linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *      David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/memblock.h>
  34#include <linux/seq_file.h>
  35#include <linux/console.h>
  36#include <linux/root_dev.h>
  37#include <linux/highmem.h>
  38#include <linux/export.h>
  39#include <linux/efi.h>
  40#include <linux/init.h>
  41#include <linux/edd.h>
  42#include <linux/iscsi_ibft.h>
  43#include <linux/nodemask.h>
  44#include <linux/kexec.h>
  45#include <linux/dmi.h>
  46#include <linux/pfn.h>
  47#include <linux/pci.h>
  48#include <asm/pci-direct.h>
  49#include <linux/init_ohci1394_dma.h>
  50#include <linux/kvm_para.h>
  51#include <linux/dma-contiguous.h>
  52#include <xen/xen.h>
  53#include <uapi/linux/mount.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68#include <linux/security.h>
  69
  70#include <linux/percpu.h>
  71#include <linux/crash_dump.h>
  72#include <linux/tboot.h>
  73#include <linux/jiffies.h>
  74#include <linux/mem_encrypt.h>
  75#include <linux/sizes.h>
  76
  77#include <linux/usb/xhci-dbgp.h>
  78#include <video/edid.h>
  79
  80#include <asm/mtrr.h>
  81#include <asm/apic.h>
  82#include <asm/realmode.h>
  83#include <asm/e820/api.h>
  84#include <asm/mpspec.h>
  85#include <asm/setup.h>
  86#include <asm/efi.h>
  87#include <asm/timer.h>
  88#include <asm/i8259.h>
  89#include <asm/sections.h>
  90#include <asm/io_apic.h>
  91#include <asm/ist.h>
  92#include <asm/setup_arch.h>
  93#include <asm/bios_ebda.h>
  94#include <asm/cacheflush.h>
  95#include <asm/processor.h>
  96#include <asm/bugs.h>
  97#include <asm/kasan.h>
  98
  99#include <asm/vsyscall.h>
 100#include <asm/cpu.h>
 101#include <asm/desc.h>
 102#include <asm/dma.h>
 103#include <asm/iommu.h>
 104#include <asm/gart.h>
 105#include <asm/mmu_context.h>
 106#include <asm/proto.h>
 107
 108#include <asm/paravirt.h>
 109#include <asm/hypervisor.h>
 110#include <asm/olpc_ofw.h>
 111
 112#include <asm/percpu.h>
 113#include <asm/topology.h>
 114#include <asm/apicdef.h>
 115#include <asm/amd_nb.h>
 116#include <asm/mce.h>
 117#include <asm/alternative.h>
 118#include <asm/prom.h>
 119#include <asm/microcode.h>
 120#include <asm/kaslr.h>
 121#include <asm/unwind.h>
 122#include <asm/intel-family.h>
 123
 124/*
 125 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 126 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 127 *
 128 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 129 * represented by pfn_mapped
 130 */
 131unsigned long max_low_pfn_mapped;
 132unsigned long max_pfn_mapped;
 133
 134#ifdef CONFIG_DMI
 135RESERVE_BRK(dmi_alloc, 65536);
 136#endif
 137
 138
 139static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 140unsigned long _brk_end = (unsigned long)__brk_base;
 141
 142struct boot_params boot_params;
 143
 144/*
 145 * Machine setup..
 146 */
 147static struct resource data_resource = {
 148        .name   = "Kernel data",
 149        .start  = 0,
 150        .end    = 0,
 151        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 152};
 153
 154static struct resource code_resource = {
 155        .name   = "Kernel code",
 156        .start  = 0,
 157        .end    = 0,
 158        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 159};
 160
 161static struct resource bss_resource = {
 162        .name   = "Kernel bss",
 163        .start  = 0,
 164        .end    = 0,
 165        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 166};
 167
 168
 169#ifdef CONFIG_X86_32
 170/* cpu data as detected by the assembly code in head_32.S */
 171struct cpuinfo_x86 new_cpu_data;
 172
 173/* common cpu data for all cpus */
 174struct cpuinfo_x86 boot_cpu_data __read_mostly;
 175EXPORT_SYMBOL(boot_cpu_data);
 176
 177unsigned int def_to_bigsmp;
 178
 179/* for MCA, but anyone else can use it if they want */
 180unsigned int machine_id;
 181unsigned int machine_submodel_id;
 182unsigned int BIOS_revision;
 183
 184struct apm_info apm_info;
 185EXPORT_SYMBOL(apm_info);
 186
 187#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 188        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 189struct ist_info ist_info;
 190EXPORT_SYMBOL(ist_info);
 191#else
 192struct ist_info ist_info;
 193#endif
 194
 195#else
 196struct cpuinfo_x86 boot_cpu_data __read_mostly;
 197EXPORT_SYMBOL(boot_cpu_data);
 198#endif
 199
 200
 201#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 202__visible unsigned long mmu_cr4_features __ro_after_init;
 203#else
 204__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 205#endif
 206
 207/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 208int bootloader_type, bootloader_version;
 209
 210/*
 211 * Setup options
 212 */
 213struct screen_info screen_info;
 214EXPORT_SYMBOL(screen_info);
 215struct edid_info edid_info;
 216EXPORT_SYMBOL_GPL(edid_info);
 217
 218extern int root_mountflags;
 219
 220unsigned long saved_video_mode;
 221
 222#define RAMDISK_IMAGE_START_MASK        0x07FF
 223#define RAMDISK_PROMPT_FLAG             0x8000
 224#define RAMDISK_LOAD_FLAG               0x4000
 225
 226static char __initdata command_line[COMMAND_LINE_SIZE];
 227#ifdef CONFIG_CMDLINE_BOOL
 228static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 229#endif
 230
 231#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 232struct edd edd;
 233#ifdef CONFIG_EDD_MODULE
 234EXPORT_SYMBOL(edd);
 235#endif
 236/**
 237 * copy_edd() - Copy the BIOS EDD information
 238 *              from boot_params into a safe place.
 239 *
 240 */
 241static inline void __init copy_edd(void)
 242{
 243     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 244            sizeof(edd.mbr_signature));
 245     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 246     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 247     edd.edd_info_nr = boot_params.eddbuf_entries;
 248}
 249#else
 250static inline void __init copy_edd(void)
 251{
 252}
 253#endif
 254
 255void * __init extend_brk(size_t size, size_t align)
 256{
 257        size_t mask = align - 1;
 258        void *ret;
 259
 260        BUG_ON(_brk_start == 0);
 261        BUG_ON(align & mask);
 262
 263        _brk_end = (_brk_end + mask) & ~mask;
 264        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 265
 266        ret = (void *)_brk_end;
 267        _brk_end += size;
 268
 269        memset(ret, 0, size);
 270
 271        return ret;
 272}
 273
 274#ifdef CONFIG_X86_32
 275static void __init cleanup_highmap(void)
 276{
 277}
 278#endif
 279
 280static void __init reserve_brk(void)
 281{
 282        if (_brk_end > _brk_start)
 283                memblock_reserve(__pa_symbol(_brk_start),
 284                                 _brk_end - _brk_start);
 285
 286        /* Mark brk area as locked down and no longer taking any
 287           new allocations */
 288        _brk_start = 0;
 289}
 290
 291u64 relocated_ramdisk;
 292
 293#ifdef CONFIG_BLK_DEV_INITRD
 294
 295static u64 __init get_ramdisk_image(void)
 296{
 297        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 298
 299        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 300
 301        return ramdisk_image;
 302}
 303static u64 __init get_ramdisk_size(void)
 304{
 305        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 306
 307        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 308
 309        return ramdisk_size;
 310}
 311
 312static void __init relocate_initrd(void)
 313{
 314        /* Assume only end is not page aligned */
 315        u64 ramdisk_image = get_ramdisk_image();
 316        u64 ramdisk_size  = get_ramdisk_size();
 317        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 318
 319        /* We need to move the initrd down into directly mapped mem */
 320        relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 321                                                   area_size, PAGE_SIZE);
 322
 323        if (!relocated_ramdisk)
 324                panic("Cannot find place for new RAMDISK of size %lld\n",
 325                      ramdisk_size);
 326
 327        /* Note: this includes all the mem currently occupied by
 328           the initrd, we rely on that fact to keep the data intact. */
 329        memblock_reserve(relocated_ramdisk, area_size);
 330        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 331        initrd_end   = initrd_start + ramdisk_size;
 332        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 333               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 334
 335        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 336
 337        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 338                " [mem %#010llx-%#010llx]\n",
 339                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 340                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 341}
 342
 343static void __init early_reserve_initrd(void)
 344{
 345        /* Assume only end is not page aligned */
 346        u64 ramdisk_image = get_ramdisk_image();
 347        u64 ramdisk_size  = get_ramdisk_size();
 348        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 349
 350        if (!boot_params.hdr.type_of_loader ||
 351            !ramdisk_image || !ramdisk_size)
 352                return;         /* No initrd provided by bootloader */
 353
 354        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 355}
 356static void __init reserve_initrd(void)
 357{
 358        /* Assume only end is not page aligned */
 359        u64 ramdisk_image = get_ramdisk_image();
 360        u64 ramdisk_size  = get_ramdisk_size();
 361        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 362        u64 mapped_size;
 363
 364        if (!boot_params.hdr.type_of_loader ||
 365            !ramdisk_image || !ramdisk_size)
 366                return;         /* No initrd provided by bootloader */
 367
 368        initrd_start = 0;
 369
 370        mapped_size = memblock_mem_size(max_pfn_mapped);
 371        if (ramdisk_size >= (mapped_size>>1))
 372                panic("initrd too large to handle, "
 373                       "disabling initrd (%lld needed, %lld available)\n",
 374                       ramdisk_size, mapped_size>>1);
 375
 376        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 377                        ramdisk_end - 1);
 378
 379        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 380                                PFN_DOWN(ramdisk_end))) {
 381                /* All are mapped, easy case */
 382                initrd_start = ramdisk_image + PAGE_OFFSET;
 383                initrd_end = initrd_start + ramdisk_size;
 384                return;
 385        }
 386
 387        relocate_initrd();
 388
 389        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 390}
 391
 392#else
 393static void __init early_reserve_initrd(void)
 394{
 395}
 396static void __init reserve_initrd(void)
 397{
 398}
 399#endif /* CONFIG_BLK_DEV_INITRD */
 400
 401static void __init parse_setup_data(void)
 402{
 403        struct setup_data *data;
 404        u64 pa_data, pa_next;
 405
 406        pa_data = boot_params.hdr.setup_data;
 407        while (pa_data) {
 408                u32 data_len, data_type;
 409
 410                data = early_memremap(pa_data, sizeof(*data));
 411                data_len = data->len + sizeof(struct setup_data);
 412                data_type = data->type;
 413                pa_next = data->next;
 414                early_memunmap(data, sizeof(*data));
 415
 416                switch (data_type) {
 417                case SETUP_E820_EXT:
 418                        e820__memory_setup_extended(pa_data, data_len);
 419                        break;
 420                case SETUP_DTB:
 421                        add_dtb(pa_data);
 422                        break;
 423                case SETUP_EFI:
 424                        parse_efi_setup(pa_data, data_len);
 425                        break;
 426                default:
 427                        break;
 428                }
 429                pa_data = pa_next;
 430        }
 431}
 432
 433static void __init memblock_x86_reserve_range_setup_data(void)
 434{
 435        struct setup_data *data;
 436        u64 pa_data;
 437
 438        pa_data = boot_params.hdr.setup_data;
 439        while (pa_data) {
 440                data = early_memremap(pa_data, sizeof(*data));
 441                memblock_reserve(pa_data, sizeof(*data) + data->len);
 442                pa_data = data->next;
 443                early_memunmap(data, sizeof(*data));
 444        }
 445}
 446
 447/*
 448 * --------- Crashkernel reservation ------------------------------
 449 */
 450
 451#ifdef CONFIG_KEXEC_CORE
 452
 453/* 16M alignment for crash kernel regions */
 454#define CRASH_ALIGN             SZ_16M
 455
 456/*
 457 * Keep the crash kernel below this limit.
 458 *
 459 * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
 460 * due to mapping restrictions.
 461 *
 462 * On 64bit, kdump kernel need be restricted to be under 64TB, which is
 463 * the upper limit of system RAM in 4-level paing mode. Since the kdump
 464 * jumping could be from 5-level to 4-level, the jumping will fail if
 465 * kernel is put above 64TB, and there's no way to detect the paging mode
 466 * of the kernel which will be loaded for dumping during the 1st kernel
 467 * bootup.
 468 */
 469#ifdef CONFIG_X86_32
 470# define CRASH_ADDR_LOW_MAX     SZ_512M
 471# define CRASH_ADDR_HIGH_MAX    SZ_512M
 472#else
 473# define CRASH_ADDR_LOW_MAX     SZ_4G
 474# define CRASH_ADDR_HIGH_MAX    SZ_64T
 475#endif
 476
 477static int __init reserve_crashkernel_low(void)
 478{
 479#ifdef CONFIG_X86_64
 480        unsigned long long base, low_base = 0, low_size = 0;
 481        unsigned long total_low_mem;
 482        int ret;
 483
 484        total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 485
 486        /* crashkernel=Y,low */
 487        ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 488        if (ret) {
 489                /*
 490                 * two parts from lib/swiotlb.c:
 491                 * -swiotlb size: user-specified with swiotlb= or default.
 492                 *
 493                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 494                 * to 8M for other buffers that may need to stay low too. Also
 495                 * make sure we allocate enough extra low memory so that we
 496                 * don't run out of DMA buffers for 32-bit devices.
 497                 */
 498                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 499        } else {
 500                /* passed with crashkernel=0,low ? */
 501                if (!low_size)
 502                        return 0;
 503        }
 504
 505        low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 506        if (!low_base) {
 507                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 508                       (unsigned long)(low_size >> 20));
 509                return -ENOMEM;
 510        }
 511
 512        ret = memblock_reserve(low_base, low_size);
 513        if (ret) {
 514                pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 515                return ret;
 516        }
 517
 518        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 519                (unsigned long)(low_size >> 20),
 520                (unsigned long)(low_base >> 20),
 521                (unsigned long)(total_low_mem >> 20));
 522
 523        crashk_low_res.start = low_base;
 524        crashk_low_res.end   = low_base + low_size - 1;
 525        insert_resource(&iomem_resource, &crashk_low_res);
 526#endif
 527        return 0;
 528}
 529
 530static void __init reserve_crashkernel(void)
 531{
 532        unsigned long long crash_size, crash_base, total_mem, mem_enc_req;
 533        bool high = false;
 534        int ret;
 535
 536        total_mem = memblock_phys_mem_size();
 537
 538        /* crashkernel=XM */
 539        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 540        if (ret != 0 || crash_size <= 0) {
 541                /* crashkernel=X,high */
 542                ret = parse_crashkernel_high(boot_command_line, total_mem,
 543                                             &crash_size, &crash_base);
 544                if (ret != 0 || crash_size <= 0)
 545                        return;
 546                high = true;
 547        }
 548
 549        if (xen_pv_domain()) {
 550                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 551                return;
 552        }
 553
 554        /*
 555         * When SME/SEV is active, it will always required an extra SWIOTLB
 556         * region.
 557         */
 558        if (mem_encrypt_active())
 559                mem_enc_req = min(ALIGN(swiotlb_size_or_default(), SZ_1M), 64UL << 20);
 560        else
 561                mem_enc_req = 0;
 562
 563        /* 0 means: find the address automatically */
 564        if (!crash_base) {
 565                /*
 566                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 567                 * crashkernel=x,high reserves memory over 4G, also allocates
 568                 * 256M extra low memory for DMA buffers and swiotlb.
 569                 * But the extra memory is not required for all machines.
 570                 * So try low memory first and fall back to high memory
 571                 * unless "crashkernel=size[KMG],high" is specified.
 572                 */
 573                if (!high)
 574                        crash_base = memblock_find_in_range(CRASH_ALIGN,
 575                                                CRASH_ADDR_LOW_MAX,
 576                                                crash_size + mem_enc_req,
 577                                                CRASH_ALIGN);
 578                /*
 579                 * For high reservation, an extra low memory for SWIOTLB will
 580                 * always be reserved later, so no need to reserve extra
 581                 * memory for memory encryption case here.
 582                 */
 583                if (!crash_base) {
 584                        mem_enc_req = 0;
 585                        crash_base = memblock_find_in_range(CRASH_ALIGN,
 586                                                CRASH_ADDR_HIGH_MAX,
 587                                                crash_size, CRASH_ALIGN);
 588                }
 589                if (!crash_base) {
 590                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 591                        return;
 592                }
 593        } else {
 594                unsigned long long start;
 595
 596                mem_enc_req = 0;
 597                start = memblock_find_in_range(crash_base,
 598                                               crash_base + crash_size,
 599                                               crash_size, 1 << 20);
 600                if (start != crash_base) {
 601                        pr_info("crashkernel reservation failed - memory is in use.\n");
 602                        return;
 603                }
 604        }
 605
 606        if (mem_enc_req) {
 607                pr_info("Memory encryption is active, crashkernel needs %ldMB extra memory\n",
 608                        (unsigned long)(mem_enc_req >> 20));
 609                crash_size += mem_enc_req;
 610        }
 611
 612        ret = memblock_reserve(crash_base, crash_size);
 613        if (ret) {
 614                pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 615                return;
 616        }
 617
 618        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 619                memblock_free(crash_base, crash_size);
 620                return;
 621        }
 622
 623        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 624                (unsigned long)(crash_size >> 20),
 625                (unsigned long)(crash_base >> 20),
 626                (unsigned long)(total_mem >> 20));
 627
 628        crashk_res.start = crash_base;
 629        crashk_res.end   = crash_base + crash_size - 1;
 630        insert_resource(&iomem_resource, &crashk_res);
 631}
 632#else
 633static void __init reserve_crashkernel(void)
 634{
 635}
 636#endif
 637
 638static struct resource standard_io_resources[] = {
 639        { .name = "dma1", .start = 0x00, .end = 0x1f,
 640                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 641        { .name = "pic1", .start = 0x20, .end = 0x21,
 642                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 643        { .name = "timer0", .start = 0x40, .end = 0x43,
 644                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 645        { .name = "timer1", .start = 0x50, .end = 0x53,
 646                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 647        { .name = "keyboard", .start = 0x60, .end = 0x60,
 648                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 649        { .name = "keyboard", .start = 0x64, .end = 0x64,
 650                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 651        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 652                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 653        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 654                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 655        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 656                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 657        { .name = "fpu", .start = 0xf0, .end = 0xff,
 658                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 659};
 660
 661void __init reserve_standard_io_resources(void)
 662{
 663        int i;
 664
 665        /* request I/O space for devices used on all i[345]86 PCs */
 666        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 667                request_resource(&ioport_resource, &standard_io_resources[i]);
 668
 669}
 670
 671static __init void reserve_ibft_region(void)
 672{
 673        unsigned long addr, size = 0;
 674
 675        addr = find_ibft_region(&size);
 676
 677        if (size)
 678                memblock_reserve(addr, size);
 679}
 680
 681static bool __init snb_gfx_workaround_needed(void)
 682{
 683#ifdef CONFIG_PCI
 684        int i;
 685        u16 vendor, devid;
 686        static const __initconst u16 snb_ids[] = {
 687                0x0102,
 688                0x0112,
 689                0x0122,
 690                0x0106,
 691                0x0116,
 692                0x0126,
 693                0x010a,
 694        };
 695
 696        /* Assume no if something weird is going on with PCI */
 697        if (!early_pci_allowed())
 698                return false;
 699
 700        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 701        if (vendor != 0x8086)
 702                return false;
 703
 704        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 705        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 706                if (devid == snb_ids[i])
 707                        return true;
 708#endif
 709
 710        return false;
 711}
 712
 713/*
 714 * Sandy Bridge graphics has trouble with certain ranges, exclude
 715 * them from allocation.
 716 */
 717static void __init trim_snb_memory(void)
 718{
 719        static const __initconst unsigned long bad_pages[] = {
 720                0x20050000,
 721                0x20110000,
 722                0x20130000,
 723                0x20138000,
 724                0x40004000,
 725        };
 726        int i;
 727
 728        if (!snb_gfx_workaround_needed())
 729                return;
 730
 731        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 732
 733        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 734                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 735                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 736                               bad_pages[i]);
 737        }
 738}
 739
 740/*
 741 * Here we put platform-specific memory range workarounds, i.e.
 742 * memory known to be corrupt or otherwise in need to be reserved on
 743 * specific platforms.
 744 *
 745 * If this gets used more widely it could use a real dispatch mechanism.
 746 */
 747static void __init trim_platform_memory_ranges(void)
 748{
 749        trim_snb_memory();
 750}
 751
 752static void __init trim_bios_range(void)
 753{
 754        /*
 755         * A special case is the first 4Kb of memory;
 756         * This is a BIOS owned area, not kernel ram, but generally
 757         * not listed as such in the E820 table.
 758         *
 759         * This typically reserves additional memory (64KiB by default)
 760         * since some BIOSes are known to corrupt low memory.  See the
 761         * Kconfig help text for X86_RESERVE_LOW.
 762         */
 763        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 764
 765        /*
 766         * special case: Some BIOSen report the PC BIOS
 767         * area (640->1Mb) as ram even though it is not.
 768         * take them out.
 769         */
 770        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 771
 772        e820__update_table(e820_table);
 773}
 774
 775/* called before trim_bios_range() to spare extra sanitize */
 776static void __init e820_add_kernel_range(void)
 777{
 778        u64 start = __pa_symbol(_text);
 779        u64 size = __pa_symbol(_end) - start;
 780
 781        /*
 782         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 783         * attempt to fix it by adding the range. We may have a confused BIOS,
 784         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 785         * exclude kernel range. If we really are running on top non-RAM,
 786         * we will crash later anyways.
 787         */
 788        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 789                return;
 790
 791        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 792        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 793        e820__range_add(start, size, E820_TYPE_RAM);
 794}
 795
 796static void __init trim_low_memory_range(void)
 797{
 798        memblock_reserve(0, SZ_64K);
 799}
 800
 801static void rh_check_supported(void)
 802{
 803        bool guest;
 804
 805        guest = (x86_hyper_type != X86_HYPER_NATIVE || boot_cpu_has(X86_FEATURE_HYPERVISOR));
 806
 807        /* RHEL supports single cpu on guests only */
 808        if (((boot_cpu_data.x86_max_cores * smp_num_siblings) == 1) &&
 809            !guest && is_kdump_kernel()) {
 810                pr_crit("Detected single cpu native boot.\n");
 811                pr_crit("Important:  In Red Hat Enterprise Linux 8, single threaded, single CPU 64-bit physical systems are unsupported by Red Hat. Please contact your Red Hat support representative for a list of certified and supported systems.");
 812        }
 813
 814        /*
 815         * If the RHEL kernel does not support this hardware, the kernel will
 816         * attempt to boot, but no support is provided for this hardware
 817         */
 818        switch (boot_cpu_data.x86_vendor) {
 819        case X86_VENDOR_AMD:
 820        case X86_VENDOR_INTEL:
 821                break;
 822        default:
 823                pr_crit("Detected processor %s %s\n",
 824                        boot_cpu_data.x86_vendor_id,
 825                        boot_cpu_data.x86_model_id);
 826                mark_hardware_unsupported("Processor");
 827                break;
 828        }
 829
 830        /*
 831         * Due to the complexity of x86 lapic & ioapic enumeration, and PCI IRQ
 832         * routing, ACPI is required for x86.  acpi=off is a valid debug kernel
 833         * parameter, so just print out a loud warning in case something
 834         * goes wrong (which is most of the time).
 835         */
 836        if (acpi_disabled && !guest)
 837                pr_crit("ACPI has been disabled or is not available on this hardware.  This may result in a single cpu boot, incorrect PCI IRQ routing, or boot failure.\n");
 838}
 839
 840/*
 841 * Dump out kernel offset information on panic.
 842 */
 843static int
 844dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 845{
 846        if (kaslr_enabled()) {
 847                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 848                         kaslr_offset(),
 849                         __START_KERNEL,
 850                         __START_KERNEL_map,
 851                         MODULES_VADDR-1);
 852        } else {
 853                pr_emerg("Kernel Offset: disabled\n");
 854        }
 855
 856        return 0;
 857}
 858
 859/*
 860 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 861 * passed the efi memmap, systab, etc., so we should use these data structures
 862 * for initialization.  Note, the efi init code path is determined by the
 863 * global efi_enabled. This allows the same kernel image to be used on existing
 864 * systems (with a traditional BIOS) as well as on EFI systems.
 865 */
 866/*
 867 * setup_arch - architecture-specific boot-time initializations
 868 *
 869 * Note: On x86_64, fixmaps are ready for use even before this is called.
 870 */
 871
 872void __init setup_arch(char **cmdline_p)
 873{
 874        /*
 875         * Reserve the memory occupied by the kernel between _text and
 876         * __end_of_kernel_reserve symbols. Any kernel sections after the
 877         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 878         * separate memblock_reserve() or they will be discarded.
 879         */
 880        memblock_reserve(__pa_symbol(_text),
 881                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 882
 883        /*
 884         * Make sure page 0 is always reserved because on systems with
 885         * L1TF its contents can be leaked to user processes.
 886         */
 887        memblock_reserve(0, PAGE_SIZE);
 888
 889        early_reserve_initrd();
 890
 891        /*
 892         * At this point everything still needed from the boot loader
 893         * or BIOS or kernel text should be early reserved or marked not
 894         * RAM in e820. All other memory is free game.
 895         */
 896
 897#ifdef CONFIG_X86_32
 898        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 899
 900        /*
 901         * copy kernel address range established so far and switch
 902         * to the proper swapper page table
 903         */
 904        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 905                        initial_page_table + KERNEL_PGD_BOUNDARY,
 906                        KERNEL_PGD_PTRS);
 907
 908        load_cr3(swapper_pg_dir);
 909        /*
 910         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 911         * a cr3 based tlb flush, so the following __flush_tlb_all()
 912         * will not flush anything because the cpu quirk which clears
 913         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 914         * load_cr3() above the TLB has been flushed already. The
 915         * quirk is invoked before subsequent calls to __flush_tlb_all()
 916         * so proper operation is guaranteed.
 917         */
 918        __flush_tlb_all();
 919#else
 920        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 921        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 922#endif
 923
 924        /*
 925         * If we have OLPC OFW, we might end up relocating the fixmap due to
 926         * reserve_top(), so do this before touching the ioremap area.
 927         */
 928        olpc_ofw_detect();
 929
 930        idt_setup_early_traps();
 931        early_cpu_init();
 932        arch_init_ideal_nops();
 933        jump_label_init();
 934        early_ioremap_init();
 935
 936        setup_olpc_ofw_pgd();
 937
 938        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 939        screen_info = boot_params.screen_info;
 940        edid_info = boot_params.edid_info;
 941#ifdef CONFIG_X86_32
 942        apm_info.bios = boot_params.apm_bios_info;
 943        ist_info = boot_params.ist_info;
 944#endif
 945        saved_video_mode = boot_params.hdr.vid_mode;
 946        bootloader_type = boot_params.hdr.type_of_loader;
 947        if ((bootloader_type >> 4) == 0xe) {
 948                bootloader_type &= 0xf;
 949                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 950        }
 951        bootloader_version  = bootloader_type & 0xf;
 952        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 953
 954#ifdef CONFIG_BLK_DEV_RAM
 955        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 956        rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 957        rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 958#endif
 959#ifdef CONFIG_EFI
 960        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 961                     EFI32_LOADER_SIGNATURE, 4)) {
 962                set_bit(EFI_BOOT, &efi.flags);
 963        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 964                     EFI64_LOADER_SIGNATURE, 4)) {
 965                set_bit(EFI_BOOT, &efi.flags);
 966                set_bit(EFI_64BIT, &efi.flags);
 967        }
 968#endif
 969
 970        x86_init.oem.arch_setup();
 971
 972        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 973        e820__memory_setup();
 974        parse_setup_data();
 975
 976        copy_edd();
 977
 978        if (!boot_params.hdr.root_flags)
 979                root_mountflags &= ~MS_RDONLY;
 980        init_mm.start_code = (unsigned long) _text;
 981        init_mm.end_code = (unsigned long) _etext;
 982        init_mm.end_data = (unsigned long) _edata;
 983        init_mm.brk = _brk_end;
 984
 985        mpx_mm_init(&init_mm);
 986
 987        code_resource.start = __pa_symbol(_text);
 988        code_resource.end = __pa_symbol(_etext)-1;
 989        data_resource.start = __pa_symbol(_etext);
 990        data_resource.end = __pa_symbol(_edata)-1;
 991        bss_resource.start = __pa_symbol(__bss_start);
 992        bss_resource.end = __pa_symbol(__bss_stop)-1;
 993
 994#ifdef CONFIG_CMDLINE_BOOL
 995#ifdef CONFIG_CMDLINE_OVERRIDE
 996        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 997#else
 998        if (builtin_cmdline[0]) {
 999                /* append boot loader cmdline to builtin */
1000                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
1001                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
1002                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1003        }
1004#endif
1005#endif
1006
1007        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
1008        *cmdline_p = command_line;
1009
1010        /*
1011         * x86_configure_nx() is called before parse_early_param() to detect
1012         * whether hardware doesn't support NX (so that the early EHCI debug
1013         * console setup can safely call set_fixmap()). It may then be called
1014         * again from within noexec_setup() during parsing early parameters
1015         * to honor the respective command line option.
1016         */
1017        x86_configure_nx();
1018
1019        parse_early_param();
1020
1021        if (efi_enabled(EFI_BOOT))
1022                efi_memblock_x86_reserve_range();
1023#ifdef CONFIG_MEMORY_HOTPLUG
1024        /*
1025         * Memory used by the kernel cannot be hot-removed because Linux
1026         * cannot migrate the kernel pages. When memory hotplug is
1027         * enabled, we should prevent memblock from allocating memory
1028         * for the kernel.
1029         *
1030         * ACPI SRAT records all hotpluggable memory ranges. But before
1031         * SRAT is parsed, we don't know about it.
1032         *
1033         * The kernel image is loaded into memory at very early time. We
1034         * cannot prevent this anyway. So on NUMA system, we set any
1035         * node the kernel resides in as un-hotpluggable.
1036         *
1037         * Since on modern servers, one node could have double-digit
1038         * gigabytes memory, we can assume the memory around the kernel
1039         * image is also un-hotpluggable. So before SRAT is parsed, just
1040         * allocate memory near the kernel image to try the best to keep
1041         * the kernel away from hotpluggable memory.
1042         */
1043        if (movable_node_is_enabled())
1044                memblock_set_bottom_up(true);
1045#endif
1046
1047        x86_report_nx();
1048
1049        /* after early param, so could get panic from serial */
1050        memblock_x86_reserve_range_setup_data();
1051
1052        if (acpi_mps_check()) {
1053#ifdef CONFIG_X86_LOCAL_APIC
1054                disable_apic = 1;
1055#endif
1056                setup_clear_cpu_cap(X86_FEATURE_APIC);
1057        }
1058
1059        e820__reserve_setup_data();
1060        e820__finish_early_params();
1061
1062        if (efi_enabled(EFI_BOOT))
1063                efi_init();
1064
1065        efi_set_secure_boot(boot_params.secure_boot);
1066
1067        init_lockdown();
1068
1069        dmi_scan_machine();
1070        dmi_memdev_walk();
1071        dmi_set_dump_stack_arch_desc();
1072
1073        /*
1074         * VMware detection requires dmi to be available, so this
1075         * needs to be done after dmi_scan_machine(), for the boot CPU.
1076         */
1077        init_hypervisor_platform();
1078
1079        tsc_early_init();
1080        x86_init.resources.probe_roms();
1081
1082        /* after parse_early_param, so could debug it */
1083        insert_resource(&iomem_resource, &code_resource);
1084        insert_resource(&iomem_resource, &data_resource);
1085        insert_resource(&iomem_resource, &bss_resource);
1086
1087        e820_add_kernel_range();
1088        trim_bios_range();
1089#ifdef CONFIG_X86_32
1090        if (ppro_with_ram_bug()) {
1091                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1092                                  E820_TYPE_RESERVED);
1093                e820__update_table(e820_table);
1094                printk(KERN_INFO "fixed physical RAM map:\n");
1095                e820__print_table("bad_ppro");
1096        }
1097#else
1098        early_gart_iommu_check();
1099#endif
1100
1101        /*
1102         * partially used pages are not usable - thus
1103         * we are rounding upwards:
1104         */
1105        max_pfn = e820__end_of_ram_pfn();
1106
1107        /* update e820 for memory not covered by WB MTRRs */
1108        mtrr_bp_init();
1109        if (mtrr_trim_uncached_memory(max_pfn))
1110                max_pfn = e820__end_of_ram_pfn();
1111
1112        max_possible_pfn = max_pfn;
1113
1114        /*
1115         * This call is required when the CPU does not support PAT. If
1116         * mtrr_bp_init() invoked it already via pat_init() the call has no
1117         * effect.
1118         */
1119        init_cache_modes();
1120
1121        /*
1122         * Define random base addresses for memory sections after max_pfn is
1123         * defined and before each memory section base is used.
1124         */
1125        kernel_randomize_memory();
1126
1127#ifdef CONFIG_X86_32
1128        /* max_low_pfn get updated here */
1129        find_low_pfn_range();
1130#else
1131        check_x2apic();
1132
1133        /* How many end-of-memory variables you have, grandma! */
1134        /* need this before calling reserve_initrd */
1135        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1136                max_low_pfn = e820__end_of_low_ram_pfn();
1137        else
1138                max_low_pfn = max_pfn;
1139
1140        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1141#endif
1142
1143        /*
1144         * Find and reserve possible boot-time SMP configuration:
1145         */
1146        find_smp_config();
1147
1148        reserve_ibft_region();
1149
1150        early_alloc_pgt_buf();
1151
1152        /*
1153         * Need to conclude brk, before e820__memblock_setup()
1154         *  it could use memblock_find_in_range, could overlap with
1155         *  brk area.
1156         */
1157        reserve_brk();
1158
1159        cleanup_highmap();
1160
1161        memblock_set_current_limit(ISA_END_ADDRESS);
1162        e820__memblock_setup();
1163
1164        /*
1165         * Needs to run after memblock setup because it needs the physical
1166         * memory size.
1167         */
1168        sev_setup_arch();
1169
1170        reserve_bios_regions();
1171
1172        efi_fake_memmap();
1173        efi_find_mirror();
1174        efi_esrt_init();
1175        efi_mokvar_table_init();
1176
1177        /*
1178         * The EFI specification says that boot service code won't be
1179         * called after ExitBootServices(). This is, in fact, a lie.
1180         */
1181        efi_reserve_boot_services();
1182
1183        /* preallocate 4k for mptable mpc */
1184        e820__memblock_alloc_reserved_mpc_new();
1185
1186#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1187        setup_bios_corruption_check();
1188#endif
1189
1190#ifdef CONFIG_X86_32
1191        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1192                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1193#endif
1194
1195        trim_platform_memory_ranges();
1196        trim_low_memory_range();
1197
1198        reserve_real_mode();
1199
1200        init_mem_mapping();
1201
1202        idt_setup_early_pf();
1203
1204        /*
1205         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1206         * with the current CR4 value.  This may not be necessary, but
1207         * auditing all the early-boot CR4 manipulation would be needed to
1208         * rule it out.
1209         *
1210         * Mask off features that don't work outside long mode (just
1211         * PCIDE for now).
1212         */
1213        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1214
1215        memblock_set_current_limit(get_max_mapped());
1216
1217        /*
1218         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1219         */
1220
1221#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1222        if (init_ohci1394_dma_early)
1223                init_ohci1394_dma_on_all_controllers();
1224#endif
1225        /* Allocate bigger log buffer */
1226        setup_log_buf(1);
1227
1228        reserve_initrd();
1229
1230        acpi_table_upgrade();
1231        /* Look for ACPI tables and reserve memory occupied by them. */
1232        acpi_boot_table_init();
1233
1234        vsmp_init();
1235
1236        io_delay_init();
1237
1238        early_platform_quirks();
1239
1240        early_acpi_boot_init();
1241
1242        initmem_init();
1243        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1244
1245        /*
1246         * Reserve memory for crash kernel after SRAT is parsed so that it
1247         * won't consume hotpluggable memory.
1248         */
1249        reserve_crashkernel();
1250
1251        memblock_find_dma_reserve();
1252
1253        if (!early_xdbc_setup_hardware())
1254                early_xdbc_register_console();
1255
1256        x86_init.paging.pagetable_init();
1257
1258        kasan_init();
1259
1260        /*
1261         * Sync back kernel address range.
1262         *
1263         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1264         * this call?
1265         */
1266        sync_initial_page_table();
1267
1268        tboot_probe();
1269
1270        map_vsyscall();
1271
1272        generic_apic_probe();
1273
1274        early_quirks();
1275
1276        /*
1277         * Read APIC and some other early information from ACPI tables.
1278         */
1279        acpi_boot_init();
1280        sfi_init();
1281        x86_dtb_init();
1282
1283        /*
1284         * get boot-time SMP configuration:
1285         */
1286        get_smp_config();
1287
1288        /*
1289         * Systems w/o ACPI and mptables might not have it mapped the local
1290         * APIC yet, but prefill_possible_map() might need to access it.
1291         */
1292        init_apic_mappings();
1293
1294        prefill_possible_map();
1295
1296        init_cpu_to_node();
1297
1298        io_apic_init_mappings();
1299
1300        x86_init.hyper.guest_late_init();
1301
1302        e820__reserve_resources();
1303        e820__register_nosave_regions(max_low_pfn);
1304
1305        x86_init.resources.reserve_resources();
1306
1307        e820__setup_pci_gap();
1308
1309#ifdef CONFIG_VT
1310#if defined(CONFIG_VGA_CONSOLE)
1311        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1312                conswitchp = &vga_con;
1313#elif defined(CONFIG_DUMMY_CONSOLE)
1314        conswitchp = &dummy_con;
1315#endif
1316#endif
1317        x86_init.oem.banner();
1318
1319        x86_init.timers.wallclock_init();
1320
1321        mcheck_init();
1322
1323        register_refined_jiffies(CLOCK_TICK_RATE);
1324
1325#ifdef CONFIG_EFI
1326        if (efi_enabled(EFI_BOOT))
1327                efi_apply_memmap_quirks();
1328#endif
1329
1330        rh_check_supported();
1331
1332        unwind_init();
1333}
1334
1335#ifdef CONFIG_X86_32
1336
1337static struct resource video_ram_resource = {
1338        .name   = "Video RAM area",
1339        .start  = 0xa0000,
1340        .end    = 0xbffff,
1341        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1342};
1343
1344void __init i386_reserve_resources(void)
1345{
1346        request_resource(&iomem_resource, &video_ram_resource);
1347        reserve_standard_io_resources();
1348}
1349
1350#endif /* CONFIG_X86_32 */
1351
1352static struct notifier_block kernel_offset_notifier = {
1353        .notifier_call = dump_kernel_offset
1354};
1355
1356static int __init register_kernel_offset_dumper(void)
1357{
1358        atomic_notifier_chain_register(&panic_notifier_list,
1359                                        &kernel_offset_notifier);
1360        return 0;
1361}
1362__initcall(register_kernel_offset_dumper);
1363