linux/arch/powerpc/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
   6 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
   7 *    Copyright (C) 1996 Paul Mackerras
   8 *
   9 *  Derived from "arch/i386/mm/init.c"
  10 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  11 *
  12 *  Dave Engebretsen <engebret@us.ibm.com>
  13 *      Rework for PPC64 port.
  14 *
  15 *  This program is free software; you can redistribute it and/or
  16 *  modify it under the terms of the GNU General Public License
  17 *  as published by the Free Software Foundation; either version
  18 *  2 of the License, or (at your option) any later version.
  19 *
  20 */
  21
  22#undef DEBUG
  23
  24#include <linux/signal.h>
  25#include <linux/sched.h>
  26#include <linux/kernel.h>
  27#include <linux/errno.h>
  28#include <linux/string.h>
  29#include <linux/types.h>
  30#include <linux/mman.h>
  31#include <linux/mm.h>
  32#include <linux/swap.h>
  33#include <linux/stddef.h>
  34#include <linux/vmalloc.h>
  35#include <linux/init.h>
  36#include <linux/delay.h>
  37#include <linux/highmem.h>
  38#include <linux/idr.h>
  39#include <linux/nodemask.h>
  40#include <linux/module.h>
  41#include <linux/poison.h>
  42#include <linux/memblock.h>
  43#include <linux/hugetlb.h>
  44#include <linux/slab.h>
  45#include <linux/of_fdt.h>
  46#include <linux/libfdt.h>
  47#include <linux/memremap.h>
  48
  49#include <asm/pgalloc.h>
  50#include <asm/page.h>
  51#include <asm/prom.h>
  52#include <asm/rtas.h>
  53#include <asm/io.h>
  54#include <asm/mmu_context.h>
  55#include <asm/pgtable.h>
  56#include <asm/mmu.h>
  57#include <linux/uaccess.h>
  58#include <asm/smp.h>
  59#include <asm/machdep.h>
  60#include <asm/tlb.h>
  61#include <asm/eeh.h>
  62#include <asm/processor.h>
  63#include <asm/mmzone.h>
  64#include <asm/cputable.h>
  65#include <asm/sections.h>
  66#include <asm/iommu.h>
  67#include <asm/vdso.h>
  68
  69#include <mm/mmu_decl.h>
  70
  71phys_addr_t memstart_addr = ~0;
  72EXPORT_SYMBOL_GPL(memstart_addr);
  73phys_addr_t kernstart_addr;
  74EXPORT_SYMBOL_GPL(kernstart_addr);
  75
  76#ifdef CONFIG_SPARSEMEM_VMEMMAP
  77/*
  78 * Given an address within the vmemmap, determine the pfn of the page that
  79 * represents the start of the section it is within.  Note that we have to
  80 * do this by hand as the proffered address may not be correctly aligned.
  81 * Subtraction of non-aligned pointers produces undefined results.
  82 */
  83static unsigned long __meminit vmemmap_section_start(unsigned long page)
  84{
  85        unsigned long offset = page - ((unsigned long)(vmemmap));
  86
  87        /* Return the pfn of the start of the section. */
  88        return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  89}
  90
  91/*
  92 * Check if this vmemmap page is already initialised.  If any section
  93 * which overlaps this vmemmap page is initialised then this page is
  94 * initialised already.
  95 */
  96static int __meminit vmemmap_populated(unsigned long start, int page_size)
  97{
  98        unsigned long end = start + page_size;
  99        start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
 100
 101        for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
 102                if (pfn_valid(page_to_pfn((struct page *)start)))
 103                        return 1;
 104
 105        return 0;
 106}
 107
 108/*
 109 * vmemmap virtual address space management does not have a traditonal page
 110 * table to track which virtual struct pages are backed by physical mapping.
 111 * The virtual to physical mappings are tracked in a simple linked list
 112 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
 113 * all times where as the 'next' list maintains the available
 114 * vmemmap_backing structures which have been deleted from the
 115 * 'vmemmap_global' list during system runtime (memory hotplug remove
 116 * operation). The freed 'vmemmap_backing' structures are reused later when
 117 * new requests come in without allocating fresh memory. This pointer also
 118 * tracks the allocated 'vmemmap_backing' structures as we allocate one
 119 * full page memory at a time when we dont have any.
 120 */
 121struct vmemmap_backing *vmemmap_list;
 122static struct vmemmap_backing *next;
 123
 124/*
 125 * The same pointer 'next' tracks individual chunks inside the allocated
 126 * full page during the boot time and again tracks the freeed nodes during
 127 * runtime. It is racy but it does not happen as they are separated by the
 128 * boot process. Will create problem if some how we have memory hotplug
 129 * operation during boot !!
 130 */
 131static int num_left;
 132static int num_freed;
 133
 134static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
 135{
 136        struct vmemmap_backing *vmem_back;
 137        /* get from freed entries first */
 138        if (num_freed) {
 139                num_freed--;
 140                vmem_back = next;
 141                next = next->list;
 142
 143                return vmem_back;
 144        }
 145
 146        /* allocate a page when required and hand out chunks */
 147        if (!num_left) {
 148                next = vmemmap_alloc_block(PAGE_SIZE, node);
 149                if (unlikely(!next)) {
 150                        WARN_ON(1);
 151                        return NULL;
 152                }
 153                num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
 154        }
 155
 156        num_left--;
 157
 158        return next++;
 159}
 160
 161static __meminit void vmemmap_list_populate(unsigned long phys,
 162                                            unsigned long start,
 163                                            int node)
 164{
 165        struct vmemmap_backing *vmem_back;
 166
 167        vmem_back = vmemmap_list_alloc(node);
 168        if (unlikely(!vmem_back)) {
 169                WARN_ON(1);
 170                return;
 171        }
 172
 173        vmem_back->phys = phys;
 174        vmem_back->virt_addr = start;
 175        vmem_back->list = vmemmap_list;
 176
 177        vmemmap_list = vmem_back;
 178}
 179
 180static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
 181                                unsigned long page_size)
 182{
 183        unsigned long nr_pfn = page_size / sizeof(struct page);
 184        unsigned long start_pfn = page_to_pfn((struct page *)start);
 185
 186        if ((start_pfn + nr_pfn) > altmap->end_pfn)
 187                return true;
 188
 189        if (start_pfn < altmap->base_pfn)
 190                return true;
 191
 192        return false;
 193}
 194
 195int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 196                struct vmem_altmap *altmap)
 197{
 198        unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 199
 200        /* Align to the page size of the linear mapping. */
 201        start = ALIGN_DOWN(start, page_size);
 202
 203        pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
 204
 205        for (; start < end; start += page_size) {
 206                void *p = NULL;
 207                int rc;
 208
 209                if (vmemmap_populated(start, page_size))
 210                        continue;
 211
 212                /*
 213                 * Allocate from the altmap first if we have one. This may
 214                 * fail due to alignment issues when using 16MB hugepages, so
 215                 * fall back to system memory if the altmap allocation fail.
 216                 */
 217                if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
 218                        p = altmap_alloc_block_buf(page_size, altmap);
 219                        if (!p)
 220                                pr_debug("altmap block allocation failed, falling back to system memory");
 221                }
 222                if (!p)
 223                        p = vmemmap_alloc_block_buf(page_size, node);
 224                if (!p)
 225                        return -ENOMEM;
 226
 227                vmemmap_list_populate(__pa(p), start, node);
 228
 229                pr_debug("      * %016lx..%016lx allocated at %p\n",
 230                         start, start + page_size, p);
 231
 232                rc = vmemmap_create_mapping(start, page_size, __pa(p));
 233                if (rc < 0) {
 234                        pr_warn("%s: Unable to create vmemmap mapping: %d\n",
 235                                __func__, rc);
 236                        return -EFAULT;
 237                }
 238        }
 239
 240        return 0;
 241}
 242
 243#ifdef CONFIG_MEMORY_HOTPLUG
 244static unsigned long vmemmap_list_free(unsigned long start)
 245{
 246        struct vmemmap_backing *vmem_back, *vmem_back_prev;
 247
 248        vmem_back_prev = vmem_back = vmemmap_list;
 249
 250        /* look for it with prev pointer recorded */
 251        for (; vmem_back; vmem_back = vmem_back->list) {
 252                if (vmem_back->virt_addr == start)
 253                        break;
 254                vmem_back_prev = vmem_back;
 255        }
 256
 257        if (unlikely(!vmem_back)) {
 258                WARN_ON(1);
 259                return 0;
 260        }
 261
 262        /* remove it from vmemmap_list */
 263        if (vmem_back == vmemmap_list) /* remove head */
 264                vmemmap_list = vmem_back->list;
 265        else
 266                vmem_back_prev->list = vmem_back->list;
 267
 268        /* next point to this freed entry */
 269        vmem_back->list = next;
 270        next = vmem_back;
 271        num_freed++;
 272
 273        return vmem_back->phys;
 274}
 275
 276void __ref vmemmap_free(unsigned long start, unsigned long end,
 277                struct vmem_altmap *altmap)
 278{
 279        unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 280        unsigned long page_order = get_order(page_size);
 281        unsigned long alt_start = ~0, alt_end = ~0;
 282        unsigned long base_pfn;
 283
 284        start = ALIGN_DOWN(start, page_size);
 285        if (altmap) {
 286                alt_start = altmap->base_pfn;
 287                alt_end = altmap->base_pfn + altmap->reserve +
 288                          altmap->free + altmap->alloc + altmap->align;
 289        }
 290
 291        pr_debug("vmemmap_free %lx...%lx\n", start, end);
 292
 293        for (; start < end; start += page_size) {
 294                unsigned long nr_pages, addr;
 295                struct page *section_base;
 296                struct page *page;
 297
 298                /*
 299                 * the section has already be marked as invalid, so
 300                 * vmemmap_populated() true means some other sections still
 301                 * in this page, so skip it.
 302                 */
 303                if (vmemmap_populated(start, page_size))
 304                        continue;
 305
 306                addr = vmemmap_list_free(start);
 307                if (!addr)
 308                        continue;
 309
 310                page = pfn_to_page(addr >> PAGE_SHIFT);
 311                section_base = pfn_to_page(vmemmap_section_start(start));
 312                nr_pages = 1 << page_order;
 313                base_pfn = PHYS_PFN(addr);
 314
 315                if (base_pfn >= alt_start && base_pfn < alt_end) {
 316                        vmem_altmap_free(altmap, nr_pages);
 317                } else if (PageReserved(page)) {
 318                        /* allocated from bootmem */
 319                        if (page_size < PAGE_SIZE) {
 320                                /*
 321                                 * this shouldn't happen, but if it is
 322                                 * the case, leave the memory there
 323                                 */
 324                                WARN_ON_ONCE(1);
 325                        } else {
 326                                while (nr_pages--)
 327                                        free_reserved_page(page++);
 328                        }
 329                } else {
 330                        free_pages((unsigned long)(__va(addr)), page_order);
 331                }
 332
 333                vmemmap_remove_mapping(start, page_size);
 334        }
 335}
 336#endif
 337void register_page_bootmem_memmap(unsigned long section_nr,
 338                                  struct page *start_page, unsigned long size)
 339{
 340}
 341
 342#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 343
 344#ifdef CONFIG_PPC_BOOK3S_64
 345static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
 346
 347static int __init parse_disable_radix(char *p)
 348{
 349        bool val;
 350
 351        if (!p)
 352                val = true;
 353        else if (kstrtobool(p, &val))
 354                return -EINVAL;
 355
 356        disable_radix = val;
 357
 358        return 0;
 359}
 360early_param("disable_radix", parse_disable_radix);
 361
 362/*
 363 * If we're running under a hypervisor, we need to check the contents of
 364 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
 365 * radix.  If not, we clear the radix feature bit so we fall back to hash.
 366 */
 367static void __init early_check_vec5(void)
 368{
 369        unsigned long root, chosen;
 370        int size;
 371        const u8 *vec5;
 372        u8 mmu_supported;
 373
 374        root = of_get_flat_dt_root();
 375        chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
 376        if (chosen == -FDT_ERR_NOTFOUND) {
 377                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 378                return;
 379        }
 380        vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
 381        if (!vec5) {
 382                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 383                return;
 384        }
 385        if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
 386                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 387                return;
 388        }
 389
 390        /* Check for supported configuration */
 391        mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
 392                        OV5_FEAT(OV5_MMU_SUPPORT);
 393        if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
 394                /* Hypervisor only supports radix - check enabled && GTSE */
 395                if (!early_radix_enabled()) {
 396                        pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
 397                }
 398                if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
 399                                                OV5_FEAT(OV5_RADIX_GTSE))) {
 400                        cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
 401                } else
 402                        cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
 403                /* Do radix anyway - the hypervisor said we had to */
 404                cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
 405        } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
 406                /* Hypervisor only supports hash - disable radix */
 407                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 408                cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
 409        }
 410}
 411
 412void __init mmu_early_init_devtree(void)
 413{
 414        /* Disable radix mode based on kernel command line. */
 415        if (disable_radix)
 416                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 417
 418        /*
 419         * Check /chosen/ibm,architecture-vec-5 if running as a guest.
 420         * When running bare-metal, we can use radix if we like
 421         * even though the ibm,architecture-vec-5 property created by
 422         * skiboot doesn't have the necessary bits set.
 423         */
 424        if (!(mfmsr() & MSR_HV))
 425                early_check_vec5();
 426
 427        if (early_radix_enabled()) {
 428                radix__early_init_devtree();
 429                /*
 430                 * We have finalized the translation we are going to use by now.
 431                 * Radix mode is not limited by RMA / VRMA addressing.
 432                 * Hence don't limit memblock allocations.
 433                 */
 434                ppc64_rma_size = ULONG_MAX;
 435                memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 436        } else
 437                hash__early_init_devtree();
 438}
 439#endif /* CONFIG_PPC_BOOK3S_64 */
 440