linux/arch/mips/sgi-ip27/ip27-irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
   4 *
   5 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
   6 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   7 * Copyright (C) 1999 - 2001 Kanoj Sarcar
   8 */
   9
  10#undef DEBUG
  11
  12#include <linux/init.h>
  13#include <linux/irq.h>
  14#include <linux/errno.h>
  15#include <linux/signal.h>
  16#include <linux/sched.h>
  17#include <linux/types.h>
  18#include <linux/interrupt.h>
  19#include <linux/ioport.h>
  20#include <linux/timex.h>
  21#include <linux/smp.h>
  22#include <linux/random.h>
  23#include <linux/kernel.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/delay.h>
  26#include <linux/bitops.h>
  27
  28#include <asm/bootinfo.h>
  29#include <asm/io.h>
  30#include <asm/mipsregs.h>
  31
  32#include <asm/processor.h>
  33#include <asm/sn/addrs.h>
  34#include <asm/sn/agent.h>
  35#include <asm/sn/arch.h>
  36#include <asm/sn/hub.h>
  37#include <asm/sn/intr.h>
  38
  39/*
  40 * Linux has a controller-independent x86 interrupt architecture.
  41 * every controller has a 'controller-template', that is used
  42 * by the main code to do the right thing. Each driver-visible
  43 * interrupt source is transparently wired to the appropriate
  44 * controller. Thus drivers need not be aware of the
  45 * interrupt-controller.
  46 *
  47 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
  48 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
  49 * (IO-APICs assumed to be messaging to Pentium local-APICs)
  50 *
  51 * the code is designed to be easily extended with new/different
  52 * interrupt controllers, without having to do assembly magic.
  53 */
  54
  55extern asmlinkage void ip27_irq(void);
  56
  57/*
  58 * Find first bit set
  59 */
  60static int ms1bit(unsigned long x)
  61{
  62        int b = 0, s;
  63
  64        s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
  65        s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
  66        s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
  67        s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
  68        s =  1; if (x >>  1 == 0) s = 0; b += s;
  69
  70        return b;
  71}
  72
  73/*
  74 * This code is unnecessarily complex, because we do
  75 * intr enabling. Basically, once we grab the set of intrs we need
  76 * to service, we must mask _all_ these interrupts; firstly, to make
  77 * sure the same intr does not intr again, causing recursion that
  78 * can lead to stack overflow. Secondly, we can not just mask the
  79 * one intr we are do_IRQing, because the non-masked intrs in the
  80 * first set might intr again, causing multiple servicings of the
  81 * same intr. This effect is mostly seen for intercpu intrs.
  82 * Kanoj 05.13.00
  83 */
  84
  85static void ip27_do_irq_mask0(void)
  86{
  87        int irq, swlevel;
  88        hubreg_t pend0, mask0;
  89        cpuid_t cpu = smp_processor_id();
  90        int pi_int_mask0 =
  91                (cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
  92
  93        /* copied from Irix intpend0() */
  94        pend0 = LOCAL_HUB_L(PI_INT_PEND0);
  95        mask0 = LOCAL_HUB_L(pi_int_mask0);
  96
  97        pend0 &= mask0;         /* Pick intrs we should look at */
  98        if (!pend0)
  99                return;
 100
 101        swlevel = ms1bit(pend0);
 102#ifdef CONFIG_SMP
 103        if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
 104                LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
 105                scheduler_ipi();
 106        } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
 107                LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
 108                scheduler_ipi();
 109        } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
 110                LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
 111                irq_enter();
 112                generic_smp_call_function_interrupt();
 113                irq_exit();
 114        } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
 115                LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
 116                irq_enter();
 117                generic_smp_call_function_interrupt();
 118                irq_exit();
 119        } else
 120#endif
 121        {
 122                /* "map" swlevel to irq */
 123                struct slice_data *si = cpu_data[cpu].data;
 124
 125                irq = si->level_to_irq[swlevel];
 126                do_IRQ(irq);
 127        }
 128
 129        LOCAL_HUB_L(PI_INT_PEND0);
 130}
 131
 132static void ip27_do_irq_mask1(void)
 133{
 134        int irq, swlevel;
 135        hubreg_t pend1, mask1;
 136        cpuid_t cpu = smp_processor_id();
 137        int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
 138        struct slice_data *si = cpu_data[cpu].data;
 139
 140        /* copied from Irix intpend0() */
 141        pend1 = LOCAL_HUB_L(PI_INT_PEND1);
 142        mask1 = LOCAL_HUB_L(pi_int_mask1);
 143
 144        pend1 &= mask1;         /* Pick intrs we should look at */
 145        if (!pend1)
 146                return;
 147
 148        swlevel = ms1bit(pend1);
 149        /* "map" swlevel to irq */
 150        irq = si->level_to_irq[swlevel];
 151        LOCAL_HUB_CLR_INTR(swlevel);
 152        do_IRQ(irq);
 153
 154        LOCAL_HUB_L(PI_INT_PEND1);
 155}
 156
 157static void ip27_prof_timer(void)
 158{
 159        panic("CPU %d got a profiling interrupt", smp_processor_id());
 160}
 161
 162static void ip27_hub_error(void)
 163{
 164        panic("CPU %d got a hub error interrupt", smp_processor_id());
 165}
 166
 167asmlinkage void plat_irq_dispatch(void)
 168{
 169        unsigned long pending = read_c0_cause() & read_c0_status();
 170        extern unsigned int rt_timer_irq;
 171
 172        if (pending & CAUSEF_IP4)
 173                do_IRQ(rt_timer_irq);
 174        else if (pending & CAUSEF_IP2)  /* PI_INT_PEND_0 or CC_PEND_{A|B} */
 175                ip27_do_irq_mask0();
 176        else if (pending & CAUSEF_IP3)  /* PI_INT_PEND_1 */
 177                ip27_do_irq_mask1();
 178        else if (pending & CAUSEF_IP5)
 179                ip27_prof_timer();
 180        else if (pending & CAUSEF_IP6)
 181                ip27_hub_error();
 182}
 183
 184void __init arch_init_irq(void)
 185{
 186}
 187
 188void install_ipi(void)
 189{
 190        int slice = LOCAL_HUB_L(PI_CPU_NUM);
 191        int cpu = smp_processor_id();
 192        struct slice_data *si = cpu_data[cpu].data;
 193        struct hub_data *hub = hub_data(cpu_to_node(cpu));
 194        int resched, call;
 195
 196        resched = CPU_RESCHED_A_IRQ + slice;
 197        __set_bit(resched, hub->irq_alloc_mask);
 198        __set_bit(resched, si->irq_enable_mask);
 199        LOCAL_HUB_CLR_INTR(resched);
 200
 201        call = CPU_CALL_A_IRQ + slice;
 202        __set_bit(call, hub->irq_alloc_mask);
 203        __set_bit(call, si->irq_enable_mask);
 204        LOCAL_HUB_CLR_INTR(call);
 205
 206        if (slice == 0) {
 207                LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
 208                LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
 209        } else {
 210                LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
 211                LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
 212        }
 213}
 214