pages,
 192        .free_pages             = dma_direct_free_pages,
 193        .mmap                   = arm_dma_mmap,
 194        .get_sgtable            = arm_dma_get_sgtable,
 195        .map_page               = arm_dma_map_page,
 196        .unmap_page             = arm_dma_unmap_page,
 197        .map_sg                 = arm_dma_map_sg,
 198        .unmap_sg               = arm_dma_unmap_sg,
 199        .map_resource           = dma_direct_map_resource,
 200        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 201        .sync_single_for_device = arm_dma_sync_single_for_device,
 202        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 203        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 204        .mapping_error          = arm_dma_mapping_error,
 205        .dma_supported          = arm_dma_supported,
 206        .get_required_mask      = dma_direct_get_required_mask,
 207};
 208EXPORT_SYMBOL(arm_dma_ops);
 209
 210static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 211        dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 212static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 213                                  dma_addr_t handle, unsigned long attrs);
 214static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 215                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 216                 unsigned long attrs);
 217
 218const struct dma_map_ops arm_coherent_dma_ops = {
 219        .alloc                  = arm_coherent_dma_alloc,
 220        .free                   = arm_coherent_dma_free,
 221        .alloc_pages            = dma_direct_alloc_pages,
 222        .free_pages             = dma_direct_free_pages,
 223        .mmap                   = arm_coherent_dma_mmap,
 224        .get_sgtable            = arm_dma_get_sgtable,
 225        .map_page               = arm_coherent_dma_map_page,
 226        .map_sg                 = arm_dma_map_sg,
 227        .mapping_error          = arm_dma_mapping_error,
 228        .map_resource           = dma_direct_map_resource,
 229        .dma_supported          = arm_dma_supported,
 230        .get_required_mask      = dma_direct_get_required_mask,
 231};
 232EXPORT_SYMBOL(arm_coherent_dma_ops);
 233
 234static int __dma_supported(struct device *dev, u64 mask, bool warn)
 235{
 236        unsigned long max_dma_pfn;
 237
 238        /*
 239         * If the mask allows for more memory than we can address,
 240         * and we actually have that much memory, then we must
 241         * indicate that DMA to this device is not supported.
 242         */
 243        if (sizeof(mask) != sizeof(dma_addr_t) &&
 244            mask > (dma_addr_t)~0 &&
 245            dma_to_pfn(dev, ~0) < max_pfn - 1) {
 246                if (warn) {
 247                        dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 248                                 mask);
 249                        dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 250                }
 251                return 0;
 252        }
 253
 254        max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 255
 256        /*
 257         * Translate the device's DMA mask to a PFN limit.  This
 258         * PFN number includes the page which we can DMA to.
 259         */
 260        if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 261                if (warn)
 262                        dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 263                                 mask,
 264                                 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 265                                 max_dma_pfn + 1);
 266                return 0;
 267        }
 268
 269        return 1;
 270}
 271
 272static u64 get_coherent_dma_mask(struct device *dev)
 273{
 274        u64 mask = (u64)DMA_BIT_MASK(32);
 275
 276        if (dev) {
 277                mask = dev->coherent_dma_mask;
 278
 279                /*
 280                 * Sanity check the DMA mask - it must be non-zero, and
 281                 * must be able to be satisfied by a DMA allocation.
 282                 */
 283                if (mask == 0) {
 284                        dev_warn(dev, "coherent DMA mask is unset\n");
 285                        return 0;
 286                }
 287
 288                if (!__dma_supported(dev, mask, true))
 289                        return 0;
 290        }
 291
 292        return mask;
 293}
 294
 295static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 296{
 297        /*
 298         * Ensure that the allocated pages are zeroed, and that any data
 299         * lurking in the kernel direct-mapped region is invalidated.
 300         */
 301        if (PageHighMem(page)) {
 302                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 303                phys_addr_t end = base + size;
 304                while (size > 0) {
 305                        void *ptr = kmap_atomic(page);
 306                        memset(ptr, 0, PAGE_SIZE);
 307                        if (coherent_flag != COHERENT)
 308                                dmac_flush_range(ptr, ptr + PAGE_SIZE);
 309                        kunmap_atomic(ptr);
 310                        page++;
 311                        size -= PAGE_SIZE;
 312                }
 313                if (coherent_flag != COHERENT)
 314                        outer_flush_range(base, end);
 315        } else {
 316                void *ptr = page_address(page);
 317                memset(ptr, 0, size);
 318                if (coherent_flag != COHERENT) {
 319                        dmac_flush_range(ptr, ptr + size);
 320                        outer_flush_range(__pa(ptr), __pa(ptr) + size);
 321                }
 322        }
 323}
 324
 325/*
 326 * Allocate a DMA buffer for 'dev' of size 'size' using the
 327 * specified gfp mask.  Note that 'size' must be page aligned.
 328 */
 329static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 330                                       gfp_t gfp, int coherent_flag)
 331{
 332        unsigned long order = get_order(size);
 333        struct page *page, *p, *e;
 334
 335        page = alloc_pages(gfp, order);
 336        if (!page)
 337                return NULL;
 338
 339        /*
 340         * Now split the huge page and free the excess pages
 341         */
 342        split_page(page, order);
 343        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 344                __free_page(p);
 345
 346        __dma_clear_buffer(page, size, coherent_flag);
 347
 348        return page;
 349}
 350
 351/*
 352 * Free a DMA buffer.  'size' must be page aligned.
 353 */
 354static void __dma_free_buffer(struct page *page, size_t size)
 355{
 356        struct page *e = page + (size >> PAGE_SHIFT);
 357
 358        while (page < e) {
 359                __free_page(page);
 360                page++;
 361        }
 362}
 363
 364static void *__alloc_from_contiguous(struct device *dev, size_t size,
 365                                     pgprot_t prot, struct page **ret_page,
 366                                     const void *caller, bool want_vaddr,
 367                                     int coherent_flag, gfp_t gfp);
 368
 369static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 370                                 pgprot_t prot, struct page **ret_page,
 371                                 const void *caller, bool want_vaddr);
 372
 373static void *
 374__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 375        const void *caller)
 376{
 377        /*
 378         * DMA allocation can be mapped to user space, so lets
 379         * set VM_USERMAP flags too.
 380         */
 381        return dma_common_contiguous_remap(page, size,
 382                        VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 383                        prot, caller);
 384}
 385
 386static void __dma_free_remap(void *cpu_addr, size_t size)
 387{
 388        dma_common_free_remap(cpu_addr, size,
 389                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 390}
 391
 392#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 393static struct gen_pool *atomic_pool __ro_after_init;
 394
 395static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 396
 397static int __init early_coherent_pool(char *p)
 398{
 399        atomic_pool_size = memparse(p, &p);
 400        return 0;
 401}
 402early_param("coherent_pool", early_coherent_pool);
 403
 404/*
 405 * Initialise the coherent pool for atomic allocations.
 406 */
 407static int __init atomic_pool_init(void)
 408{
 409        pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 410        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 411        struct page *page;
 412        void *ptr;
 413
 414        atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 415        if (!atomic_pool)
 416                goto out;
 417        /*
 418         * The atomic pool is only used for non-coherent allocations
 419         * so we must pass NORMAL for coherent_flag.
 420         */
 421        if (dev_get_cma_area(NULL))
 422                ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 423                                      &page, atomic_pool_init, true, NORMAL,
 424                                      GFP_KERNEL);
 425        else
 426                ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 427                                           &page, atomic_pool_init, true);
 428        if (ptr) {
 429                int ret;
 430
 431                ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 432                                        page_to_phys(page),
 433                                        atomic_pool_size, -1);
 434                if (ret)
 435                        goto destroy_genpool;
 436
 437                gen_pool_set_algo(atomic_pool,
 438                                gen_pool_first_fit_order_align,
 439                                NULL);
 440                pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 441                       atomic_pool_size / 1024);
 442                return 0;
 443        }
 444
 445destroy_genpool:
 446        gen_pool_destroy(atomic_pool);
 447        atomic_pool = NULL;
 448out:
 449        pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 450               atomic_pool_size / 1024);
 451        return -ENOMEM;
 452}
 453/*
 454 * CMA is activated by core_initcall, so we must be called after it.
 455 */
 456postcore_initcall(atomic_pool_init);
 457
 458struct dma_contig_early_reserve {
 459        phys_addr_t base;
 460        unsigned long size;
 461};
 462
 463static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 464
 465static int dma_mmu_remap_num __initdata;
 466
 467void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 468{
 469        dma_mmu_remap[dma_mmu_remap_num].base = base;
 470        dma_mmu_remap[dma_mmu_remap_num].size = size;
 471        dma_mmu_remap_num++;
 472}
 473
 474void __init dma_contiguous_remap(void)
 475{
 476        int i;
 477        for (i = 0; i < dma_mmu_remap_num; i++) {
 478                phys_addr_t start = dma_mmu_remap[i].base;
 479                phys_addr_t end = start + dma_mmu_remap[i].size;
 480                struct map_desc map;
 481                unsigned long addr;
 482
 483                if (end > arm_lowmem_limit)
 484                        end = arm_lowmem_limit;
 485                if (start >= end)
 486                        continue;
 487
 488                map.pfn = __phys_to_pfn(start);
 489                map.virtual = __phys_to_virt(start);
 490                map.length = end - start;
 491                map.type = MT_MEMORY_DMA_READY;
 492
 493                /*
 494                 * Clear previous low-memory mapping to ensure that the
 495                 * TLB does not see any conflicting entries, then flush
 496                 * the TLB of the old entries before creating new mappings.
 497                 *
 498                 * This ensures that any speculatively loaded TLB entries
 499                 * (even though they may be rare) can not cause any problems,
 500                 * and ensures that this code is architecturally compliant.
 501                 */
 502                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 503                     addr += PMD_SIZE)
 504                        pmd_clear(pmd_off_k(addr));
 505
 506                flush_tlb_kernel_range(__phys_to_virt(start),
 507                                       __phys_to_virt(end));
 508
 509                iotable_init(&map, 1);
 510        }
 511}
 512
 513static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 514{
 515        struct page *page = virt_to_page(addr);
 516        pgprot_t prot = *(pgprot_t *)data;
 517
 518        set_pte_ext(pte, mk_pte(page, prot), 0);
 519        return 0;
 520}
 521
 522static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 523{
 524        unsigned long start = (unsigned long) page_address(page);
 525        unsigned end = start + size;
 526
 527        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 528        flush_tlb_kernel_range(start, end);
 529}
 530
 531static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 532                                 pgprot_t prot, struct page **ret_page,
 533                                 const void *caller, bool want_vaddr)
 534{
 535        struct page *page;
 536        void *ptr = NULL;
 537        /*
 538         * __alloc_remap_buffer is only called when the device is
 539         * non-coherent
 540         */
 541        page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 542        if (!page)
 543                return NULL;
 544        if (!want_vaddr)
 545                goto out;
 546
 547        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 548        if (!ptr) {
 549                __dma_free_buffer(page, size);
 550                return NULL;
 551        }
 552
 553 out:
 554        *ret_page = page;
 555        return ptr;
 556}
 557
 558static void *__alloc_from_pool(size_t size, struct page **ret_page)
 559{
 560        unsigned long val;
 561        void *ptr = NULL;
 562
 563        if (!atomic_pool) {
 564                WARN(1, "coherent pool not initialised!\n");
 565                return NULL;
 566        }
 567
 568        val = gen_pool_alloc(atomic_pool, size);
 569        if (val) {
 570                phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 571
 572                *ret_page = phys_to_page(phys);
 573                ptr = (void *)val;
 574        }
 575
 576        return ptr;
 577}
 578
 579static bool __in_atomic_pool(void *start, size_t size)
 580{
 581        return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 582}
 583
 584static int __free_from_pool(void *start, size_t size)
 585{
 586        if (!__in_atomic_pool(start, size))
 587                return 0;
 588
 589        gen_pool_free(atomic_pool, (unsigned long)start, size);
 590
 591        return 1;
 592}
 593
 594static void *__alloc_from_contiguous(struct device *dev, size_t size,
 595                                     pgprot_t prot, struct page **ret_page,
 596                                     const void *caller, bool want_vaddr,
 597                                     int coherent_flag, gfp_t gfp)
 598{
 599        unsigned long order = get_order(size);
 600        size_t count = size >> PAGE_SHIFT;
 601        struct page *page;
 602        void *ptr = NULL;
 603
 604        page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 605        if (!page)
 606                return NULL;
 607
 608        __dma_clear_buffer(page, size, coherent_flag);
 609
 610        if (!want_vaddr)
 611                goto out;
 612
 613        if (PageHighMem(page)) {
 614                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 615                if (!ptr) {
 616                        dma_release_from_contiguous(dev, page, count);
 617                        return NULL;
 618                }
 619        } else {
 620                __dma_remap(page, size, prot);
 621                ptr = page_address(page);
 622        }
 623
 624 out:
 625        *ret_page = page;
 626        return ptr;
 627}
 628
 629static void __free_from_contiguous(struct device *dev, struct page *page,
 630                                   void *cpu_addr, size_t size, bool want_vaddr)
 631{
 632        if (want_vaddr) {
 633                if (PageHighMem(page))
 634                        __dma_free_remap(cpu_addr, size);
 635                else
 636                        __dma_remap(page, size, PAGE_KERNEL);
 637        }
 638        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 639}
 640
 641static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 642{
 643        prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 644                        pgprot_writecombine(prot) :
 645                        pgprot_dmacoherent(prot);
 646        return prot;
 647}
 648
 649static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 650                                   struct page **ret_page)
 651{
 652        struct page *page;
 653        /* __alloc_simple_buffer is only called when the device is coherent */
 654        page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 655        if (!page)
 656                return NULL;
 657
 658        *ret_page = page;
 659        return page_address(page);
 660}
 661
 662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 663                                    struct page **ret_page)
 664{
 665        return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 666                                     ret_page);
 667}
 668
 669static void simple_allocator_free(struct arm_dma_free_args *args)
 670{
 671        __dma_free_buffer(args->page, args->size);
 672}
 673
 674static struct arm_dma_allocator simple_allocator = {
 675        .alloc = simple_allocator_alloc,
 676        .free = simple_allocator_free,
 677};
 678
 679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 680                                 struct page **ret_page)
 681{
 682        return __alloc_from_contiguous(args->dev, args->size, args->prot,
 683                                       ret_page, args->caller,
 684                                       args->want_vaddr, args->coherent_flag,
 685                                       args->gfp);
 686}
 687
 688static void cma_allocator_free(struct arm_dma_free_args *args)
 689{
 690        __free_from_contiguous(args->dev, args->page, args->cpu_addr,
 691                               args->size, args->want_vaddr);
 692}
 693
 694static struct arm_dma_allocator cma_allocator = {
 695        .alloc = cma_allocator_alloc,
 696        .free = cma_allocator_free,
 697};
 698
 699static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 700                                  struct page **ret_page)
 701{
 702        return __alloc_from_pool(args->size, ret_page);
 703}
 704
 705static void pool_allocator_free(struct arm_dma_free_args *args)
 706{
 707        __free_from_pool(args->cpu_addr, args->size);
 708}
 709
 710static struct arm_dma_allocator pool_allocator = {
 711        .alloc = pool_allocator_alloc,
 712        .free = pool_allocator_free,
 713};
 714
 715static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 716                                   struct page **ret_page)
 717{
 718        return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 719                                    args->prot, ret_page, args->caller,
 720                                    args->want_vaddr);
 721}
 722
 723static void remap_allocator_free(struct arm_dma_free_args *args)
 724{
 725        if (args->want_vaddr)
 726                __dma_free_remap(args->cpu_addr, args->size);
 727
 728        __dma_free_buffer(args->page, args->size);
 729}
 730
 731static struct arm_dma_allocator remap_allocator = {
 732        .alloc = remap_allocator_alloc,
 733        .free = remap_allocator_free,
 734};
 735
 736static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 737                         gfp_t gfp, pgprot_t prot, bool is_coherent,
 738                         unsigned long attrs, const void *caller)
 739{
 740        u64 mask = get_coherent_dma_mask(dev);
 741        struct page *page = NULL;
 742        void *addr;
 743        bool allowblock, cma;
 744        struct arm_dma_buffer *buf;
 745        struct arm_dma_alloc_args args = {
 746                .dev = dev,
 747                .size = PAGE_ALIGN(size),
 748                .gfp = gfp,
 749                .prot = prot,
 750                .caller = caller,
 751                .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 752                .coherent_flag = is_coherent ? COHERENT : NORMAL,
 753        };
 754
 755#ifdef CONFIG_DMA_API_DEBUG
 756        u64 limit = (mask + 1) & ~mask;
 757        if (limit && size >= limit) {
 758                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 759                        size, mask);
 760                return NULL;
 761        }
 762#endif
 763
 764        if (!mask)
 765                return NULL;
 766
 767        buf = kzalloc(sizeof(*buf),
 768                      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 769        if (!buf)
 770                return NULL;
 771
 772        if (mask < 0xffffffffULL)
 773                gfp |= GFP_DMA;
 774
 775        /*
 776         * Following is a work-around (a.k.a. hack) to prevent pages
 777         * with __GFP_COMP being passed to split_page() which cannot
 778         * handle them.  The real problem is that this flag probably
 779         * should be 0 on ARM as it is not supported on this
 780         * platform; see CONFIG_HUGETLBFS.
 781         */
 782        gfp &= ~(__GFP_COMP);
 783        args.gfp = gfp;
 784
 785        *handle = ARM_MAPPING_ERROR;
 786        allowblock = gfpflags_allow_blocking(gfp);
 787        cma = allowblock ? dev_get_cma_area(dev) : false;
 788
 789        if (cma)
 790                buf->allocator = &cma_allocator;
 791        else if (is_coherent)
 792                buf->allocator = &simple_allocator;
 793        else if (allowblock)
 794                buf->allocator = &remap_allocator;
 795        else
 796                buf->allocator = &pool_allocator;
 797
 798        addr = buf->allocator->alloc(&args, &page);
 799
 800        if (page) {
 801                unsigned long flags;
 802
 803                *handle = pfn_to_dma(dev, page_to_pfn(page));
 804                buf->virt = args.want_vaddr ? addr : page;
 805
 806                spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 807                list_add(&buf->list, &arm_dma_bufs);
 808                spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 809        } else {
 810                kfree(buf);
 811        }
 812
 813        return args.want_vaddr ? addr : page;
 814}
 815
 816/*
 817 * Allocate DMA-coherent memory space and return both the kernel remapped
 818 * virtual and bus address for that space.
 819 */
 820void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 821                    gfp_t gfp, unsigned long attrs)
 822{
 823        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 824
 825        return __dma_alloc(dev, size, handle, gfp, prot, false,
 826                           attrs, __builtin_return_address(0));
 827}
 828
 829static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 830        dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 831{
 832        return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 833                           attrs, __builtin_return_address(0));
 834}
 835
 836static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 837                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 838                 unsigned long attrs)
 839{
 840        int ret;
 841        unsigned long nr_vma_pages = vma_pages(vma);
 842        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 843        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 844        unsigned long off = vma->vm_pgoff;
 845
 846        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 847                return ret;
 848
 849        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 850                ret = remap_pfn_range(vma, vma->vm_start,
 851                                      pfn + off,
 852                                      vma->vm_end - vma->vm_start,
 853                                      vma->vm_page_prot);
 854        }
 855
 856        return ret;
 857}
 858
 859/*
 860 * Create userspace mapping for the DMA-coherent memory.
 861 */
 862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 863                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 864                 unsigned long attrs)
 865{
 866        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 867}
 868
 869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 870                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 871                 unsigned long attrs)
 872{
 873        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 874        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 875}
 876
 877/*
 878 * Free a buffer as defined by the above mapping.
 879 */
 880static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 881                           dma_addr_t handle, unsigned long attrs,
 882                           bool is_coherent)
 883{
 884        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 885        struct arm_dma_buffer *buf;
 886        struct arm_dma_free_args args = {
 887                .dev = dev,
 888                .size = PAGE_ALIGN(size),
 889                .cpu_addr = cpu_addr,
 890                .page = page,
 891                .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 892        };
 893
 894        buf = arm_dma_buffer_find(cpu_addr);
 895        if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 896                return;
 897
 898        buf->allocator->free(&args);
 899        kfree(buf);
 900}
 901
 902void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 903                  dma_addr_t handle, unsigned long attrs)
 904{
 905        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 906}
 907
 908static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 909                                  dma_addr_t handle, unsigned long attrs)
 910{
 911        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 912}
 913
 914int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 915                 void *cpu_addr, dma_addr_t handle, size_t size,
 916                 unsigned long attrs)
 917{
 918        unsigned long pfn = dma_to_pfn(dev, handle);
 919        struct page *page;
 920        int ret;
 921
 922        /* If the PFN is not valid, we do not have a struct page */
 923        if (!pfn_valid(pfn))
 924                return -ENXIO;
 925
 926        page = pfn_to_page(pfn);
 927
 928        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 929        if (unlikely(ret))
 930                return ret;
 931
 932        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 933        return 0;
 934}
 935
 936static void dma_cache_maint_page(struct page *page, unsigned long offset,
 937        size_t size, enum dma_data_direction dir,
 938        void (*op)(const void *, size_t, int))
 939{
 940        unsigned long pfn;
 941        size_t left = size;
 942
 943        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 944        offset %= PAGE_SIZE;
 945
 946        /*
 947         * A single sg entry may refer to multiple physically contiguous
 948         * pages.  But we still need to process highmem pages individually.
 949         * If highmem is not configured then the bulk of this loop gets
 950         * optimized out.
 951         */
 952        do {
 953                size_t len = left;
 954                void *vaddr;
 955
 956                page = pfn_to_page(pfn);
 957
 958                if (PageHighMem(page)) {
 959                        if (len + offset > PAGE_SIZE)
 960                                len = PAGE_SIZE - offset;
 961
 962                        if (cache_is_vipt_nonaliasing()) {
 963                                vaddr = kmap_atomic(page);
 964                                op(vaddr + offset, len, dir);
 965                                kunmap_atomic(vaddr);
 966                        } else {
 967                                vaddr = kmap_high_get(page);
 968                                if (vaddr) {
 969                                        op(vaddr + offset, len, dir);
 970                                        kunmap_high(page);
 971                                }
 972                        }
 973                } else {
 974                        vaddr = page_address(page) + offset;
 975                        op(vaddr, len, dir);
 976                }
 977                offset = 0;
 978                pfn++;
 979                left -= len;
 980        } while (left);
 981}
 982
 983/*
 984 * Make an area consistent for devices.
 985 * Note: Drivers should NOT use this function directly, as it will break
 986 * platforms with CONFIG_DMABOUNCE.
 987 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 988 */
 989static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 990        size_t size, enum dma_data_direction dir)
 991{
 992        phys_addr_t paddr;
 993
 994        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 995
 996        paddr = page_to_phys(page) + off;
 997        if (dir == DMA_FROM_DEVICE) {
 998                outer_inv_range(paddr, paddr + size);
 999        } else {
1000                outer_clean_range(paddr, paddr + size);
1001        }
1002        /* FIXME: non-speculating: flush on bidirectional mappings? */
1003}
1004
1005static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1006        size_t size, enum dma_data_direction dir)
1007{
1008        phys_addr_t paddr = page_to_phys(page) + off;
1009
1010        /* FIXME: non-speculating: not required */
1011        /* in any case, don't bother invalidating if DMA to device */
1012        if (dir != DMA_TO_DEVICE) {
1013                outer_inv_range(paddr, paddr + size);
1014
1015                dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1016        }
1017
1018        /*
1019         * Mark the D-cache clean for these pages to avoid extra flushing.
1020         */
1021        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1022                unsigned long pfn;
1023                size_t left = size;
1024
1025                pfn = page_to_pfn(page) + off / PAGE_SIZE;
1026                off %= PAGE_SIZE;
1027                if (off) {
1028                        pfn++;
1029                        left -= PAGE_SIZE - off;
1030                }
1031                while (left >= PAGE_SIZE) {
1032                        page = pfn_to_page(pfn++);
1033                        set_bit(PG_dcache_clean, &page->flags);
1034                        left -= PAGE_SIZE;
1035                }
1036        }
1037}
1038
1039/**
1040 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1041 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1042 * @sg: list of buffers
1043 * @nents: number of buffers to map
1044 * @dir: DMA transfer direction
1045 *
1046 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1047 * This is the scatter-gather version of the dma_map_single interface.
1048 * Here the scatter gather list elements are each tagged with the
1049 * appropriate dma address and length.  They are obtained via
1050 * sg_dma_{address,length}.
1051 *
1052 * Device ownership issues as mentioned for dma_map_single are the same
1053 * here.
1054 */
1055int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1056                enum dma_data_direction dir, unsigned long attrs)
1057{
1058        const struct dma_map_ops *ops = get_dma_ops(dev);
1059        struct scatterlist *s;
1060        int i, j;
1061
1062        for_each_sg(sg, s, nents, i) {
1063#ifdef CONFIG_NEED_SG_DMA_LENGTH
1064                s->dma_length = s->length;
1065#endif
1066                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1067                                                s->length, dir, attrs);
1068                if (dma_mapping_error(dev, s->dma_address))
1069                        goto bad_mapping;
1070        }
1071        return nents;
1072
1073 bad_mapping:
1074        for_each_sg(sg, s, i, j)
1075                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1076        return 0;
1077}
1078
1079/**
1080 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1081 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1082 * @sg: list of buffers
1083 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1084 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1085 *
1086 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1087 * rules concerning calls here are the same as for dma_unmap_single().
1088 */
1089void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1090                enum dma_data_direction dir, unsigned long attrs)
1091{
1092        const struct dma_map_ops *ops = get_dma_ops(dev);
1093        struct scatterlist *s;
1094
1095        int i;
1096
1097        for_each_sg(sg, s, nents, i)
1098                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1099}
1100
1101/**
1102 * arm_dma_sync_sg_for_cpu
1103 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1104 * @sg: list of buffers
1105 * @nents: number of buffers to map (returned from dma_map_sg)
1106 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1107 */
1108void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1109                        int nents, enum dma_data_direction dir)
1110{
1111        const struct dma_map_ops *ops = get_dma_ops(dev);
1112        struct scatterlist *s;
1113        int i;
1114
1115        for_each_sg(sg, s, nents, i)
1116                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1117                                         dir);
1118}
1119
1120/**
1121 * arm_dma_sync_sg_for_device
1122 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1123 * @sg: list of buffers
1124 * @nents: number of buffers to map (returned from dma_map_sg)
1125 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1126 */
1127void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1128                        int nents, enum dma_data_direction dir)
1129{
1130        const struct dma_map_ops *ops = get_dma_ops(dev);
1131        struct scatterlist *s;
1132        int i;
1133
1134        for_each_sg(sg, s, nents, i)
1135                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1136                                            dir);
1137}
1138
1139/*
1140 * Return whether the given device DMA address mask can be supported
1141 * properly.  For example, if your device can only drive the low 24-bits
1142 * during bus mastering, then you would pass 0x00ffffff as the mask
1143 * to this function.
1144 */
1145int arm_dma_supported(struct device *dev, u64 mask)
1146{
1147        return __dma_supported(dev, mask, false);
1148}
1149
1150#ifdef CONFIG_ARM_DMA_USE_IOMMU
1151
1152static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1153{
1154        int prot = 0;
1155
1156        if (attrs & DMA_ATTR_PRIVILEGED)
1157                prot |= IOMMU_PRIV;
1158
1159        switch (dir) {
1160        case DMA_BIDIRECTIONAL:
1161                return prot | IOMMU_READ | IOMMU_WRITE;
1162        case DMA_TO_DEVICE:
1163                return prot | IOMMU_READ;
1164        case DMA_FROM_DEVICE:
1165                return prot | IOMMU_WRITE;
1166        default:
1167                return prot;
1168        }
1169}
1170
1171/* IOMMU */
1172
1173static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1174
1175static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1176                                      size_t size)
1177{
1178        unsigned int order = get_order(size);
1179        unsigned int align = 0;
1180        unsigned int count, start;
1181        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1182        unsigned long flags;
1183        dma_addr_t iova;
1184        int i;
1185
1186        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1187                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1188
1189        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1190        align = (1 << order) - 1;
1191
1192        spin_lock_irqsave(&mapping->lock, flags);
1193        for (i = 0; i < mapping->nr_bitmaps; i++) {
1194                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1195                                mapping->bits, 0, count, align);
1196
1197                if (start > mapping->bits)
1198                        continue;
1199
1200                bitmap_set(mapping->bitmaps[i], start, count);
1201                break;
1202        }
1203
1204        /*
1205         * No unused range found. Try to extend the existing mapping
1206         * and perform a second attempt to reserve an IO virtual
1207         * address range of size bytes.
1208         */
1209        if (i == mapping->nr_bitmaps) {
1210                if (extend_iommu_mapping(mapping)) {
1211                        spin_unlock_irqrestore(&mapping->lock, flags);
1212                        return ARM_MAPPING_ERROR;
1213                }
1214
1215                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1216                                mapping->bits, 0, count, align);
1217
1218                if (start > mapping->bits) {
1219                        spin_unlock_irqrestore(&mapping->lock, flags);
1220                        return ARM_MAPPING_ERROR;
1221                }
1222
1223                bitmap_set(mapping->bitmaps[i], start, count);
1224        }
1225        spin_unlock_irqrestore(&mapping->lock, flags);
1226
1227        iova = mapping->base + (mapping_size * i);
1228        iova += start << PAGE_SHIFT;
1229
1230        return iova;
1231}
1232
1233static inline void __free_iova(struct dma_iommu_mapping *mapping,
1234                               dma_addr_t addr, size_t size)
1235{
1236        unsigned int start, count;
1237        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1238        unsigned long flags;
1239        dma_addr_t bitmap_base;
1240        u32 bitmap_index;
1241
1242        if (!size)
1243                return;
1244
1245        bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1246        BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1247
1248        bitmap_base = mapping->base + mapping_size * bitmap_index;
1249
1250        start = (addr - bitmap_base) >> PAGE_SHIFT;
1251
1252        if (addr + size > bitmap_base + mapping_size) {
1253                /*
1254                 * The address range to be freed reaches into the iova
1255                 * range of the next bitmap. This should not happen as
1256                 * we don't allow this in __alloc_iova (at the
1257                 * moment).
1258                 */
1259                BUG();
1260        } else
1261                count = size >> PAGE_SHIFT;
1262
1263        spin_lock_irqsave(&mapping->lock, flags);
1264        bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1265        spin_unlock_irqrestore(&mapping->lock, flags);
1266}
1267
1268/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1269static const int iommu_order_array[] = { 9, 8, 4, 0 };
1270
1271static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1272                                          gfp_t gfp, unsigned long attrs,
1273                                          int coherent_flag)
1274{
1275        struct page **pages;
1276        int count = size >> PAGE_SHIFT;
1277        int array_size = count * sizeof(struct page *);
1278        int i = 0;
1279        int order_idx = 0;
1280
1281        if (array_size <= PAGE_SIZE)
1282                pages = kzalloc(array_size, GFP_KERNEL);
1283        else
1284                pages = vzalloc(array_size);
1285        if (!pages)
1286                return NULL;
1287
1288        if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1289        {
1290                unsigned long order = get_order(size);
1291                struct page *page;
1292
1293                page = dma_alloc_from_contiguous(dev, count, order,
1294                                                 gfp & __GFP_NOWARN);
1295                if (!page)
1296                        goto error;
1297
1298                __dma_clear_buffer(page, size, coherent_flag);
1299
1300                for (i = 0; i < count; i++)
1301                        pages[i] = page + i;
1302
1303                return pages;
1304        }
1305
1306        /* Go straight to 4K chunks if caller says it's OK. */
1307        if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1308                order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1309
1310        /*
1311         * IOMMU can map any pages, so himem can also be used here
1312         */
1313        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1314
1315        while (count) {
1316                int j, order;
1317
1318                order = iommu_order_array[order_idx];
1319
1320                /* Drop down when we get small */
1321                if (__fls(count) < order) {
1322                        order_idx++;
1323                        continue;
1324                }
1325
1326                if (order) {
1327                        /* See if it's easy to allocate a high-order chunk */
1328                        pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1329
1330                        /* Go down a notch at first sign of pressure */
1331                        if (!pages[i]) {
1332                                order_idx++;
1333                                continue;
1334                        }
1335                } else {
1336                        pages[i] = alloc_pages(gfp, 0);
1337                        if (!pages[i])
1338                                goto error;
1339                }
1340
1341                if (order) {
1342                        split_page(pages[i], order);
1343                        j = 1 << order;
1344                        while (--j)
1345                                pages[i + j] = pages[i] + j;
1346                }
1347
1348                __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1349                i += 1 << order;
1350                count -= 1 << order;
1351        }
1352
1353        return pages;
1354error:
1355        while (i--)
1356                if (pages[i])
1357                        __free_pages(pages[i], 0);
1358        kvfree(pages);
1359        return NULL;
1360}
1361
1362static int __iommu_free_buffer(struct device *dev, struct page **pages,
1363                               size_t size, unsigned long attrs)
1364{
1365        int count = size >> PAGE_SHIFT;
1366        int i;
1367
1368        if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1369                dma_release_from_contiguous(dev, pages[0], count);
1370        } else {
1371                for (i = 0; i < count; i++)
1372                        if (pages[i])
1373                                __free_pages(pages[i], 0);
1374        }
1375
1376        kvfree(pages);
1377        return 0;
1378}
1379
1380/*
1381 * Create a CPU mapping for a specified pages
1382 */
1383static void *
1384__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1385                    const void *caller)
1386{
1387        return dma_common_pages_remap(pages, size,
1388                        VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1389}
1390
1391/*
1392 * Create a mapping in device IO address space for specified pages
1393 */
1394static dma_addr_t
1395__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1396                       unsigned long attrs)
1397{
1398        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1399        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1400        dma_addr_t dma_addr, iova;
1401        int i;
1402
1403        dma_addr = __alloc_iova(mapping, size);
1404        if (dma_addr == ARM_MAPPING_ERROR)
1405                return dma_addr;
1406
1407        iova = dma_addr;
1408        for (i = 0; i < count; ) {
1409                int ret;
1410
1411                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1412                phys_addr_t phys = page_to_phys(pages[i]);
1413                unsigned int len, j;
1414
1415                for (j = i + 1; j < count; j++, next_pfn++)
1416                        if (page_to_pfn(pages[j]) != next_pfn)
1417                                break;
1418
1419                len = (j - i) << PAGE_SHIFT;
1420                ret = iommu_map(mapping->domain, iova, phys, len,
1421                                __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1422                if (ret < 0)
1423                        goto fail;
1424                iova += len;
1425                i = j;
1426        }
1427        return dma_addr;
1428fail:
1429        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1430        __free_iova(mapping, dma_addr, size);
1431        return ARM_MAPPING_ERROR;
1432}
1433
1434static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1435{
1436        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1437
1438        /*
1439         * add optional in-page offset from iova to size and align
1440         * result to page size
1441         */
1442        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1443        iova &= PAGE_MASK;
1444
1445        iommu_unmap(mapping->domain, iova, size);
1446        __free_iova(mapping, iova, size);
1447        return 0;
1448}
1449
1450static struct page **__atomic_get_pages(void *addr)
1451{
1452        struct page *page;
1453        phys_addr_t phys;
1454
1455        phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1456        page = phys_to_page(phys);
1457
1458        return (struct page **)page;
1459}
1460
1461static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1462{
1463        struct vm_struct *area;
1464
1465        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1466                return __atomic_get_pages(cpu_addr);
1467
1468        if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1469                return cpu_addr;
1470
1471        area = find_vm_area(cpu_addr);
1472        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1473                return area->pages;
1474        return NULL;
1475}
1476
1477static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1478                                  dma_addr_t *handle, int coherent_flag,
1479                                  unsigned long attrs)
1480{
1481        struct page *page;
1482        void *addr;
1483
1484        if (coherent_flag  == COHERENT)
1485                addr = __alloc_simple_buffer(dev, size, gfp, &page);
1486        else
1487                addr = __alloc_from_pool(size, &page);
1488        if (!addr)
1489                return NULL;
1490
1491        *handle = __iommu_create_mapping(dev, &page, size, attrs);
1492        if (*handle == ARM_MAPPING_ERROR)
1493                goto err_mapping;
1494
1495        return addr;
1496
1497err_mapping:
1498        __free_from_pool(addr, size);
1499        return NULL;
1500}
1501
1502static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503                        dma_addr_t handle, size_t size, int coherent_flag)
1504{
1505        __iommu_remove_mapping(dev, handle, size);
1506        if (coherent_flag == COHERENT)
1507                __dma_free_buffer(virt_to_page(cpu_addr), size);
1508        else
1509                __free_from_pool(cpu_addr, size);
1510}
1511
1512static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513            dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514            int coherent_flag)
1515{
1516        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517        struct page **pages;
1518        void *addr = NULL;
1519
1520        *handle = ARM_MAPPING_ERROR;
1521        size = PAGE_ALIGN(size);
1522
1523        if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1524                return __iommu_alloc_simple(dev, size, gfp, handle,
1525                                            coherent_flag, attrs);
1526
1527        /*
1528         * Following is a work-around (a.k.a. hack) to prevent pages
1529         * with __GFP_COMP being passed to split_page() which cannot
1530         * handle them.  The real problem is that this flag probably
1531         * should be 0 on ARM as it is not supported on this
1532         * platform; see CONFIG_HUGETLBFS.
1533         */
1534        gfp &= ~(__GFP_COMP);
1535
1536        pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537        if (!pages)
1538                return NULL;
1539
1540        *handle = __iommu_create_mapping(dev, pages, size, attrs);
1541        if (*handle == ARM_MAPPING_ERROR)
1542                goto err_buffer;
1543
1544        if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545                return pages;
1546
1547        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1548                                   __builtin_return_address(0));
1549        if (!addr)
1550                goto err_mapping;
1551
1552        return addr;
1553
1554err_mapping:
1555        __iommu_remove_mapping(dev, *handle, size);
1556err_buffer:
1557        __iommu_free_buffer(dev, pages, size, attrs);
1558        return NULL;
1559}
1560
1561static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562            dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563{
1564        return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1565}
1566
1567static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568                    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569{
1570        return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1571}
1572
1573static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575                    unsigned long attrs)
1576{
1577        unsigned long uaddr = vma->vm_start;
1578        unsigned long usize = vma->vm_end - vma->vm_start;
1579        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1581        unsigned long off = vma->vm_pgoff;
1582
1583        if (!pages)
1584                return -ENXIO;
1585
1586        if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1587                return -ENXIO;
1588
1589        pages += off;
1590
1591        do {
1592                int ret = vm_insert_page(vma, uaddr, *pages++);
1593                if (ret) {
1594                        pr_err("Remapping memory failed: %d\n", ret);
1595                        return ret;
1596                }
1597                uaddr += PAGE_SIZE;
1598                usize -= PAGE_SIZE;
1599        } while (usize > 0);
1600
1601        return 0;
1602}
1603static int arm_iommu_mmap_attrs(struct device *dev,
1604                struct vm_area_struct *vma, void *cpu_addr,
1605                dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606{
1607        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1608
1609        return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1610}
1611
1612static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1613                struct vm_area_struct *vma, void *cpu_addr,
1614                dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615{
1616        return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1617}
1618
1619/*
1620 * free a page as defined by the above mapping.
1621 * Must not be called with IRQs disabled.
1622 */
1623void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624        dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625{
1626        struct page **pages;
1627        size = PAGE_ALIGN(size);
1628
1629        if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1630                __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631                return;
1632        }
1633
1634        pages = __iommu_get_pages(cpu_addr, attrs);
1635        if (!pages) {
1636                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637                return;
1638        }
1639
1640        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641                dma_common_free_remap(cpu_addr, size,
1642                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643        }
1644
1645        __iommu_remove_mapping(dev, handle, size);
1646        __iommu_free_buffer(dev, pages, size, attrs);
1647}
1648
1649void arm_iommu_free_attrs(struct device *dev, size_t size,
1650                    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651{
1652        __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1653}
1654
1655void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656                    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657{
1658        __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1659}
1660
1661static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1662                                 void *cpu_addr, dma_addr_t dma_addr,
1663                                 size_t size, unsigned long attrs)
1664{
1665        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1666        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1667
1668        if (!pages)
1669                return -ENXIO;
1670
1671        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1672                                         GFP_KERNEL);
1673}
1674
1675/*
1676 * Map a part of the scatter-gather list into contiguous io address space
1677 */
1678static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1679                          size_t size, dma_addr_t *handle,
1680                          enum dma_data_direction dir, unsigned long attrs,
1681                          bool is_coherent)
1682{
1683        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1684        dma_addr_t iova, iova_base;
1685        int ret = 0;
1686        unsigned int count;
1687        struct scatterlist *s;
1688        int prot;
1689
1690        size = PAGE_ALIGN(size);
1691        *handle = ARM_MAPPING_ERROR;
1692
1693        iova_base = iova = __alloc_iova(mapping, size);
1694        if (iova == ARM_MAPPING_ERROR)
1695                return -ENOMEM;
1696
1697        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1698                phys_addr_t phys = page_to_phys(sg_page(s));
1699                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1700
1701                if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1702                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1703
1704                prot = __dma_info_to_prot(dir, attrs);
1705
1706                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1707                if (ret < 0)
1708                        goto fail;
1709                count += len >> PAGE_SHIFT;
1710                iova += len;
1711        }
1712        *handle = iova_base;
1713
1714        return 0;
1715fail:
1716        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1717        __free_iova(mapping, iova_base, size);
1718        return ret;
1719}
1720
1721static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1722                     enum dma_data_direction dir, unsigned long attrs,
1723                     bool is_coherent)
1724{
1725        struct scatterlist *s = sg, *dma = sg, *start = sg;
1726        int i, count = 0;
1727        unsigned int offset = s->offset;
1728        unsigned int size = s->offset + s->length;
1729        unsigned int max = dma_get_max_seg_size(dev);
1730
1731        for (i = 1; i < nents; i++) {
1732                s = sg_next(s);
1733
1734                s->dma_address = ARM_MAPPING_ERROR;
1735                s->dma_length = 0;
1736
1737                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1738                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1739                            dir, attrs, is_coherent) < 0)
1740                                goto bad_mapping;
1741
1742                        dma->dma_address += offset;
1743                        dma->dma_length = size - offset;
1744
1745                        size = offset = s->offset;
1746                        start = s;
1747                        dma = sg_next(dma);
1748                        count += 1;
1749                }
1750                size += s->length;
1751        }
1752        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1753                is_coherent) < 0)
1754                goto bad_mapping;
1755
1756        dma->dma_address += offset;
1757        dma->dma_length = size - offset;
1758
1759        return count+1;
1760
1761bad_mapping:
1762        for_each_sg(sg, s, count, i)
1763                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1764        return 0;
1765}
1766
1767/**
1768 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1769 * @dev: valid struct device pointer
1770 * @sg: list of buffers
1771 * @nents: number of buffers to map
1772 * @dir: DMA transfer direction
1773 *
1774 * Map a set of i/o coherent buffers described by scatterlist in streaming
1775 * mode for DMA. The scatter gather list elements are merged together (if
1776 * possible) and tagged with the appropriate dma address and length. They are
1777 * obtained via sg_dma_{address,length}.
1778 */
1779int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1780                int nents, enum dma_data_direction dir, unsigned long attrs)
1781{
1782        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1783}
1784
1785/**
1786 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1787 * @dev: valid struct device pointer
1788 * @sg: list of buffers
1789 * @nents: number of buffers to map
1790 * @dir: DMA transfer direction
1791 *
1792 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1793 * The scatter gather list elements are merged together (if possible) and
1794 * tagged with the appropriate dma address and length. They are obtained via
1795 * sg_dma_{address,length}.
1796 */
1797int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1798                int nents, enum dma_data_direction dir, unsigned long attrs)
1799{
1800        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1801}
1802
1803static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1804                int nents, enum dma_data_direction dir,
1805                unsigned long attrs, bool is_coherent)
1806{
1807        struct scatterlist *s;
1808        int i;
1809
1810        for_each_sg(sg, s, nents, i) {
1811                if (sg_dma_len(s))
1812                        __iommu_remove_mapping(dev, sg_dma_address(s),
1813                                               sg_dma_len(s));
1814                if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1815                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1816                                              s->length, dir);
1817        }
1818}
1819
1820/**
1821 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1822 * @dev: valid struct device pointer
1823 * @sg: list of buffers
1824 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1825 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1826 *
1827 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1828 * rules concerning calls here are the same as for dma_unmap_single().
1829 */
1830void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1831                int nents, enum dma_data_direction dir,
1832                unsigned long attrs)
1833{
1834        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1835}
1836
1837/**
1838 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1839 * @dev: valid struct device pointer
1840 * @sg: list of buffers
1841 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1842 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1843 *
1844 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1845 * rules concerning calls here are the same as for dma_unmap_single().
1846 */
1847void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1848                        enum dma_data_direction dir,
1849                        unsigned long attrs)
1850{
1851        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1852}
1853
1854/**
1855 * arm_iommu_sync_sg_for_cpu
1856 * @dev: valid struct device pointer
1857 * @sg: list of buffers
1858 * @nents: number of buffers to map (returned from dma_map_sg)
1859 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1860 */
1861void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1862                        int nents, enum dma_data_direction dir)
1863{
1864        struct scatterlist *s;
1865        int i;
1866
1867        for_each_sg(sg, s, nents, i)
1868                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1869
1870}
1871
1872/**
1873 * arm_iommu_sync_sg_for_device
1874 * @dev: valid struct device pointer
1875 * @sg: list of buffers
1876 * @nents: number of buffers to map (returned from dma_map_sg)
1877 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1878 */
1879void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1880                        int nents, enum dma_data_direction dir)
1881{
1882        struct scatterlist *s;
1883        int i;
1884
1885        for_each_sg(sg, s, nents, i)
1886                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1887}
1888
1889
1890/**
1891 * arm_coherent_iommu_map_page
1892 * @dev: valid struct device pointer
1893 * @page: page that buffer resides in
1894 * @offset: offset into page for start of buffer
1895 * @size: size of buffer to map
1896 * @dir: DMA transfer direction
1897 *
1898 * Coherent IOMMU aware version of arm_dma_map_page()
1899 */
1900static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1901             unsigned long offset, size_t size, enum dma_data_direction dir,
1902             unsigned long attrs)
1903{
1904        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1905        dma_addr_t dma_addr;
1906        int ret, prot, len = PAGE_ALIGN(size + offset);
1907
1908        dma_addr = __alloc_iova(mapping, len);
1909        if (dma_addr == ARM_MAPPING_ERROR)
1910                return dma_addr;
1911
1912        prot = __dma_info_to_prot(dir, attrs);
1913
1914        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1915        if (ret < 0)
1916                goto fail;
1917
1918        return dma_addr + offset;
1919fail:
1920        __free_iova(mapping, dma_addr, len);
1921        return ARM_MAPPING_ERROR;
1922}
1923
1924/**
1925 * arm_iommu_map_page
1926 * @dev: valid struct device pointer
1927 * @page: page that buffer resides in
1928 * @offset: offset into page for start of buffer
1929 * @size: size of buffer to map
1930 * @dir: DMA transfer direction
1931 *
1932 * IOMMU aware version of arm_dma_map_page()
1933 */
1934static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1935             unsigned long offset, size_t size, enum dma_data_direction dir,
1936             unsigned long attrs)
1937{
1938        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1939                __dma_page_cpu_to_dev(page, offset, size, dir);
1940
1941        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1942}
1943
1944/**
1945 * arm_coherent_iommu_unmap_page
1946 * @dev: valid struct device pointer
1947 * @handle: DMA address of buffer
1948 * @size: size of buffer (same as passed to dma_map_page)
1949 * @dir: DMA transfer direction (same as passed to dma_map_page)
1950 *
1951 * Coherent IOMMU aware version of arm_dma_unmap_page()
1952 */
1953static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1954                size_t size, enum dma_data_direction dir, unsigned long attrs)
1955{
1956        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1957        dma_addr_t iova = handle & PAGE_MASK;
1958        int offset = handle & ~PAGE_MASK;
1959        int len = PAGE_ALIGN(size + offset);
1960
1961        if (!iova)
1962                return;
1963
1964        iommu_unmap(mapping->domain, iova, len);
1965        __free_iova(mapping, iova, len);
1966}
1967
1968/**
1969 * arm_iommu_unmap_page
1970 * @dev: valid struct device pointer
1971 * @handle: DMA address of buffer
1972 * @size: size of buffer (same as passed to dma_map_page)
1973 * @dir: DMA transfer direction (same as passed to dma_map_page)
1974 *
1975 * IOMMU aware version of arm_dma_unmap_page()
1976 */
1977static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1978                size_t size, enum dma_data_direction dir, unsigned long attrs)
1979{
1980        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1981        dma_addr_t iova = handle & PAGE_MASK;
1982        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1983        int offset = handle & ~PAGE_MASK;
1984        int len = PAGE_ALIGN(size + offset);
1985
1986        if (!iova)
1987                return;
1988
1989        if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1990                __dma_page_dev_to_cpu(page, offset, size, dir);
1991
1992        iommu_unmap(mapping->domain, iova, len);
1993        __free_iova(mapping, iova, len);
1994}
1995
1996/**
1997 * arm_iommu_map_resource - map a device resource for DMA
1998 * @dev: valid struct device pointer
1999 * @phys_addr: physical address of resource
2000 * @size: size of resource to map
2001 * @dir: DMA transfer direction
2002 */
2003static dma_addr_t arm_iommu_map_resource(struct device *dev,
2004                phys_addr_t phys_addr, size_t size,
2005                enum dma_data_direction dir, unsigned long attrs)
2006{
2007        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008        dma_addr_t dma_addr;
2009        int ret, prot;
2010        phys_addr_t addr = phys_addr & PAGE_MASK;
2011        unsigned int offset = phys_addr & ~PAGE_MASK;
2012        size_t len = PAGE_ALIGN(size + offset);
2013
2014        dma_addr = __alloc_iova(mapping, len);
2015        if (dma_addr == ARM_MAPPING_ERROR)
2016                return dma_addr;
2017
2018        prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2019
2020        ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2021        if (ret < 0)
2022                goto fail;
2023
2024        return dma_addr + offset;
2025fail:
2026        __free_iova(mapping, dma_addr, len);
2027        return ARM_MAPPING_ERROR;
2028}
2029
2030/**
2031 * arm_iommu_unmap_resource - unmap a device DMA resource
2032 * @dev: valid struct device pointer
2033 * @dma_handle: DMA address to resource
2034 * @size: size of resource to map
2035 * @dir: DMA transfer direction
2036 */
2037static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2038                size_t size, enum dma_data_direction dir,
2039                unsigned long attrs)
2040{
2041        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2042        dma_addr_t iova = dma_handle & PAGE_MASK;
2043        unsigned int offset = dma_handle & ~PAGE_MASK;
2044        size_t len = PAGE_ALIGN(size + offset);
2045
2046        if (!iova)
2047                return;
2048
2049        iommu_unmap(mapping->domain, iova, len);
2050        __free_iova(mapping, iova, len);
2051}
2052
2053static void arm_iommu_sync_single_for_cpu(struct device *dev,
2054                dma_addr_t handle, size_t size, enum dma_data_direction dir)
2055{
2056        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2057        dma_addr_t iova = handle & PAGE_MASK;
2058        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2059        unsigned int offset = handle & ~PAGE_MASK;
2060
2061        if (!iova)
2062                return;
2063
2064        __dma_page_dev_to_cpu(page, offset, size, dir);
2065}
2066
2067static void arm_iommu_sync_single_for_device(struct device *dev,
2068                dma_addr_t handle, size_t size, enum dma_data_direction dir)
2069{
2070        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2071        dma_addr_t iova = handle & PAGE_MASK;
2072        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2073        unsigned int offset = handle & ~PAGE_MASK;
2074
2075        if (!iova)
2076                return;
2077
2078        __dma_page_cpu_to_dev(page, offset, size, dir);
2079}
2080
2081const struct dma_map_ops iommu_ops = {
2082        .alloc          = arm_iommu_alloc_attrs,
2083        .free           = arm_iommu_free_attrs,
2084        .mmap           = arm_iommu_mmap_attrs,
2085        .get_sgtable    = arm_iommu_get_sgtable,
2086
2087        .map_page               = arm_iommu_map_page,
2088        .unmap_page             = arm_iommu_unmap_page,
2089        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
2090        .sync_single_for_device = arm_iommu_sync_single_for_device,
2091
2092        .map_sg                 = arm_iommu_map_sg,
2093        .unmap_sg               = arm_iommu_unmap_sg,
2094        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
2095        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
2096
2097        .map_resource           = arm_iommu_map_resource,
2098        .unmap_resource         = arm_iommu_unmap_resource,
2099
2100        .mapping_error          = arm_dma_mapping_error,
2101        .dma_supported          = arm_dma_supported,
2102};
2103
2104const struct dma_map_ops iommu_coherent_ops = {
2105        .alloc          = arm_coherent_iommu_alloc_attrs,
2106        .free           = arm_coherent_iommu_free_attrs,
2107        .mmap           = arm_coherent_iommu_mmap_attrs,
2108        .get_sgtable    = arm_iommu_get_sgtable,
2109
2110        .map_page       = arm_coherent_iommu_map_page,
2111        .unmap_page     = arm_coherent_iommu_unmap_page,
2112
2113        .map_sg         = arm_coherent_iommu_map_sg,
2114        .unmap_sg       = arm_coherent_iommu_unmap_sg,
2115
2116        .map_resource   = arm_iommu_map_resource,
2117        .unmap_resource = arm_iommu_unmap_resource,
2118
2119        .mapping_error          = arm_dma_mapping_error,
2120        .dma_supported          = arm_dma_supported,
2121};
2122
2123/**
2124 * arm_iommu_create_mapping
2125 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2126 * @base: start address of the valid IO address space
2127 * @size: maximum size of the valid IO address space
2128 *
2129 * Creates a mapping structure which holds information about used/unused
2130 * IO address ranges, which is required to perform memory allocation and
2131 * mapping with IOMMU aware functions.
2132 *
2133 * The client device need to be attached to the mapping with
2134 * arm_iommu_attach_device function.
2135 */
2136struct dma_iommu_mapping *
2137arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2138{
2139        unsigned int bits = size >> PAGE_SHIFT;
2140        unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2141        struct dma_iommu_mapping *mapping;
2142        int extensions = 1;
2143        int err = -ENOMEM;
2144
2145        /* currently only 32-bit DMA address space is supported */
2146        if (size > DMA_BIT_MASK(32) + 1)
2147                return ERR_PTR(-ERANGE);
2148
2149        if (!bitmap_size)
2150                return ERR_PTR(-EINVAL);
2151
2152        if (bitmap_size > PAGE_SIZE) {
2153                extensions = bitmap_size / PAGE_SIZE;
2154                bitmap_size = PAGE_SIZE;
2155        }
2156
2157        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2158        if (!mapping)
2159                goto err;
2160
2161        mapping->bitmap_size = bitmap_size;
2162        mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2163                                   GFP_KERNEL);
2164        if (!mapping->bitmaps)
2165                goto err2;
2166
2167        mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2168        if (!mapping->bitmaps[0])
2169                goto err3;
2170
2171        mapping->nr_bitmaps = 1;
2172        mapping->extensions = extensions;
2173        mapping->base = base;
2174        mapping->bits = BITS_PER_BYTE * bitmap_size;
2175
2176        spin_lock_init(&mapping->lock);
2177
2178        mapping->domain = iommu_domain_alloc(bus);
2179        if (!mapping->domain)
2180                goto err4;
2181
2182        kref_init(&mapping->kref);
2183        return mapping;
2184err4:
2185        kfree(mapping->bitmaps[0]);
2186err3:
2187        kfree(mapping->bitmaps);
2188err2:
2189        kfree(mapping);
2190err:
2191        return ERR_PTR(err);
2192}
2193EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2194
2195static void release_iommu_mapping(struct kref *kref)
2196{
2197        int i;
2198        struct dma_iommu_mapping *mapping =
2199                container_of(kref, struct dma_iommu_mapping, kref);
2200
2201        iommu_domain_free(mapping->domain);
2202        for (i = 0; i < mapping->nr_bitmaps; i++)
2203                kfree(mapping->bitmaps[i]);
2204        kfree(mapping->bitmaps);
2205        kfree(mapping);
2206}
2207
2208static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2209{
2210        int next_bitmap;
2211
2212        if (mapping->nr_bitmaps >= mapping->extensions)
2213                return -EINVAL;
2214
2215        next_bitmap = mapping->nr_bitmaps;
2216        mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2217                                                GFP_ATOMIC);
2218        if (!mapping->bitmaps[next_bitmap])
2219                return -ENOMEM;
2220
2221        mapping->nr_bitmaps++;
2222
2223        return 0;
2224}
2225
2226void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2227{
2228        if (mapping)
2229                kref_put(&mapping->kref, release_iommu_mapping);
2230}
2231EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2232
2233static int __arm_iommu_attach_device(struct device *dev,
2234                                     struct dma_iommu_mapping *mapping)
2235{
2236        int err;
2237
2238        err = iommu_attach_device(mapping->domain, dev);
2239        if (err)
2240                return err;
2241
2242        kref_get(&mapping->kref);
2243        to_dma_iommu_mapping(dev) = mapping;
2244
2245        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2246        return 0;
2247}
2248
2249/**
2250 * arm_iommu_attach_device
2251 * @dev: valid struct device pointer
2252 * @mapping: io address space mapping structure (returned from
2253 *      arm_iommu_create_mapping)
2254 *
2255 * Attaches specified io address space mapping to the provided device.
2256 * This replaces the dma operations (dma_map_ops pointer) with the
2257 * IOMMU aware version.
2258 *
2259 * More than one client might be attached to the same io address space
2260 * mapping.
2261 */
2262int arm_iommu_attach_device(struct device *dev,
2263                            struct dma_iommu_mapping *mapping)
2264{
2265        int err;
2266
2267        err = __arm_iommu_attach_device(dev, mapping);
2268        if (err)
2269                return err;
2270
2271        set_dma_ops(dev, &iommu_ops);
2272        return 0;
2273}
2274EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2275
2276/**
2277 * arm_iommu_detach_device
2278 * @dev: valid struct device pointer
2279 *
2280 * Detaches the provided device from a previously attached map.
2281 * This voids the dma operations (dma_map_ops pointer)
2282 */
2283void arm_iommu_detach_device(struct device *dev)
2284{
2285        struct dma_iommu_mapping *mapping;
2286
2287        mapping = to_dma_iommu_mapping(dev);
2288        if (!mapping) {
2289                dev_warn(dev, "Not attached\n");
2290                return;
2291        }
2292
2293        iommu_detach_device(mapping->domain, dev);
2294        kref_put(&mapping->kref, release_iommu_mapping);
2295        to_dma_iommu_mapping(dev) = NULL;
2296        set_dma_ops(dev, NULL);
2297
2298        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2299}
2300EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2301
2302static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2303{
2304        return coherent ? &iommu_coherent_ops : &iommu_ops;
2305}
2306
2307static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2308                                    const struct iommu_ops *iommu)
2309{
2310        struct dma_iommu_mapping *mapping;
2311
2312        if (!iommu)
2313                return false;
2314
2315        mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2316        if (IS_ERR(mapping)) {
2317                pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2318                                size, dev_name(dev));
2319                return false;
2320        }
2321
2322        if (__arm_iommu_attach_device(dev, mapping)) {
2323                pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2324                                dev_name(dev));
2325                arm_iommu_release_mapping(mapping);
2326                return false;
2327        }
2328
2329        return true;
2330}
2331
2332static void arm_teardown_iommu_dma_ops(struct device *dev)
2333{
2334        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2335
2336        if (!mapping)
2337                return;
2338
2339        arm_iommu_detach_device(dev);
2340        arm_iommu_release_mapping(mapping);
2341}
2342
2343#else
2344
2345static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2346                                    const struct iommu_ops *iommu)
2347{
2348        return false;
2349}
2350
2351static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2352
2353#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2354
2355#endif  /* CONFIG_ARM_DMA_USE_IOMMU */
2356
2357static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2358{
2359        return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2360}
2361
2362void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2363                        const struct iommu_ops *iommu, bool coherent)
2364{
2365        const struct dma_map_ops *dma_ops;
2366
2367        dev->archdata.dma_coherent = coherent;
2368
2369        /*
2370         * Don't override the dma_ops if they have already been set. Ideally
2371         * this should be the only location where dma_ops are set, remove this
2372         * check when all other callers of set_dma_ops will have disappeared.
2373         */
2374        if (dev->dma_ops)
2375                return;
2376
2377        if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2378                dma_ops = arm_get_iommu_dma_map_ops(coherent);
2379        else
2380                dma_ops = arm_get_dma_map_ops(coherent);
2381
2382        set_dma_ops(dev, dma_ops);
2383
2384#ifdef CONFIG_XEN
2385        if (xen_initial_domain()) {
2386                dev->archdata.dev_dma_ops = dev->dma_ops;
2387                dev->dma_ops = xen_dma_ops;
2388        }
2389#endif
2390        dev->archdata.dma_ops_setup = true;
2391}
2392
2393void arch_teardown_dma_ops(struct device *dev)
2394{
2395        if (!dev->archdata.dma_ops_setup)
2396                return;
2397
2398        arm_teardown_iommu_dma_ops(dev);
2399}
2400