linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include <asm/sgx.h>
  22#include "cpuid.h"
  23#include "lapic.h"
  24#include "mmu.h"
  25#include "trace.h"
  26#include "pmu.h"
  27
  28/*
  29 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  30 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  31 */
  32u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  33EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  34
  35static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  36{
  37        int feature_bit = 0;
  38        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  39
  40        xstate_bv &= XFEATURE_MASK_EXTEND;
  41        while (xstate_bv) {
  42                if (xstate_bv & 0x1) {
  43                        u32 eax, ebx, ecx, edx, offset;
  44                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  45                        offset = compacted ? ret : ebx;
  46                        ret = max(ret, offset + eax);
  47                }
  48
  49                xstate_bv >>= 1;
  50                feature_bit++;
  51        }
  52
  53        return ret;
  54}
  55
  56#define F feature_bit
  57#define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
  58
  59static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  60        struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
  61{
  62        struct kvm_cpuid_entry2 *e;
  63        int i;
  64
  65        for (i = 0; i < nent; i++) {
  66                e = &entries[i];
  67
  68                if (e->function == function && (e->index == index ||
  69                    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
  70                        return e;
  71        }
  72
  73        return NULL;
  74}
  75
  76static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
  77{
  78        struct kvm_cpuid_entry2 *best;
  79
  80        /*
  81         * The existing code assumes virtual address is 48-bit or 57-bit in the
  82         * canonical address checks; exit if it is ever changed.
  83         */
  84        best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
  85        if (best) {
  86                int vaddr_bits = (best->eax & 0xff00) >> 8;
  87
  88                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  89                        return -EINVAL;
  90        }
  91
  92        return 0;
  93}
  94
  95void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
  96{
  97        struct kvm_cpuid_entry2 *best;
  98
  99        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 100
 101        /*
 102         * save the feature bitmap to avoid cpuid lookup for every PV
 103         * operation
 104         */
 105        if (best)
 106                vcpu->arch.pv_cpuid.features = best->eax;
 107}
 108
 109void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 110{
 111        struct kvm_cpuid_entry2 *best;
 112
 113        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 114        if (best) {
 115                /* Update OSXSAVE bit */
 116                if (boot_cpu_has(X86_FEATURE_XSAVE))
 117                        cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 118                                   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 119
 120                cpuid_entry_change(best, X86_FEATURE_APIC,
 121                           vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 122        }
 123
 124        best = kvm_find_cpuid_entry(vcpu, 7, 0);
 125        if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 126                cpuid_entry_change(best, X86_FEATURE_OSPKE,
 127                                   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 128
 129        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 130        if (best)
 131                best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 132
 133        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 134        if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 135                     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 136                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 137
 138        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 139        if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 140                (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 141                best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 142
 143        if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 144                best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 145                if (best)
 146                        cpuid_entry_change(best, X86_FEATURE_MWAIT,
 147                                           vcpu->arch.ia32_misc_enable_msr &
 148                                           MSR_IA32_MISC_ENABLE_MWAIT);
 149        }
 150}
 151EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 152
 153static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 154{
 155        struct kvm_lapic *apic = vcpu->arch.apic;
 156        struct kvm_cpuid_entry2 *best;
 157
 158        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 159        if (best && apic) {
 160                if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 161                        apic->lapic_timer.timer_mode_mask = 3 << 17;
 162                else
 163                        apic->lapic_timer.timer_mode_mask = 1 << 17;
 164
 165                kvm_apic_set_version(vcpu);
 166        }
 167
 168        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 169        if (!best)
 170                vcpu->arch.guest_supported_xcr0 = 0;
 171        else
 172                vcpu->arch.guest_supported_xcr0 =
 173                        (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 174
 175        /*
 176         * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 177         * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 178         * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 179         * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 180         * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 181         * '1' even on CPUs that don't support XSAVE.
 182         */
 183        best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
 184        if (best) {
 185                best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
 186                best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
 187                best->ecx |= XFEATURE_MASK_FPSSE;
 188        }
 189
 190        kvm_update_pv_runtime(vcpu);
 191
 192        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 193        vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 194
 195        kvm_pmu_refresh(vcpu);
 196        vcpu->arch.cr4_guest_rsvd_bits =
 197            __cr4_reserved_bits(guest_cpuid_has, vcpu);
 198
 199        kvm_hv_set_cpuid(vcpu);
 200
 201        /* Invoke the vendor callback only after the above state is updated. */
 202        static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 203
 204        /*
 205         * Except for the MMU, which needs to do its thing any vendor specific
 206         * adjustments to the reserved GPA bits.
 207         */
 208        kvm_mmu_after_set_cpuid(vcpu);
 209}
 210
 211static int is_efer_nx(void)
 212{
 213        return host_efer & EFER_NX;
 214}
 215
 216static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 217{
 218        int i;
 219        struct kvm_cpuid_entry2 *e, *entry;
 220
 221        entry = NULL;
 222        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 223                e = &vcpu->arch.cpuid_entries[i];
 224                if (e->function == 0x80000001) {
 225                        entry = e;
 226                        break;
 227                }
 228        }
 229        if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
 230                cpuid_entry_clear(entry, X86_FEATURE_NX);
 231                printk(KERN_INFO "kvm: guest NX capability removed\n");
 232        }
 233}
 234
 235int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 236{
 237        struct kvm_cpuid_entry2 *best;
 238
 239        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 240        if (!best || best->eax < 0x80000008)
 241                goto not_found;
 242        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 243        if (best)
 244                return best->eax & 0xff;
 245not_found:
 246        return 36;
 247}
 248
 249/*
 250 * This "raw" version returns the reserved GPA bits without any adjustments for
 251 * encryption technologies that usurp bits.  The raw mask should be used if and
 252 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 253 */
 254u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 255{
 256        return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 257}
 258
 259/* when an old userspace process fills a new kernel module */
 260int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 261                             struct kvm_cpuid *cpuid,
 262                             struct kvm_cpuid_entry __user *entries)
 263{
 264        int r, i;
 265        struct kvm_cpuid_entry *e = NULL;
 266        struct kvm_cpuid_entry2 *e2 = NULL;
 267
 268        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 269                return -E2BIG;
 270
 271        if (cpuid->nent) {
 272                e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 273                if (IS_ERR(e))
 274                        return PTR_ERR(e);
 275
 276                e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 277                if (!e2) {
 278                        r = -ENOMEM;
 279                        goto out_free_cpuid;
 280                }
 281        }
 282        for (i = 0; i < cpuid->nent; i++) {
 283                e2[i].function = e[i].function;
 284                e2[i].eax = e[i].eax;
 285                e2[i].ebx = e[i].ebx;
 286                e2[i].ecx = e[i].ecx;
 287                e2[i].edx = e[i].edx;
 288                e2[i].index = 0;
 289                e2[i].flags = 0;
 290                e2[i].padding[0] = 0;
 291                e2[i].padding[1] = 0;
 292                e2[i].padding[2] = 0;
 293        }
 294
 295        r = kvm_check_cpuid(e2, cpuid->nent);
 296        if (r) {
 297                kvfree(e2);
 298                goto out_free_cpuid;
 299        }
 300
 301        kvfree(vcpu->arch.cpuid_entries);
 302        vcpu->arch.cpuid_entries = e2;
 303        vcpu->arch.cpuid_nent = cpuid->nent;
 304
 305        cpuid_fix_nx_cap(vcpu);
 306        kvm_update_cpuid_runtime(vcpu);
 307        kvm_vcpu_after_set_cpuid(vcpu);
 308
 309out_free_cpuid:
 310        kvfree(e);
 311
 312        return r;
 313}
 314
 315int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 316                              struct kvm_cpuid2 *cpuid,
 317                              struct kvm_cpuid_entry2 __user *entries)
 318{
 319        struct kvm_cpuid_entry2 *e2 = NULL;
 320        int r;
 321
 322        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 323                return -E2BIG;
 324
 325        if (cpuid->nent) {
 326                e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 327                if (IS_ERR(e2))
 328                        return PTR_ERR(e2);
 329        }
 330
 331        r = kvm_check_cpuid(e2, cpuid->nent);
 332        if (r) {
 333                kvfree(e2);
 334                return r;
 335        }
 336
 337        kvfree(vcpu->arch.cpuid_entries);
 338        vcpu->arch.cpuid_entries = e2;
 339        vcpu->arch.cpuid_nent = cpuid->nent;
 340
 341        kvm_update_cpuid_runtime(vcpu);
 342        kvm_vcpu_after_set_cpuid(vcpu);
 343
 344        return 0;
 345}
 346
 347int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 348                              struct kvm_cpuid2 *cpuid,
 349                              struct kvm_cpuid_entry2 __user *entries)
 350{
 351        int r;
 352
 353        r = -E2BIG;
 354        if (cpuid->nent < vcpu->arch.cpuid_nent)
 355                goto out;
 356        r = -EFAULT;
 357        if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 358                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 359                goto out;
 360        return 0;
 361
 362out:
 363        cpuid->nent = vcpu->arch.cpuid_nent;
 364        return r;
 365}
 366
 367/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 368static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 369{
 370        const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 371        struct kvm_cpuid_entry2 entry;
 372
 373        reverse_cpuid_check(leaf);
 374
 375        cpuid_count(cpuid.function, cpuid.index,
 376                    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 377
 378        kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 379}
 380
 381static __always_inline
 382void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
 383{
 384        /* Use kvm_cpu_cap_mask for non-scattered leafs. */
 385        BUILD_BUG_ON(leaf < NCAPINTS);
 386
 387        kvm_cpu_caps[leaf] = mask;
 388
 389        __kvm_cpu_cap_mask(leaf);
 390}
 391
 392static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 393{
 394        /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
 395        BUILD_BUG_ON(leaf >= NCAPINTS);
 396
 397        kvm_cpu_caps[leaf] &= mask;
 398
 399        __kvm_cpu_cap_mask(leaf);
 400}
 401
 402void kvm_set_cpu_caps(void)
 403{
 404        unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
 405#ifdef CONFIG_X86_64
 406        unsigned int f_gbpages = F(GBPAGES);
 407        unsigned int f_lm = F(LM);
 408#else
 409        unsigned int f_gbpages = 0;
 410        unsigned int f_lm = 0;
 411#endif
 412        memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 413
 414        BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 415                     sizeof(boot_cpu_data.x86_capability));
 416
 417        memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 418               sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 419
 420        kvm_cpu_cap_mask(CPUID_1_ECX,
 421                /*
 422                 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 423                 * advertised to guests via CPUID!
 424                 */
 425                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 426                0 /* DS-CPL, VMX, SMX, EST */ |
 427                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 428                F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 429                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 430                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 431                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 432                F(F16C) | F(RDRAND)
 433        );
 434        /* KVM emulates x2apic in software irrespective of host support. */
 435        kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 436
 437        kvm_cpu_cap_mask(CPUID_1_EDX,
 438                F(FPU) | F(VME) | F(DE) | F(PSE) |
 439                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 440                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 441                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 442                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 443                0 /* Reserved, DS, ACPI */ | F(MMX) |
 444                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 445                0 /* HTT, TM, Reserved, PBE */
 446        );
 447
 448        kvm_cpu_cap_mask(CPUID_7_0_EBX,
 449                F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 450                F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 451                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 452                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 453                F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 454        );
 455
 456        kvm_cpu_cap_mask(CPUID_7_ECX,
 457                F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 458                F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 459                F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 460                F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 461                F(SGX_LC) | F(BUS_LOCK_DETECT)
 462        );
 463        /* Set LA57 based on hardware capability. */
 464        if (cpuid_ecx(7) & F(LA57))
 465                kvm_cpu_cap_set(X86_FEATURE_LA57);
 466
 467        /*
 468         * PKU not yet implemented for shadow paging and requires OSPKE
 469         * to be set on the host. Clear it if that is not the case
 470         */
 471        if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 472                kvm_cpu_cap_clear(X86_FEATURE_PKU);
 473
 474        kvm_cpu_cap_mask(CPUID_7_EDX,
 475                F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 476                F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 477                F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 478                F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
 479        );
 480
 481        /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 482        kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 483        kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 484
 485        if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 486                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 487        if (boot_cpu_has(X86_FEATURE_STIBP))
 488                kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 489        if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 490                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 491
 492        kvm_cpu_cap_mask(CPUID_7_1_EAX,
 493                F(AVX_VNNI) | F(AVX512_BF16)
 494        );
 495
 496        kvm_cpu_cap_mask(CPUID_D_1_EAX,
 497                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 498        );
 499
 500        kvm_cpu_cap_init_scattered(CPUID_12_EAX,
 501                SF(SGX1) | SF(SGX2)
 502        );
 503
 504        kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 505                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 506                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 507                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 508                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 509                F(TOPOEXT) | F(PERFCTR_CORE)
 510        );
 511
 512        kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 513                F(FPU) | F(VME) | F(DE) | F(PSE) |
 514                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 515                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 516                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 517                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 518                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 519                F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 520                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 521        );
 522
 523        if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 524                kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 525
 526        kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 527                F(CLZERO) | F(XSAVEERPTR) |
 528                F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 529                F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 530        );
 531
 532        /*
 533         * AMD has separate bits for each SPEC_CTRL bit.
 534         * arch/x86/kernel/cpu/bugs.c is kind enough to
 535         * record that in cpufeatures so use them.
 536         */
 537        if (boot_cpu_has(X86_FEATURE_IBPB))
 538                kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 539        if (boot_cpu_has(X86_FEATURE_IBRS))
 540                kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 541        if (boot_cpu_has(X86_FEATURE_STIBP))
 542                kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 543        if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 544                kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 545        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 546                kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 547        /*
 548         * The preference is to use SPEC CTRL MSR instead of the
 549         * VIRT_SPEC MSR.
 550         */
 551        if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 552            !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 553                kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 554
 555        /*
 556         * Hide all SVM features by default, SVM will set the cap bits for
 557         * features it emulates and/or exposes for L1.
 558         */
 559        kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 560
 561        kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 562                0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 563                F(SME_COHERENT));
 564
 565        kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 566                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 567                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 568                F(PMM) | F(PMM_EN)
 569        );
 570}
 571EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 572
 573struct kvm_cpuid_array {
 574        struct kvm_cpuid_entry2 *entries;
 575        int maxnent;
 576        int nent;
 577};
 578
 579static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 580                                              u32 function, u32 index)
 581{
 582        struct kvm_cpuid_entry2 *entry;
 583
 584        if (array->nent >= array->maxnent)
 585                return NULL;
 586
 587        entry = &array->entries[array->nent++];
 588
 589        entry->function = function;
 590        entry->index = index;
 591        entry->flags = 0;
 592
 593        cpuid_count(entry->function, entry->index,
 594                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 595
 596        switch (function) {
 597        case 4:
 598        case 7:
 599        case 0xb:
 600        case 0xd:
 601        case 0xf:
 602        case 0x10:
 603        case 0x12:
 604        case 0x14:
 605        case 0x17:
 606        case 0x18:
 607        case 0x1f:
 608        case 0x8000001d:
 609                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 610                break;
 611        }
 612
 613        return entry;
 614}
 615
 616static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 617{
 618        struct kvm_cpuid_entry2 *entry;
 619
 620        if (array->nent >= array->maxnent)
 621                return -E2BIG;
 622
 623        entry = &array->entries[array->nent];
 624        entry->function = func;
 625        entry->index = 0;
 626        entry->flags = 0;
 627
 628        switch (func) {
 629        case 0:
 630                entry->eax = 7;
 631                ++array->nent;
 632                break;
 633        case 1:
 634                entry->ecx = F(MOVBE);
 635                ++array->nent;
 636                break;
 637        case 7:
 638                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 639                entry->eax = 0;
 640                if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 641                        entry->ecx = F(RDPID);
 642                ++array->nent;
 643                break;
 644        default:
 645                break;
 646        }
 647
 648        return 0;
 649}
 650
 651static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 652{
 653        struct kvm_cpuid_entry2 *entry;
 654        int r, i, max_idx;
 655
 656        /* all calls to cpuid_count() should be made on the same cpu */
 657        get_cpu();
 658
 659        r = -E2BIG;
 660
 661        entry = do_host_cpuid(array, function, 0);
 662        if (!entry)
 663                goto out;
 664
 665        switch (function) {
 666        case 0:
 667                /* Limited to the highest leaf implemented in KVM. */
 668                entry->eax = min(entry->eax, 0x1fU);
 669                break;
 670        case 1:
 671                cpuid_entry_override(entry, CPUID_1_EDX);
 672                cpuid_entry_override(entry, CPUID_1_ECX);
 673                break;
 674        case 2:
 675                /*
 676                 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 677                 * CPUID(function=2, index=0) may return different results each
 678                 * time, with the least-significant byte in EAX enumerating the
 679                 * number of times software should do CPUID(2, 0).
 680                 *
 681                 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 682                 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 683                 * return 01H. Software should ignore this value and not
 684                 * interpret it as an informational descriptor", while AMD's
 685                 * APM states that CPUID(2) is reserved.
 686                 *
 687                 * WARN if a frankenstein CPU that supports virtualization and
 688                 * a stateful CPUID.0x2 is encountered.
 689                 */
 690                WARN_ON_ONCE((entry->eax & 0xff) > 1);
 691                break;
 692        /* functions 4 and 0x8000001d have additional index. */
 693        case 4:
 694        case 0x8000001d:
 695                /*
 696                 * Read entries until the cache type in the previous entry is
 697                 * zero, i.e. indicates an invalid entry.
 698                 */
 699                for (i = 1; entry->eax & 0x1f; ++i) {
 700                        entry = do_host_cpuid(array, function, i);
 701                        if (!entry)
 702                                goto out;
 703                }
 704                break;
 705        case 6: /* Thermal management */
 706                entry->eax = 0x4; /* allow ARAT */
 707                entry->ebx = 0;
 708                entry->ecx = 0;
 709                entry->edx = 0;
 710                break;
 711        /* function 7 has additional index. */
 712        case 7:
 713                entry->eax = min(entry->eax, 1u);
 714                cpuid_entry_override(entry, CPUID_7_0_EBX);
 715                cpuid_entry_override(entry, CPUID_7_ECX);
 716                cpuid_entry_override(entry, CPUID_7_EDX);
 717
 718                /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 719                if (entry->eax == 1) {
 720                        entry = do_host_cpuid(array, function, 1);
 721                        if (!entry)
 722                                goto out;
 723
 724                        cpuid_entry_override(entry, CPUID_7_1_EAX);
 725                        entry->ebx = 0;
 726                        entry->ecx = 0;
 727                        entry->edx = 0;
 728                }
 729                break;
 730        case 9:
 731                break;
 732        case 0xa: { /* Architectural Performance Monitoring */
 733                struct x86_pmu_capability cap;
 734                union cpuid10_eax eax;
 735                union cpuid10_edx edx;
 736
 737                perf_get_x86_pmu_capability(&cap);
 738
 739                /*
 740                 * Only support guest architectural pmu on a host
 741                 * with architectural pmu.
 742                 */
 743                if (!cap.version)
 744                        memset(&cap, 0, sizeof(cap));
 745
 746                eax.split.version_id = min(cap.version, 2);
 747                eax.split.num_counters = cap.num_counters_gp;
 748                eax.split.bit_width = cap.bit_width_gp;
 749                eax.split.mask_length = cap.events_mask_len;
 750
 751                edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 752                edx.split.bit_width_fixed = cap.bit_width_fixed;
 753                if (cap.version)
 754                        edx.split.anythread_deprecated = 1;
 755                edx.split.reserved1 = 0;
 756                edx.split.reserved2 = 0;
 757
 758                entry->eax = eax.full;
 759                entry->ebx = cap.events_mask;
 760                entry->ecx = 0;
 761                entry->edx = edx.full;
 762                break;
 763        }
 764        /*
 765         * Per Intel's SDM, the 0x1f is a superset of 0xb,
 766         * thus they can be handled by common code.
 767         */
 768        case 0x1f:
 769        case 0xb:
 770                /*
 771                 * Populate entries until the level type (ECX[15:8]) of the
 772                 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 773                 * the starting entry, filled by the primary do_host_cpuid().
 774                 */
 775                for (i = 1; entry->ecx & 0xff00; ++i) {
 776                        entry = do_host_cpuid(array, function, i);
 777                        if (!entry)
 778                                goto out;
 779                }
 780                break;
 781        case 0xd:
 782                entry->eax &= supported_xcr0;
 783                entry->ebx = xstate_required_size(supported_xcr0, false);
 784                entry->ecx = entry->ebx;
 785                entry->edx &= supported_xcr0 >> 32;
 786                if (!supported_xcr0)
 787                        break;
 788
 789                entry = do_host_cpuid(array, function, 1);
 790                if (!entry)
 791                        goto out;
 792
 793                cpuid_entry_override(entry, CPUID_D_1_EAX);
 794                if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 795                        entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 796                                                          true);
 797                else {
 798                        WARN_ON_ONCE(supported_xss != 0);
 799                        entry->ebx = 0;
 800                }
 801                entry->ecx &= supported_xss;
 802                entry->edx &= supported_xss >> 32;
 803
 804                for (i = 2; i < 64; ++i) {
 805                        bool s_state;
 806                        if (supported_xcr0 & BIT_ULL(i))
 807                                s_state = false;
 808                        else if (supported_xss & BIT_ULL(i))
 809                                s_state = true;
 810                        else
 811                                continue;
 812
 813                        entry = do_host_cpuid(array, function, i);
 814                        if (!entry)
 815                                goto out;
 816
 817                        /*
 818                         * The supported check above should have filtered out
 819                         * invalid sub-leafs.  Only valid sub-leafs should
 820                         * reach this point, and they should have a non-zero
 821                         * save state size.  Furthermore, check whether the
 822                         * processor agrees with supported_xcr0/supported_xss
 823                         * on whether this is an XCR0- or IA32_XSS-managed area.
 824                         */
 825                        if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 826                                --array->nent;
 827                                continue;
 828                        }
 829                        entry->edx = 0;
 830                }
 831                break;
 832        case 0x12:
 833                /* Intel SGX */
 834                if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
 835                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 836                        break;
 837                }
 838
 839                /*
 840                 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
 841                 * and max enclave sizes.   The SGX sub-features and MISCSELECT
 842                 * are restricted by kernel and KVM capabilities (like most
 843                 * feature flags), while enclave size is unrestricted.
 844                 */
 845                cpuid_entry_override(entry, CPUID_12_EAX);
 846                entry->ebx &= SGX_MISC_EXINFO;
 847
 848                entry = do_host_cpuid(array, function, 1);
 849                if (!entry)
 850                        goto out;
 851
 852                /*
 853                 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
 854                 * feature flags.  Advertise all supported flags, including
 855                 * privileged attributes that require explicit opt-in from
 856                 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
 857                 * expected to derive it from supported XCR0.
 858                 */
 859                entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
 860                              SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
 861                              SGX_ATTR_KSS;
 862                entry->ebx &= 0;
 863                break;
 864        /* Intel PT */
 865        case 0x14:
 866                if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 867                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 868                        break;
 869                }
 870
 871                for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 872                        if (!do_host_cpuid(array, function, i))
 873                                goto out;
 874                }
 875                break;
 876        case KVM_CPUID_SIGNATURE: {
 877                static const char signature[12] = "KVMKVMKVM\0\0";
 878                const u32 *sigptr = (const u32 *)signature;
 879                entry->eax = KVM_CPUID_FEATURES;
 880                entry->ebx = sigptr[0];
 881                entry->ecx = sigptr[1];
 882                entry->edx = sigptr[2];
 883                break;
 884        }
 885        case KVM_CPUID_FEATURES:
 886                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 887                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 888                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 889                             (1 << KVM_FEATURE_ASYNC_PF) |
 890                             (1 << KVM_FEATURE_PV_EOI) |
 891                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 892                             (1 << KVM_FEATURE_PV_UNHALT) |
 893                             (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 894                             (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 895                             (1 << KVM_FEATURE_PV_SEND_IPI) |
 896                             (1 << KVM_FEATURE_POLL_CONTROL) |
 897                             (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 898                             (1 << KVM_FEATURE_ASYNC_PF_INT);
 899
 900                if (sched_info_on())
 901                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 902
 903                entry->ebx = 0;
 904                entry->ecx = 0;
 905                entry->edx = 0;
 906                break;
 907        case 0x80000000:
 908                entry->eax = min(entry->eax, 0x8000001f);
 909                break;
 910        case 0x80000001:
 911                cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 912                cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 913                break;
 914        case 0x80000006:
 915                /* L2 cache and TLB: pass through host info. */
 916                break;
 917        case 0x80000007: /* Advanced power management */
 918                /* invariant TSC is CPUID.80000007H:EDX[8] */
 919                entry->edx &= (1 << 8);
 920                /* mask against host */
 921                entry->edx &= boot_cpu_data.x86_power;
 922                entry->eax = entry->ebx = entry->ecx = 0;
 923                break;
 924        case 0x80000008: {
 925                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 926                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 927                unsigned phys_as = entry->eax & 0xff;
 928
 929                /*
 930                 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
 931                 * the guest operates in the same PA space as the host, i.e.
 932                 * reductions in MAXPHYADDR for memory encryption affect shadow
 933                 * paging, too.
 934                 *
 935                 * If TDP is enabled but an explicit guest MAXPHYADDR is not
 936                 * provided, use the raw bare metal MAXPHYADDR as reductions to
 937                 * the HPAs do not affect GPAs.
 938                 */
 939                if (!tdp_enabled)
 940                        g_phys_as = boot_cpu_data.x86_phys_bits;
 941                else if (!g_phys_as)
 942                        g_phys_as = phys_as;
 943
 944                entry->eax = g_phys_as | (virt_as << 8);
 945                entry->edx = 0;
 946                cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 947                break;
 948        }
 949        case 0x8000000A:
 950                if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 951                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 952                        break;
 953                }
 954                entry->eax = 1; /* SVM revision 1 */
 955                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 956                                   ASID emulation to nested SVM */
 957                entry->ecx = 0; /* Reserved */
 958                cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 959                break;
 960        case 0x80000019:
 961                entry->ecx = entry->edx = 0;
 962                break;
 963        case 0x8000001a:
 964        case 0x8000001e:
 965                break;
 966        case 0x8000001F:
 967                if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
 968                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 969                } else {
 970                        cpuid_entry_override(entry, CPUID_8000_001F_EAX);
 971
 972                        /*
 973                         * Enumerate '0' for "PA bits reduction", the adjusted
 974                         * MAXPHYADDR is enumerated directly (see 0x80000008).
 975                         */
 976                        entry->ebx &= ~GENMASK(11, 6);
 977                }
 978                break;
 979        /*Add support for Centaur's CPUID instruction*/
 980        case 0xC0000000:
 981                /*Just support up to 0xC0000004 now*/
 982                entry->eax = min(entry->eax, 0xC0000004);
 983                break;
 984        case 0xC0000001:
 985                cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 986                break;
 987        case 3: /* Processor serial number */
 988        case 5: /* MONITOR/MWAIT */
 989        case 0xC0000002:
 990        case 0xC0000003:
 991        case 0xC0000004:
 992        default:
 993                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 994                break;
 995        }
 996
 997        r = 0;
 998
 999out:
1000        put_cpu();
1001
1002        return r;
1003}
1004
1005static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1006                         unsigned int type)
1007{
1008        if (type == KVM_GET_EMULATED_CPUID)
1009                return __do_cpuid_func_emulated(array, func);
1010
1011        return __do_cpuid_func(array, func);
1012}
1013
1014#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1015
1016static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1017                          unsigned int type)
1018{
1019        u32 limit;
1020        int r;
1021
1022        if (func == CENTAUR_CPUID_SIGNATURE &&
1023            boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1024                return 0;
1025
1026        r = do_cpuid_func(array, func, type);
1027        if (r)
1028                return r;
1029
1030        limit = array->entries[array->nent - 1].eax;
1031        for (func = func + 1; func <= limit; ++func) {
1032                r = do_cpuid_func(array, func, type);
1033                if (r)
1034                        break;
1035        }
1036
1037        return r;
1038}
1039
1040static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1041                                 __u32 num_entries, unsigned int ioctl_type)
1042{
1043        int i;
1044        __u32 pad[3];
1045
1046        if (ioctl_type != KVM_GET_EMULATED_CPUID)
1047                return false;
1048
1049        /*
1050         * We want to make sure that ->padding is being passed clean from
1051         * userspace in case we want to use it for something in the future.
1052         *
1053         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1054         * have to give ourselves satisfied only with the emulated side. /me
1055         * sheds a tear.
1056         */
1057        for (i = 0; i < num_entries; i++) {
1058                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1059                        return true;
1060
1061                if (pad[0] || pad[1] || pad[2])
1062                        return true;
1063        }
1064        return false;
1065}
1066
1067int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1068                            struct kvm_cpuid_entry2 __user *entries,
1069                            unsigned int type)
1070{
1071        static const u32 funcs[] = {
1072                0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1073        };
1074
1075        struct kvm_cpuid_array array = {
1076                .nent = 0,
1077        };
1078        int r, i;
1079
1080        if (cpuid->nent < 1)
1081                return -E2BIG;
1082        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1083                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1084
1085        if (sanity_check_entries(entries, cpuid->nent, type))
1086                return -EINVAL;
1087
1088        array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1089                                           cpuid->nent));
1090        if (!array.entries)
1091                return -ENOMEM;
1092
1093        array.maxnent = cpuid->nent;
1094
1095        for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1096                r = get_cpuid_func(&array, funcs[i], type);
1097                if (r)
1098                        goto out_free;
1099        }
1100        cpuid->nent = array.nent;
1101
1102        if (copy_to_user(entries, array.entries,
1103                         array.nent * sizeof(struct kvm_cpuid_entry2)))
1104                r = -EFAULT;
1105
1106out_free:
1107        vfree(array.entries);
1108        return r;
1109}
1110
1111struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1112                                              u32 function, u32 index)
1113{
1114        return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1115                                 function, index);
1116}
1117EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1118
1119/*
1120 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1121 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1122 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1123 * range.  Centaur/VIA follows Intel semantics.
1124 *
1125 * A leaf is considered out-of-range if its function is higher than the maximum
1126 * supported leaf of its associated class or if its associated class does not
1127 * exist.
1128 *
1129 * There are three primary classes to be considered, with their respective
1130 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1131 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1132 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1133 *
1134 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1135 *  - Hypervisor: 0x40000000 - 0x4fffffff
1136 *  - Extended:   0x80000000 - 0xbfffffff
1137 *  - Centaur:    0xc0000000 - 0xcfffffff
1138 *
1139 * The Hypervisor class is further subdivided into sub-classes that each act as
1140 * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1141 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1142 * CPUID sub-classes are:
1143 *
1144 *  - HyperV:     0x40000000 - 0x400000ff
1145 *  - KVM:        0x40000100 - 0x400001ff
1146 */
1147static struct kvm_cpuid_entry2 *
1148get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1149{
1150        struct kvm_cpuid_entry2 *basic, *class;
1151        u32 function = *fn_ptr;
1152
1153        basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1154        if (!basic)
1155                return NULL;
1156
1157        if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx))
1158                return NULL;
1159
1160        if (function >= 0x40000000 && function <= 0x4fffffff)
1161                class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1162        else if (function >= 0xc0000000)
1163                class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1164        else
1165                class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1166
1167        if (class && function <= class->eax)
1168                return NULL;
1169
1170        /*
1171         * Leaf specific adjustments are also applied when redirecting to the
1172         * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1173         * entry for CPUID.0xb.index (see below), then the output value for EDX
1174         * needs to be pulled from CPUID.0xb.1.
1175         */
1176        *fn_ptr = basic->eax;
1177
1178        /*
1179         * The class does not exist or the requested function is out of range;
1180         * the effective CPUID entry is the max basic leaf.  Note, the index of
1181         * the original requested leaf is observed!
1182         */
1183        return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1184}
1185
1186bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1187               u32 *ecx, u32 *edx, bool exact_only)
1188{
1189        u32 orig_function = *eax, function = *eax, index = *ecx;
1190        struct kvm_cpuid_entry2 *entry;
1191        bool exact, used_max_basic = false;
1192
1193        entry = kvm_find_cpuid_entry(vcpu, function, index);
1194        exact = !!entry;
1195
1196        if (!entry && !exact_only) {
1197                entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1198                used_max_basic = !!entry;
1199        }
1200
1201        if (entry) {
1202                *eax = entry->eax;
1203                *ebx = entry->ebx;
1204                *ecx = entry->ecx;
1205                *edx = entry->edx;
1206                if (function == 7 && index == 0) {
1207                        u64 data;
1208                        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1209                            (data & TSX_CTRL_CPUID_CLEAR))
1210                                *ebx &= ~(F(RTM) | F(HLE));
1211                }
1212        } else {
1213                *eax = *ebx = *ecx = *edx = 0;
1214                /*
1215                 * When leaf 0BH or 1FH is defined, CL is pass-through
1216                 * and EDX is always the x2APIC ID, even for undefined
1217                 * subleaves. Index 1 will exist iff the leaf is
1218                 * implemented, so we pass through CL iff leaf 1
1219                 * exists. EDX can be copied from any existing index.
1220                 */
1221                if (function == 0xb || function == 0x1f) {
1222                        entry = kvm_find_cpuid_entry(vcpu, function, 1);
1223                        if (entry) {
1224                                *ecx = index & 0xff;
1225                                *edx = entry->edx;
1226                        }
1227                }
1228        }
1229        trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1230                        used_max_basic);
1231        return exact;
1232}
1233EXPORT_SYMBOL_GPL(kvm_cpuid);
1234
1235int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1236{
1237        u32 eax, ebx, ecx, edx;
1238
1239        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1240                return 1;
1241
1242        eax = kvm_rax_read(vcpu);
1243        ecx = kvm_rcx_read(vcpu);
1244        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1245        kvm_rax_write(vcpu, eax);
1246        kvm_rbx_write(vcpu, ebx);
1247        kvm_rcx_write(vcpu, ecx);
1248        kvm_rdx_write(vcpu, edx);
1249        return kvm_skip_emulated_instruction(vcpu);
1250}
1251EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1252