linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/bug.h>
  21#include <asm/page.h>
  22#include <asm/uv.h>
  23
  24extern pgd_t swapper_pg_dir[];
  25extern void paging_init(void);
  26
  27enum {
  28        PG_DIRECT_MAP_4K = 0,
  29        PG_DIRECT_MAP_1M,
  30        PG_DIRECT_MAP_2G,
  31        PG_DIRECT_MAP_MAX
  32};
  33
  34extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  35
  36static inline void update_page_count(int level, long count)
  37{
  38        if (IS_ENABLED(CONFIG_PROC_FS))
  39                atomic_long_add(count, &direct_pages_count[level]);
  40}
  41
  42struct seq_file;
  43void arch_report_meminfo(struct seq_file *m);
  44
  45/*
  46 * The S390 doesn't have any external MMU info: the kernel page
  47 * tables contain all the necessary information.
  48 */
  49#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  50#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  51
  52/*
  53 * ZERO_PAGE is a global shared page that is always zero; used
  54 * for zero-mapped memory areas etc..
  55 */
  56
  57extern unsigned long empty_zero_page;
  58extern unsigned long zero_page_mask;
  59
  60#define ZERO_PAGE(vaddr) \
  61        (virt_to_page((void *)(empty_zero_page + \
  62         (((unsigned long)(vaddr)) &zero_page_mask))))
  63#define __HAVE_COLOR_ZERO_PAGE
  64
  65/* TODO: s390 cannot support io_remap_pfn_range... */
  66
  67#define FIRST_USER_ADDRESS  0UL
  68
  69#define pte_ERROR(e) \
  70        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  71#define pmd_ERROR(e) \
  72        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  73#define pud_ERROR(e) \
  74        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  75#define p4d_ERROR(e) \
  76        printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  77#define pgd_ERROR(e) \
  78        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  79
  80/*
  81 * The vmalloc and module area will always be on the topmost area of the
  82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  84 * modules will reside. That makes sure that inter module branches always
  85 * happen without trampolines and in addition the placement within a 2GB frame
  86 * is branch prediction unit friendly.
  87 */
  88extern unsigned long VMALLOC_START;
  89extern unsigned long VMALLOC_END;
  90extern struct page *vmemmap;
  91
  92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  93
  94extern unsigned long MODULES_VADDR;
  95extern unsigned long MODULES_END;
  96#define MODULES_VADDR   MODULES_VADDR
  97#define MODULES_END     MODULES_END
  98#define MODULES_LEN     (1UL << 31)
  99
 100static inline int is_module_addr(void *addr)
 101{
 102        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 103        if (addr < (void *)MODULES_VADDR)
 104                return 0;
 105        if (addr > (void *)MODULES_END)
 106                return 0;
 107        return 1;
 108}
 109
 110/*
 111 * A 64 bit pagetable entry of S390 has following format:
 112 * |                     PFRA                         |0IPC|  OS  |
 113 * 0000000000111111111122222222223333333333444444444455555555556666
 114 * 0123456789012345678901234567890123456789012345678901234567890123
 115 *
 116 * I Page-Invalid Bit:    Page is not available for address-translation
 117 * P Page-Protection Bit: Store access not possible for page
 118 * C Change-bit override: HW is not required to set change bit
 119 *
 120 * A 64 bit segmenttable entry of S390 has following format:
 121 * |        P-table origin                              |      TT
 122 * 0000000000111111111122222222223333333333444444444455555555556666
 123 * 0123456789012345678901234567890123456789012345678901234567890123
 124 *
 125 * I Segment-Invalid Bit:    Segment is not available for address-translation
 126 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 127 * P Page-Protection Bit: Store access not possible for page
 128 * TT Type 00
 129 *
 130 * A 64 bit region table entry of S390 has following format:
 131 * |        S-table origin                             |   TF  TTTL
 132 * 0000000000111111111122222222223333333333444444444455555555556666
 133 * 0123456789012345678901234567890123456789012345678901234567890123
 134 *
 135 * I Segment-Invalid Bit:    Segment is not available for address-translation
 136 * TT Type 01
 137 * TF
 138 * TL Table length
 139 *
 140 * The 64 bit regiontable origin of S390 has following format:
 141 * |      region table origon                          |       DTTL
 142 * 0000000000111111111122222222223333333333444444444455555555556666
 143 * 0123456789012345678901234567890123456789012345678901234567890123
 144 *
 145 * X Space-Switch event:
 146 * G Segment-Invalid Bit:  
 147 * P Private-Space Bit:    
 148 * S Storage-Alteration:
 149 * R Real space
 150 * TL Table-Length:
 151 *
 152 * A storage key has the following format:
 153 * | ACC |F|R|C|0|
 154 *  0   3 4 5 6 7
 155 * ACC: access key
 156 * F  : fetch protection bit
 157 * R  : referenced bit
 158 * C  : changed bit
 159 */
 160
 161/* Hardware bits in the page table entry */
 162#define _PAGE_NOEXEC    0x100           /* HW no-execute bit  */
 163#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 164#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 165#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 166
 167/* Software bits in the page table entry */
 168#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 169#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 170#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 171#define _PAGE_READ      0x010           /* SW pte read bit */
 172#define _PAGE_WRITE     0x020           /* SW pte write bit */
 173#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 174#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 175
 176#ifdef CONFIG_MEM_SOFT_DIRTY
 177#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 178#else
 179#define _PAGE_SOFT_DIRTY 0x000
 180#endif
 181
 182/* Set of bits not changed in pte_modify */
 183#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 184                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 185
 186/*
 187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 189 * distinguish present from not-present ptes. It is changed only with the page
 190 * table lock held.
 191 *
 192 * The following table gives the different possible bit combinations for
 193 * the pte hardware and software bits in the last 12 bits of a pte
 194 * (. unassigned bit, x don't care, t swap type):
 195 *
 196 *                              842100000000
 197 *                              000084210000
 198 *                              000000008421
 199 *                              .IR.uswrdy.p
 200 * empty                        .10.00000000
 201 * swap                         .11..ttttt.0
 202 * prot-none, clean, old        .11.xx0000.1
 203 * prot-none, clean, young      .11.xx0001.1
 204 * prot-none, dirty, old        .11.xx0010.1
 205 * prot-none, dirty, young      .11.xx0011.1
 206 * read-only, clean, old        .11.xx0100.1
 207 * read-only, clean, young      .01.xx0101.1
 208 * read-only, dirty, old        .11.xx0110.1
 209 * read-only, dirty, young      .01.xx0111.1
 210 * read-write, clean, old       .11.xx1100.1
 211 * read-write, clean, young     .01.xx1101.1
 212 * read-write, dirty, old       .10.xx1110.1
 213 * read-write, dirty, young     .00.xx1111.1
 214 * HW-bits: R read-only, I invalid
 215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 216 *          u unused, l large
 217 *
 218 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 219 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 221 */
 222
 223/* Bits in the segment/region table address-space-control-element */
 224#define _ASCE_ORIGIN            ~0xfffUL/* region/segment table origin      */
 225#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 226#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 227#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 228#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 229#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 230#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 231#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 232#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 233#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 234#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 235
 236/* Bits in the region table entry */
 237#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 238#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 239#define _REGION_ENTRY_NOEXEC    0x100   /* region no-execute bit            */
 240#define _REGION_ENTRY_OFFSET    0xc0    /* region table offset              */
 241#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 242#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region table type mask           */
 243#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 244#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 245#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 246#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 247
 248#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 249#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 250#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 251#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 252#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 253#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 254
 255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address      */
 256#define _REGION3_ENTRY_DIRTY    0x2000  /* SW region dirty bit */
 257#define _REGION3_ENTRY_YOUNG    0x1000  /* SW region young bit */
 258#define _REGION3_ENTRY_LARGE    0x0400  /* RTTE-format control, large page  */
 259#define _REGION3_ENTRY_READ     0x0002  /* SW region read bit */
 260#define _REGION3_ENTRY_WRITE    0x0001  /* SW region write bit */
 261
 262#ifdef CONFIG_MEM_SOFT_DIRTY
 263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 264#else
 265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 266#endif
 267
 268#define _REGION_ENTRY_BITS       0xfffffffffffff22fUL
 269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
 270
 271/* Bits in the segment table entry */
 272#define _SEGMENT_ENTRY_BITS                     0xfffffffffffffe33UL
 273#define _SEGMENT_ENTRY_BITS_LARGE               0xfffffffffff0ff33UL
 274#define _SEGMENT_ENTRY_HARDWARE_BITS            0xfffffffffffffe30UL
 275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE      0xfffffffffff00730UL
 276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 277#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* page table origin                */
 278#define _SEGMENT_ENTRY_PROTECT  0x200   /* segment protection bit           */
 279#define _SEGMENT_ENTRY_NOEXEC   0x100   /* segment no-execute bit           */
 280#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c   /* segment table type mask          */
 282
 283#define _SEGMENT_ENTRY          (0)
 284#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 285
 286#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 287#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 288#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 289#define _SEGMENT_ENTRY_WRITE    0x0002  /* SW segment write bit */
 290#define _SEGMENT_ENTRY_READ     0x0001  /* SW segment read bit */
 291
 292#ifdef CONFIG_MEM_SOFT_DIRTY
 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 294#else
 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 296#endif
 297
 298#define _CRST_ENTRIES   2048    /* number of region/segment table entries */
 299#define _PAGE_ENTRIES   256     /* number of page table entries */
 300
 301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 303
 304#define _REGION1_SHIFT  53
 305#define _REGION2_SHIFT  42
 306#define _REGION3_SHIFT  31
 307#define _SEGMENT_SHIFT  20
 308
 309#define _REGION1_INDEX  (0x7ffUL << _REGION1_SHIFT)
 310#define _REGION2_INDEX  (0x7ffUL << _REGION2_SHIFT)
 311#define _REGION3_INDEX  (0x7ffUL << _REGION3_SHIFT)
 312#define _SEGMENT_INDEX  (0x7ffUL << _SEGMENT_SHIFT)
 313#define _PAGE_INDEX     (0xffUL  << _PAGE_SHIFT)
 314
 315#define _REGION1_SIZE   (1UL << _REGION1_SHIFT)
 316#define _REGION2_SIZE   (1UL << _REGION2_SHIFT)
 317#define _REGION3_SIZE   (1UL << _REGION3_SHIFT)
 318#define _SEGMENT_SIZE   (1UL << _SEGMENT_SHIFT)
 319
 320#define _REGION1_MASK   (~(_REGION1_SIZE - 1))
 321#define _REGION2_MASK   (~(_REGION2_SIZE - 1))
 322#define _REGION3_MASK   (~(_REGION3_SIZE - 1))
 323#define _SEGMENT_MASK   (~(_SEGMENT_SIZE - 1))
 324
 325#define PMD_SHIFT       _SEGMENT_SHIFT
 326#define PUD_SHIFT       _REGION3_SHIFT
 327#define P4D_SHIFT       _REGION2_SHIFT
 328#define PGDIR_SHIFT     _REGION1_SHIFT
 329
 330#define PMD_SIZE        _SEGMENT_SIZE
 331#define PUD_SIZE        _REGION3_SIZE
 332#define P4D_SIZE        _REGION2_SIZE
 333#define PGDIR_SIZE      _REGION1_SIZE
 334
 335#define PMD_MASK        _SEGMENT_MASK
 336#define PUD_MASK        _REGION3_MASK
 337#define P4D_MASK        _REGION2_MASK
 338#define PGDIR_MASK      _REGION1_MASK
 339
 340#define PTRS_PER_PTE    _PAGE_ENTRIES
 341#define PTRS_PER_PMD    _CRST_ENTRIES
 342#define PTRS_PER_PUD    _CRST_ENTRIES
 343#define PTRS_PER_P4D    _CRST_ENTRIES
 344#define PTRS_PER_PGD    _CRST_ENTRIES
 345
 346#define MAX_PTRS_PER_P4D        PTRS_PER_P4D
 347
 348/*
 349 * Segment table and region3 table entry encoding
 350 * (R = read-only, I = invalid, y = young bit):
 351 *                              dy..R...I...wr
 352 * prot-none, clean, old        00..1...1...00
 353 * prot-none, clean, young      01..1...1...00
 354 * prot-none, dirty, old        10..1...1...00
 355 * prot-none, dirty, young      11..1...1...00
 356 * read-only, clean, old        00..1...1...01
 357 * read-only, clean, young      01..1...0...01
 358 * read-only, dirty, old        10..1...1...01
 359 * read-only, dirty, young      11..1...0...01
 360 * read-write, clean, old       00..1...1...11
 361 * read-write, clean, young     01..1...0...11
 362 * read-write, dirty, old       10..0...1...11
 363 * read-write, dirty, young     11..0...0...11
 364 * The segment table origin is used to distinguish empty (origin==0) from
 365 * read-write, old segment table entries (origin!=0)
 366 * HW-bits: R read-only, I invalid
 367 * SW-bits: y young, d dirty, r read, w write
 368 */
 369
 370/* Page status table bits for virtualization */
 371#define PGSTE_ACC_BITS  0xf000000000000000UL
 372#define PGSTE_FP_BIT    0x0800000000000000UL
 373#define PGSTE_PCL_BIT   0x0080000000000000UL
 374#define PGSTE_HR_BIT    0x0040000000000000UL
 375#define PGSTE_HC_BIT    0x0020000000000000UL
 376#define PGSTE_GR_BIT    0x0004000000000000UL
 377#define PGSTE_GC_BIT    0x0002000000000000UL
 378#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 379#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 380#define PGSTE_VSIE_BIT  0x0000200000000000UL    /* ref'd in a shadow table */
 381
 382/* Guest Page State used for virtualization */
 383#define _PGSTE_GPS_ZERO                 0x0000000080000000UL
 384#define _PGSTE_GPS_NODAT                0x0000000040000000UL
 385#define _PGSTE_GPS_USAGE_MASK           0x0000000003000000UL
 386#define _PGSTE_GPS_USAGE_STABLE         0x0000000000000000UL
 387#define _PGSTE_GPS_USAGE_UNUSED         0x0000000001000000UL
 388#define _PGSTE_GPS_USAGE_POT_VOLATILE   0x0000000002000000UL
 389#define _PGSTE_GPS_USAGE_VOLATILE       _PGSTE_GPS_USAGE_MASK
 390
 391/*
 392 * A user page table pointer has the space-switch-event bit, the
 393 * private-space-control bit and the storage-alteration-event-control
 394 * bit set. A kernel page table pointer doesn't need them.
 395 */
 396#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397                                 _ASCE_ALT_EVENT)
 398
 399/*
 400 * Page protection definitions.
 401 */
 402#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RO         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RX         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406                                 _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RW         __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410                                 _PAGE_INVALID | _PAGE_PROTECT)
 411
 412#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417                                 _PAGE_PROTECT | _PAGE_NOEXEC)
 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419                                  _PAGE_YOUNG | _PAGE_DIRTY)
 420
 421/*
 422 * On s390 the page table entry has an invalid bit and a read-only bit.
 423 * Read permission implies execute permission and write permission
 424 * implies read permission.
 425 */
 426         /*xwr*/
 427#define __P000  PAGE_NONE
 428#define __P001  PAGE_RO
 429#define __P010  PAGE_RO
 430#define __P011  PAGE_RO
 431#define __P100  PAGE_RX
 432#define __P101  PAGE_RX
 433#define __P110  PAGE_RX
 434#define __P111  PAGE_RX
 435
 436#define __S000  PAGE_NONE
 437#define __S001  PAGE_RO
 438#define __S010  PAGE_RW
 439#define __S011  PAGE_RW
 440#define __S100  PAGE_RX
 441#define __S101  PAGE_RX
 442#define __S110  PAGE_RWX
 443#define __S111  PAGE_RWX
 444
 445/*
 446 * Segment entry (large page) protection definitions.
 447 */
 448#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 449                                 _SEGMENT_ENTRY_PROTECT)
 450#define SEGMENT_RO      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 451                                 _SEGMENT_ENTRY_READ | \
 452                                 _SEGMENT_ENTRY_NOEXEC)
 453#define SEGMENT_RX      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 454                                 _SEGMENT_ENTRY_READ)
 455#define SEGMENT_RW      __pgprot(_SEGMENT_ENTRY_READ | \
 456                                 _SEGMENT_ENTRY_WRITE | \
 457                                 _SEGMENT_ENTRY_NOEXEC)
 458#define SEGMENT_RWX     __pgprot(_SEGMENT_ENTRY_READ | \
 459                                 _SEGMENT_ENTRY_WRITE)
 460#define SEGMENT_KERNEL  __pgprot(_SEGMENT_ENTRY |       \
 461                                 _SEGMENT_ENTRY_LARGE | \
 462                                 _SEGMENT_ENTRY_READ |  \
 463                                 _SEGMENT_ENTRY_WRITE | \
 464                                 _SEGMENT_ENTRY_YOUNG | \
 465                                 _SEGMENT_ENTRY_DIRTY | \
 466                                 _SEGMENT_ENTRY_NOEXEC)
 467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |     \
 468                                 _SEGMENT_ENTRY_LARGE | \
 469                                 _SEGMENT_ENTRY_READ |  \
 470                                 _SEGMENT_ENTRY_YOUNG | \
 471                                 _SEGMENT_ENTRY_PROTECT | \
 472                                 _SEGMENT_ENTRY_NOEXEC)
 473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |   \
 474                                 _SEGMENT_ENTRY_LARGE | \
 475                                 _SEGMENT_ENTRY_READ |  \
 476                                 _SEGMENT_ENTRY_WRITE | \
 477                                 _SEGMENT_ENTRY_YOUNG | \
 478                                 _SEGMENT_ENTRY_DIRTY)
 479
 480/*
 481 * Region3 entry (large page) protection definitions.
 482 */
 483
 484#define REGION3_KERNEL  __pgprot(_REGION_ENTRY_TYPE_R3 | \
 485                                 _REGION3_ENTRY_LARGE |  \
 486                                 _REGION3_ENTRY_READ |   \
 487                                 _REGION3_ENTRY_WRITE |  \
 488                                 _REGION3_ENTRY_YOUNG |  \
 489                                 _REGION3_ENTRY_DIRTY | \
 490                                 _REGION_ENTRY_NOEXEC)
 491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 492                                   _REGION3_ENTRY_LARGE |  \
 493                                   _REGION3_ENTRY_READ |   \
 494                                   _REGION3_ENTRY_YOUNG |  \
 495                                   _REGION_ENTRY_PROTECT | \
 496                                   _REGION_ENTRY_NOEXEC)
 497
 498static inline bool mm_p4d_folded(struct mm_struct *mm)
 499{
 500        return mm->context.asce_limit <= _REGION1_SIZE;
 501}
 502#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 503
 504static inline bool mm_pud_folded(struct mm_struct *mm)
 505{
 506        return mm->context.asce_limit <= _REGION2_SIZE;
 507}
 508#define mm_pud_folded(mm) mm_pud_folded(mm)
 509
 510static inline bool mm_pmd_folded(struct mm_struct *mm)
 511{
 512        return mm->context.asce_limit <= _REGION3_SIZE;
 513}
 514#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 515
 516static inline int mm_has_pgste(struct mm_struct *mm)
 517{
 518#ifdef CONFIG_PGSTE
 519        if (unlikely(mm->context.has_pgste))
 520                return 1;
 521#endif
 522        return 0;
 523}
 524
 525static inline int mm_is_protected(struct mm_struct *mm)
 526{
 527#ifdef CONFIG_PGSTE
 528        if (unlikely(atomic_read(&mm->context.is_protected)))
 529                return 1;
 530#endif
 531        return 0;
 532}
 533
 534static inline int mm_alloc_pgste(struct mm_struct *mm)
 535{
 536#ifdef CONFIG_PGSTE
 537        if (unlikely(mm->context.alloc_pgste))
 538                return 1;
 539#endif
 540        return 0;
 541}
 542
 543/*
 544 * In the case that a guest uses storage keys
 545 * faults should no longer be backed by zero pages
 546 */
 547#define mm_forbids_zeropage mm_has_pgste
 548static inline int mm_uses_skeys(struct mm_struct *mm)
 549{
 550#ifdef CONFIG_PGSTE
 551        if (mm->context.uses_skeys)
 552                return 1;
 553#endif
 554        return 0;
 555}
 556
 557static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 558{
 559        register unsigned long reg2 asm("2") = old;
 560        register unsigned long reg3 asm("3") = new;
 561        unsigned long address = (unsigned long)ptr | 1;
 562
 563        asm volatile(
 564                "       csp     %0,%3"
 565                : "+d" (reg2), "+m" (*ptr)
 566                : "d" (reg3), "d" (address)
 567                : "cc");
 568}
 569
 570static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 571{
 572        register unsigned long reg2 asm("2") = old;
 573        register unsigned long reg3 asm("3") = new;
 574        unsigned long address = (unsigned long)ptr | 1;
 575
 576        asm volatile(
 577                "       .insn   rre,0xb98a0000,%0,%3"
 578                : "+d" (reg2), "+m" (*ptr)
 579                : "d" (reg3), "d" (address)
 580                : "cc");
 581}
 582
 583#define CRDTE_DTT_PAGE          0x00UL
 584#define CRDTE_DTT_SEGMENT       0x10UL
 585#define CRDTE_DTT_REGION3       0x14UL
 586#define CRDTE_DTT_REGION2       0x18UL
 587#define CRDTE_DTT_REGION1       0x1cUL
 588
 589static inline void crdte(unsigned long old, unsigned long new,
 590                         unsigned long table, unsigned long dtt,
 591                         unsigned long address, unsigned long asce)
 592{
 593        register unsigned long reg2 asm("2") = old;
 594        register unsigned long reg3 asm("3") = new;
 595        register unsigned long reg4 asm("4") = table | dtt;
 596        register unsigned long reg5 asm("5") = address;
 597
 598        asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 599                     : "+d" (reg2)
 600                     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 601                     : "memory", "cc");
 602}
 603
 604/*
 605 * pgd/p4d/pud/pmd/pte query functions
 606 */
 607static inline int pgd_folded(pgd_t pgd)
 608{
 609        return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 610}
 611
 612static inline int pgd_present(pgd_t pgd)
 613{
 614        if (pgd_folded(pgd))
 615                return 1;
 616        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 617}
 618
 619static inline int pgd_none(pgd_t pgd)
 620{
 621        if (pgd_folded(pgd))
 622                return 0;
 623        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 624}
 625
 626static inline int pgd_bad(pgd_t pgd)
 627{
 628        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 629                return 0;
 630        return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 631}
 632
 633static inline unsigned long pgd_pfn(pgd_t pgd)
 634{
 635        unsigned long origin_mask;
 636
 637        origin_mask = _REGION_ENTRY_ORIGIN;
 638        return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 639}
 640
 641static inline int p4d_folded(p4d_t p4d)
 642{
 643        return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 644}
 645
 646static inline int p4d_present(p4d_t p4d)
 647{
 648        if (p4d_folded(p4d))
 649                return 1;
 650        return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 651}
 652
 653static inline int p4d_none(p4d_t p4d)
 654{
 655        if (p4d_folded(p4d))
 656                return 0;
 657        return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 658}
 659
 660static inline unsigned long p4d_pfn(p4d_t p4d)
 661{
 662        unsigned long origin_mask;
 663
 664        origin_mask = _REGION_ENTRY_ORIGIN;
 665        return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 666}
 667
 668static inline int pud_folded(pud_t pud)
 669{
 670        return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 671}
 672
 673static inline int pud_present(pud_t pud)
 674{
 675        if (pud_folded(pud))
 676                return 1;
 677        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 678}
 679
 680static inline int pud_none(pud_t pud)
 681{
 682        if (pud_folded(pud))
 683                return 0;
 684        return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 685}
 686
 687#define pud_leaf        pud_large
 688static inline int pud_large(pud_t pud)
 689{
 690        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 691                return 0;
 692        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 693}
 694
 695static inline unsigned long pud_pfn(pud_t pud)
 696{
 697        unsigned long origin_mask;
 698
 699        origin_mask = _REGION_ENTRY_ORIGIN;
 700        if (pud_large(pud))
 701                origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
 702        return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
 703}
 704
 705#define pmd_leaf        pmd_large
 706static inline int pmd_large(pmd_t pmd)
 707{
 708        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 709}
 710
 711static inline int pmd_bad(pmd_t pmd)
 712{
 713        if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
 714                return 1;
 715        if (pmd_large(pmd))
 716                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 717        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 718}
 719
 720static inline int pud_bad(pud_t pud)
 721{
 722        unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 723
 724        if (type > _REGION_ENTRY_TYPE_R3)
 725                return 1;
 726        if (type < _REGION_ENTRY_TYPE_R3)
 727                return 0;
 728        if (pud_large(pud))
 729                return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
 730        return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 731}
 732
 733static inline int p4d_bad(p4d_t p4d)
 734{
 735        unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 736
 737        if (type > _REGION_ENTRY_TYPE_R2)
 738                return 1;
 739        if (type < _REGION_ENTRY_TYPE_R2)
 740                return 0;
 741        return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 742}
 743
 744static inline int pmd_present(pmd_t pmd)
 745{
 746        return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 747}
 748
 749static inline int pmd_none(pmd_t pmd)
 750{
 751        return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 752}
 753
 754static inline unsigned long pmd_pfn(pmd_t pmd)
 755{
 756        unsigned long origin_mask;
 757
 758        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 759        if (pmd_large(pmd))
 760                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 761        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 762}
 763
 764#define pmd_write pmd_write
 765static inline int pmd_write(pmd_t pmd)
 766{
 767        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 768}
 769
 770#define pud_write pud_write
 771static inline int pud_write(pud_t pud)
 772{
 773        return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 774}
 775
 776static inline int pmd_dirty(pmd_t pmd)
 777{
 778        int dirty = 1;
 779        if (pmd_large(pmd))
 780                dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 781        return dirty;
 782}
 783
 784static inline int pmd_young(pmd_t pmd)
 785{
 786        int young = 1;
 787        if (pmd_large(pmd))
 788                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 789        return young;
 790}
 791
 792static inline int pte_present(pte_t pte)
 793{
 794        /* Bit pattern: (pte & 0x001) == 0x001 */
 795        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 796}
 797
 798static inline int pte_none(pte_t pte)
 799{
 800        /* Bit pattern: pte == 0x400 */
 801        return pte_val(pte) == _PAGE_INVALID;
 802}
 803
 804static inline int pte_swap(pte_t pte)
 805{
 806        /* Bit pattern: (pte & 0x201) == 0x200 */
 807        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 808                == _PAGE_PROTECT;
 809}
 810
 811static inline int pte_special(pte_t pte)
 812{
 813        return (pte_val(pte) & _PAGE_SPECIAL);
 814}
 815
 816#define __HAVE_ARCH_PTE_SAME
 817static inline int pte_same(pte_t a, pte_t b)
 818{
 819        return pte_val(a) == pte_val(b);
 820}
 821
 822#ifdef CONFIG_NUMA_BALANCING
 823static inline int pte_protnone(pte_t pte)
 824{
 825        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 826}
 827
 828static inline int pmd_protnone(pmd_t pmd)
 829{
 830        /* pmd_large(pmd) implies pmd_present(pmd) */
 831        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 832}
 833#endif
 834
 835static inline int pte_soft_dirty(pte_t pte)
 836{
 837        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 838}
 839#define pte_swp_soft_dirty pte_soft_dirty
 840
 841static inline pte_t pte_mksoft_dirty(pte_t pte)
 842{
 843        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 844        return pte;
 845}
 846#define pte_swp_mksoft_dirty pte_mksoft_dirty
 847
 848static inline pte_t pte_clear_soft_dirty(pte_t pte)
 849{
 850        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 851        return pte;
 852}
 853#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 854
 855static inline int pmd_soft_dirty(pmd_t pmd)
 856{
 857        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 858}
 859
 860static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 861{
 862        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 863        return pmd;
 864}
 865
 866static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 867{
 868        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 869        return pmd;
 870}
 871
 872/*
 873 * query functions pte_write/pte_dirty/pte_young only work if
 874 * pte_present() is true. Undefined behaviour if not..
 875 */
 876static inline int pte_write(pte_t pte)
 877{
 878        return (pte_val(pte) & _PAGE_WRITE) != 0;
 879}
 880
 881static inline int pte_dirty(pte_t pte)
 882{
 883        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 884}
 885
 886static inline int pte_young(pte_t pte)
 887{
 888        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 889}
 890
 891#define __HAVE_ARCH_PTE_UNUSED
 892static inline int pte_unused(pte_t pte)
 893{
 894        return pte_val(pte) & _PAGE_UNUSED;
 895}
 896
 897/*
 898 * pgd/pmd/pte modification functions
 899 */
 900
 901static inline void pgd_clear(pgd_t *pgd)
 902{
 903        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 904                pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 905}
 906
 907static inline void p4d_clear(p4d_t *p4d)
 908{
 909        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 910                p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 911}
 912
 913static inline void pud_clear(pud_t *pud)
 914{
 915        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 916                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 917}
 918
 919static inline void pmd_clear(pmd_t *pmdp)
 920{
 921        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 922}
 923
 924static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 925{
 926        pte_val(*ptep) = _PAGE_INVALID;
 927}
 928
 929/*
 930 * The following pte modification functions only work if
 931 * pte_present() is true. Undefined behaviour if not..
 932 */
 933static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 934{
 935        pte_val(pte) &= _PAGE_CHG_MASK;
 936        pte_val(pte) |= pgprot_val(newprot);
 937        /*
 938         * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 939         * has the invalid bit set, clear it again for readable, young pages
 940         */
 941        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 942                pte_val(pte) &= ~_PAGE_INVALID;
 943        /*
 944         * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 945         * protection bit set, clear it again for writable, dirty pages
 946         */
 947        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 948                pte_val(pte) &= ~_PAGE_PROTECT;
 949        return pte;
 950}
 951
 952static inline pte_t pte_wrprotect(pte_t pte)
 953{
 954        pte_val(pte) &= ~_PAGE_WRITE;
 955        pte_val(pte) |= _PAGE_PROTECT;
 956        return pte;
 957}
 958
 959static inline pte_t pte_mkwrite(pte_t pte)
 960{
 961        pte_val(pte) |= _PAGE_WRITE;
 962        if (pte_val(pte) & _PAGE_DIRTY)
 963                pte_val(pte) &= ~_PAGE_PROTECT;
 964        return pte;
 965}
 966
 967static inline pte_t pte_mkclean(pte_t pte)
 968{
 969        pte_val(pte) &= ~_PAGE_DIRTY;
 970        pte_val(pte) |= _PAGE_PROTECT;
 971        return pte;
 972}
 973
 974static inline pte_t pte_mkdirty(pte_t pte)
 975{
 976        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 977        if (pte_val(pte) & _PAGE_WRITE)
 978                pte_val(pte) &= ~_PAGE_PROTECT;
 979        return pte;
 980}
 981
 982static inline pte_t pte_mkold(pte_t pte)
 983{
 984        pte_val(pte) &= ~_PAGE_YOUNG;
 985        pte_val(pte) |= _PAGE_INVALID;
 986        return pte;
 987}
 988
 989static inline pte_t pte_mkyoung(pte_t pte)
 990{
 991        pte_val(pte) |= _PAGE_YOUNG;
 992        if (pte_val(pte) & _PAGE_READ)
 993                pte_val(pte) &= ~_PAGE_INVALID;
 994        return pte;
 995}
 996
 997static inline pte_t pte_mkspecial(pte_t pte)
 998{
 999        pte_val(pte) |= _PAGE_SPECIAL;
1000        return pte;
1001}
1002
1003#ifdef CONFIG_HUGETLB_PAGE
1004static inline pte_t pte_mkhuge(pte_t pte)
1005{
1006        pte_val(pte) |= _PAGE_LARGE;
1007        return pte;
1008}
1009#endif
1010
1011#define IPTE_GLOBAL     0
1012#define IPTE_LOCAL      1
1013
1014#define IPTE_NODAT      0x400
1015#define IPTE_GUEST_ASCE 0x800
1016
1017static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1018                               unsigned long opt, unsigned long asce,
1019                               int local)
1020{
1021        unsigned long pto = (unsigned long) ptep;
1022
1023        if (__builtin_constant_p(opt) && opt == 0) {
1024                /* Invalidation + TLB flush for the pte */
1025                asm volatile(
1026                        "       .insn   rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1027                        : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1028                          [m4] "i" (local));
1029                return;
1030        }
1031
1032        /* Invalidate ptes with options + TLB flush of the ptes */
1033        opt = opt | (asce & _ASCE_ORIGIN);
1034        asm volatile(
1035                "       .insn   rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1036                : [r2] "+a" (address), [r3] "+a" (opt)
1037                : [r1] "a" (pto), [m4] "i" (local) : "memory");
1038}
1039
1040static inline void __ptep_ipte_range(unsigned long address, int nr,
1041                                     pte_t *ptep, int local)
1042{
1043        unsigned long pto = (unsigned long) ptep;
1044
1045        /* Invalidate a range of ptes + TLB flush of the ptes */
1046        do {
1047                asm volatile(
1048                        "       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1049                        : [r2] "+a" (address), [r3] "+a" (nr)
1050                        : [r1] "a" (pto), [m4] "i" (local) : "memory");
1051        } while (nr != 255);
1052}
1053
1054/*
1055 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1056 * both clear the TLB for the unmapped pte. The reason is that
1057 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1058 * to modify an active pte. The sequence is
1059 *   1) ptep_get_and_clear
1060 *   2) set_pte_at
1061 *   3) flush_tlb_range
1062 * On s390 the tlb needs to get flushed with the modification of the pte
1063 * if the pte is active. The only way how this can be implemented is to
1064 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1065 * is a nop.
1066 */
1067pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1068pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1069
1070#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1071static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1072                                            unsigned long addr, pte_t *ptep)
1073{
1074        pte_t pte = *ptep;
1075
1076        pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1077        return pte_young(pte);
1078}
1079
1080#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1081static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1082                                         unsigned long address, pte_t *ptep)
1083{
1084        return ptep_test_and_clear_young(vma, address, ptep);
1085}
1086
1087#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1088static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1089                                       unsigned long addr, pte_t *ptep)
1090{
1091        pte_t res;
1092
1093        res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1094        if (mm_is_protected(mm) && pte_present(res))
1095                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1096        return res;
1097}
1098
1099#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1100pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1101void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1102                             pte_t *, pte_t, pte_t);
1103
1104#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1105static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1106                                     unsigned long addr, pte_t *ptep)
1107{
1108        pte_t res;
1109
1110        res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1111        if (mm_is_protected(vma->vm_mm) && pte_present(res))
1112                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1113        return res;
1114}
1115
1116/*
1117 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1118 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1119 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1120 * cannot be accessed while the batched unmap is running. In this case
1121 * full==1 and a simple pte_clear is enough. See tlb.h.
1122 */
1123#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1124static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1125                                            unsigned long addr,
1126                                            pte_t *ptep, int full)
1127{
1128        pte_t res;
1129
1130        if (full) {
1131                res = *ptep;
1132                *ptep = __pte(_PAGE_INVALID);
1133        } else {
1134                res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1135        }
1136        if (mm_is_protected(mm) && pte_present(res))
1137                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1138        return res;
1139}
1140
1141#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1142static inline void ptep_set_wrprotect(struct mm_struct *mm,
1143                                      unsigned long addr, pte_t *ptep)
1144{
1145        pte_t pte = *ptep;
1146
1147        if (pte_write(pte))
1148                ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1149}
1150
1151#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1152static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1153                                        unsigned long addr, pte_t *ptep,
1154                                        pte_t entry, int dirty)
1155{
1156        if (pte_same(*ptep, entry))
1157                return 0;
1158        ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1159        return 1;
1160}
1161
1162/*
1163 * Additional functions to handle KVM guest page tables
1164 */
1165void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1166                     pte_t *ptep, pte_t entry);
1167void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1168void ptep_notify(struct mm_struct *mm, unsigned long addr,
1169                 pte_t *ptep, unsigned long bits);
1170int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1171                    pte_t *ptep, int prot, unsigned long bit);
1172void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1173                     pte_t *ptep , int reset);
1174void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1175int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1176                    pte_t *sptep, pte_t *tptep, pte_t pte);
1177void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1178
1179bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1180                            pte_t *ptep);
1181int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1182                          unsigned char key, bool nq);
1183int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1184                               unsigned char key, unsigned char *oldkey,
1185                               bool nq, bool mr, bool mc);
1186int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1187int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1188                          unsigned char *key);
1189
1190int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1191                                unsigned long bits, unsigned long value);
1192int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1193int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1194                        unsigned long *oldpte, unsigned long *oldpgste);
1195void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1196void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1197void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1198void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1199
1200/*
1201 * Certain architectures need to do special things when PTEs
1202 * within a page table are directly modified.  Thus, the following
1203 * hook is made available.
1204 */
1205static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1206                              pte_t *ptep, pte_t entry)
1207{
1208        if (!MACHINE_HAS_NX)
1209                pte_val(entry) &= ~_PAGE_NOEXEC;
1210        if (pte_present(entry))
1211                pte_val(entry) &= ~_PAGE_UNUSED;
1212        if (mm_has_pgste(mm))
1213                ptep_set_pte_at(mm, addr, ptep, entry);
1214        else
1215                *ptep = entry;
1216}
1217
1218/*
1219 * Conversion functions: convert a page and protection to a page entry,
1220 * and a page entry and page directory to the page they refer to.
1221 */
1222static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1223{
1224        pte_t __pte;
1225        pte_val(__pte) = physpage + pgprot_val(pgprot);
1226        return pte_mkyoung(__pte);
1227}
1228
1229static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1230{
1231        unsigned long physpage = page_to_phys(page);
1232        pte_t __pte = mk_pte_phys(physpage, pgprot);
1233
1234        if (pte_write(__pte) && PageDirty(page))
1235                __pte = pte_mkdirty(__pte);
1236        return __pte;
1237}
1238
1239#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1240#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1241#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1242#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1243#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1244
1245#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1246#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1247#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1248#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1249
1250/*
1251 * The pgd_offset function *always* adds the index for the top-level
1252 * region/segment table. This is done to get a sequence like the
1253 * following to work:
1254 *      pgdp = pgd_offset(current->mm, addr);
1255 *      pgd = READ_ONCE(*pgdp);
1256 *      p4dp = p4d_offset(&pgd, addr);
1257 *      ...
1258 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1259 * only add an index if they dereferenced the pointer.
1260 */
1261static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1262{
1263        unsigned long rste;
1264        unsigned int shift;
1265
1266        /* Get the first entry of the top level table */
1267        rste = pgd_val(*pgd);
1268        /* Pick up the shift from the table type of the first entry */
1269        shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1270        return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1271}
1272
1273#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1274#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1275
1276static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1277{
1278        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1279                return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1280        return (p4d_t *) pgdp;
1281}
1282#define p4d_offset_lockless p4d_offset_lockless
1283
1284static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1285{
1286        return p4d_offset_lockless(pgdp, *pgdp, address);
1287}
1288
1289static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1290{
1291        if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1292                return (pud_t *) p4d_deref(p4d) + pud_index(address);
1293        return (pud_t *) p4dp;
1294}
1295#define pud_offset_lockless pud_offset_lockless
1296
1297static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1298{
1299        return pud_offset_lockless(p4dp, *p4dp, address);
1300}
1301
1302static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1303{
1304        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1305                return (pmd_t *) pud_deref(pud) + pmd_index(address);
1306        return (pmd_t *) pudp;
1307}
1308#define pmd_offset_lockless pmd_offset_lockless
1309
1310static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1311{
1312        return pmd_offset_lockless(pudp, *pudp, address);
1313}
1314
1315static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1316{
1317        return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1318}
1319
1320#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1321#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1322#define pte_unmap(pte) do { } while (0)
1323
1324static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1325{
1326        return end <= current->mm->context.asce_limit;
1327}
1328#define gup_fast_permitted gup_fast_permitted
1329
1330#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1331#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1332#define pte_page(x) pfn_to_page(pte_pfn(x))
1333
1334#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1335#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1336#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1337#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1338
1339static inline pmd_t pmd_wrprotect(pmd_t pmd)
1340{
1341        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1342        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1343        return pmd;
1344}
1345
1346static inline pmd_t pmd_mkwrite(pmd_t pmd)
1347{
1348        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1349        if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1350                return pmd;
1351        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1352        return pmd;
1353}
1354
1355static inline pmd_t pmd_mkclean(pmd_t pmd)
1356{
1357        if (pmd_large(pmd)) {
1358                pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1359                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360        }
1361        return pmd;
1362}
1363
1364static inline pmd_t pmd_mkdirty(pmd_t pmd)
1365{
1366        if (pmd_large(pmd)) {
1367                pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1368                                _SEGMENT_ENTRY_SOFT_DIRTY;
1369                if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1370                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1371        }
1372        return pmd;
1373}
1374
1375static inline pud_t pud_wrprotect(pud_t pud)
1376{
1377        pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1378        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1379        return pud;
1380}
1381
1382static inline pud_t pud_mkwrite(pud_t pud)
1383{
1384        pud_val(pud) |= _REGION3_ENTRY_WRITE;
1385        if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1386                return pud;
1387        pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1388        return pud;
1389}
1390
1391static inline pud_t pud_mkclean(pud_t pud)
1392{
1393        if (pud_large(pud)) {
1394                pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1395                pud_val(pud) |= _REGION_ENTRY_PROTECT;
1396        }
1397        return pud;
1398}
1399
1400static inline pud_t pud_mkdirty(pud_t pud)
1401{
1402        if (pud_large(pud)) {
1403                pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1404                                _REGION3_ENTRY_SOFT_DIRTY;
1405                if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1406                        pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1407        }
1408        return pud;
1409}
1410
1411#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1412static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1413{
1414        /*
1415         * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1416         * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1417         */
1418        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1419                return pgprot_val(SEGMENT_NONE);
1420        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1421                return pgprot_val(SEGMENT_RO);
1422        if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1423                return pgprot_val(SEGMENT_RX);
1424        if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1425                return pgprot_val(SEGMENT_RW);
1426        return pgprot_val(SEGMENT_RWX);
1427}
1428
1429static inline pmd_t pmd_mkyoung(pmd_t pmd)
1430{
1431        if (pmd_large(pmd)) {
1432                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1433                if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1434                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1435        }
1436        return pmd;
1437}
1438
1439static inline pmd_t pmd_mkold(pmd_t pmd)
1440{
1441        if (pmd_large(pmd)) {
1442                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1443                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1444        }
1445        return pmd;
1446}
1447
1448static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1449{
1450        if (pmd_large(pmd)) {
1451                pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1452                        _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1453                        _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1454                pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1455                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1456                        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1457                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1458                        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1459                return pmd;
1460        }
1461        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1462        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1463        return pmd;
1464}
1465
1466static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1467{
1468        pmd_t __pmd;
1469        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1470        return __pmd;
1471}
1472
1473#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1474
1475static inline void __pmdp_csp(pmd_t *pmdp)
1476{
1477        csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1478            pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1479}
1480
1481#define IDTE_GLOBAL     0
1482#define IDTE_LOCAL      1
1483
1484#define IDTE_PTOA       0x0800
1485#define IDTE_NODAT      0x1000
1486#define IDTE_GUEST_ASCE 0x2000
1487
1488static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1489                               unsigned long opt, unsigned long asce,
1490                               int local)
1491{
1492        unsigned long sto;
1493
1494        sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1495        if (__builtin_constant_p(opt) && opt == 0) {
1496                /* flush without guest asce */
1497                asm volatile(
1498                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1499                        : "+m" (*pmdp)
1500                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1501                          [m4] "i" (local)
1502                        : "cc" );
1503        } else {
1504                /* flush with guest asce */
1505                asm volatile(
1506                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1507                        : "+m" (*pmdp)
1508                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1509                          [r3] "a" (asce), [m4] "i" (local)
1510                        : "cc" );
1511        }
1512}
1513
1514static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1515                               unsigned long opt, unsigned long asce,
1516                               int local)
1517{
1518        unsigned long r3o;
1519
1520        r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1521        r3o |= _ASCE_TYPE_REGION3;
1522        if (__builtin_constant_p(opt) && opt == 0) {
1523                /* flush without guest asce */
1524                asm volatile(
1525                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1526                        : "+m" (*pudp)
1527                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1528                          [m4] "i" (local)
1529                        : "cc");
1530        } else {
1531                /* flush with guest asce */
1532                asm volatile(
1533                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1534                        : "+m" (*pudp)
1535                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1536                          [r3] "a" (asce), [m4] "i" (local)
1537                        : "cc" );
1538        }
1539}
1540
1541pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1542pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1543pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1544
1545#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1546
1547#define __HAVE_ARCH_PGTABLE_DEPOSIT
1548void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1549                                pgtable_t pgtable);
1550
1551#define __HAVE_ARCH_PGTABLE_WITHDRAW
1552pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1553
1554#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1555static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1556                                        unsigned long addr, pmd_t *pmdp,
1557                                        pmd_t entry, int dirty)
1558{
1559        VM_BUG_ON(addr & ~HPAGE_MASK);
1560
1561        entry = pmd_mkyoung(entry);
1562        if (dirty)
1563                entry = pmd_mkdirty(entry);
1564        if (pmd_val(*pmdp) == pmd_val(entry))
1565                return 0;
1566        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1567        return 1;
1568}
1569
1570#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1571static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1572                                            unsigned long addr, pmd_t *pmdp)
1573{
1574        pmd_t pmd = *pmdp;
1575
1576        pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1577        return pmd_young(pmd);
1578}
1579
1580#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1581static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1582                                         unsigned long addr, pmd_t *pmdp)
1583{
1584        VM_BUG_ON(addr & ~HPAGE_MASK);
1585        return pmdp_test_and_clear_young(vma, addr, pmdp);
1586}
1587
1588static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1589                              pmd_t *pmdp, pmd_t entry)
1590{
1591        if (!MACHINE_HAS_NX)
1592                pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1593        *pmdp = entry;
1594}
1595
1596static inline pmd_t pmd_mkhuge(pmd_t pmd)
1597{
1598        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1599        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1600        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1601        return pmd;
1602}
1603
1604#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1605static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1606                                            unsigned long addr, pmd_t *pmdp)
1607{
1608        return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1609}
1610
1611#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1612static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1613                                                 unsigned long addr,
1614                                                 pmd_t *pmdp, int full)
1615{
1616        if (full) {
1617                pmd_t pmd = *pmdp;
1618                *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1619                return pmd;
1620        }
1621        return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1622}
1623
1624#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1625static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1626                                          unsigned long addr, pmd_t *pmdp)
1627{
1628        return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1629}
1630
1631#define __HAVE_ARCH_PMDP_INVALIDATE
1632static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1633                                   unsigned long addr, pmd_t *pmdp)
1634{
1635        pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1636
1637        return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1638}
1639
1640#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1641static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1642                                      unsigned long addr, pmd_t *pmdp)
1643{
1644        pmd_t pmd = *pmdp;
1645
1646        if (pmd_write(pmd))
1647                pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1648}
1649
1650static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1651                                        unsigned long address,
1652                                        pmd_t *pmdp)
1653{
1654        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1655}
1656#define pmdp_collapse_flush pmdp_collapse_flush
1657
1658#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1659#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1660
1661static inline int pmd_trans_huge(pmd_t pmd)
1662{
1663        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1664}
1665
1666#define has_transparent_hugepage has_transparent_hugepage
1667static inline int has_transparent_hugepage(void)
1668{
1669        return MACHINE_HAS_EDAT1 ? 1 : 0;
1670}
1671#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1672
1673/*
1674 * 64 bit swap entry format:
1675 * A page-table entry has some bits we have to treat in a special way.
1676 * Bits 52 and bit 55 have to be zero, otherwise a specification
1677 * exception will occur instead of a page translation exception. The
1678 * specification exception has the bad habit not to store necessary
1679 * information in the lowcore.
1680 * Bits 54 and 63 are used to indicate the page type.
1681 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1682 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1683 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1684 * for the offset.
1685 * |                      offset                        |01100|type |00|
1686 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1687 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1688 */
1689
1690#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1691#define __SWP_OFFSET_SHIFT      12
1692#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1693#define __SWP_TYPE_SHIFT        2
1694
1695static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1696{
1697        pte_t pte;
1698
1699        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1700        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1701        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1702        return pte;
1703}
1704
1705static inline unsigned long __swp_type(swp_entry_t entry)
1706{
1707        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1708}
1709
1710static inline unsigned long __swp_offset(swp_entry_t entry)
1711{
1712        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1713}
1714
1715static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1716{
1717        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1718}
1719
1720#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1721#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1722
1723#define kern_addr_valid(addr)   (1)
1724
1725extern int vmem_add_mapping(unsigned long start, unsigned long size);
1726extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1727extern int s390_enable_sie(void);
1728extern int s390_enable_skey(void);
1729extern void s390_reset_cmma(struct mm_struct *mm);
1730
1731/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1732#define HAVE_ARCH_UNMAPPED_AREA
1733#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1734
1735/*
1736 * No page table caches to initialise
1737 */
1738static inline void pgtable_cache_init(void) { }
1739static inline void check_pgt_cache(void) { }
1740
1741#include <asm-generic/pgtable.h>
1742
1743#endif /* _S390_PAGE_H */
1744