linux/arch/mips/kvm/entry.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Generation of main entry point for the guest, exception handling.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 *
  11 * Copyright (C) 2016 Imagination Technologies Ltd.
  12 */
  13
  14#include <linux/kvm_host.h>
  15#include <linux/log2.h>
  16#include <asm/mmu_context.h>
  17#include <asm/msa.h>
  18#include <asm/setup.h>
  19#include <asm/tlbex.h>
  20#include <asm/uasm.h>
  21
  22/* Register names */
  23#define ZERO            0
  24#define AT              1
  25#define V0              2
  26#define V1              3
  27#define A0              4
  28#define A1              5
  29
  30#if _MIPS_SIM == _MIPS_SIM_ABI32
  31#define T0              8
  32#define T1              9
  33#define T2              10
  34#define T3              11
  35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
  36
  37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
  38#define T0              12
  39#define T1              13
  40#define T2              14
  41#define T3              15
  42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
  43
  44#define S0              16
  45#define S1              17
  46#define T9              25
  47#define K0              26
  48#define K1              27
  49#define GP              28
  50#define SP              29
  51#define RA              31
  52
  53/* Some CP0 registers */
  54#define C0_PWBASE       5, 5
  55#define C0_HWRENA       7, 0
  56#define C0_BADVADDR     8, 0
  57#define C0_BADINSTR     8, 1
  58#define C0_BADINSTRP    8, 2
  59#define C0_ENTRYHI      10, 0
  60#define C0_GUESTCTL1    10, 4
  61#define C0_STATUS       12, 0
  62#define C0_GUESTCTL0    12, 6
  63#define C0_CAUSE        13, 0
  64#define C0_EPC          14, 0
  65#define C0_EBASE        15, 1
  66#define C0_CONFIG5      16, 5
  67#define C0_DDATA_LO     28, 3
  68#define C0_ERROREPC     30, 0
  69
  70#define CALLFRAME_SIZ   32
  71
  72#ifdef CONFIG_64BIT
  73#define ST0_KX_IF_64    ST0_KX
  74#else
  75#define ST0_KX_IF_64    0
  76#endif
  77
  78static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
  79static unsigned int scratch_tmp[2] = { C0_ERROREPC };
  80
  81enum label_id {
  82        label_fpu_1 = 1,
  83        label_msa_1,
  84        label_return_to_host,
  85        label_kernel_asid,
  86        label_exit_common,
  87};
  88
  89UASM_L_LA(_fpu_1)
  90UASM_L_LA(_msa_1)
  91UASM_L_LA(_return_to_host)
  92UASM_L_LA(_kernel_asid)
  93UASM_L_LA(_exit_common)
  94
  95static void *kvm_mips_build_enter_guest(void *addr);
  96static void *kvm_mips_build_ret_from_exit(void *addr);
  97static void *kvm_mips_build_ret_to_guest(void *addr);
  98static void *kvm_mips_build_ret_to_host(void *addr);
  99
 100/*
 101 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
 102 * we assume symmetry.
 103 */
 104static int c0_kscratch(void)
 105{
 106        switch (boot_cpu_type()) {
 107        case CPU_XLP:
 108        case CPU_XLR:
 109                return 22;
 110        default:
 111                return 31;
 112        }
 113}
 114
 115/**
 116 * kvm_mips_entry_setup() - Perform global setup for entry code.
 117 *
 118 * Perform global setup for entry code, such as choosing a scratch register.
 119 *
 120 * Returns:     0 on success.
 121 *              -errno on failure.
 122 */
 123int kvm_mips_entry_setup(void)
 124{
 125        /*
 126         * We prefer to use KScratchN registers if they are available over the
 127         * defaults above, which may not work on all cores.
 128         */
 129        unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
 130
 131        if (pgd_reg != -1)
 132                kscratch_mask &= ~BIT(pgd_reg);
 133
 134        /* Pick a scratch register for storing VCPU */
 135        if (kscratch_mask) {
 136                scratch_vcpu[0] = c0_kscratch();
 137                scratch_vcpu[1] = ffs(kscratch_mask) - 1;
 138                kscratch_mask &= ~BIT(scratch_vcpu[1]);
 139        }
 140
 141        /* Pick a scratch register to use as a temp for saving state */
 142        if (kscratch_mask) {
 143                scratch_tmp[0] = c0_kscratch();
 144                scratch_tmp[1] = ffs(kscratch_mask) - 1;
 145                kscratch_mask &= ~BIT(scratch_tmp[1]);
 146        }
 147
 148        return 0;
 149}
 150
 151static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
 152                                        unsigned int frame)
 153{
 154        /* Save the VCPU scratch register value in cp0_epc of the stack frame */
 155        UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
 156        UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
 157
 158        /* Save the temp scratch register value in cp0_cause of stack frame */
 159        if (scratch_tmp[0] == c0_kscratch()) {
 160                UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
 161                UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
 162        }
 163}
 164
 165static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
 166                                           unsigned int frame)
 167{
 168        /*
 169         * Restore host scratch register values saved by
 170         * kvm_mips_build_save_scratch().
 171         */
 172        UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
 173        UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
 174
 175        if (scratch_tmp[0] == c0_kscratch()) {
 176                UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
 177                UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
 178        }
 179}
 180
 181/**
 182 * build_set_exc_base() - Assemble code to write exception base address.
 183 * @p:          Code buffer pointer.
 184 * @reg:        Source register (generated code may set WG bit in @reg).
 185 *
 186 * Assemble code to modify the exception base address in the EBase register,
 187 * using the appropriately sized access and setting the WG bit if necessary.
 188 */
 189static inline void build_set_exc_base(u32 **p, unsigned int reg)
 190{
 191        if (cpu_has_ebase_wg) {
 192                /* Set WG so that all the bits get written */
 193                uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
 194                UASM_i_MTC0(p, reg, C0_EBASE);
 195        } else {
 196                uasm_i_mtc0(p, reg, C0_EBASE);
 197        }
 198}
 199
 200/**
 201 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
 202 * @addr:       Address to start writing code.
 203 *
 204 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
 205 * conforms to the following prototype:
 206 *
 207 * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
 208 *
 209 * The exit from the guest and return to the caller is handled by the code
 210 * generated by kvm_mips_build_ret_to_host().
 211 *
 212 * Returns:     Next address after end of written function.
 213 */
 214void *kvm_mips_build_vcpu_run(void *addr)
 215{
 216        u32 *p = addr;
 217        unsigned int i;
 218
 219        /*
 220         * A0: run
 221         * A1: vcpu
 222         */
 223
 224        /* k0/k1 not being used in host kernel context */
 225        UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
 226        for (i = 16; i < 32; ++i) {
 227                if (i == 24)
 228                        i = 28;
 229                UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
 230        }
 231
 232        /* Save host status */
 233        uasm_i_mfc0(&p, V0, C0_STATUS);
 234        UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
 235
 236        /* Save scratch registers, will be used to store pointer to vcpu etc */
 237        kvm_mips_build_save_scratch(&p, V1, K1);
 238
 239        /* VCPU scratch register has pointer to vcpu */
 240        UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
 241
 242        /* Offset into vcpu->arch */
 243        UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
 244
 245        /*
 246         * Save the host stack to VCPU, used for exception processing
 247         * when we exit from the Guest
 248         */
 249        UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 250
 251        /* Save the kernel gp as well */
 252        UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
 253
 254        /*
 255         * Setup status register for running the guest in UM, interrupts
 256         * are disabled
 257         */
 258        UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
 259        uasm_i_mtc0(&p, K0, C0_STATUS);
 260        uasm_i_ehb(&p);
 261
 262        /* load up the new EBASE */
 263        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
 264        build_set_exc_base(&p, K0);
 265
 266        /*
 267         * Now that the new EBASE has been loaded, unset BEV, set
 268         * interrupt mask as it was but make sure that timer interrupts
 269         * are enabled
 270         */
 271        uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
 272        uasm_i_andi(&p, V0, V0, ST0_IM);
 273        uasm_i_or(&p, K0, K0, V0);
 274        uasm_i_mtc0(&p, K0, C0_STATUS);
 275        uasm_i_ehb(&p);
 276
 277        p = kvm_mips_build_enter_guest(p);
 278
 279        return p;
 280}
 281
 282/**
 283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
 284 * @addr:       Address to start writing code.
 285 *
 286 * Assemble the code to resume guest execution. This code is common between the
 287 * initial entry into the guest from the host, and returning from the exit
 288 * handler back to the guest.
 289 *
 290 * Returns:     Next address after end of written function.
 291 */
 292static void *kvm_mips_build_enter_guest(void *addr)
 293{
 294        u32 *p = addr;
 295        unsigned int i;
 296        struct uasm_label labels[2];
 297        struct uasm_reloc relocs[2];
 298        struct uasm_label __maybe_unused *l = labels;
 299        struct uasm_reloc __maybe_unused *r = relocs;
 300
 301        memset(labels, 0, sizeof(labels));
 302        memset(relocs, 0, sizeof(relocs));
 303
 304        /* Set Guest EPC */
 305        UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
 306        UASM_i_MTC0(&p, T0, C0_EPC);
 307
 308#ifdef CONFIG_KVM_MIPS_VZ
 309        /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
 310        UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
 311        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
 312
 313        /*
 314         * Set up KVM GPA pgd.
 315         * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
 316         * - call tlbmiss_handler_setup_pgd(mm->pgd)
 317         * - write mm->pgd into CP0_PWBase
 318         *
 319         * We keep S0 pointing at struct kvm so we can load the ASID below.
 320         */
 321        UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
 322                          (int)offsetof(struct kvm_vcpu, arch), K1);
 323        UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
 324        UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
 325        uasm_i_jalr(&p, RA, T9);
 326        /* delay slot */
 327        if (cpu_has_htw)
 328                UASM_i_MTC0(&p, A0, C0_PWBASE);
 329        else
 330                uasm_i_nop(&p);
 331
 332        /* Set GM bit to setup eret to VZ guest context */
 333        uasm_i_addiu(&p, V1, ZERO, 1);
 334        uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
 335        uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
 336        uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
 337
 338        if (cpu_has_guestid) {
 339                /*
 340                 * Set root mode GuestID, so that root TLB refill handler can
 341                 * use the correct GuestID in the root TLB.
 342                 */
 343
 344                /* Get current GuestID */
 345                uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
 346                /* Set GuestCtl1.RID = GuestCtl1.ID */
 347                uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
 348                           MIPS_GCTL1_ID_WIDTH);
 349                uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
 350                           MIPS_GCTL1_RID_WIDTH);
 351                uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
 352
 353                /* GuestID handles dealiasing so we don't need to touch ASID */
 354                goto skip_asid_restore;
 355        }
 356
 357        /* Root ASID Dealias (RAD) */
 358
 359        /* Save host ASID */
 360        UASM_i_MFC0(&p, K0, C0_ENTRYHI);
 361        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
 362                  K1);
 363
 364        /* Set the root ASID for the Guest */
 365        UASM_i_ADDIU(&p, T1, S0,
 366                     offsetof(struct kvm, arch.gpa_mm.context.asid));
 367#else
 368        /* Set the ASID for the Guest Kernel or User */
 369        UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
 370        UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
 371                  T0);
 372        uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
 373        uasm_i_xori(&p, T0, T0, KSU_USER);
 374        uasm_il_bnez(&p, &r, T0, label_kernel_asid);
 375         UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
 376                                           guest_kernel_mm.context.asid));
 377        /* else user */
 378        UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
 379                                          guest_user_mm.context.asid));
 380        uasm_l_kernel_asid(&l, p);
 381#endif
 382
 383        /* t1: contains the base of the ASID array, need to get the cpu id  */
 384        /* smp_processor_id */
 385        uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
 386        /* index the ASID array */
 387        uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
 388        UASM_i_ADDU(&p, T3, T1, T2);
 389        UASM_i_LW(&p, K0, 0, T3);
 390#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
 391        /*
 392         * reuse ASID array offset
 393         * cpuinfo_mips is a multiple of sizeof(long)
 394         */
 395        uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
 396        uasm_i_mul(&p, T2, T2, T3);
 397
 398        UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
 399        UASM_i_ADDU(&p, AT, AT, T2);
 400        UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
 401        uasm_i_and(&p, K0, K0, T2);
 402#else
 403        uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
 404#endif
 405
 406#ifndef CONFIG_KVM_MIPS_VZ
 407        /*
 408         * Set up KVM T&E GVA pgd.
 409         * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
 410         * - call tlbmiss_handler_setup_pgd(mm->pgd)
 411         * - but skips write into CP0_PWBase for now
 412         */
 413        UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
 414                          (int)offsetof(struct mm_struct, context.asid), T1);
 415
 416        UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
 417        uasm_i_jalr(&p, RA, T9);
 418         uasm_i_mtc0(&p, K0, C0_ENTRYHI);
 419#else
 420        /* Set up KVM VZ root ASID (!guestid) */
 421        uasm_i_mtc0(&p, K0, C0_ENTRYHI);
 422skip_asid_restore:
 423#endif
 424        uasm_i_ehb(&p);
 425
 426        /* Disable RDHWR access */
 427        uasm_i_mtc0(&p, ZERO, C0_HWRENA);
 428
 429        /* load the guest context from VCPU and return */
 430        for (i = 1; i < 32; ++i) {
 431                /* Guest k0/k1 loaded later */
 432                if (i == K0 || i == K1)
 433                        continue;
 434                UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
 435        }
 436
 437#ifndef CONFIG_CPU_MIPSR6
 438        /* Restore hi/lo */
 439        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
 440        uasm_i_mthi(&p, K0);
 441
 442        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
 443        uasm_i_mtlo(&p, K0);
 444#endif
 445
 446        /* Restore the guest's k0/k1 registers */
 447        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
 448        UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
 449
 450        /* Jump to guest */
 451        uasm_i_eret(&p);
 452
 453        uasm_resolve_relocs(relocs, labels);
 454
 455        return p;
 456}
 457
 458/**
 459 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
 460 * @addr:       Address to start writing code.
 461 * @handler:    Address of common handler (within range of @addr).
 462 *
 463 * Assemble TLB refill exception fast path handler for guest execution.
 464 *
 465 * Returns:     Next address after end of written function.
 466 */
 467void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
 468{
 469        u32 *p = addr;
 470        struct uasm_label labels[2];
 471        struct uasm_reloc relocs[2];
 472        struct uasm_label *l = labels;
 473        struct uasm_reloc *r = relocs;
 474
 475        memset(labels, 0, sizeof(labels));
 476        memset(relocs, 0, sizeof(relocs));
 477
 478        /* Save guest k1 into scratch register */
 479        UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 480
 481        /* Get the VCPU pointer from the VCPU scratch register */
 482        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 483
 484        /* Save guest k0 into VCPU structure */
 485        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
 486
 487        /*
 488         * Some of the common tlbex code uses current_cpu_type(). For KVM we
 489         * assume symmetry and just disable preemption to silence the warning.
 490         */
 491        preempt_disable();
 492
 493        /*
 494         * Now for the actual refill bit. A lot of this can be common with the
 495         * Linux TLB refill handler, however we don't need to handle so many
 496         * cases. We only need to handle user mode refills, and user mode runs
 497         * with 32-bit addressing.
 498         *
 499         * Therefore the branch to label_vmalloc generated by build_get_pmde64()
 500         * that isn't resolved should never actually get taken and is harmless
 501         * to leave in place for now.
 502         */
 503
 504#ifdef CONFIG_64BIT
 505        build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
 506#else
 507        build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
 508#endif
 509
 510        /* we don't support huge pages yet */
 511
 512        build_get_ptep(&p, K0, K1);
 513        build_update_entries(&p, K0, K1);
 514        build_tlb_write_entry(&p, &l, &r, tlb_random);
 515
 516        preempt_enable();
 517
 518        /* Get the VCPU pointer from the VCPU scratch register again */
 519        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 520
 521        /* Restore the guest's k0/k1 registers */
 522        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
 523        uasm_i_ehb(&p);
 524        UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 525
 526        /* Jump to guest */
 527        uasm_i_eret(&p);
 528
 529        return p;
 530}
 531
 532/**
 533 * kvm_mips_build_exception() - Assemble first level guest exception handler.
 534 * @addr:       Address to start writing code.
 535 * @handler:    Address of common handler (within range of @addr).
 536 *
 537 * Assemble exception vector code for guest execution. The generated vector will
 538 * branch to the common exception handler generated by kvm_mips_build_exit().
 539 *
 540 * Returns:     Next address after end of written function.
 541 */
 542void *kvm_mips_build_exception(void *addr, void *handler)
 543{
 544        u32 *p = addr;
 545        struct uasm_label labels[2];
 546        struct uasm_reloc relocs[2];
 547        struct uasm_label *l = labels;
 548        struct uasm_reloc *r = relocs;
 549
 550        memset(labels, 0, sizeof(labels));
 551        memset(relocs, 0, sizeof(relocs));
 552
 553        /* Save guest k1 into scratch register */
 554        UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 555
 556        /* Get the VCPU pointer from the VCPU scratch register */
 557        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 558        UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
 559
 560        /* Save guest k0 into VCPU structure */
 561        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
 562
 563        /* Branch to the common handler */
 564        uasm_il_b(&p, &r, label_exit_common);
 565         uasm_i_nop(&p);
 566
 567        uasm_l_exit_common(&l, handler);
 568        uasm_resolve_relocs(relocs, labels);
 569
 570        return p;
 571}
 572
 573/**
 574 * kvm_mips_build_exit() - Assemble common guest exit handler.
 575 * @addr:       Address to start writing code.
 576 *
 577 * Assemble the generic guest exit handling code. This is called by the
 578 * exception vectors (generated by kvm_mips_build_exception()), and calls
 579 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
 580 * depending on the return value.
 581 *
 582 * Returns:     Next address after end of written function.
 583 */
 584void *kvm_mips_build_exit(void *addr)
 585{
 586        u32 *p = addr;
 587        unsigned int i;
 588        struct uasm_label labels[3];
 589        struct uasm_reloc relocs[3];
 590        struct uasm_label *l = labels;
 591        struct uasm_reloc *r = relocs;
 592
 593        memset(labels, 0, sizeof(labels));
 594        memset(relocs, 0, sizeof(relocs));
 595
 596        /*
 597         * Generic Guest exception handler. We end up here when the guest
 598         * does something that causes a trap to kernel mode.
 599         *
 600         * Both k0/k1 registers will have already been saved (k0 into the vcpu
 601         * structure, and k1 into the scratch_tmp register).
 602         *
 603         * The k1 register will already contain the kvm_vcpu_arch pointer.
 604         */
 605
 606        /* Start saving Guest context to VCPU */
 607        for (i = 0; i < 32; ++i) {
 608                /* Guest k0/k1 saved later */
 609                if (i == K0 || i == K1)
 610                        continue;
 611                UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
 612        }
 613
 614#ifndef CONFIG_CPU_MIPSR6
 615        /* We need to save hi/lo and restore them on the way out */
 616        uasm_i_mfhi(&p, T0);
 617        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
 618
 619        uasm_i_mflo(&p, T0);
 620        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
 621#endif
 622
 623        /* Finally save guest k1 to VCPU */
 624        uasm_i_ehb(&p);
 625        UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
 626        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
 627
 628        /* Now that context has been saved, we can use other registers */
 629
 630        /* Restore vcpu */
 631        UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
 632
 633        /* Restore run (vcpu->run) */
 634        UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
 635
 636        /*
 637         * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
 638         * the exception
 639         */
 640        UASM_i_MFC0(&p, K0, C0_EPC);
 641        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
 642
 643        UASM_i_MFC0(&p, K0, C0_BADVADDR);
 644        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
 645                  K1);
 646
 647        uasm_i_mfc0(&p, K0, C0_CAUSE);
 648        uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
 649
 650        if (cpu_has_badinstr) {
 651                uasm_i_mfc0(&p, K0, C0_BADINSTR);
 652                uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
 653                                           host_cp0_badinstr), K1);
 654        }
 655
 656        if (cpu_has_badinstrp) {
 657                uasm_i_mfc0(&p, K0, C0_BADINSTRP);
 658                uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
 659                                           host_cp0_badinstrp), K1);
 660        }
 661
 662        /* Now restore the host state just enough to run the handlers */
 663
 664        /* Switch EBASE to the one used by Linux */
 665        /* load up the host EBASE */
 666        uasm_i_mfc0(&p, V0, C0_STATUS);
 667
 668        uasm_i_lui(&p, AT, ST0_BEV >> 16);
 669        uasm_i_or(&p, K0, V0, AT);
 670
 671        uasm_i_mtc0(&p, K0, C0_STATUS);
 672        uasm_i_ehb(&p);
 673
 674        UASM_i_LA_mostly(&p, K0, (long)&ebase);
 675        UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
 676        build_set_exc_base(&p, K0);
 677
 678        if (raw_cpu_has_fpu) {
 679                /*
 680                 * If FPU is enabled, save FCR31 and clear it so that later
 681                 * ctc1's don't trigger FPE for pending exceptions.
 682                 */
 683                uasm_i_lui(&p, AT, ST0_CU1 >> 16);
 684                uasm_i_and(&p, V1, V0, AT);
 685                uasm_il_beqz(&p, &r, V1, label_fpu_1);
 686                 uasm_i_nop(&p);
 687                uasm_i_cfc1(&p, T0, 31);
 688                uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
 689                          K1);
 690                uasm_i_ctc1(&p, ZERO, 31);
 691                uasm_l_fpu_1(&l, p);
 692        }
 693
 694        if (cpu_has_msa) {
 695                /*
 696                 * If MSA is enabled, save MSACSR and clear it so that later
 697                 * instructions don't trigger MSAFPE for pending exceptions.
 698                 */
 699                uasm_i_mfc0(&p, T0, C0_CONFIG5);
 700                uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
 701                uasm_il_beqz(&p, &r, T0, label_msa_1);
 702                 uasm_i_nop(&p);
 703                uasm_i_cfcmsa(&p, T0, MSA_CSR);
 704                uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
 705                          K1);
 706                uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
 707                uasm_l_msa_1(&l, p);
 708        }
 709
 710#ifdef CONFIG_KVM_MIPS_VZ
 711        /* Restore host ASID */
 712        if (!cpu_has_guestid) {
 713                UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
 714                          K1);
 715                UASM_i_MTC0(&p, K0, C0_ENTRYHI);
 716        }
 717
 718        /*
 719         * Set up normal Linux process pgd.
 720         * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
 721         * - call tlbmiss_handler_setup_pgd(mm->pgd)
 722         * - write mm->pgd into CP0_PWBase
 723         */
 724        UASM_i_LW(&p, A0,
 725                  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
 726        UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
 727        uasm_i_jalr(&p, RA, T9);
 728        /* delay slot */
 729        if (cpu_has_htw)
 730                UASM_i_MTC0(&p, A0, C0_PWBASE);
 731        else
 732                uasm_i_nop(&p);
 733
 734        /* Clear GM bit so we don't enter guest mode when EXL is cleared */
 735        uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
 736        uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
 737        uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
 738
 739        /* Save GuestCtl0 so we can access GExcCode after CPU migration */
 740        uasm_i_sw(&p, K0,
 741                  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
 742
 743        if (cpu_has_guestid) {
 744                /*
 745                 * Clear root mode GuestID, so that root TLB operations use the
 746                 * root GuestID in the root TLB.
 747                 */
 748                uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
 749                /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
 750                uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
 751                           MIPS_GCTL1_RID_WIDTH);
 752                uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
 753        }
 754#endif
 755
 756        /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
 757        uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
 758        uasm_i_and(&p, V0, V0, AT);
 759        uasm_i_lui(&p, AT, ST0_CU0 >> 16);
 760        uasm_i_or(&p, V0, V0, AT);
 761#ifdef CONFIG_64BIT
 762        uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
 763#endif
 764        uasm_i_mtc0(&p, V0, C0_STATUS);
 765        uasm_i_ehb(&p);
 766
 767        /* Load up host GP */
 768        UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
 769
 770        /* Need a stack before we can jump to "C" */
 771        UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 772
 773        /* Saved host state */
 774        UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
 775
 776        /*
 777         * XXXKYMA do we need to load the host ASID, maybe not because the
 778         * kernel entries are marked GLOBAL, need to verify
 779         */
 780
 781        /* Restore host scratch registers, as we'll have clobbered them */
 782        kvm_mips_build_restore_scratch(&p, K0, SP);
 783
 784        /* Restore RDHWR access */
 785        UASM_i_LA_mostly(&p, K0, (long)&hwrena);
 786        uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
 787        uasm_i_mtc0(&p, K0, C0_HWRENA);
 788
 789        /* Jump to handler */
 790        /*
 791         * XXXKYMA: not sure if this is safe, how large is the stack??
 792         * Now jump to the kvm_mips_handle_exit() to see if we can deal
 793         * with this in the kernel
 794         */
 795        uasm_i_move(&p, A0, S0);
 796        uasm_i_move(&p, A1, S1);
 797        UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
 798        uasm_i_jalr(&p, RA, T9);
 799         UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
 800
 801        uasm_resolve_relocs(relocs, labels);
 802
 803        p = kvm_mips_build_ret_from_exit(p);
 804
 805        return p;
 806}
 807
 808/**
 809 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
 810 * @addr:       Address to start writing code.
 811 *
 812 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
 813 * resuming the guest or returning to the host depending on the return value.
 814 *
 815 * Returns:     Next address after end of written function.
 816 */
 817static void *kvm_mips_build_ret_from_exit(void *addr)
 818{
 819        u32 *p = addr;
 820        struct uasm_label labels[2];
 821        struct uasm_reloc relocs[2];
 822        struct uasm_label *l = labels;
 823        struct uasm_reloc *r = relocs;
 824
 825        memset(labels, 0, sizeof(labels));
 826        memset(relocs, 0, sizeof(relocs));
 827
 828        /* Return from handler Make sure interrupts are disabled */
 829        uasm_i_di(&p, ZERO);
 830        uasm_i_ehb(&p);
 831
 832        /*
 833         * XXXKYMA: k0/k1 could have been blown away if we processed
 834         * an exception while we were handling the exception from the
 835         * guest, reload k1
 836         */
 837
 838        uasm_i_move(&p, K1, S1);
 839        UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
 840
 841        /*
 842         * Check return value, should tell us if we are returning to the
 843         * host (handle I/O etc)or resuming the guest
 844         */
 845        uasm_i_andi(&p, T0, V0, RESUME_HOST);
 846        uasm_il_bnez(&p, &r, T0, label_return_to_host);
 847         uasm_i_nop(&p);
 848
 849        p = kvm_mips_build_ret_to_guest(p);
 850
 851        uasm_l_return_to_host(&l, p);
 852        p = kvm_mips_build_ret_to_host(p);
 853
 854        uasm_resolve_relocs(relocs, labels);
 855
 856        return p;
 857}
 858
 859/**
 860 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
 861 * @addr:       Address to start writing code.
 862 *
 863 * Assemble the code to handle return from the guest exit handler
 864 * (kvm_mips_handle_exit()) back to the guest.
 865 *
 866 * Returns:     Next address after end of written function.
 867 */
 868static void *kvm_mips_build_ret_to_guest(void *addr)
 869{
 870        u32 *p = addr;
 871
 872        /* Put the saved pointer to vcpu (s1) back into the scratch register */
 873        UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
 874
 875        /* Load up the Guest EBASE to minimize the window where BEV is set */
 876        UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
 877
 878        /* Switch EBASE back to the one used by KVM */
 879        uasm_i_mfc0(&p, V1, C0_STATUS);
 880        uasm_i_lui(&p, AT, ST0_BEV >> 16);
 881        uasm_i_or(&p, K0, V1, AT);
 882        uasm_i_mtc0(&p, K0, C0_STATUS);
 883        uasm_i_ehb(&p);
 884        build_set_exc_base(&p, T0);
 885
 886        /* Setup status register for running guest in UM */
 887        uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
 888        UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
 889        uasm_i_and(&p, V1, V1, AT);
 890        uasm_i_mtc0(&p, V1, C0_STATUS);
 891        uasm_i_ehb(&p);
 892
 893        p = kvm_mips_build_enter_guest(p);
 894
 895        return p;
 896}
 897
 898/**
 899 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
 900 * @addr:       Address to start writing code.
 901 *
 902 * Assemble the code to handle return from the guest exit handler
 903 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
 904 * function generated by kvm_mips_build_vcpu_run().
 905 *
 906 * Returns:     Next address after end of written function.
 907 */
 908static void *kvm_mips_build_ret_to_host(void *addr)
 909{
 910        u32 *p = addr;
 911        unsigned int i;
 912
 913        /* EBASE is already pointing to Linux */
 914        UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 915        UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
 916
 917        /*
 918         * r2/v0 is the return code, shift it down by 2 (arithmetic)
 919         * to recover the err code
 920         */
 921        uasm_i_sra(&p, K0, V0, 2);
 922        uasm_i_move(&p, V0, K0);
 923
 924        /* Load context saved on the host stack */
 925        for (i = 16; i < 31; ++i) {
 926                if (i == 24)
 927                        i = 28;
 928                UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
 929        }
 930
 931        /* Restore RDHWR access */
 932        UASM_i_LA_mostly(&p, K0, (long)&hwrena);
 933        uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
 934        uasm_i_mtc0(&p, K0, C0_HWRENA);
 935
 936        /* Restore RA, which is the address we will return to */
 937        UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
 938        uasm_i_jr(&p, RA);
 939         uasm_i_nop(&p);
 940
 941        return p;
 942}
 943
 944