linux/arch/x86/mm/pat/set_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18
  19#include <asm/e820/api.h>
  20#include <asm/processor.h>
  21#include <asm/tlbflush.h>
  22#include <asm/sections.h>
  23#include <asm/setup.h>
  24#include <linux/uaccess.h>
  25#include <asm/pgalloc.h>
  26#include <asm/proto.h>
  27#include <asm/memtype.h>
  28#include <asm/set_memory.h>
  29
  30#include "../mm_internal.h"
  31
  32/*
  33 * The current flushing context - we pass it instead of 5 arguments:
  34 */
  35struct cpa_data {
  36        unsigned long   *vaddr;
  37        pgd_t           *pgd;
  38        pgprot_t        mask_set;
  39        pgprot_t        mask_clr;
  40        unsigned long   numpages;
  41        unsigned long   curpage;
  42        unsigned long   pfn;
  43        unsigned int    flags;
  44        unsigned int    force_split             : 1,
  45                        force_static_prot       : 1,
  46                        force_flush_all         : 1;
  47        struct page     **pages;
  48};
  49
  50enum cpa_warn {
  51        CPA_CONFLICT,
  52        CPA_PROTECT,
  53        CPA_DETECT,
  54};
  55
  56static const int cpa_warn_level = CPA_PROTECT;
  57
  58/*
  59 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  60 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  61 * entries change the page attribute in parallel to some other cpu
  62 * splitting a large page entry along with changing the attribute.
  63 */
  64static DEFINE_SPINLOCK(cpa_lock);
  65
  66#define CPA_FLUSHTLB 1
  67#define CPA_ARRAY 2
  68#define CPA_PAGES_ARRAY 4
  69
  70#ifdef CONFIG_PROC_FS
  71static unsigned long direct_pages_count[PG_LEVEL_NUM];
  72
  73void update_page_count(int level, unsigned long pages)
  74{
  75        /* Protect against CPA */
  76        spin_lock(&pgd_lock);
  77        direct_pages_count[level] += pages;
  78        spin_unlock(&pgd_lock);
  79}
  80
  81static void split_page_count(int level)
  82{
  83        if (direct_pages_count[level] == 0)
  84                return;
  85
  86        direct_pages_count[level]--;
  87        direct_pages_count[level - 1] += PTRS_PER_PTE;
  88}
  89
  90void arch_report_meminfo(struct seq_file *m)
  91{
  92        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  93                        direct_pages_count[PG_LEVEL_4K] << 2);
  94#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  95        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  96                        direct_pages_count[PG_LEVEL_2M] << 11);
  97#else
  98        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  99                        direct_pages_count[PG_LEVEL_2M] << 12);
 100#endif
 101        if (direct_gbpages)
 102                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 103                        direct_pages_count[PG_LEVEL_1G] << 20);
 104}
 105#else
 106static inline void split_page_count(int level) { }
 107#endif
 108
 109#ifdef CONFIG_X86_CPA_STATISTICS
 110
 111static unsigned long cpa_1g_checked;
 112static unsigned long cpa_1g_sameprot;
 113static unsigned long cpa_1g_preserved;
 114static unsigned long cpa_2m_checked;
 115static unsigned long cpa_2m_sameprot;
 116static unsigned long cpa_2m_preserved;
 117static unsigned long cpa_4k_install;
 118
 119static inline void cpa_inc_1g_checked(void)
 120{
 121        cpa_1g_checked++;
 122}
 123
 124static inline void cpa_inc_2m_checked(void)
 125{
 126        cpa_2m_checked++;
 127}
 128
 129static inline void cpa_inc_4k_install(void)
 130{
 131        cpa_4k_install++;
 132}
 133
 134static inline void cpa_inc_lp_sameprot(int level)
 135{
 136        if (level == PG_LEVEL_1G)
 137                cpa_1g_sameprot++;
 138        else
 139                cpa_2m_sameprot++;
 140}
 141
 142static inline void cpa_inc_lp_preserved(int level)
 143{
 144        if (level == PG_LEVEL_1G)
 145                cpa_1g_preserved++;
 146        else
 147                cpa_2m_preserved++;
 148}
 149
 150static int cpastats_show(struct seq_file *m, void *p)
 151{
 152        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 153        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 154        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 155        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 156        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 157        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 158        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 159        return 0;
 160}
 161
 162static int cpastats_open(struct inode *inode, struct file *file)
 163{
 164        return single_open(file, cpastats_show, NULL);
 165}
 166
 167static const struct file_operations cpastats_fops = {
 168        .open           = cpastats_open,
 169        .read           = seq_read,
 170        .llseek         = seq_lseek,
 171        .release        = single_release,
 172};
 173
 174static int __init cpa_stats_init(void)
 175{
 176        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 177                            &cpastats_fops);
 178        return 0;
 179}
 180late_initcall(cpa_stats_init);
 181#else
 182static inline void cpa_inc_1g_checked(void) { }
 183static inline void cpa_inc_2m_checked(void) { }
 184static inline void cpa_inc_4k_install(void) { }
 185static inline void cpa_inc_lp_sameprot(int level) { }
 186static inline void cpa_inc_lp_preserved(int level) { }
 187#endif
 188
 189
 190static inline int
 191within(unsigned long addr, unsigned long start, unsigned long end)
 192{
 193        return addr >= start && addr < end;
 194}
 195
 196static inline int
 197within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 198{
 199        return addr >= start && addr <= end;
 200}
 201
 202#ifdef CONFIG_X86_64
 203
 204static inline unsigned long highmap_start_pfn(void)
 205{
 206        return __pa_symbol(_text) >> PAGE_SHIFT;
 207}
 208
 209static inline unsigned long highmap_end_pfn(void)
 210{
 211        /* Do not reference physical address outside the kernel. */
 212        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 213}
 214
 215static bool __cpa_pfn_in_highmap(unsigned long pfn)
 216{
 217        /*
 218         * Kernel text has an alias mapping at a high address, known
 219         * here as "highmap".
 220         */
 221        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 222}
 223
 224#else
 225
 226static bool __cpa_pfn_in_highmap(unsigned long pfn)
 227{
 228        /* There is no highmap on 32-bit */
 229        return false;
 230}
 231
 232#endif
 233
 234/*
 235 * See set_mce_nospec().
 236 *
 237 * Machine check recovery code needs to change cache mode of poisoned pages to
 238 * UC to avoid speculative access logging another error. But passing the
 239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 240 * speculative access. So we cheat and flip the top bit of the address. This
 241 * works fine for the code that updates the page tables. But at the end of the
 242 * process we need to flush the TLB and cache and the non-canonical address
 243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 244 *
 245 * But in the common case we already have a canonical address. This code
 246 * will fix the top bit if needed and is a no-op otherwise.
 247 */
 248static inline unsigned long fix_addr(unsigned long addr)
 249{
 250#ifdef CONFIG_X86_64
 251        return (long)(addr << 1) >> 1;
 252#else
 253        return addr;
 254#endif
 255}
 256
 257static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 258{
 259        if (cpa->flags & CPA_PAGES_ARRAY) {
 260                struct page *page = cpa->pages[idx];
 261
 262                if (unlikely(PageHighMem(page)))
 263                        return 0;
 264
 265                return (unsigned long)page_address(page);
 266        }
 267
 268        if (cpa->flags & CPA_ARRAY)
 269                return cpa->vaddr[idx];
 270
 271        return *cpa->vaddr + idx * PAGE_SIZE;
 272}
 273
 274/*
 275 * Flushing functions
 276 */
 277
 278static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 279{
 280        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 281        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 282        void *vend = vaddr + size;
 283
 284        if (p >= vend)
 285                return;
 286
 287        for (; p < vend; p += clflush_size)
 288                clflushopt(p);
 289}
 290
 291/**
 292 * clflush_cache_range - flush a cache range with clflush
 293 * @vaddr:      virtual start address
 294 * @size:       number of bytes to flush
 295 *
 296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 297 * SFENCE to avoid ordering issues.
 298 */
 299void clflush_cache_range(void *vaddr, unsigned int size)
 300{
 301        mb();
 302        clflush_cache_range_opt(vaddr, size);
 303        mb();
 304}
 305EXPORT_SYMBOL_GPL(clflush_cache_range);
 306
 307void arch_invalidate_pmem(void *addr, size_t size)
 308{
 309        clflush_cache_range(addr, size);
 310}
 311EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 312
 313static void __cpa_flush_all(void *arg)
 314{
 315        unsigned long cache = (unsigned long)arg;
 316
 317        /*
 318         * Flush all to work around Errata in early athlons regarding
 319         * large page flushing.
 320         */
 321        __flush_tlb_all();
 322
 323        if (cache && boot_cpu_data.x86 >= 4)
 324                wbinvd();
 325}
 326
 327static void cpa_flush_all(unsigned long cache)
 328{
 329        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 330
 331        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 332}
 333
 334void __cpa_flush_tlb(void *data)
 335{
 336        struct cpa_data *cpa = data;
 337        unsigned int i;
 338
 339        for (i = 0; i < cpa->numpages; i++)
 340                __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 341}
 342
 343static void cpa_flush(struct cpa_data *data, int cache)
 344{
 345        struct cpa_data *cpa = data;
 346        unsigned int i;
 347
 348        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 349
 350        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 351                cpa_flush_all(cache);
 352                return;
 353        }
 354
 355        if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 356                flush_tlb_all();
 357        else
 358                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 359
 360        if (!cache)
 361                return;
 362
 363        mb();
 364        for (i = 0; i < cpa->numpages; i++) {
 365                unsigned long addr = __cpa_addr(cpa, i);
 366                unsigned int level;
 367
 368                pte_t *pte = lookup_address(addr, &level);
 369
 370                /*
 371                 * Only flush present addresses:
 372                 */
 373                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 374                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 375        }
 376        mb();
 377}
 378
 379static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 380                     unsigned long r2_start, unsigned long r2_end)
 381{
 382        return (r1_start <= r2_end && r1_end >= r2_start) ||
 383                (r2_start <= r1_end && r2_end >= r1_start);
 384}
 385
 386#ifdef CONFIG_PCI_BIOS
 387/*
 388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 389 * based config access (CONFIG_PCI_GOBIOS) support.
 390 */
 391#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 392#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 393
 394static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 395{
 396        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 397                return _PAGE_NX;
 398        return 0;
 399}
 400#else
 401static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 402{
 403        return 0;
 404}
 405#endif
 406
 407/*
 408 * The .rodata section needs to be read-only. Using the pfn catches all
 409 * aliases.  This also includes __ro_after_init, so do not enforce until
 410 * kernel_set_to_readonly is true.
 411 */
 412static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 413{
 414        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 415
 416        /*
 417         * Note: __end_rodata is at page aligned and not inclusive, so
 418         * subtract 1 to get the last enforced PFN in the rodata area.
 419         */
 420        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 421
 422        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 423                return _PAGE_RW;
 424        return 0;
 425}
 426
 427/*
 428 * Protect kernel text against becoming non executable by forbidding
 429 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 430 * out of which the kernel actually executes.  Do not protect the low
 431 * mapping.
 432 *
 433 * This does not cover __inittext since that is gone after boot.
 434 */
 435static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 436{
 437        unsigned long t_end = (unsigned long)_etext - 1;
 438        unsigned long t_start = (unsigned long)_text;
 439
 440        if (overlaps(start, end, t_start, t_end))
 441                return _PAGE_NX;
 442        return 0;
 443}
 444
 445#if defined(CONFIG_X86_64)
 446/*
 447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 448 * kernel text mappings for the large page aligned text, rodata sections
 449 * will be always read-only. For the kernel identity mappings covering the
 450 * holes caused by this alignment can be anything that user asks.
 451 *
 452 * This will preserve the large page mappings for kernel text/data at no
 453 * extra cost.
 454 */
 455static pgprotval_t protect_kernel_text_ro(unsigned long start,
 456                                          unsigned long end)
 457{
 458        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 459        unsigned long t_start = (unsigned long)_text;
 460        unsigned int level;
 461
 462        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 463                return 0;
 464        /*
 465         * Don't enforce the !RW mapping for the kernel text mapping, if
 466         * the current mapping is already using small page mapping.  No
 467         * need to work hard to preserve large page mappings in this case.
 468         *
 469         * This also fixes the Linux Xen paravirt guest boot failure caused
 470         * by unexpected read-only mappings for kernel identity
 471         * mappings. In this paravirt guest case, the kernel text mapping
 472         * and the kernel identity mapping share the same page-table pages,
 473         * so the protections for kernel text and identity mappings have to
 474         * be the same.
 475         */
 476        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 477                return _PAGE_RW;
 478        return 0;
 479}
 480#else
 481static pgprotval_t protect_kernel_text_ro(unsigned long start,
 482                                          unsigned long end)
 483{
 484        return 0;
 485}
 486#endif
 487
 488static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 489{
 490        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 491}
 492
 493static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 494                                  unsigned long start, unsigned long end,
 495                                  unsigned long pfn, const char *txt)
 496{
 497        static const char *lvltxt[] = {
 498                [CPA_CONFLICT]  = "conflict",
 499                [CPA_PROTECT]   = "protect",
 500                [CPA_DETECT]    = "detect",
 501        };
 502
 503        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 504                return;
 505
 506        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 507                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 508                (unsigned long long)val);
 509}
 510
 511/*
 512 * Certain areas of memory on x86 require very specific protection flags,
 513 * for example the BIOS area or kernel text. Callers don't always get this
 514 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 515 * checks and fixes these known static required protection bits.
 516 */
 517static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 518                                          unsigned long pfn, unsigned long npg,
 519                                          unsigned long lpsize, int warnlvl)
 520{
 521        pgprotval_t forbidden, res;
 522        unsigned long end;
 523
 524        /*
 525         * There is no point in checking RW/NX conflicts when the requested
 526         * mapping is setting the page !PRESENT.
 527         */
 528        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 529                return prot;
 530
 531        /* Operate on the virtual address */
 532        end = start + npg * PAGE_SIZE - 1;
 533
 534        res = protect_kernel_text(start, end);
 535        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 536        forbidden = res;
 537
 538        /*
 539         * Special case to preserve a large page. If the change spawns the
 540         * full large page mapping then there is no point to split it
 541         * up. Happens with ftrace and is going to be removed once ftrace
 542         * switched to text_poke().
 543         */
 544        if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 545                res = protect_kernel_text_ro(start, end);
 546                check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 547                forbidden |= res;
 548        }
 549
 550        /* Check the PFN directly */
 551        res = protect_pci_bios(pfn, pfn + npg - 1);
 552        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 553        forbidden |= res;
 554
 555        res = protect_rodata(pfn, pfn + npg - 1);
 556        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 557        forbidden |= res;
 558
 559        return __pgprot(pgprot_val(prot) & ~forbidden);
 560}
 561
 562/*
 563 * Lookup the page table entry for a virtual address in a specific pgd.
 564 * Return a pointer to the entry and the level of the mapping.
 565 */
 566pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 567                             unsigned int *level)
 568{
 569        p4d_t *p4d;
 570        pud_t *pud;
 571        pmd_t *pmd;
 572
 573        *level = PG_LEVEL_NONE;
 574
 575        if (pgd_none(*pgd))
 576                return NULL;
 577
 578        p4d = p4d_offset(pgd, address);
 579        if (p4d_none(*p4d))
 580                return NULL;
 581
 582        *level = PG_LEVEL_512G;
 583        if (p4d_large(*p4d) || !p4d_present(*p4d))
 584                return (pte_t *)p4d;
 585
 586        pud = pud_offset(p4d, address);
 587        if (pud_none(*pud))
 588                return NULL;
 589
 590        *level = PG_LEVEL_1G;
 591        if (pud_large(*pud) || !pud_present(*pud))
 592                return (pte_t *)pud;
 593
 594        pmd = pmd_offset(pud, address);
 595        if (pmd_none(*pmd))
 596                return NULL;
 597
 598        *level = PG_LEVEL_2M;
 599        if (pmd_large(*pmd) || !pmd_present(*pmd))
 600                return (pte_t *)pmd;
 601
 602        *level = PG_LEVEL_4K;
 603
 604        return pte_offset_kernel(pmd, address);
 605}
 606
 607/*
 608 * Lookup the page table entry for a virtual address. Return a pointer
 609 * to the entry and the level of the mapping.
 610 *
 611 * Note: We return pud and pmd either when the entry is marked large
 612 * or when the present bit is not set. Otherwise we would return a
 613 * pointer to a nonexisting mapping.
 614 */
 615pte_t *lookup_address(unsigned long address, unsigned int *level)
 616{
 617        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 618}
 619EXPORT_SYMBOL_GPL(lookup_address);
 620
 621/*
 622 * Lookup the page table entry for a virtual address in a given mm. Return a
 623 * pointer to the entry and the level of the mapping.
 624 */
 625pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
 626                            unsigned int *level)
 627{
 628        return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
 629}
 630EXPORT_SYMBOL_GPL(lookup_address_in_mm);
 631
 632static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 633                                  unsigned int *level)
 634{
 635        if (cpa->pgd)
 636                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 637                                               address, level);
 638
 639        return lookup_address(address, level);
 640}
 641
 642/*
 643 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 644 * or NULL if not present.
 645 */
 646pmd_t *lookup_pmd_address(unsigned long address)
 647{
 648        pgd_t *pgd;
 649        p4d_t *p4d;
 650        pud_t *pud;
 651
 652        pgd = pgd_offset_k(address);
 653        if (pgd_none(*pgd))
 654                return NULL;
 655
 656        p4d = p4d_offset(pgd, address);
 657        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 658                return NULL;
 659
 660        pud = pud_offset(p4d, address);
 661        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 662                return NULL;
 663
 664        return pmd_offset(pud, address);
 665}
 666
 667/*
 668 * This is necessary because __pa() does not work on some
 669 * kinds of memory, like vmalloc() or the alloc_remap()
 670 * areas on 32-bit NUMA systems.  The percpu areas can
 671 * end up in this kind of memory, for instance.
 672 *
 673 * This could be optimized, but it is only intended to be
 674 * used at inititalization time, and keeping it
 675 * unoptimized should increase the testing coverage for
 676 * the more obscure platforms.
 677 */
 678phys_addr_t slow_virt_to_phys(void *__virt_addr)
 679{
 680        unsigned long virt_addr = (unsigned long)__virt_addr;
 681        phys_addr_t phys_addr;
 682        unsigned long offset;
 683        enum pg_level level;
 684        pte_t *pte;
 685
 686        pte = lookup_address(virt_addr, &level);
 687        BUG_ON(!pte);
 688
 689        /*
 690         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 691         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 692         * make 32-PAE kernel work correctly.
 693         */
 694        switch (level) {
 695        case PG_LEVEL_1G:
 696                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 697                offset = virt_addr & ~PUD_PAGE_MASK;
 698                break;
 699        case PG_LEVEL_2M:
 700                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 701                offset = virt_addr & ~PMD_PAGE_MASK;
 702                break;
 703        default:
 704                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 705                offset = virt_addr & ~PAGE_MASK;
 706        }
 707
 708        return (phys_addr_t)(phys_addr | offset);
 709}
 710EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 711
 712/*
 713 * Set the new pmd in all the pgds we know about:
 714 */
 715static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 716{
 717        /* change init_mm */
 718        set_pte_atomic(kpte, pte);
 719#ifdef CONFIG_X86_32
 720        if (!SHARED_KERNEL_PMD) {
 721                struct page *page;
 722
 723                list_for_each_entry(page, &pgd_list, lru) {
 724                        pgd_t *pgd;
 725                        p4d_t *p4d;
 726                        pud_t *pud;
 727                        pmd_t *pmd;
 728
 729                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 730                        p4d = p4d_offset(pgd, address);
 731                        pud = pud_offset(p4d, address);
 732                        pmd = pmd_offset(pud, address);
 733                        set_pte_atomic((pte_t *)pmd, pte);
 734                }
 735        }
 736#endif
 737}
 738
 739static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 740{
 741        /*
 742         * _PAGE_GLOBAL means "global page" for present PTEs.
 743         * But, it is also used to indicate _PAGE_PROTNONE
 744         * for non-present PTEs.
 745         *
 746         * This ensures that a _PAGE_GLOBAL PTE going from
 747         * present to non-present is not confused as
 748         * _PAGE_PROTNONE.
 749         */
 750        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 751                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 752
 753        return prot;
 754}
 755
 756static int __should_split_large_page(pte_t *kpte, unsigned long address,
 757                                     struct cpa_data *cpa)
 758{
 759        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 760        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 761        pte_t new_pte, *tmp;
 762        enum pg_level level;
 763
 764        /*
 765         * Check for races, another CPU might have split this page
 766         * up already:
 767         */
 768        tmp = _lookup_address_cpa(cpa, address, &level);
 769        if (tmp != kpte)
 770                return 1;
 771
 772        switch (level) {
 773        case PG_LEVEL_2M:
 774                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 775                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 776                cpa_inc_2m_checked();
 777                break;
 778        case PG_LEVEL_1G:
 779                old_prot = pud_pgprot(*(pud_t *)kpte);
 780                old_pfn = pud_pfn(*(pud_t *)kpte);
 781                cpa_inc_1g_checked();
 782                break;
 783        default:
 784                return -EINVAL;
 785        }
 786
 787        psize = page_level_size(level);
 788        pmask = page_level_mask(level);
 789
 790        /*
 791         * Calculate the number of pages, which fit into this large
 792         * page starting at address:
 793         */
 794        lpaddr = (address + psize) & pmask;
 795        numpages = (lpaddr - address) >> PAGE_SHIFT;
 796        if (numpages < cpa->numpages)
 797                cpa->numpages = numpages;
 798
 799        /*
 800         * We are safe now. Check whether the new pgprot is the same:
 801         * Convert protection attributes to 4k-format, as cpa->mask* are set
 802         * up accordingly.
 803         */
 804
 805        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 806        req_prot = pgprot_large_2_4k(old_prot);
 807
 808        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 809        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 810
 811        /*
 812         * req_prot is in format of 4k pages. It must be converted to large
 813         * page format: the caching mode includes the PAT bit located at
 814         * different bit positions in the two formats.
 815         */
 816        req_prot = pgprot_4k_2_large(req_prot);
 817        req_prot = pgprot_clear_protnone_bits(req_prot);
 818        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 819                pgprot_val(req_prot) |= _PAGE_PSE;
 820
 821        /*
 822         * old_pfn points to the large page base pfn. So we need to add the
 823         * offset of the virtual address:
 824         */
 825        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 826        cpa->pfn = pfn;
 827
 828        /*
 829         * Calculate the large page base address and the number of 4K pages
 830         * in the large page
 831         */
 832        lpaddr = address & pmask;
 833        numpages = psize >> PAGE_SHIFT;
 834
 835        /*
 836         * Sanity check that the existing mapping is correct versus the static
 837         * protections. static_protections() guards against !PRESENT, so no
 838         * extra conditional required here.
 839         */
 840        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 841                                      psize, CPA_CONFLICT);
 842
 843        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 844                /*
 845                 * Split the large page and tell the split code to
 846                 * enforce static protections.
 847                 */
 848                cpa->force_static_prot = 1;
 849                return 1;
 850        }
 851
 852        /*
 853         * Optimization: If the requested pgprot is the same as the current
 854         * pgprot, then the large page can be preserved and no updates are
 855         * required independent of alignment and length of the requested
 856         * range. The above already established that the current pgprot is
 857         * correct, which in consequence makes the requested pgprot correct
 858         * as well if it is the same. The static protection scan below will
 859         * not come to a different conclusion.
 860         */
 861        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 862                cpa_inc_lp_sameprot(level);
 863                return 0;
 864        }
 865
 866        /*
 867         * If the requested range does not cover the full page, split it up
 868         */
 869        if (address != lpaddr || cpa->numpages != numpages)
 870                return 1;
 871
 872        /*
 873         * Check whether the requested pgprot is conflicting with a static
 874         * protection requirement in the large page.
 875         */
 876        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 877                                      psize, CPA_DETECT);
 878
 879        /*
 880         * If there is a conflict, split the large page.
 881         *
 882         * There used to be a 4k wise evaluation trying really hard to
 883         * preserve the large pages, but experimentation has shown, that this
 884         * does not help at all. There might be corner cases which would
 885         * preserve one large page occasionally, but it's really not worth the
 886         * extra code and cycles for the common case.
 887         */
 888        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 889                return 1;
 890
 891        /* All checks passed. Update the large page mapping. */
 892        new_pte = pfn_pte(old_pfn, new_prot);
 893        __set_pmd_pte(kpte, address, new_pte);
 894        cpa->flags |= CPA_FLUSHTLB;
 895        cpa_inc_lp_preserved(level);
 896        return 0;
 897}
 898
 899static int should_split_large_page(pte_t *kpte, unsigned long address,
 900                                   struct cpa_data *cpa)
 901{
 902        int do_split;
 903
 904        if (cpa->force_split)
 905                return 1;
 906
 907        spin_lock(&pgd_lock);
 908        do_split = __should_split_large_page(kpte, address, cpa);
 909        spin_unlock(&pgd_lock);
 910
 911        return do_split;
 912}
 913
 914static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 915                          pgprot_t ref_prot, unsigned long address,
 916                          unsigned long size)
 917{
 918        unsigned int npg = PFN_DOWN(size);
 919        pgprot_t prot;
 920
 921        /*
 922         * If should_split_large_page() discovered an inconsistent mapping,
 923         * remove the invalid protection in the split mapping.
 924         */
 925        if (!cpa->force_static_prot)
 926                goto set;
 927
 928        /* Hand in lpsize = 0 to enforce the protection mechanism */
 929        prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 930
 931        if (pgprot_val(prot) == pgprot_val(ref_prot))
 932                goto set;
 933
 934        /*
 935         * If this is splitting a PMD, fix it up. PUD splits cannot be
 936         * fixed trivially as that would require to rescan the newly
 937         * installed PMD mappings after returning from split_large_page()
 938         * so an eventual further split can allocate the necessary PTE
 939         * pages. Warn for now and revisit it in case this actually
 940         * happens.
 941         */
 942        if (size == PAGE_SIZE)
 943                ref_prot = prot;
 944        else
 945                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 946set:
 947        set_pte(pte, pfn_pte(pfn, ref_prot));
 948}
 949
 950static int
 951__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 952                   struct page *base)
 953{
 954        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 955        pte_t *pbase = (pte_t *)page_address(base);
 956        unsigned int i, level;
 957        pgprot_t ref_prot;
 958        pte_t *tmp;
 959
 960        spin_lock(&pgd_lock);
 961        /*
 962         * Check for races, another CPU might have split this page
 963         * up for us already:
 964         */
 965        tmp = _lookup_address_cpa(cpa, address, &level);
 966        if (tmp != kpte) {
 967                spin_unlock(&pgd_lock);
 968                return 1;
 969        }
 970
 971        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 972
 973        switch (level) {
 974        case PG_LEVEL_2M:
 975                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 976                /*
 977                 * Clear PSE (aka _PAGE_PAT) and move
 978                 * PAT bit to correct position.
 979                 */
 980                ref_prot = pgprot_large_2_4k(ref_prot);
 981                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 982                lpaddr = address & PMD_MASK;
 983                lpinc = PAGE_SIZE;
 984                break;
 985
 986        case PG_LEVEL_1G:
 987                ref_prot = pud_pgprot(*(pud_t *)kpte);
 988                ref_pfn = pud_pfn(*(pud_t *)kpte);
 989                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 990                lpaddr = address & PUD_MASK;
 991                lpinc = PMD_SIZE;
 992                /*
 993                 * Clear the PSE flags if the PRESENT flag is not set
 994                 * otherwise pmd_present/pmd_huge will return true
 995                 * even on a non present pmd.
 996                 */
 997                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 998                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
 999                break;
1000
1001        default:
1002                spin_unlock(&pgd_lock);
1003                return 1;
1004        }
1005
1006        ref_prot = pgprot_clear_protnone_bits(ref_prot);
1007
1008        /*
1009         * Get the target pfn from the original entry:
1010         */
1011        pfn = ref_pfn;
1012        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1013                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1014
1015        if (virt_addr_valid(address)) {
1016                unsigned long pfn = PFN_DOWN(__pa(address));
1017
1018                if (pfn_range_is_mapped(pfn, pfn + 1))
1019                        split_page_count(level);
1020        }
1021
1022        /*
1023         * Install the new, split up pagetable.
1024         *
1025         * We use the standard kernel pagetable protections for the new
1026         * pagetable protections, the actual ptes set above control the
1027         * primary protection behavior:
1028         */
1029        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1030
1031        /*
1032         * Do a global flush tlb after splitting the large page
1033         * and before we do the actual change page attribute in the PTE.
1034         *
1035         * Without this, we violate the TLB application note, that says:
1036         * "The TLBs may contain both ordinary and large-page
1037         *  translations for a 4-KByte range of linear addresses. This
1038         *  may occur if software modifies the paging structures so that
1039         *  the page size used for the address range changes. If the two
1040         *  translations differ with respect to page frame or attributes
1041         *  (e.g., permissions), processor behavior is undefined and may
1042         *  be implementation-specific."
1043         *
1044         * We do this global tlb flush inside the cpa_lock, so that we
1045         * don't allow any other cpu, with stale tlb entries change the
1046         * page attribute in parallel, that also falls into the
1047         * just split large page entry.
1048         */
1049        flush_tlb_all();
1050        spin_unlock(&pgd_lock);
1051
1052        return 0;
1053}
1054
1055static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1056                            unsigned long address)
1057{
1058        struct page *base;
1059
1060        if (!debug_pagealloc_enabled())
1061                spin_unlock(&cpa_lock);
1062        base = alloc_pages(GFP_KERNEL, 0);
1063        if (!debug_pagealloc_enabled())
1064                spin_lock(&cpa_lock);
1065        if (!base)
1066                return -ENOMEM;
1067
1068        if (__split_large_page(cpa, kpte, address, base))
1069                __free_page(base);
1070
1071        return 0;
1072}
1073
1074static bool try_to_free_pte_page(pte_t *pte)
1075{
1076        int i;
1077
1078        for (i = 0; i < PTRS_PER_PTE; i++)
1079                if (!pte_none(pte[i]))
1080                        return false;
1081
1082        free_page((unsigned long)pte);
1083        return true;
1084}
1085
1086static bool try_to_free_pmd_page(pmd_t *pmd)
1087{
1088        int i;
1089
1090        for (i = 0; i < PTRS_PER_PMD; i++)
1091                if (!pmd_none(pmd[i]))
1092                        return false;
1093
1094        free_page((unsigned long)pmd);
1095        return true;
1096}
1097
1098static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1099{
1100        pte_t *pte = pte_offset_kernel(pmd, start);
1101
1102        while (start < end) {
1103                set_pte(pte, __pte(0));
1104
1105                start += PAGE_SIZE;
1106                pte++;
1107        }
1108
1109        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1110                pmd_clear(pmd);
1111                return true;
1112        }
1113        return false;
1114}
1115
1116static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1117                              unsigned long start, unsigned long end)
1118{
1119        if (unmap_pte_range(pmd, start, end))
1120                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1121                        pud_clear(pud);
1122}
1123
1124static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1125{
1126        pmd_t *pmd = pmd_offset(pud, start);
1127
1128        /*
1129         * Not on a 2MB page boundary?
1130         */
1131        if (start & (PMD_SIZE - 1)) {
1132                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1133                unsigned long pre_end = min_t(unsigned long, end, next_page);
1134
1135                __unmap_pmd_range(pud, pmd, start, pre_end);
1136
1137                start = pre_end;
1138                pmd++;
1139        }
1140
1141        /*
1142         * Try to unmap in 2M chunks.
1143         */
1144        while (end - start >= PMD_SIZE) {
1145                if (pmd_large(*pmd))
1146                        pmd_clear(pmd);
1147                else
1148                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1149
1150                start += PMD_SIZE;
1151                pmd++;
1152        }
1153
1154        /*
1155         * 4K leftovers?
1156         */
1157        if (start < end)
1158                return __unmap_pmd_range(pud, pmd, start, end);
1159
1160        /*
1161         * Try again to free the PMD page if haven't succeeded above.
1162         */
1163        if (!pud_none(*pud))
1164                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1165                        pud_clear(pud);
1166}
1167
1168static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1169{
1170        pud_t *pud = pud_offset(p4d, start);
1171
1172        /*
1173         * Not on a GB page boundary?
1174         */
1175        if (start & (PUD_SIZE - 1)) {
1176                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1177                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1178
1179                unmap_pmd_range(pud, start, pre_end);
1180
1181                start = pre_end;
1182                pud++;
1183        }
1184
1185        /*
1186         * Try to unmap in 1G chunks?
1187         */
1188        while (end - start >= PUD_SIZE) {
1189
1190                if (pud_large(*pud))
1191                        pud_clear(pud);
1192                else
1193                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1194
1195                start += PUD_SIZE;
1196                pud++;
1197        }
1198
1199        /*
1200         * 2M leftovers?
1201         */
1202        if (start < end)
1203                unmap_pmd_range(pud, start, end);
1204
1205        /*
1206         * No need to try to free the PUD page because we'll free it in
1207         * populate_pgd's error path
1208         */
1209}
1210
1211static int alloc_pte_page(pmd_t *pmd)
1212{
1213        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1214        if (!pte)
1215                return -1;
1216
1217        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1218        return 0;
1219}
1220
1221static int alloc_pmd_page(pud_t *pud)
1222{
1223        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1224        if (!pmd)
1225                return -1;
1226
1227        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1228        return 0;
1229}
1230
1231static void populate_pte(struct cpa_data *cpa,
1232                         unsigned long start, unsigned long end,
1233                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1234{
1235        pte_t *pte;
1236
1237        pte = pte_offset_kernel(pmd, start);
1238
1239        pgprot = pgprot_clear_protnone_bits(pgprot);
1240
1241        while (num_pages-- && start < end) {
1242                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1243
1244                start    += PAGE_SIZE;
1245                cpa->pfn++;
1246                pte++;
1247        }
1248}
1249
1250static long populate_pmd(struct cpa_data *cpa,
1251                         unsigned long start, unsigned long end,
1252                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1253{
1254        long cur_pages = 0;
1255        pmd_t *pmd;
1256        pgprot_t pmd_pgprot;
1257
1258        /*
1259         * Not on a 2M boundary?
1260         */
1261        if (start & (PMD_SIZE - 1)) {
1262                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1263                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1264
1265                pre_end   = min_t(unsigned long, pre_end, next_page);
1266                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1267                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1268
1269                /*
1270                 * Need a PTE page?
1271                 */
1272                pmd = pmd_offset(pud, start);
1273                if (pmd_none(*pmd))
1274                        if (alloc_pte_page(pmd))
1275                                return -1;
1276
1277                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1278
1279                start = pre_end;
1280        }
1281
1282        /*
1283         * We mapped them all?
1284         */
1285        if (num_pages == cur_pages)
1286                return cur_pages;
1287
1288        pmd_pgprot = pgprot_4k_2_large(pgprot);
1289
1290        while (end - start >= PMD_SIZE) {
1291
1292                /*
1293                 * We cannot use a 1G page so allocate a PMD page if needed.
1294                 */
1295                if (pud_none(*pud))
1296                        if (alloc_pmd_page(pud))
1297                                return -1;
1298
1299                pmd = pmd_offset(pud, start);
1300
1301                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1302                                        canon_pgprot(pmd_pgprot))));
1303
1304                start     += PMD_SIZE;
1305                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1306                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1307        }
1308
1309        /*
1310         * Map trailing 4K pages.
1311         */
1312        if (start < end) {
1313                pmd = pmd_offset(pud, start);
1314                if (pmd_none(*pmd))
1315                        if (alloc_pte_page(pmd))
1316                                return -1;
1317
1318                populate_pte(cpa, start, end, num_pages - cur_pages,
1319                             pmd, pgprot);
1320        }
1321        return num_pages;
1322}
1323
1324static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1325                        pgprot_t pgprot)
1326{
1327        pud_t *pud;
1328        unsigned long end;
1329        long cur_pages = 0;
1330        pgprot_t pud_pgprot;
1331
1332        end = start + (cpa->numpages << PAGE_SHIFT);
1333
1334        /*
1335         * Not on a Gb page boundary? => map everything up to it with
1336         * smaller pages.
1337         */
1338        if (start & (PUD_SIZE - 1)) {
1339                unsigned long pre_end;
1340                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1341
1342                pre_end   = min_t(unsigned long, end, next_page);
1343                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1344                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1345
1346                pud = pud_offset(p4d, start);
1347
1348                /*
1349                 * Need a PMD page?
1350                 */
1351                if (pud_none(*pud))
1352                        if (alloc_pmd_page(pud))
1353                                return -1;
1354
1355                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1356                                         pud, pgprot);
1357                if (cur_pages < 0)
1358                        return cur_pages;
1359
1360                start = pre_end;
1361        }
1362
1363        /* We mapped them all? */
1364        if (cpa->numpages == cur_pages)
1365                return cur_pages;
1366
1367        pud = pud_offset(p4d, start);
1368        pud_pgprot = pgprot_4k_2_large(pgprot);
1369
1370        /*
1371         * Map everything starting from the Gb boundary, possibly with 1G pages
1372         */
1373        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1374                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1375                                   canon_pgprot(pud_pgprot))));
1376
1377                start     += PUD_SIZE;
1378                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1379                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1380                pud++;
1381        }
1382
1383        /* Map trailing leftover */
1384        if (start < end) {
1385                long tmp;
1386
1387                pud = pud_offset(p4d, start);
1388                if (pud_none(*pud))
1389                        if (alloc_pmd_page(pud))
1390                                return -1;
1391
1392                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1393                                   pud, pgprot);
1394                if (tmp < 0)
1395                        return cur_pages;
1396
1397                cur_pages += tmp;
1398        }
1399        return cur_pages;
1400}
1401
1402/*
1403 * Restrictions for kernel page table do not necessarily apply when mapping in
1404 * an alternate PGD.
1405 */
1406static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1407{
1408        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1409        pud_t *pud = NULL;      /* shut up gcc */
1410        p4d_t *p4d;
1411        pgd_t *pgd_entry;
1412        long ret;
1413
1414        pgd_entry = cpa->pgd + pgd_index(addr);
1415
1416        if (pgd_none(*pgd_entry)) {
1417                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1418                if (!p4d)
1419                        return -1;
1420
1421                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1422        }
1423
1424        /*
1425         * Allocate a PUD page and hand it down for mapping.
1426         */
1427        p4d = p4d_offset(pgd_entry, addr);
1428        if (p4d_none(*p4d)) {
1429                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1430                if (!pud)
1431                        return -1;
1432
1433                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1434        }
1435
1436        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1437        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1438
1439        ret = populate_pud(cpa, addr, p4d, pgprot);
1440        if (ret < 0) {
1441                /*
1442                 * Leave the PUD page in place in case some other CPU or thread
1443                 * already found it, but remove any useless entries we just
1444                 * added to it.
1445                 */
1446                unmap_pud_range(p4d, addr,
1447                                addr + (cpa->numpages << PAGE_SHIFT));
1448                return ret;
1449        }
1450
1451        cpa->numpages = ret;
1452        return 0;
1453}
1454
1455static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1456                               int primary)
1457{
1458        if (cpa->pgd) {
1459                /*
1460                 * Right now, we only execute this code path when mapping
1461                 * the EFI virtual memory map regions, no other users
1462                 * provide a ->pgd value. This may change in the future.
1463                 */
1464                return populate_pgd(cpa, vaddr);
1465        }
1466
1467        /*
1468         * Ignore all non primary paths.
1469         */
1470        if (!primary) {
1471                cpa->numpages = 1;
1472                return 0;
1473        }
1474
1475        /*
1476         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1477         * to have holes.
1478         * Also set numpages to '1' indicating that we processed cpa req for
1479         * one virtual address page and its pfn. TBD: numpages can be set based
1480         * on the initial value and the level returned by lookup_address().
1481         */
1482        if (within(vaddr, PAGE_OFFSET,
1483                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1484                cpa->numpages = 1;
1485                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1486                return 0;
1487
1488        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1489                /* Faults in the highmap are OK, so do not warn: */
1490                return -EFAULT;
1491        } else {
1492                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1493                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1494                        *cpa->vaddr);
1495
1496                return -EFAULT;
1497        }
1498}
1499
1500static int __change_page_attr(struct cpa_data *cpa, int primary)
1501{
1502        unsigned long address;
1503        int do_split, err;
1504        unsigned int level;
1505        pte_t *kpte, old_pte;
1506
1507        address = __cpa_addr(cpa, cpa->curpage);
1508repeat:
1509        kpte = _lookup_address_cpa(cpa, address, &level);
1510        if (!kpte)
1511                return __cpa_process_fault(cpa, address, primary);
1512
1513        old_pte = *kpte;
1514        if (pte_none(old_pte))
1515                return __cpa_process_fault(cpa, address, primary);
1516
1517        if (level == PG_LEVEL_4K) {
1518                pte_t new_pte;
1519                pgprot_t new_prot = pte_pgprot(old_pte);
1520                unsigned long pfn = pte_pfn(old_pte);
1521
1522                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1523                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1524
1525                cpa_inc_4k_install();
1526                /* Hand in lpsize = 0 to enforce the protection mechanism */
1527                new_prot = static_protections(new_prot, address, pfn, 1, 0,
1528                                              CPA_PROTECT);
1529
1530                new_prot = pgprot_clear_protnone_bits(new_prot);
1531
1532                /*
1533                 * We need to keep the pfn from the existing PTE,
1534                 * after all we're only going to change it's attributes
1535                 * not the memory it points to
1536                 */
1537                new_pte = pfn_pte(pfn, new_prot);
1538                cpa->pfn = pfn;
1539                /*
1540                 * Do we really change anything ?
1541                 */
1542                if (pte_val(old_pte) != pte_val(new_pte)) {
1543                        set_pte_atomic(kpte, new_pte);
1544                        cpa->flags |= CPA_FLUSHTLB;
1545                }
1546                cpa->numpages = 1;
1547                return 0;
1548        }
1549
1550        /*
1551         * Check, whether we can keep the large page intact
1552         * and just change the pte:
1553         */
1554        do_split = should_split_large_page(kpte, address, cpa);
1555        /*
1556         * When the range fits into the existing large page,
1557         * return. cp->numpages and cpa->tlbflush have been updated in
1558         * try_large_page:
1559         */
1560        if (do_split <= 0)
1561                return do_split;
1562
1563        /*
1564         * We have to split the large page:
1565         */
1566        err = split_large_page(cpa, kpte, address);
1567        if (!err)
1568                goto repeat;
1569
1570        return err;
1571}
1572
1573static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1574
1575static int cpa_process_alias(struct cpa_data *cpa)
1576{
1577        struct cpa_data alias_cpa;
1578        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1579        unsigned long vaddr;
1580        int ret;
1581
1582        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1583                return 0;
1584
1585        /*
1586         * No need to redo, when the primary call touched the direct
1587         * mapping already:
1588         */
1589        vaddr = __cpa_addr(cpa, cpa->curpage);
1590        if (!(within(vaddr, PAGE_OFFSET,
1591                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1592
1593                alias_cpa = *cpa;
1594                alias_cpa.vaddr = &laddr;
1595                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1596                alias_cpa.curpage = 0;
1597
1598                cpa->force_flush_all = 1;
1599
1600                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1601                if (ret)
1602                        return ret;
1603        }
1604
1605#ifdef CONFIG_X86_64
1606        /*
1607         * If the primary call didn't touch the high mapping already
1608         * and the physical address is inside the kernel map, we need
1609         * to touch the high mapped kernel as well:
1610         */
1611        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1612            __cpa_pfn_in_highmap(cpa->pfn)) {
1613                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1614                                               __START_KERNEL_map - phys_base;
1615                alias_cpa = *cpa;
1616                alias_cpa.vaddr = &temp_cpa_vaddr;
1617                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1618                alias_cpa.curpage = 0;
1619
1620                cpa->force_flush_all = 1;
1621                /*
1622                 * The high mapping range is imprecise, so ignore the
1623                 * return value.
1624                 */
1625                __change_page_attr_set_clr(&alias_cpa, 0);
1626        }
1627#endif
1628
1629        return 0;
1630}
1631
1632static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1633{
1634        unsigned long numpages = cpa->numpages;
1635        unsigned long rempages = numpages;
1636        int ret = 0;
1637
1638        while (rempages) {
1639                /*
1640                 * Store the remaining nr of pages for the large page
1641                 * preservation check.
1642                 */
1643                cpa->numpages = rempages;
1644                /* for array changes, we can't use large page */
1645                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1646                        cpa->numpages = 1;
1647
1648                if (!debug_pagealloc_enabled())
1649                        spin_lock(&cpa_lock);
1650                ret = __change_page_attr(cpa, checkalias);
1651                if (!debug_pagealloc_enabled())
1652                        spin_unlock(&cpa_lock);
1653                if (ret)
1654                        goto out;
1655
1656                if (checkalias) {
1657                        ret = cpa_process_alias(cpa);
1658                        if (ret)
1659                                goto out;
1660                }
1661
1662                /*
1663                 * Adjust the number of pages with the result of the
1664                 * CPA operation. Either a large page has been
1665                 * preserved or a single page update happened.
1666                 */
1667                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1668                rempages -= cpa->numpages;
1669                cpa->curpage += cpa->numpages;
1670        }
1671
1672out:
1673        /* Restore the original numpages */
1674        cpa->numpages = numpages;
1675        return ret;
1676}
1677
1678static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1679                                    pgprot_t mask_set, pgprot_t mask_clr,
1680                                    int force_split, int in_flag,
1681                                    struct page **pages)
1682{
1683        struct cpa_data cpa;
1684        int ret, cache, checkalias;
1685
1686        memset(&cpa, 0, sizeof(cpa));
1687
1688        /*
1689         * Check, if we are requested to set a not supported
1690         * feature.  Clearing non-supported features is OK.
1691         */
1692        mask_set = canon_pgprot(mask_set);
1693
1694        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1695                return 0;
1696
1697        /* Ensure we are PAGE_SIZE aligned */
1698        if (in_flag & CPA_ARRAY) {
1699                int i;
1700                for (i = 0; i < numpages; i++) {
1701                        if (addr[i] & ~PAGE_MASK) {
1702                                addr[i] &= PAGE_MASK;
1703                                WARN_ON_ONCE(1);
1704                        }
1705                }
1706        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1707                /*
1708                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1709                 * No need to check in that case
1710                 */
1711                if (*addr & ~PAGE_MASK) {
1712                        *addr &= PAGE_MASK;
1713                        /*
1714                         * People should not be passing in unaligned addresses:
1715                         */
1716                        WARN_ON_ONCE(1);
1717                }
1718        }
1719
1720        /* Must avoid aliasing mappings in the highmem code */
1721        kmap_flush_unused();
1722
1723        vm_unmap_aliases();
1724
1725        cpa.vaddr = addr;
1726        cpa.pages = pages;
1727        cpa.numpages = numpages;
1728        cpa.mask_set = mask_set;
1729        cpa.mask_clr = mask_clr;
1730        cpa.flags = 0;
1731        cpa.curpage = 0;
1732        cpa.force_split = force_split;
1733
1734        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1735                cpa.flags |= in_flag;
1736
1737        /* No alias checking for _NX bit modifications */
1738        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1739
1740        ret = __change_page_attr_set_clr(&cpa, checkalias);
1741
1742        /*
1743         * Check whether we really changed something:
1744         */
1745        if (!(cpa.flags & CPA_FLUSHTLB))
1746                goto out;
1747
1748        /*
1749         * No need to flush, when we did not set any of the caching
1750         * attributes:
1751         */
1752        cache = !!pgprot2cachemode(mask_set);
1753
1754        /*
1755         * On error; flush everything to be sure.
1756         */
1757        if (ret) {
1758                cpa_flush_all(cache);
1759                goto out;
1760        }
1761
1762        cpa_flush(&cpa, cache);
1763out:
1764        return ret;
1765}
1766
1767static inline int change_page_attr_set(unsigned long *addr, int numpages,
1768                                       pgprot_t mask, int array)
1769{
1770        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1771                (array ? CPA_ARRAY : 0), NULL);
1772}
1773
1774static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1775                                         pgprot_t mask, int array)
1776{
1777        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1778                (array ? CPA_ARRAY : 0), NULL);
1779}
1780
1781static inline int cpa_set_pages_array(struct page **pages, int numpages,
1782                                       pgprot_t mask)
1783{
1784        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1785                CPA_PAGES_ARRAY, pages);
1786}
1787
1788static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1789                                         pgprot_t mask)
1790{
1791        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1792                CPA_PAGES_ARRAY, pages);
1793}
1794
1795int _set_memory_uc(unsigned long addr, int numpages)
1796{
1797        /*
1798         * for now UC MINUS. see comments in ioremap_nocache()
1799         * If you really need strong UC use ioremap_uc(), but note
1800         * that you cannot override IO areas with set_memory_*() as
1801         * these helpers cannot work with IO memory.
1802         */
1803        return change_page_attr_set(&addr, numpages,
1804                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1805                                    0);
1806}
1807
1808int set_memory_uc(unsigned long addr, int numpages)
1809{
1810        int ret;
1811
1812        /*
1813         * for now UC MINUS. see comments in ioremap_nocache()
1814         */
1815        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1816                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1817        if (ret)
1818                goto out_err;
1819
1820        ret = _set_memory_uc(addr, numpages);
1821        if (ret)
1822                goto out_free;
1823
1824        return 0;
1825
1826out_free:
1827        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1828out_err:
1829        return ret;
1830}
1831EXPORT_SYMBOL(set_memory_uc);
1832
1833int _set_memory_wc(unsigned long addr, int numpages)
1834{
1835        int ret;
1836
1837        ret = change_page_attr_set(&addr, numpages,
1838                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1839                                   0);
1840        if (!ret) {
1841                ret = change_page_attr_set_clr(&addr, numpages,
1842                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1843                                               __pgprot(_PAGE_CACHE_MASK),
1844                                               0, 0, NULL);
1845        }
1846        return ret;
1847}
1848
1849int set_memory_wc(unsigned long addr, int numpages)
1850{
1851        int ret;
1852
1853        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1854                _PAGE_CACHE_MODE_WC, NULL);
1855        if (ret)
1856                return ret;
1857
1858        ret = _set_memory_wc(addr, numpages);
1859        if (ret)
1860                memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1861
1862        return ret;
1863}
1864EXPORT_SYMBOL(set_memory_wc);
1865
1866int _set_memory_wt(unsigned long addr, int numpages)
1867{
1868        return change_page_attr_set(&addr, numpages,
1869                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1870}
1871
1872int _set_memory_wb(unsigned long addr, int numpages)
1873{
1874        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1875        return change_page_attr_clear(&addr, numpages,
1876                                      __pgprot(_PAGE_CACHE_MASK), 0);
1877}
1878
1879int set_memory_wb(unsigned long addr, int numpages)
1880{
1881        int ret;
1882
1883        ret = _set_memory_wb(addr, numpages);
1884        if (ret)
1885                return ret;
1886
1887        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1888        return 0;
1889}
1890EXPORT_SYMBOL(set_memory_wb);
1891
1892int set_memory_x(unsigned long addr, int numpages)
1893{
1894        if (!(__supported_pte_mask & _PAGE_NX))
1895                return 0;
1896
1897        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1898}
1899
1900int set_memory_nx(unsigned long addr, int numpages)
1901{
1902        if (!(__supported_pte_mask & _PAGE_NX))
1903                return 0;
1904
1905        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1906}
1907
1908int set_memory_ro(unsigned long addr, int numpages)
1909{
1910        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1911}
1912
1913int set_memory_rw(unsigned long addr, int numpages)
1914{
1915        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1916}
1917
1918int set_memory_np(unsigned long addr, int numpages)
1919{
1920        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1921}
1922
1923int set_memory_4k(unsigned long addr, int numpages)
1924{
1925        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1926                                        __pgprot(0), 1, 0, NULL);
1927}
1928
1929int set_memory_nonglobal(unsigned long addr, int numpages)
1930{
1931        return change_page_attr_clear(&addr, numpages,
1932                                      __pgprot(_PAGE_GLOBAL), 0);
1933}
1934
1935int set_memory_global(unsigned long addr, int numpages)
1936{
1937        return change_page_attr_set(&addr, numpages,
1938                                    __pgprot(_PAGE_GLOBAL), 0);
1939}
1940
1941static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1942{
1943        struct cpa_data cpa;
1944        int ret;
1945
1946        /* Nothing to do if memory encryption is not active */
1947        if (!mem_encrypt_active())
1948                return 0;
1949
1950        /* Should not be working on unaligned addresses */
1951        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1952                addr &= PAGE_MASK;
1953
1954        memset(&cpa, 0, sizeof(cpa));
1955        cpa.vaddr = &addr;
1956        cpa.numpages = numpages;
1957        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1958        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1959        cpa.pgd = init_mm.pgd;
1960
1961        /* Must avoid aliasing mappings in the highmem code */
1962        kmap_flush_unused();
1963        vm_unmap_aliases();
1964
1965        /*
1966         * Before changing the encryption attribute, we need to flush caches.
1967         */
1968        cpa_flush(&cpa, 1);
1969
1970        ret = __change_page_attr_set_clr(&cpa, 1);
1971
1972        /*
1973         * After changing the encryption attribute, we need to flush TLBs again
1974         * in case any speculative TLB caching occurred (but no need to flush
1975         * caches again).  We could just use cpa_flush_all(), but in case TLB
1976         * flushing gets optimized in the cpa_flush() path use the same logic
1977         * as above.
1978         */
1979        cpa_flush(&cpa, 0);
1980
1981        return ret;
1982}
1983
1984int set_memory_encrypted(unsigned long addr, int numpages)
1985{
1986        return __set_memory_enc_dec(addr, numpages, true);
1987}
1988EXPORT_SYMBOL_GPL(set_memory_encrypted);
1989
1990int set_memory_decrypted(unsigned long addr, int numpages)
1991{
1992        return __set_memory_enc_dec(addr, numpages, false);
1993}
1994EXPORT_SYMBOL_GPL(set_memory_decrypted);
1995
1996int set_pages_uc(struct page *page, int numpages)
1997{
1998        unsigned long addr = (unsigned long)page_address(page);
1999
2000        return set_memory_uc(addr, numpages);
2001}
2002EXPORT_SYMBOL(set_pages_uc);
2003
2004static int _set_pages_array(struct page **pages, int numpages,
2005                enum page_cache_mode new_type)
2006{
2007        unsigned long start;
2008        unsigned long end;
2009        enum page_cache_mode set_type;
2010        int i;
2011        int free_idx;
2012        int ret;
2013
2014        for (i = 0; i < numpages; i++) {
2015                if (PageHighMem(pages[i]))
2016                        continue;
2017                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2018                end = start + PAGE_SIZE;
2019                if (memtype_reserve(start, end, new_type, NULL))
2020                        goto err_out;
2021        }
2022
2023        /* If WC, set to UC- first and then WC */
2024        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2025                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2026
2027        ret = cpa_set_pages_array(pages, numpages,
2028                                  cachemode2pgprot(set_type));
2029        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2030                ret = change_page_attr_set_clr(NULL, numpages,
2031                                               cachemode2pgprot(
2032                                                _PAGE_CACHE_MODE_WC),
2033                                               __pgprot(_PAGE_CACHE_MASK),
2034                                               0, CPA_PAGES_ARRAY, pages);
2035        if (ret)
2036                goto err_out;
2037        return 0; /* Success */
2038err_out:
2039        free_idx = i;
2040        for (i = 0; i < free_idx; i++) {
2041                if (PageHighMem(pages[i]))
2042                        continue;
2043                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2044                end = start + PAGE_SIZE;
2045                memtype_free(start, end);
2046        }
2047        return -EINVAL;
2048}
2049
2050int set_pages_array_uc(struct page **pages, int numpages)
2051{
2052        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2053}
2054EXPORT_SYMBOL(set_pages_array_uc);
2055
2056int set_pages_array_wc(struct page **pages, int numpages)
2057{
2058        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2059}
2060EXPORT_SYMBOL(set_pages_array_wc);
2061
2062int set_pages_array_wt(struct page **pages, int numpages)
2063{
2064        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2065}
2066EXPORT_SYMBOL_GPL(set_pages_array_wt);
2067
2068int set_pages_wb(struct page *page, int numpages)
2069{
2070        unsigned long addr = (unsigned long)page_address(page);
2071
2072        return set_memory_wb(addr, numpages);
2073}
2074EXPORT_SYMBOL(set_pages_wb);
2075
2076int set_pages_array_wb(struct page **pages, int numpages)
2077{
2078        int retval;
2079        unsigned long start;
2080        unsigned long end;
2081        int i;
2082
2083        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2084        retval = cpa_clear_pages_array(pages, numpages,
2085                        __pgprot(_PAGE_CACHE_MASK));
2086        if (retval)
2087                return retval;
2088
2089        for (i = 0; i < numpages; i++) {
2090                if (PageHighMem(pages[i]))
2091                        continue;
2092                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2093                end = start + PAGE_SIZE;
2094                memtype_free(start, end);
2095        }
2096
2097        return 0;
2098}
2099EXPORT_SYMBOL(set_pages_array_wb);
2100
2101int set_pages_ro(struct page *page, int numpages)
2102{
2103        unsigned long addr = (unsigned long)page_address(page);
2104
2105        return set_memory_ro(addr, numpages);
2106}
2107
2108int set_pages_rw(struct page *page, int numpages)
2109{
2110        unsigned long addr = (unsigned long)page_address(page);
2111
2112        return set_memory_rw(addr, numpages);
2113}
2114
2115static int __set_pages_p(struct page *page, int numpages)
2116{
2117        unsigned long tempaddr = (unsigned long) page_address(page);
2118        struct cpa_data cpa = { .vaddr = &tempaddr,
2119                                .pgd = NULL,
2120                                .numpages = numpages,
2121                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2122                                .mask_clr = __pgprot(0),
2123                                .flags = 0};
2124
2125        /*
2126         * No alias checking needed for setting present flag. otherwise,
2127         * we may need to break large pages for 64-bit kernel text
2128         * mappings (this adds to complexity if we want to do this from
2129         * atomic context especially). Let's keep it simple!
2130         */
2131        return __change_page_attr_set_clr(&cpa, 0);
2132}
2133
2134static int __set_pages_np(struct page *page, int numpages)
2135{
2136        unsigned long tempaddr = (unsigned long) page_address(page);
2137        struct cpa_data cpa = { .vaddr = &tempaddr,
2138                                .pgd = NULL,
2139                                .numpages = numpages,
2140                                .mask_set = __pgprot(0),
2141                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2142                                .flags = 0};
2143
2144        /*
2145         * No alias checking needed for setting not present flag. otherwise,
2146         * we may need to break large pages for 64-bit kernel text
2147         * mappings (this adds to complexity if we want to do this from
2148         * atomic context especially). Let's keep it simple!
2149         */
2150        return __change_page_attr_set_clr(&cpa, 0);
2151}
2152
2153int set_direct_map_invalid_noflush(struct page *page)
2154{
2155        return __set_pages_np(page, 1);
2156}
2157
2158int set_direct_map_default_noflush(struct page *page)
2159{
2160        return __set_pages_p(page, 1);
2161}
2162
2163#ifdef CONFIG_DEBUG_PAGEALLOC
2164void __kernel_map_pages(struct page *page, int numpages, int enable)
2165{
2166        if (PageHighMem(page))
2167                return;
2168        if (!enable) {
2169                debug_check_no_locks_freed(page_address(page),
2170                                           numpages * PAGE_SIZE);
2171        }
2172
2173        /*
2174         * The return value is ignored as the calls cannot fail.
2175         * Large pages for identity mappings are not used at boot time
2176         * and hence no memory allocations during large page split.
2177         */
2178        if (enable)
2179                __set_pages_p(page, numpages);
2180        else
2181                __set_pages_np(page, numpages);
2182
2183        /*
2184         * We should perform an IPI and flush all tlbs,
2185         * but that can deadlock->flush only current cpu.
2186         * Preemption needs to be disabled around __flush_tlb_all() due to
2187         * CR3 reload in __native_flush_tlb().
2188         */
2189        preempt_disable();
2190        __flush_tlb_all();
2191        preempt_enable();
2192
2193        arch_flush_lazy_mmu_mode();
2194}
2195#endif /* CONFIG_DEBUG_PAGEALLOC */
2196
2197bool kernel_page_present(struct page *page)
2198{
2199        unsigned int level;
2200        pte_t *pte;
2201
2202        if (PageHighMem(page))
2203                return false;
2204
2205        pte = lookup_address((unsigned long)page_address(page), &level);
2206        return (pte_val(*pte) & _PAGE_PRESENT);
2207}
2208
2209int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2210                                   unsigned numpages, unsigned long page_flags)
2211{
2212        int retval = -EINVAL;
2213
2214        struct cpa_data cpa = {
2215                .vaddr = &address,
2216                .pfn = pfn,
2217                .pgd = pgd,
2218                .numpages = numpages,
2219                .mask_set = __pgprot(0),
2220                .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2221                .flags = 0,
2222        };
2223
2224        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2225
2226        if (!(__supported_pte_mask & _PAGE_NX))
2227                goto out;
2228
2229        if (!(page_flags & _PAGE_ENC))
2230                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2231
2232        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2233
2234        retval = __change_page_attr_set_clr(&cpa, 0);
2235        __flush_tlb_all();
2236
2237out:
2238        return retval;
2239}
2240
2241/*
2242 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2243 * function shouldn't be used in an SMP environment. Presently, it's used only
2244 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2245 */
2246int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2247                                     unsigned long numpages)
2248{
2249        int retval;
2250
2251        /*
2252         * The typical sequence for unmapping is to find a pte through
2253         * lookup_address_in_pgd() (ideally, it should never return NULL because
2254         * the address is already mapped) and change it's protections. As pfn is
2255         * the *target* of a mapping, it's not useful while unmapping.
2256         */
2257        struct cpa_data cpa = {
2258                .vaddr          = &address,
2259                .pfn            = 0,
2260                .pgd            = pgd,
2261                .numpages       = numpages,
2262                .mask_set       = __pgprot(0),
2263                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2264                .flags          = 0,
2265        };
2266
2267        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2268
2269        retval = __change_page_attr_set_clr(&cpa, 0);
2270        __flush_tlb_all();
2271
2272        return retval;
2273}
2274
2275/*
2276 * The testcases use internal knowledge of the implementation that shouldn't
2277 * be exposed to the rest of the kernel. Include these directly here.
2278 */
2279#ifdef CONFIG_CPA_DEBUG
2280#include "cpa-test.c"
2281#endif
2282