linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1/* cpu_feature_enabled() cannot be used this early */
   2#define USE_EARLY_PGTABLE_L5
   3
   4#include <linux/memblock.h>
   5#include <linux/linkage.h>
   6#include <linux/bitops.h>
   7#include <linux/kernel.h>
   8#include <linux/export.h>
   9#include <linux/percpu.h>
  10#include <linux/string.h>
  11#include <linux/ctype.h>
  12#include <linux/delay.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/clock.h>
  15#include <linux/sched/task.h>
  16#include <linux/init.h>
  17#include <linux/kprobes.h>
  18#include <linux/kgdb.h>
  19#include <linux/smp.h>
  20#include <linux/io.h>
  21#include <linux/syscore_ops.h>
  22
  23#include <asm/stackprotector.h>
  24#include <asm/perf_event.h>
  25#include <asm/mmu_context.h>
  26#include <asm/archrandom.h>
  27#include <asm/hypervisor.h>
  28#include <asm/processor.h>
  29#include <asm/tlbflush.h>
  30#include <asm/debugreg.h>
  31#include <asm/sections.h>
  32#include <asm/vsyscall.h>
  33#include <linux/topology.h>
  34#include <linux/cpumask.h>
  35#include <asm/pgtable.h>
  36#include <linux/atomic.h>
  37#include <asm/proto.h>
  38#include <asm/setup.h>
  39#include <asm/apic.h>
  40#include <asm/desc.h>
  41#include <asm/fpu/internal.h>
  42#include <asm/mtrr.h>
  43#include <asm/hwcap2.h>
  44#include <linux/numa.h>
  45#include <asm/numa.h>
  46#include <asm/asm.h>
  47#include <asm/bugs.h>
  48#include <asm/cpu.h>
  49#include <asm/mce.h>
  50#include <asm/msr.h>
  51#include <asm/memtype.h>
  52#include <asm/microcode.h>
  53#include <asm/microcode_intel.h>
  54#include <asm/intel-family.h>
  55#include <asm/cpu_device_id.h>
  56#include <asm/spec_ctrl.h>
  57
  58#include <asm/uv/uv.h>
  59
  60#include "cpu.h"
  61
  62u32 elf_hwcap2 __read_mostly;
  63
  64/* all of these masks are initialized in setup_cpu_local_masks() */
  65cpumask_var_t cpu_initialized_mask;
  66cpumask_var_t cpu_callout_mask;
  67cpumask_var_t cpu_callin_mask;
  68
  69/* representing cpus for which sibling maps can be computed */
  70cpumask_var_t cpu_sibling_setup_mask;
  71
  72/* Number of siblings per CPU package */
  73int smp_num_siblings = 1;
  74EXPORT_SYMBOL(smp_num_siblings);
  75
  76/* Last level cache ID of each logical CPU */
  77DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  78
  79/* correctly size the local cpu masks */
  80void __init setup_cpu_local_masks(void)
  81{
  82        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  83        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  84        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  85        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  86}
  87
  88static void default_init(struct cpuinfo_x86 *c)
  89{
  90#ifdef CONFIG_X86_64
  91        cpu_detect_cache_sizes(c);
  92#else
  93        /* Not much we can do here... */
  94        /* Check if at least it has cpuid */
  95        if (c->cpuid_level == -1) {
  96                /* No cpuid. It must be an ancient CPU */
  97                if (c->x86 == 4)
  98                        strcpy(c->x86_model_id, "486");
  99                else if (c->x86 == 3)
 100                        strcpy(c->x86_model_id, "386");
 101        }
 102#endif
 103}
 104
 105static const struct cpu_dev default_cpu = {
 106        .c_init         = default_init,
 107        .c_vendor       = "Unknown",
 108        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
 109};
 110
 111static const struct cpu_dev *this_cpu = &default_cpu;
 112
 113DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 114#ifdef CONFIG_X86_64
 115        /*
 116         * We need valid kernel segments for data and code in long mode too
 117         * IRET will check the segment types  kkeil 2000/10/28
 118         * Also sysret mandates a special GDT layout
 119         *
 120         * TLS descriptors are currently at a different place compared to i386.
 121         * Hopefully nobody expects them at a fixed place (Wine?)
 122         */
 123        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 124        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 125        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 126        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 127        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 128        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 129#else
 130        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 131        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 132        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 133        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 134        /*
 135         * Segments used for calling PnP BIOS have byte granularity.
 136         * They code segments and data segments have fixed 64k limits,
 137         * the transfer segment sizes are set at run time.
 138         */
 139        /* 32-bit code */
 140        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 141        /* 16-bit code */
 142        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 143        /* 16-bit data */
 144        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 145        /* 16-bit data */
 146        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 147        /* 16-bit data */
 148        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 149        /*
 150         * The APM segments have byte granularity and their bases
 151         * are set at run time.  All have 64k limits.
 152         */
 153        /* 32-bit code */
 154        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 155        /* 16-bit code */
 156        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 157        /* data */
 158        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 159
 160        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 161        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 162        GDT_STACK_CANARY_INIT
 163#endif
 164} };
 165EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 166
 167static int __init x86_mpx_setup(char *s)
 168{
 169        /* require an exact match without trailing characters */
 170        if (strlen(s))
 171                return 0;
 172
 173        /* do not emit a message if the feature is not present */
 174        if (!boot_cpu_has(X86_FEATURE_MPX))
 175                return 1;
 176
 177        setup_clear_cpu_cap(X86_FEATURE_MPX);
 178        pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 179        return 1;
 180}
 181__setup("nompx", x86_mpx_setup);
 182
 183#ifdef CONFIG_X86_64
 184static int __init x86_nopcid_setup(char *s)
 185{
 186        /* nopcid doesn't accept parameters */
 187        if (s)
 188                return -EINVAL;
 189
 190        /* do not emit a message if the feature is not present */
 191        if (!boot_cpu_has(X86_FEATURE_PCID))
 192                return 0;
 193
 194        setup_clear_cpu_cap(X86_FEATURE_PCID);
 195        pr_info("nopcid: PCID feature disabled\n");
 196        return 0;
 197}
 198early_param("nopcid", x86_nopcid_setup);
 199#endif
 200
 201static int __init x86_noinvpcid_setup(char *s)
 202{
 203        /* noinvpcid doesn't accept parameters */
 204        if (s)
 205                return -EINVAL;
 206
 207        /* do not emit a message if the feature is not present */
 208        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 209                return 0;
 210
 211        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 212        pr_info("noinvpcid: INVPCID feature disabled\n");
 213        return 0;
 214}
 215early_param("noinvpcid", x86_noinvpcid_setup);
 216
 217#ifdef CONFIG_X86_32
 218static int cachesize_override = -1;
 219static int disable_x86_serial_nr = 1;
 220
 221static int __init cachesize_setup(char *str)
 222{
 223        get_option(&str, &cachesize_override);
 224        return 1;
 225}
 226__setup("cachesize=", cachesize_setup);
 227
 228static int __init x86_sep_setup(char *s)
 229{
 230        setup_clear_cpu_cap(X86_FEATURE_SEP);
 231        return 1;
 232}
 233__setup("nosep", x86_sep_setup);
 234
 235/* Standard macro to see if a specific flag is changeable */
 236static inline int flag_is_changeable_p(u32 flag)
 237{
 238        u32 f1, f2;
 239
 240        /*
 241         * Cyrix and IDT cpus allow disabling of CPUID
 242         * so the code below may return different results
 243         * when it is executed before and after enabling
 244         * the CPUID. Add "volatile" to not allow gcc to
 245         * optimize the subsequent calls to this function.
 246         */
 247        asm volatile ("pushfl           \n\t"
 248                      "pushfl           \n\t"
 249                      "popl %0          \n\t"
 250                      "movl %0, %1      \n\t"
 251                      "xorl %2, %0      \n\t"
 252                      "pushl %0         \n\t"
 253                      "popfl            \n\t"
 254                      "pushfl           \n\t"
 255                      "popl %0          \n\t"
 256                      "popfl            \n\t"
 257
 258                      : "=&r" (f1), "=&r" (f2)
 259                      : "ir" (flag));
 260
 261        return ((f1^f2) & flag) != 0;
 262}
 263
 264/* Probe for the CPUID instruction */
 265int have_cpuid_p(void)
 266{
 267        return flag_is_changeable_p(X86_EFLAGS_ID);
 268}
 269
 270static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 271{
 272        unsigned long lo, hi;
 273
 274        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 275                return;
 276
 277        /* Disable processor serial number: */
 278
 279        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 280        lo |= 0x200000;
 281        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 282
 283        pr_notice("CPU serial number disabled.\n");
 284        clear_cpu_cap(c, X86_FEATURE_PN);
 285
 286        /* Disabling the serial number may affect the cpuid level */
 287        c->cpuid_level = cpuid_eax(0);
 288}
 289
 290static int __init x86_serial_nr_setup(char *s)
 291{
 292        disable_x86_serial_nr = 0;
 293        return 1;
 294}
 295__setup("serialnumber", x86_serial_nr_setup);
 296#else
 297static inline int flag_is_changeable_p(u32 flag)
 298{
 299        return 1;
 300}
 301static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 302{
 303}
 304#endif
 305
 306static __init int setup_disable_smep(char *arg)
 307{
 308        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 309        /* Check for things that depend on SMEP being enabled: */
 310        check_mpx_erratum(&boot_cpu_data);
 311        return 1;
 312}
 313__setup("nosmep", setup_disable_smep);
 314
 315static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 316{
 317        if (cpu_has(c, X86_FEATURE_SMEP))
 318                cr4_set_bits(X86_CR4_SMEP);
 319}
 320
 321static __init int setup_disable_smap(char *arg)
 322{
 323        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 324        return 1;
 325}
 326__setup("nosmap", setup_disable_smap);
 327
 328static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 329{
 330        unsigned long eflags = native_save_fl();
 331
 332        /* This should have been cleared long ago */
 333        BUG_ON(eflags & X86_EFLAGS_AC);
 334
 335        if (cpu_has(c, X86_FEATURE_SMAP)) {
 336#ifdef CONFIG_X86_SMAP
 337                cr4_set_bits(X86_CR4_SMAP);
 338#else
 339                cr4_clear_bits(X86_CR4_SMAP);
 340#endif
 341        }
 342}
 343
 344static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 345{
 346        /* Check the boot processor, plus build option for UMIP. */
 347        if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 348                goto out;
 349
 350        /* Check the current processor's cpuid bits. */
 351        if (!cpu_has(c, X86_FEATURE_UMIP))
 352                goto out;
 353
 354        cr4_set_bits(X86_CR4_UMIP);
 355
 356        pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 357
 358        return;
 359
 360out:
 361        /*
 362         * Make sure UMIP is disabled in case it was enabled in a
 363         * previous boot (e.g., via kexec).
 364         */
 365        cr4_clear_bits(X86_CR4_UMIP);
 366}
 367
 368static __init int x86_nofsgsbase_setup(char *arg)
 369{
 370        /* Require an exact match without trailing characters. */
 371        if (strlen(arg))
 372                return 0;
 373
 374        /* Do not emit a message if the feature is not present. */
 375        if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
 376                return 1;
 377
 378        setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
 379        pr_info("FSGSBASE disabled via kernel command line\n");
 380        return 1;
 381}
 382__setup("nofsgsbase", x86_nofsgsbase_setup);
 383
 384/*
 385 * Protection Keys are not available in 32-bit mode.
 386 */
 387static bool pku_disabled;
 388
 389static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 390{
 391        struct pkru_state *pk;
 392
 393        /* check the boot processor, plus compile options for PKU: */
 394        if (!cpu_feature_enabled(X86_FEATURE_PKU))
 395                return;
 396        /* checks the actual processor's cpuid bits: */
 397        if (!cpu_has(c, X86_FEATURE_PKU))
 398                return;
 399        if (pku_disabled)
 400                return;
 401
 402        cr4_set_bits(X86_CR4_PKE);
 403        pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
 404        if (pk)
 405                pk->pkru = init_pkru_value;
 406        /*
 407         * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 408         * cpuid bit to be set.  We need to ensure that we
 409         * update that bit in this CPU's "cpu_info".
 410         */
 411        get_cpu_cap(c);
 412}
 413
 414#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 415static __init int setup_disable_pku(char *arg)
 416{
 417        /*
 418         * Do not clear the X86_FEATURE_PKU bit.  All of the
 419         * runtime checks are against OSPKE so clearing the
 420         * bit does nothing.
 421         *
 422         * This way, we will see "pku" in cpuinfo, but not
 423         * "ospke", which is exactly what we want.  It shows
 424         * that the CPU has PKU, but the OS has not enabled it.
 425         * This happens to be exactly how a system would look
 426         * if we disabled the config option.
 427         */
 428        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 429        pku_disabled = true;
 430        return 1;
 431}
 432__setup("nopku", setup_disable_pku);
 433#endif /* CONFIG_X86_64 */
 434
 435/*
 436 * Some CPU features depend on higher CPUID levels, which may not always
 437 * be available due to CPUID level capping or broken virtualization
 438 * software.  Add those features to this table to auto-disable them.
 439 */
 440struct cpuid_dependent_feature {
 441        u32 feature;
 442        u32 level;
 443};
 444
 445static const struct cpuid_dependent_feature
 446cpuid_dependent_features[] = {
 447        { X86_FEATURE_MWAIT,            0x00000005 },
 448        { X86_FEATURE_DCA,              0x00000009 },
 449        { X86_FEATURE_XSAVE,            0x0000000d },
 450        { 0, 0 }
 451};
 452
 453static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 454{
 455        const struct cpuid_dependent_feature *df;
 456
 457        for (df = cpuid_dependent_features; df->feature; df++) {
 458
 459                if (!cpu_has(c, df->feature))
 460                        continue;
 461                /*
 462                 * Note: cpuid_level is set to -1 if unavailable, but
 463                 * extended_extended_level is set to 0 if unavailable
 464                 * and the legitimate extended levels are all negative
 465                 * when signed; hence the weird messing around with
 466                 * signs here...
 467                 */
 468                if (!((s32)df->level < 0 ?
 469                     (u32)df->level > (u32)c->extended_cpuid_level :
 470                     (s32)df->level > (s32)c->cpuid_level))
 471                        continue;
 472
 473                clear_cpu_cap(c, df->feature);
 474                if (!warn)
 475                        continue;
 476
 477                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 478                        x86_cap_flag(df->feature), df->level);
 479        }
 480}
 481
 482/*
 483 * Naming convention should be: <Name> [(<Codename>)]
 484 * This table only is used unless init_<vendor>() below doesn't set it;
 485 * in particular, if CPUID levels 0x80000002..4 are supported, this
 486 * isn't used
 487 */
 488
 489/* Look up CPU names by table lookup. */
 490static const char *table_lookup_model(struct cpuinfo_x86 *c)
 491{
 492#ifdef CONFIG_X86_32
 493        const struct legacy_cpu_model_info *info;
 494
 495        if (c->x86_model >= 16)
 496                return NULL;    /* Range check */
 497
 498        if (!this_cpu)
 499                return NULL;
 500
 501        info = this_cpu->legacy_models;
 502
 503        while (info->family) {
 504                if (info->family == c->x86)
 505                        return info->model_names[c->x86_model];
 506                info++;
 507        }
 508#endif
 509        return NULL;            /* Not found */
 510}
 511
 512/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
 513__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 514__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 515
 516void load_percpu_segment(int cpu)
 517{
 518#ifdef CONFIG_X86_32
 519        loadsegment(fs, __KERNEL_PERCPU);
 520#else
 521        __loadsegment_simple(gs, 0);
 522        wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 523#endif
 524        load_stack_canary_segment();
 525}
 526
 527#ifdef CONFIG_X86_32
 528/* The 32-bit entry code needs to find cpu_entry_area. */
 529DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 530#endif
 531
 532/* Load the original GDT from the per-cpu structure */
 533void load_direct_gdt(int cpu)
 534{
 535        struct desc_ptr gdt_descr;
 536
 537        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 538        gdt_descr.size = GDT_SIZE - 1;
 539        load_gdt(&gdt_descr);
 540}
 541EXPORT_SYMBOL_GPL(load_direct_gdt);
 542
 543/* Load a fixmap remapping of the per-cpu GDT */
 544void load_fixmap_gdt(int cpu)
 545{
 546        struct desc_ptr gdt_descr;
 547
 548        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 549        gdt_descr.size = GDT_SIZE - 1;
 550        load_gdt(&gdt_descr);
 551}
 552EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 553
 554/*
 555 * Current gdt points %fs at the "master" per-cpu area: after this,
 556 * it's on the real one.
 557 */
 558void switch_to_new_gdt(int cpu)
 559{
 560        /* Load the original GDT */
 561        load_direct_gdt(cpu);
 562        /* Reload the per-cpu base */
 563        load_percpu_segment(cpu);
 564}
 565
 566static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 567
 568static void get_model_name(struct cpuinfo_x86 *c)
 569{
 570        unsigned int *v;
 571        char *p, *q, *s;
 572
 573        if (c->extended_cpuid_level < 0x80000004)
 574                return;
 575
 576        v = (unsigned int *)c->x86_model_id;
 577        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 578        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 579        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 580        c->x86_model_id[48] = 0;
 581
 582        /* Trim whitespace */
 583        p = q = s = &c->x86_model_id[0];
 584
 585        while (*p == ' ')
 586                p++;
 587
 588        while (*p) {
 589                /* Note the last non-whitespace index */
 590                if (!isspace(*p))
 591                        s = q;
 592
 593                *q++ = *p++;
 594        }
 595
 596        *(s + 1) = '\0';
 597}
 598
 599void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 600{
 601        unsigned int eax, ebx, ecx, edx;
 602
 603        c->x86_max_cores = 1;
 604        if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 605                return;
 606
 607        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 608        if (eax & 0x1f)
 609                c->x86_max_cores = (eax >> 26) + 1;
 610}
 611
 612void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 613{
 614        unsigned int n, dummy, ebx, ecx, edx, l2size;
 615
 616        n = c->extended_cpuid_level;
 617
 618        if (n >= 0x80000005) {
 619                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 620                c->x86_cache_size = (ecx>>24) + (edx>>24);
 621#ifdef CONFIG_X86_64
 622                /* On K8 L1 TLB is inclusive, so don't count it */
 623                c->x86_tlbsize = 0;
 624#endif
 625        }
 626
 627        if (n < 0x80000006)     /* Some chips just has a large L1. */
 628                return;
 629
 630        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 631        l2size = ecx >> 16;
 632
 633#ifdef CONFIG_X86_64
 634        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 635#else
 636        /* do processor-specific cache resizing */
 637        if (this_cpu->legacy_cache_size)
 638                l2size = this_cpu->legacy_cache_size(c, l2size);
 639
 640        /* Allow user to override all this if necessary. */
 641        if (cachesize_override != -1)
 642                l2size = cachesize_override;
 643
 644        if (l2size == 0)
 645                return;         /* Again, no L2 cache is possible */
 646#endif
 647
 648        c->x86_cache_size = l2size;
 649}
 650
 651u16 __read_mostly tlb_lli_4k[NR_INFO];
 652u16 __read_mostly tlb_lli_2m[NR_INFO];
 653u16 __read_mostly tlb_lli_4m[NR_INFO];
 654u16 __read_mostly tlb_lld_4k[NR_INFO];
 655u16 __read_mostly tlb_lld_2m[NR_INFO];
 656u16 __read_mostly tlb_lld_4m[NR_INFO];
 657u16 __read_mostly tlb_lld_1g[NR_INFO];
 658
 659static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 660{
 661        if (this_cpu->c_detect_tlb)
 662                this_cpu->c_detect_tlb(c);
 663
 664        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 665                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 666                tlb_lli_4m[ENTRIES]);
 667
 668        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 669                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 670                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 671}
 672
 673int detect_ht_early(struct cpuinfo_x86 *c)
 674{
 675#ifdef CONFIG_SMP
 676        u32 eax, ebx, ecx, edx;
 677
 678        if (!cpu_has(c, X86_FEATURE_HT))
 679                return -1;
 680
 681        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 682                return -1;
 683
 684        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 685                return -1;
 686
 687        cpuid(1, &eax, &ebx, &ecx, &edx);
 688
 689        smp_num_siblings = (ebx & 0xff0000) >> 16;
 690        if (smp_num_siblings == 1)
 691                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 692#endif
 693        return 0;
 694}
 695
 696void detect_ht(struct cpuinfo_x86 *c)
 697{
 698#ifdef CONFIG_SMP
 699        int index_msb, core_bits;
 700
 701        if (detect_ht_early(c) < 0)
 702                return;
 703
 704        index_msb = get_count_order(smp_num_siblings);
 705        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 706
 707        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 708
 709        index_msb = get_count_order(smp_num_siblings);
 710
 711        core_bits = get_count_order(c->x86_max_cores);
 712
 713        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 714                                       ((1 << core_bits) - 1);
 715#endif
 716}
 717
 718static void get_cpu_vendor(struct cpuinfo_x86 *c)
 719{
 720        char *v = c->x86_vendor_id;
 721        int i;
 722
 723        for (i = 0; i < X86_VENDOR_NUM; i++) {
 724                if (!cpu_devs[i])
 725                        break;
 726
 727                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 728                    (cpu_devs[i]->c_ident[1] &&
 729                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 730
 731                        this_cpu = cpu_devs[i];
 732                        c->x86_vendor = this_cpu->c_x86_vendor;
 733                        return;
 734                }
 735        }
 736
 737        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 738                    "CPU: Your system may be unstable.\n", v);
 739
 740        c->x86_vendor = X86_VENDOR_UNKNOWN;
 741        this_cpu = &default_cpu;
 742}
 743
 744void cpu_detect(struct cpuinfo_x86 *c)
 745{
 746        /* Get vendor name */
 747        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 748              (unsigned int *)&c->x86_vendor_id[0],
 749              (unsigned int *)&c->x86_vendor_id[8],
 750              (unsigned int *)&c->x86_vendor_id[4]);
 751
 752        c->x86 = 4;
 753        /* Intel-defined flags: level 0x00000001 */
 754        if (c->cpuid_level >= 0x00000001) {
 755                u32 junk, tfms, cap0, misc;
 756
 757                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 758                c->x86          = x86_family(tfms);
 759                c->x86_model    = x86_model(tfms);
 760                c->x86_stepping = x86_stepping(tfms);
 761
 762                if (cap0 & (1<<19)) {
 763                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 764                        c->x86_cache_alignment = c->x86_clflush_size;
 765                }
 766        }
 767}
 768
 769static void apply_forced_caps(struct cpuinfo_x86 *c)
 770{
 771        int i;
 772
 773        for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 774                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 775                c->x86_capability[i] |= cpu_caps_set[i];
 776        }
 777}
 778
 779static void init_speculation_control(struct cpuinfo_x86 *c)
 780{
 781        /*
 782         * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 783         * and they also have a different bit for STIBP support. Also,
 784         * a hypervisor might have set the individual AMD bits even on
 785         * Intel CPUs, for finer-grained selection of what's available.
 786         */
 787        if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 788                set_cpu_cap(c, X86_FEATURE_IBRS);
 789                set_cpu_cap(c, X86_FEATURE_IBPB);
 790                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 791        }
 792
 793        if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 794                set_cpu_cap(c, X86_FEATURE_STIBP);
 795
 796        if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 797            cpu_has(c, X86_FEATURE_VIRT_SSBD))
 798                set_cpu_cap(c, X86_FEATURE_SSBD);
 799
 800        if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 801                set_cpu_cap(c, X86_FEATURE_IBRS);
 802                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 803        }
 804
 805        if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 806                set_cpu_cap(c, X86_FEATURE_IBPB);
 807
 808        if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 809                set_cpu_cap(c, X86_FEATURE_STIBP);
 810                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 811        }
 812
 813        if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 814                set_cpu_cap(c, X86_FEATURE_SSBD);
 815                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 816                clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 817        }
 818}
 819
 820void get_cpu_cap(struct cpuinfo_x86 *c)
 821{
 822        u32 eax, ebx, ecx, edx;
 823
 824        /* Intel-defined flags: level 0x00000001 */
 825        if (c->cpuid_level >= 0x00000001) {
 826                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 827
 828                c->x86_capability[CPUID_1_ECX] = ecx;
 829                c->x86_capability[CPUID_1_EDX] = edx;
 830        }
 831
 832        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 833        if (c->cpuid_level >= 0x00000006)
 834                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 835
 836        /* Additional Intel-defined flags: level 0x00000007 */
 837        if (c->cpuid_level >= 0x00000007) {
 838                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 839                c->x86_capability[CPUID_7_0_EBX] = ebx;
 840                c->x86_capability[CPUID_7_ECX] = ecx;
 841                c->x86_capability[CPUID_7_EDX] = edx;
 842
 843                /* Check valid sub-leaf index before accessing it */
 844                if (eax >= 1) {
 845                        cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 846                        c->x86_capability[CPUID_7_1_EAX] = eax;
 847                }
 848        }
 849
 850        /* Extended state features: level 0x0000000d */
 851        if (c->cpuid_level >= 0x0000000d) {
 852                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 853
 854                c->x86_capability[CPUID_D_1_EAX] = eax;
 855        }
 856
 857        /* AMD-defined flags: level 0x80000001 */
 858        eax = cpuid_eax(0x80000000);
 859        c->extended_cpuid_level = eax;
 860
 861        if ((eax & 0xffff0000) == 0x80000000) {
 862                if (eax >= 0x80000001) {
 863                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 864
 865                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 866                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 867                }
 868        }
 869
 870        if (c->extended_cpuid_level >= 0x80000007) {
 871                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 872
 873                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 874                c->x86_power = edx;
 875        }
 876
 877        if (c->extended_cpuid_level >= 0x80000008) {
 878                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 879                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 880        }
 881
 882        if (c->extended_cpuid_level >= 0x8000000a)
 883                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 884
 885        if (c->extended_cpuid_level >= 0x8000001f)
 886                c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
 887
 888        init_scattered_cpuid_features(c);
 889        init_speculation_control(c);
 890
 891        /*
 892         * Clear/Set all flags overridden by options, after probe.
 893         * This needs to happen each time we re-probe, which may happen
 894         * several times during CPU initialization.
 895         */
 896        apply_forced_caps(c);
 897}
 898
 899static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 900{
 901        u32 eax, ebx, ecx, edx;
 902
 903        if (c->extended_cpuid_level >= 0x80000008) {
 904                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 905
 906                c->x86_virt_bits = (eax >> 8) & 0xff;
 907                c->x86_phys_bits = eax & 0xff;
 908        }
 909#ifdef CONFIG_X86_32
 910        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 911                c->x86_phys_bits = 36;
 912#endif
 913        c->x86_cache_bits = c->x86_phys_bits;
 914}
 915
 916static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 917{
 918#ifdef CONFIG_X86_32
 919        int i;
 920
 921        /*
 922         * First of all, decide if this is a 486 or higher
 923         * It's a 486 if we can modify the AC flag
 924         */
 925        if (flag_is_changeable_p(X86_EFLAGS_AC))
 926                c->x86 = 4;
 927        else
 928                c->x86 = 3;
 929
 930        for (i = 0; i < X86_VENDOR_NUM; i++)
 931                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 932                        c->x86_vendor_id[0] = 0;
 933                        cpu_devs[i]->c_identify(c);
 934                        if (c->x86_vendor_id[0]) {
 935                                get_cpu_vendor(c);
 936                                break;
 937                        }
 938                }
 939#endif
 940}
 941
 942#define NO_SPECULATION          BIT(0)
 943#define NO_MELTDOWN             BIT(1)
 944#define NO_SSB                  BIT(2)
 945#define NO_L1TF                 BIT(3)
 946#define NO_MDS                  BIT(4)
 947#define MSBDS_ONLY              BIT(5)
 948#define NO_SWAPGS               BIT(6)
 949#define NO_ITLB_MULTIHIT        BIT(7)
 950
 951#define VULNWL(vendor, family, model, whitelist)        \
 952        X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
 953
 954#define VULNWL_INTEL(model, whitelist)          \
 955        VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
 956
 957#define VULNWL_AMD(family, whitelist)           \
 958        VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
 959
 960static const __initconst struct x86_cpu_id_v2 cpu_vuln_whitelist[] = {
 961        VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
 962        VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
 963        VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
 964        VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
 965
 966        /* Intel Family 6 */
 967        VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
 968        VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
 969        VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
 970        VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
 971        VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
 972
 973        VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 974        VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 975        VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 976        VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 977        VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 978        VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 979
 980        VULNWL_INTEL(CORE_YONAH,                NO_SSB),
 981
 982        VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 983
 984        VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
 985        VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
 986        VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
 987
 988        /*
 989         * Technically, swapgs isn't serializing on AMD (despite it previously
 990         * being documented as such in the APM).  But according to AMD, %gs is
 991         * updated non-speculatively, and the issuing of %gs-relative memory
 992         * operands will be blocked until the %gs update completes, which is
 993         * good enough for our purposes.
 994         */
 995
 996        VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
 997
 998        /* AMD Family 0xf - 0x12 */
 999        VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1000        VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1001        VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1002        VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1003
1004        /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1005        VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1006        {}
1007};
1008
1009#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1010        X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1011                                            INTEL_FAM6_##model, steppings, \
1012                                            X86_FEATURE_ANY, issues)
1013
1014#define SRBDS           BIT(0)
1015
1016static const struct x86_cpu_id_v2 cpu_vuln_blacklist[] __initconst = {
1017        VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1018        VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1019        VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1020        VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1021        VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1022        VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1023        VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1024        VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1025        VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1026        VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1027        {}
1028};
1029
1030static bool __init cpu_matches(const struct x86_cpu_id_v2 *table, unsigned long which)
1031{
1032        const struct x86_cpu_id_v2 *m = x86_match_cpu_v2(table);
1033
1034        return m && !!(m->driver_data & which);
1035}
1036
1037u64 x86_read_arch_cap_msr(void)
1038{
1039        u64 ia32_cap = 0;
1040
1041        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1042                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1043
1044        return ia32_cap;
1045}
1046
1047static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1048{
1049        u64 ia32_cap = x86_read_arch_cap_msr();
1050
1051        /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1052        if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1053            !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1054                setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1055
1056        if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1057                return;
1058
1059        setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1060        setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1061
1062        if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1063            !(ia32_cap & ARCH_CAP_SSB_NO) &&
1064           !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1065                setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1066
1067        if (ia32_cap & ARCH_CAP_IBRS_ALL)
1068                setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1069
1070        if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1071            !(ia32_cap & ARCH_CAP_MDS_NO)) {
1072                setup_force_cpu_bug(X86_BUG_MDS);
1073                if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1074                        setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1075        }
1076
1077        if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1078                setup_force_cpu_bug(X86_BUG_SWAPGS);
1079
1080        /*
1081         * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1082         *      - TSX is supported or
1083         *      - TSX_CTRL is present
1084         *
1085         * TSX_CTRL check is needed for cases when TSX could be disabled before
1086         * the kernel boot e.g. kexec.
1087         * TSX_CTRL check alone is not sufficient for cases when the microcode
1088         * update is not present or running as guest that don't get TSX_CTRL.
1089         */
1090        if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1091            (cpu_has(c, X86_FEATURE_RTM) ||
1092             (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1093                setup_force_cpu_bug(X86_BUG_TAA);
1094
1095        /*
1096         * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1097         * in the vulnerability blacklist.
1098         */
1099        if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1100             cpu_has(c, X86_FEATURE_RDSEED)) &&
1101            cpu_matches(cpu_vuln_blacklist, SRBDS))
1102                    setup_force_cpu_bug(X86_BUG_SRBDS);
1103
1104        if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1105                return;
1106
1107        /* Rogue Data Cache Load? No! */
1108        if (ia32_cap & ARCH_CAP_RDCL_NO)
1109                return;
1110
1111        setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1112
1113        if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1114                return;
1115
1116        setup_force_cpu_bug(X86_BUG_L1TF);
1117}
1118
1119/*
1120 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1121 * unfortunately, that's not true in practice because of early VIA
1122 * chips and (more importantly) broken virtualizers that are not easy
1123 * to detect. In the latter case it doesn't even *fail* reliably, so
1124 * probing for it doesn't even work. Disable it completely on 32-bit
1125 * unless we can find a reliable way to detect all the broken cases.
1126 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1127 */
1128static void detect_nopl(struct cpuinfo_x86 *c)
1129{
1130#ifdef CONFIG_X86_32
1131        clear_cpu_cap(c, X86_FEATURE_NOPL);
1132#else
1133        set_cpu_cap(c, X86_FEATURE_NOPL);
1134#endif
1135}
1136
1137/*
1138 * Do minimum CPU detection early.
1139 * Fields really needed: vendor, cpuid_level, family, model, mask,
1140 * cache alignment.
1141 * The others are not touched to avoid unwanted side effects.
1142 *
1143 * WARNING: this function is only called on the boot CPU.  Don't add code
1144 * here that is supposed to run on all CPUs.
1145 */
1146static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1147{
1148#ifdef CONFIG_X86_64
1149        c->x86_clflush_size = 64;
1150        c->x86_phys_bits = 36;
1151        c->x86_virt_bits = 48;
1152#else
1153        c->x86_clflush_size = 32;
1154        c->x86_phys_bits = 32;
1155        c->x86_virt_bits = 32;
1156#endif
1157        c->x86_cache_alignment = c->x86_clflush_size;
1158
1159        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1160        c->extended_cpuid_level = 0;
1161
1162        /* cyrix could have cpuid enabled via c_identify()*/
1163        if (have_cpuid_p()) {
1164                cpu_detect(c);
1165                get_cpu_vendor(c);
1166                get_cpu_cap(c);
1167                get_model_name(c); /* RHEL8: get model name for unsupported check */
1168                get_cpu_address_sizes(c);
1169                setup_force_cpu_cap(X86_FEATURE_CPUID);
1170
1171                if (this_cpu->c_early_init)
1172                        this_cpu->c_early_init(c);
1173
1174                c->cpu_index = 0;
1175                filter_cpuid_features(c, false);
1176
1177                if (this_cpu->c_bsp_init)
1178                        this_cpu->c_bsp_init(c);
1179        } else {
1180                identify_cpu_without_cpuid(c);
1181                setup_clear_cpu_cap(X86_FEATURE_CPUID);
1182        }
1183
1184        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1185
1186        cpu_set_bug_bits(c);
1187
1188        sld_setup(c);
1189
1190        fpu__init_system(c);
1191
1192#ifdef CONFIG_X86_32
1193        /*
1194         * Regardless of whether PCID is enumerated, the SDM says
1195         * that it can't be enabled in 32-bit mode.
1196         */
1197        setup_clear_cpu_cap(X86_FEATURE_PCID);
1198#endif
1199
1200        /*
1201         * Later in the boot process pgtable_l5_enabled() relies on
1202         * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1203         * enabled by this point we need to clear the feature bit to avoid
1204         * false-positives at the later stage.
1205         *
1206         * pgtable_l5_enabled() can be false here for several reasons:
1207         *  - 5-level paging is disabled compile-time;
1208         *  - it's 32-bit kernel;
1209         *  - machine doesn't support 5-level paging;
1210         *  - user specified 'no5lvl' in kernel command line.
1211         */
1212        if (!pgtable_l5_enabled())
1213                setup_clear_cpu_cap(X86_FEATURE_LA57);
1214
1215        detect_nopl(c);
1216}
1217
1218void __init early_cpu_init(void)
1219{
1220        const struct cpu_dev *const *cdev;
1221        int count = 0;
1222
1223#ifdef CONFIG_PROCESSOR_SELECT
1224        pr_info("KERNEL supported cpus:\n");
1225#endif
1226
1227        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1228                const struct cpu_dev *cpudev = *cdev;
1229
1230                if (count >= X86_VENDOR_NUM)
1231                        break;
1232                cpu_devs[count] = cpudev;
1233                count++;
1234
1235#ifdef CONFIG_PROCESSOR_SELECT
1236                {
1237                        unsigned int j;
1238
1239                        for (j = 0; j < 2; j++) {
1240                                if (!cpudev->c_ident[j])
1241                                        continue;
1242                                pr_info("  %s %s\n", cpudev->c_vendor,
1243                                        cpudev->c_ident[j]);
1244                        }
1245                }
1246#endif
1247        }
1248        early_identify_cpu(&boot_cpu_data);
1249}
1250
1251static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1252{
1253#ifdef CONFIG_X86_64
1254        /*
1255         * Empirically, writing zero to a segment selector on AMD does
1256         * not clear the base, whereas writing zero to a segment
1257         * selector on Intel does clear the base.  Intel's behavior
1258         * allows slightly faster context switches in the common case
1259         * where GS is unused by the prev and next threads.
1260         *
1261         * Since neither vendor documents this anywhere that I can see,
1262         * detect it directly instead of hardcoding the choice by
1263         * vendor.
1264         *
1265         * I've designated AMD's behavior as the "bug" because it's
1266         * counterintuitive and less friendly.
1267         */
1268
1269        unsigned long old_base, tmp;
1270        rdmsrl(MSR_FS_BASE, old_base);
1271        wrmsrl(MSR_FS_BASE, 1);
1272        loadsegment(fs, 0);
1273        rdmsrl(MSR_FS_BASE, tmp);
1274        if (tmp != 0)
1275                set_cpu_bug(c, X86_BUG_NULL_SEG);
1276        wrmsrl(MSR_FS_BASE, old_base);
1277#endif
1278}
1279
1280static void generic_identify(struct cpuinfo_x86 *c)
1281{
1282        c->extended_cpuid_level = 0;
1283
1284        if (!have_cpuid_p())
1285                identify_cpu_without_cpuid(c);
1286
1287        /* cyrix could have cpuid enabled via c_identify()*/
1288        if (!have_cpuid_p())
1289                return;
1290
1291        cpu_detect(c);
1292
1293        get_cpu_vendor(c);
1294
1295        get_cpu_cap(c);
1296
1297        get_cpu_address_sizes(c);
1298
1299        if (c->cpuid_level >= 0x00000001) {
1300                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1301#ifdef CONFIG_X86_32
1302# ifdef CONFIG_SMP
1303                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1304# else
1305                c->apicid = c->initial_apicid;
1306# endif
1307#endif
1308                c->phys_proc_id = c->initial_apicid;
1309        }
1310
1311        get_model_name(c); /* Default name */
1312
1313        detect_nopl(c);
1314
1315        detect_null_seg_behavior(c);
1316
1317        /*
1318         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1319         * systems that run Linux at CPL > 0 may or may not have the
1320         * issue, but, even if they have the issue, there's absolutely
1321         * nothing we can do about it because we can't use the real IRET
1322         * instruction.
1323         *
1324         * NB: For the time being, only 32-bit kernels support
1325         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1326         * whether to apply espfix using paravirt hooks.  If any
1327         * non-paravirt system ever shows up that does *not* have the
1328         * ESPFIX issue, we can change this.
1329         */
1330#ifdef CONFIG_X86_32
1331# ifdef CONFIG_PARAVIRT
1332        do {
1333                extern void native_iret(void);
1334                if (pv_cpu_ops.iret == native_iret)
1335                        set_cpu_bug(c, X86_BUG_ESPFIX);
1336        } while (0);
1337# else
1338        set_cpu_bug(c, X86_BUG_ESPFIX);
1339# endif
1340#endif
1341}
1342
1343/*
1344 * Validate that ACPI/mptables have the same information about the
1345 * effective APIC id and update the package map.
1346 */
1347static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1348{
1349#ifdef CONFIG_SMP
1350        unsigned int apicid, cpu = smp_processor_id();
1351
1352        apicid = apic->cpu_present_to_apicid(cpu);
1353
1354        if (apicid != c->apicid) {
1355                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1356                       cpu, apicid, c->initial_apicid);
1357        }
1358        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1359        BUG_ON(topology_update_die_map(c->_rh.cpu_die_id, cpu));
1360#else
1361        c->logical_proc_id = 0;
1362#endif
1363}
1364
1365/*
1366 * This does the hard work of actually picking apart the CPU stuff...
1367 */
1368static void identify_cpu(struct cpuinfo_x86 *c)
1369{
1370        int i;
1371
1372        c->loops_per_jiffy = loops_per_jiffy;
1373        c->x86_cache_size = 0;
1374        c->x86_vendor = X86_VENDOR_UNKNOWN;
1375        c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1376        c->x86_vendor_id[0] = '\0'; /* Unset */
1377        c->x86_model_id[0] = '\0';  /* Unset */
1378        c->x86_max_cores = 1;
1379        c->x86_coreid_bits = 0;
1380        c->cu_id = 0xff;
1381#ifdef CONFIG_X86_64
1382        c->x86_clflush_size = 64;
1383        c->x86_phys_bits = 36;
1384        c->x86_virt_bits = 48;
1385#else
1386        c->cpuid_level = -1;    /* CPUID not detected */
1387        c->x86_clflush_size = 32;
1388        c->x86_phys_bits = 32;
1389        c->x86_virt_bits = 32;
1390#endif
1391        c->x86_cache_alignment = c->x86_clflush_size;
1392        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1393#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1394        memset(&c->_rh.vmx_capability, 0, sizeof(c->_rh.vmx_capability));
1395#endif
1396
1397        generic_identify(c);
1398
1399        if (this_cpu->c_identify)
1400                this_cpu->c_identify(c);
1401
1402        /* Clear/Set all flags overridden by options, after probe */
1403        apply_forced_caps(c);
1404
1405#ifdef CONFIG_X86_64
1406        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1407#endif
1408
1409        /*
1410         * Vendor-specific initialization.  In this section we
1411         * canonicalize the feature flags, meaning if there are
1412         * features a certain CPU supports which CPUID doesn't
1413         * tell us, CPUID claiming incorrect flags, or other bugs,
1414         * we handle them here.
1415         *
1416         * At the end of this section, c->x86_capability better
1417         * indicate the features this CPU genuinely supports!
1418         */
1419        if (this_cpu->c_init)
1420                this_cpu->c_init(c);
1421
1422        /* Disable the PN if appropriate */
1423        squash_the_stupid_serial_number(c);
1424
1425        /* Set up SMEP/SMAP/UMIP */
1426        setup_smep(c);
1427        setup_smap(c);
1428        setup_umip(c);
1429
1430        /* Enable FSGSBASE instructions if available. */
1431        if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1432                cr4_set_bits(X86_CR4_FSGSBASE);
1433                elf_hwcap2 |= HWCAP2_FSGSBASE;
1434        }
1435
1436        /*
1437         * The vendor-specific functions might have changed features.
1438         * Now we do "generic changes."
1439         */
1440
1441        /* Filter out anything that depends on CPUID levels we don't have */
1442        filter_cpuid_features(c, true);
1443
1444        /* If the model name is still unset, do table lookup. */
1445        if (!c->x86_model_id[0]) {
1446                const char *p;
1447                p = table_lookup_model(c);
1448                if (p)
1449                        strcpy(c->x86_model_id, p);
1450                else
1451                        /* Last resort... */
1452                        sprintf(c->x86_model_id, "%02x/%02x",
1453                                c->x86, c->x86_model);
1454        }
1455
1456#ifdef CONFIG_X86_64
1457        detect_ht(c);
1458#endif
1459
1460        x86_init_rdrand(c);
1461        setup_pku(c);
1462
1463        /*
1464         * Clear/Set all flags overridden by options, need do it
1465         * before following smp all cpus cap AND.
1466         */
1467        apply_forced_caps(c);
1468
1469        /*
1470         * On SMP, boot_cpu_data holds the common feature set between
1471         * all CPUs; so make sure that we indicate which features are
1472         * common between the CPUs.  The first time this routine gets
1473         * executed, c == &boot_cpu_data.
1474         */
1475        if (c != &boot_cpu_data) {
1476                /* AND the already accumulated flags with these */
1477                for (i = 0; i < NCAPINTS; i++)
1478                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1479
1480                /* OR, i.e. replicate the bug flags */
1481                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1482                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1483        }
1484
1485        /* Init Machine Check Exception if available. */
1486        mcheck_cpu_init(c);
1487
1488        select_idle_routine(c);
1489
1490#ifdef CONFIG_NUMA
1491        numa_add_cpu(smp_processor_id());
1492#endif
1493}
1494
1495/*
1496 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1497 * on 32-bit kernels:
1498 */
1499#ifdef CONFIG_X86_32
1500void enable_sep_cpu(void)
1501{
1502        struct tss_struct *tss;
1503        int cpu;
1504
1505        if (!boot_cpu_has(X86_FEATURE_SEP))
1506                return;
1507
1508        cpu = get_cpu();
1509        tss = &per_cpu(cpu_tss_rw, cpu);
1510
1511        /*
1512         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1513         * see the big comment in struct x86_hw_tss's definition.
1514         */
1515
1516        tss->x86_tss.ss1 = __KERNEL_CS;
1517        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1518        wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1519        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1520
1521        put_cpu();
1522}
1523#endif
1524
1525void __init identify_boot_cpu(void)
1526{
1527        identify_cpu(&boot_cpu_data);
1528#ifdef CONFIG_X86_32
1529        sysenter_setup();
1530        enable_sep_cpu();
1531#endif
1532        cpu_detect_tlb(&boot_cpu_data);
1533
1534        tsx_init();
1535}
1536
1537void identify_secondary_cpu(struct cpuinfo_x86 *c)
1538{
1539        BUG_ON(c == &boot_cpu_data);
1540        identify_cpu(c);
1541        spec_ctrl_cpu_init();
1542#ifdef CONFIG_X86_32
1543        enable_sep_cpu();
1544#endif
1545        mtrr_ap_init();
1546        validate_apic_and_package_id(c);
1547        x86_spec_ctrl_setup_ap();
1548        update_srbds_msr();
1549}
1550
1551static __init int setup_noclflush(char *arg)
1552{
1553        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1554        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1555        return 1;
1556}
1557__setup("noclflush", setup_noclflush);
1558
1559void print_cpu_info(struct cpuinfo_x86 *c)
1560{
1561        const char *vendor = NULL;
1562
1563        if (c->x86_vendor < X86_VENDOR_NUM) {
1564                vendor = this_cpu->c_vendor;
1565        } else {
1566                if (c->cpuid_level >= 0)
1567                        vendor = c->x86_vendor_id;
1568        }
1569
1570        if (vendor && !strstr(c->x86_model_id, vendor))
1571                pr_cont("%s ", vendor);
1572
1573        if (c->x86_model_id[0])
1574                pr_cont("%s", c->x86_model_id);
1575        else
1576                pr_cont("%d86", c->x86);
1577
1578        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1579
1580        if (c->x86_stepping || c->cpuid_level >= 0)
1581                pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1582        else
1583                pr_cont(")\n");
1584}
1585
1586/*
1587 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1588 * But we need to keep a dummy __setup around otherwise it would
1589 * show up as an environment variable for init.
1590 */
1591static __init int setup_clearcpuid(char *arg)
1592{
1593        return 1;
1594}
1595__setup("clearcpuid=", setup_clearcpuid);
1596
1597#ifdef CONFIG_X86_64
1598DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1599                     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1600EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1601
1602/*
1603 * The following percpu variables are hot.  Align current_task to
1604 * cacheline size such that they fall in the same cacheline.
1605 */
1606DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1607        &init_task;
1608EXPORT_PER_CPU_SYMBOL(current_task);
1609
1610DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1611DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1612
1613DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1614EXPORT_PER_CPU_SYMBOL(__preempt_count);
1615
1616/* May not be marked __init: used by software suspend */
1617void syscall_init(void)
1618{
1619        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1620        wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1621
1622#ifdef CONFIG_IA32_EMULATION
1623        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1624        /*
1625         * This only works on Intel CPUs.
1626         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1627         * This does not cause SYSENTER to jump to the wrong location, because
1628         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1629         */
1630        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1631        wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1632                    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1633        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1634#else
1635        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1636        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1637        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1638        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1639#endif
1640
1641        /* Flags to clear on syscall */
1642        wrmsrl(MSR_SYSCALL_MASK,
1643               X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1644               X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1645}
1646
1647DEFINE_PER_CPU(int, debug_stack_usage);
1648DEFINE_PER_CPU(u32, debug_idt_ctr);
1649
1650noinstr void debug_stack_set_zero(void)
1651{
1652        this_cpu_inc(debug_idt_ctr);
1653        load_current_idt();
1654}
1655
1656noinstr void debug_stack_reset(void)
1657{
1658        if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1659                return;
1660        if (this_cpu_dec_return(debug_idt_ctr) == 0)
1661                load_current_idt();
1662}
1663
1664#else   /* CONFIG_X86_64 */
1665
1666DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1667EXPORT_PER_CPU_SYMBOL(current_task);
1668DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1669EXPORT_PER_CPU_SYMBOL(__preempt_count);
1670
1671/*
1672 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1673 * the top of the kernel stack.  Use an extra percpu variable to track the
1674 * top of the kernel stack directly.
1675 */
1676DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1677        (unsigned long)&init_thread_union + THREAD_SIZE;
1678EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1679
1680#ifdef CONFIG_STACKPROTECTOR
1681DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1682#endif
1683
1684#endif  /* CONFIG_X86_64 */
1685
1686/*
1687 * Clear all 6 debug registers:
1688 */
1689static void clear_all_debug_regs(void)
1690{
1691        int i;
1692
1693        for (i = 0; i < 8; i++) {
1694                /* Ignore db4, db5 */
1695                if ((i == 4) || (i == 5))
1696                        continue;
1697
1698                set_debugreg(0, i);
1699        }
1700}
1701
1702#ifdef CONFIG_KGDB
1703/*
1704 * Restore debug regs if using kgdbwait and you have a kernel debugger
1705 * connection established.
1706 */
1707static void dbg_restore_debug_regs(void)
1708{
1709        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1710                arch_kgdb_ops.correct_hw_break();
1711}
1712#else /* ! CONFIG_KGDB */
1713#define dbg_restore_debug_regs()
1714#endif /* ! CONFIG_KGDB */
1715
1716static void wait_for_master_cpu(int cpu)
1717{
1718#ifdef CONFIG_SMP
1719        /*
1720         * wait for ACK from master CPU before continuing
1721         * with AP initialization
1722         */
1723        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1724        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1725                cpu_relax();
1726#endif
1727}
1728
1729#ifdef CONFIG_X86_64
1730static inline void setup_getcpu(int cpu)
1731{
1732        unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1733        struct desc_struct d = { };
1734
1735        if (boot_cpu_has(X86_FEATURE_RDTSCP))
1736                write_rdtscp_aux(cpudata);
1737
1738        /* Store CPU and node number in limit. */
1739        d.limit0 = cpudata;
1740        d.limit1 = cpudata >> 16;
1741
1742        d.type = 5;             /* RO data, expand down, accessed */
1743        d.dpl = 3;              /* Visible to user code */
1744        d.s = 1;                /* Not a system segment */
1745        d.p = 1;                /* Present */
1746        d.d = 1;                /* 32-bit */
1747
1748        write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1749}
1750
1751static inline void ucode_cpu_init(int cpu)
1752{
1753        if (cpu)
1754                load_ucode_ap();
1755}
1756
1757static inline void tss_setup_ist(struct tss_struct *tss)
1758{
1759        /* Set up the per-CPU TSS IST stacks */
1760        tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1761        tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1762        tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1763        tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1764        /* Only mapped when SEV-ES is active */
1765        tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1766}
1767
1768static inline void gdt_setup_doublefault_tss(int cpu) { }
1769
1770#else /* CONFIG_X86_64 */
1771
1772static inline void setup_getcpu(int cpu) { }
1773
1774static inline void ucode_cpu_init(int cpu)
1775{
1776        show_ucode_info_early();
1777}
1778
1779static inline void tss_setup_ist(struct tss_struct *tss) { }
1780
1781static inline void gdt_setup_doublefault_tss(int cpu)
1782{
1783#ifdef CONFIG_DOUBLEFAULT
1784        /* Set up the doublefault TSS pointer in the GDT */
1785        __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1786#endif
1787}
1788#endif /* !CONFIG_X86_64 */
1789
1790/*
1791 * Setup everything needed to handle exceptions from the IDT, including the IST
1792 * exceptions which use paranoid_entry().
1793 */
1794void cpu_init_exception_handling(void)
1795{
1796        struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1797        int cpu = raw_smp_processor_id();
1798
1799        /* paranoid_entry() gets the CPU number from the GDT */
1800        setup_getcpu(cpu);
1801
1802        /* IST vectors need TSS to be set up. */
1803        tss_setup_ist(tss);
1804        tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1805        memset(tss->io_bitmap, 0xff, sizeof(tss->io_bitmap));
1806        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1807
1808        load_TR_desc();
1809
1810        /* Finally load the IDT */
1811        load_current_idt();
1812}
1813
1814/*
1815 * cpu_init() initializes state that is per-CPU. Some data is already
1816 * initialized (naturally) in the bootstrap process, such as the GDT
1817 * and IDT. We reload them nevertheless, this function acts as a
1818 * 'CPU state barrier', nothing should get across.
1819 */
1820void cpu_init(void)
1821{
1822        struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1823        struct task_struct *cur = current;
1824        int cpu = raw_smp_processor_id();
1825
1826        wait_for_master_cpu(cpu);
1827
1828        /*
1829         * Initialize the CR4 shadow before doing anything that could
1830         * try to read it.
1831         */
1832        cr4_init_shadow();
1833
1834        ucode_cpu_init(cpu);
1835
1836#ifdef CONFIG_NUMA
1837        if (this_cpu_read(numa_node) == 0 &&
1838            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1839                set_numa_node(early_cpu_to_node(cpu));
1840#endif
1841        setup_getcpu(cpu);
1842
1843        pr_debug("Initializing CPU#%d\n", cpu);
1844
1845        if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1846            boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1847                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1848
1849        /*
1850         * Initialize the per-CPU GDT with the boot GDT,
1851         * and set up the GDT descriptor:
1852         */
1853        switch_to_new_gdt(cpu);
1854        load_current_idt();
1855
1856        if (IS_ENABLED(CONFIG_X86_64)) {
1857                loadsegment(fs, 0);
1858                memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1859                syscall_init();
1860
1861                wrmsrl(MSR_FS_BASE, 0);
1862                wrmsrl(MSR_KERNEL_GS_BASE, 0);
1863                barrier();
1864
1865                x2apic_setup();
1866        }
1867
1868        mmgrab(&init_mm);
1869        cur->active_mm = &init_mm;
1870        BUG_ON(cur->mm);
1871        initialize_tlbstate_and_flush();
1872        enter_lazy_tlb(&init_mm, cur);
1873
1874        /* Initialize the TSS. */
1875        tss_setup_ist(tss);
1876        tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1877        memset(tss->io_bitmap, 0xff, sizeof(tss->io_bitmap));
1878        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1879
1880        load_TR_desc();
1881        /*
1882         * sp0 points to the entry trampoline stack regardless of what task
1883         * is running.
1884         */
1885        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1886
1887        load_mm_ldt(&init_mm);
1888
1889        clear_all_debug_regs();
1890        dbg_restore_debug_regs();
1891
1892        gdt_setup_doublefault_tss(cpu);
1893
1894        fpu__init_cpu();
1895
1896        if (is_uv_system())
1897                uv_cpu_init();
1898
1899        load_fixmap_gdt(cpu);
1900}
1901
1902static void bsp_resume(void)
1903{
1904        if (this_cpu->c_bsp_resume)
1905                this_cpu->c_bsp_resume(&boot_cpu_data);
1906}
1907
1908static struct syscore_ops cpu_syscore_ops = {
1909        .resume         = bsp_resume,
1910};
1911
1912static int __init init_cpu_syscore(void)
1913{
1914        register_syscore_ops(&cpu_syscore_ops);
1915        return 0;
1916}
1917core_initcall(init_cpu_syscore);
1918
1919/*
1920 * The microcode loader calls this upon late microcode load to recheck features,
1921 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1922 * hotplug lock.
1923 */
1924void microcode_check(void)
1925{
1926        struct cpuinfo_x86 info;
1927
1928        perf_check_microcode();
1929
1930        /* Reload CPUID max function as it might've changed. */
1931        info.cpuid_level = cpuid_eax(0);
1932
1933        /*
1934         * Copy all capability leafs to pick up the synthetic ones so that
1935         * memcmp() below doesn't fail on that. The ones coming from CPUID will
1936         * get overwritten in get_cpu_cap().
1937         */
1938        memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1939
1940        get_cpu_cap(&info);
1941
1942        if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1943                return;
1944
1945        pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1946        pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1947}
1948