linux/arch/x86/include/asm/pgtable-3level.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_PGTABLE_3LEVEL_H
   3#define _ASM_X86_PGTABLE_3LEVEL_H
   4
   5/*
   6 * Intel Physical Address Extension (PAE) Mode - three-level page
   7 * tables on PPro+ CPUs.
   8 *
   9 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
  10 */
  11
  12#define pte_ERROR(e)                                                    \
  13        pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",                       \
  14               __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
  15#define pmd_ERROR(e)                                                    \
  16        pr_err("%s:%d: bad pmd %p(%016Lx)\n",                           \
  17               __FILE__, __LINE__, &(e), pmd_val(e))
  18#define pgd_ERROR(e)                                                    \
  19        pr_err("%s:%d: bad pgd %p(%016Lx)\n",                           \
  20               __FILE__, __LINE__, &(e), pgd_val(e))
  21
  22/* Rules for using set_pte: the pte being assigned *must* be
  23 * either not present or in a state where the hardware will
  24 * not attempt to update the pte.  In places where this is
  25 * not possible, use pte_get_and_clear to obtain the old pte
  26 * value and then use set_pte to update it.  -ben
  27 */
  28static inline void native_set_pte(pte_t *ptep, pte_t pte)
  29{
  30        ptep->pte_high = pte.pte_high;
  31        smp_wmb();
  32        ptep->pte_low = pte.pte_low;
  33}
  34
  35#define pmd_read_atomic pmd_read_atomic
  36/*
  37 * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
  38 * a "*pmdp" dereference done by GCC. Problem is, in certain places
  39 * where pte_offset_map_lock() is called, concurrent page faults are
  40 * allowed, if the mmap_lock is hold for reading. An example is mincore
  41 * vs page faults vs MADV_DONTNEED. On the page fault side
  42 * pmd_populate() rightfully does a set_64bit(), but if we're reading the
  43 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
  44 * because GCC will not read the 64-bit value of the pmd atomically.
  45 *
  46 * To fix this all places running pte_offset_map_lock() while holding the
  47 * mmap_lock in read mode, shall read the pmdp pointer using this
  48 * function to know if the pmd is null or not, and in turn to know if
  49 * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
  50 * operations.
  51 *
  52 * Without THP if the mmap_lock is held for reading, the pmd can only
  53 * transition from null to not null while pmd_read_atomic() runs. So
  54 * we can always return atomic pmd values with this function.
  55 *
  56 * With THP if the mmap_lock is held for reading, the pmd can become
  57 * trans_huge or none or point to a pte (and in turn become "stable")
  58 * at any time under pmd_read_atomic(). We could read it truly
  59 * atomically here with an atomic64_read() for the THP enabled case (and
  60 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
  61 * only return an atomic pmdval if the low part of the pmdval is later
  62 * found to be stable (i.e. pointing to a pte). We are also returning a
  63 * 'none' (zero) pmdval if the low part of the pmd is zero.
  64 *
  65 * In some cases the high and low part of the pmdval returned may not be
  66 * consistent if THP is enabled (the low part may point to previously
  67 * mapped hugepage, while the high part may point to a more recently
  68 * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
  69 * needs the low part of the pmd to be read atomically to decide if the
  70 * pmd is unstable or not, with the only exception when the low part
  71 * of the pmd is zero, in which case we return a 'none' pmd.
  72 */
  73static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
  74{
  75        pmdval_t ret;
  76        u32 *tmp = (u32 *)pmdp;
  77
  78        ret = (pmdval_t) (*tmp);
  79        if (ret) {
  80                /*
  81                 * If the low part is null, we must not read the high part
  82                 * or we can end up with a partial pmd.
  83                 */
  84                smp_rmb();
  85                ret |= ((pmdval_t)*(tmp + 1)) << 32;
  86        }
  87
  88        return (pmd_t) { ret };
  89}
  90
  91static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
  92{
  93        set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
  94}
  95
  96static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
  97{
  98        set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
  99}
 100
 101static inline void native_set_pud(pud_t *pudp, pud_t pud)
 102{
 103        set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
 104}
 105
 106/*
 107 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
 108 * entry, so clear the bottom half first and enforce ordering with a compiler
 109 * barrier.
 110 */
 111static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
 112                                    pte_t *ptep)
 113{
 114        ptep->pte_low = 0;
 115        smp_wmb();
 116        ptep->pte_high = 0;
 117}
 118
 119static inline void native_pmd_clear(pmd_t *pmd)
 120{
 121        u32 *tmp = (u32 *)pmd;
 122        *tmp = 0;
 123        smp_wmb();
 124        *(tmp + 1) = 0;
 125}
 126
 127static inline void native_pud_clear(pud_t *pudp)
 128{
 129}
 130
 131static inline void pud_clear(pud_t *pudp)
 132{
 133        set_pud(pudp, __pud(0));
 134
 135        /*
 136         * According to Intel App note "TLBs, Paging-Structure Caches,
 137         * and Their Invalidation", April 2007, document 317080-001,
 138         * section 8.1: in PAE mode we explicitly have to flush the
 139         * TLB via cr3 if the top-level pgd is changed...
 140         *
 141         * Currently all places where pud_clear() is called either have
 142         * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
 143         * pud_clear_bad()), so we don't need TLB flush here.
 144         */
 145}
 146
 147#ifdef CONFIG_SMP
 148static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
 149{
 150        pte_t res;
 151
 152        /* xchg acts as a barrier before the setting of the high bits */
 153        res.pte_low = xchg(&ptep->pte_low, 0);
 154        res.pte_high = ptep->pte_high;
 155        ptep->pte_high = 0;
 156
 157        return res;
 158}
 159#else
 160#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
 161#endif
 162
 163union split_pmd {
 164        struct {
 165                u32 pmd_low;
 166                u32 pmd_high;
 167        };
 168        pmd_t pmd;
 169};
 170
 171#ifdef CONFIG_SMP
 172static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
 173{
 174        union split_pmd res, *orig = (union split_pmd *)pmdp;
 175
 176        /* xchg acts as a barrier before setting of the high bits */
 177        res.pmd_low = xchg(&orig->pmd_low, 0);
 178        res.pmd_high = orig->pmd_high;
 179        orig->pmd_high = 0;
 180
 181        return res.pmd;
 182}
 183#else
 184#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
 185#endif
 186
 187#ifndef pmdp_establish
 188#define pmdp_establish pmdp_establish
 189static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
 190                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 191{
 192        pmd_t old;
 193
 194        /*
 195         * If pmd has present bit cleared we can get away without expensive
 196         * cmpxchg64: we can update pmdp half-by-half without racing with
 197         * anybody.
 198         */
 199        if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
 200                union split_pmd old, new, *ptr;
 201
 202                ptr = (union split_pmd *)pmdp;
 203
 204                new.pmd = pmd;
 205
 206                /* xchg acts as a barrier before setting of the high bits */
 207                old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
 208                old.pmd_high = ptr->pmd_high;
 209                ptr->pmd_high = new.pmd_high;
 210                return old.pmd;
 211        }
 212
 213        do {
 214                old = *pmdp;
 215        } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
 216
 217        return old;
 218}
 219#endif
 220
 221#ifdef CONFIG_SMP
 222union split_pud {
 223        struct {
 224                u32 pud_low;
 225                u32 pud_high;
 226        };
 227        pud_t pud;
 228};
 229
 230static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
 231{
 232        union split_pud res, *orig = (union split_pud *)pudp;
 233
 234        /* xchg acts as a barrier before setting of the high bits */
 235        res.pud_low = xchg(&orig->pud_low, 0);
 236        res.pud_high = orig->pud_high;
 237        orig->pud_high = 0;
 238
 239        return res.pud;
 240}
 241#else
 242#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
 243#endif
 244
 245/* Encode and de-code a swap entry */
 246#define SWP_TYPE_BITS           5
 247
 248#define SWP_OFFSET_FIRST_BIT    (_PAGE_BIT_PROTNONE + 1)
 249
 250/* We always extract/encode the offset by shifting it all the way up, and then down again */
 251#define SWP_OFFSET_SHIFT        (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
 252
 253#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
 254#define __swp_type(x)                   (((x).val) & 0x1f)
 255#define __swp_offset(x)                 ((x).val >> 5)
 256#define __swp_entry(type, offset)       ((swp_entry_t){(type) | (offset) << 5})
 257
 258/*
 259 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
 260 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
 261 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
 262 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
 263 * __swp_entry_to_pte() through the following helper macro based on 64bit
 264 * __swp_entry().
 265 */
 266#define __swp_pteval_entry(type, offset) ((pteval_t) { \
 267        (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
 268        | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
 269
 270#define __swp_entry_to_pte(x)   ((pte_t){ .pte = \
 271                __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
 272/*
 273 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
 274 * swp_entry_t, but also has to convert it from 64bit to the 32bit
 275 * intermediate representation, using the following macros based on 64bit
 276 * __swp_type() and __swp_offset().
 277 */
 278#define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
 279#define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
 280
 281#define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
 282                                             __pteval_swp_offset(pte)))
 283
 284#include <asm/pgtable-invert.h>
 285
 286#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
 287