1
2
3
4
5
6
7
8
9
10
11#define pr_fmt(fmt) "acpi/hmat: " fmt
12#define dev_fmt(fmt) "acpi/hmat: " fmt
13
14#include <linux/acpi.h>
15#include <linux/bitops.h>
16#include <linux/device.h>
17#include <linux/init.h>
18#include <linux/list.h>
19#include <linux/mm.h>
20#include <linux/platform_device.h>
21#include <linux/list_sort.h>
22#include <linux/memregion.h>
23#include <linux/memory.h>
24#include <linux/mutex.h>
25#include <linux/node.h>
26#include <linux/sysfs.h>
27#include <linux/dax.h>
28
29static u8 hmat_revision;
30static int hmat_disable __initdata;
31
32void __init disable_hmat(void)
33{
34 hmat_disable = 1;
35}
36
37static LIST_HEAD(targets);
38static LIST_HEAD(initiators);
39static LIST_HEAD(localities);
40
41static DEFINE_MUTEX(target_lock);
42
43
44
45
46
47enum locality_types {
48 WRITE_LATENCY,
49 READ_LATENCY,
50 WRITE_BANDWIDTH,
51 READ_BANDWIDTH,
52};
53
54static struct memory_locality *localities_types[4];
55
56struct target_cache {
57 struct list_head node;
58 struct node_cache_attrs cache_attrs;
59};
60
61struct memory_target {
62 struct list_head node;
63 unsigned int memory_pxm;
64 unsigned int processor_pxm;
65 struct resource memregions;
66 struct node_hmem_attrs hmem_attrs[2];
67 struct list_head caches;
68 struct node_cache_attrs cache_attrs;
69 bool registered;
70};
71
72struct memory_initiator {
73 struct list_head node;
74 unsigned int processor_pxm;
75 bool has_cpu;
76};
77
78struct memory_locality {
79 struct list_head node;
80 struct acpi_hmat_locality *hmat_loc;
81};
82
83static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
84{
85 struct memory_initiator *initiator;
86
87 list_for_each_entry(initiator, &initiators, node)
88 if (initiator->processor_pxm == cpu_pxm)
89 return initiator;
90 return NULL;
91}
92
93static struct memory_target *find_mem_target(unsigned int mem_pxm)
94{
95 struct memory_target *target;
96
97 list_for_each_entry(target, &targets, node)
98 if (target->memory_pxm == mem_pxm)
99 return target;
100 return NULL;
101}
102
103static __init void alloc_memory_initiator(unsigned int cpu_pxm)
104{
105 struct memory_initiator *initiator;
106
107 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
108 return;
109
110 initiator = find_mem_initiator(cpu_pxm);
111 if (initiator)
112 return;
113
114 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
115 if (!initiator)
116 return;
117
118 initiator->processor_pxm = cpu_pxm;
119 initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
120 list_add_tail(&initiator->node, &initiators);
121}
122
123static __init void alloc_memory_target(unsigned int mem_pxm,
124 resource_size_t start, resource_size_t len)
125{
126 struct memory_target *target;
127
128 target = find_mem_target(mem_pxm);
129 if (!target) {
130 target = kzalloc(sizeof(*target), GFP_KERNEL);
131 if (!target)
132 return;
133 target->memory_pxm = mem_pxm;
134 target->processor_pxm = PXM_INVAL;
135 target->memregions = (struct resource) {
136 .name = "ACPI mem",
137 .start = 0,
138 .end = -1,
139 .flags = IORESOURCE_MEM,
140 };
141 list_add_tail(&target->node, &targets);
142 INIT_LIST_HEAD(&target->caches);
143 }
144
145
146
147
148
149 if (!__request_region(&target->memregions, start, len, "memory target",
150 IORESOURCE_MEM))
151 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
152 start, start + len, mem_pxm);
153}
154
155static __init const char *hmat_data_type(u8 type)
156{
157 switch (type) {
158 case ACPI_HMAT_ACCESS_LATENCY:
159 return "Access Latency";
160 case ACPI_HMAT_READ_LATENCY:
161 return "Read Latency";
162 case ACPI_HMAT_WRITE_LATENCY:
163 return "Write Latency";
164 case ACPI_HMAT_ACCESS_BANDWIDTH:
165 return "Access Bandwidth";
166 case ACPI_HMAT_READ_BANDWIDTH:
167 return "Read Bandwidth";
168 case ACPI_HMAT_WRITE_BANDWIDTH:
169 return "Write Bandwidth";
170 default:
171 return "Reserved";
172 }
173}
174
175static __init const char *hmat_data_type_suffix(u8 type)
176{
177 switch (type) {
178 case ACPI_HMAT_ACCESS_LATENCY:
179 case ACPI_HMAT_READ_LATENCY:
180 case ACPI_HMAT_WRITE_LATENCY:
181 return " nsec";
182 case ACPI_HMAT_ACCESS_BANDWIDTH:
183 case ACPI_HMAT_READ_BANDWIDTH:
184 case ACPI_HMAT_WRITE_BANDWIDTH:
185 return " MB/s";
186 default:
187 return "";
188 }
189}
190
191static u32 hmat_normalize(u16 entry, u64 base, u8 type)
192{
193 u32 value;
194
195
196
197
198 if (entry == 0xffff || !entry)
199 return 0;
200 else if (base > (UINT_MAX / (entry)))
201 return 0;
202
203
204
205
206
207 value = entry * base;
208 if (hmat_revision == 1) {
209 if (value < 10)
210 return 0;
211 value = DIV_ROUND_UP(value, 10);
212 } else if (hmat_revision == 2) {
213 switch (type) {
214 case ACPI_HMAT_ACCESS_LATENCY:
215 case ACPI_HMAT_READ_LATENCY:
216 case ACPI_HMAT_WRITE_LATENCY:
217 value = DIV_ROUND_UP(value, 1000);
218 break;
219 default:
220 break;
221 }
222 }
223 return value;
224}
225
226static void hmat_update_target_access(struct memory_target *target,
227 u8 type, u32 value, int access)
228{
229 switch (type) {
230 case ACPI_HMAT_ACCESS_LATENCY:
231 target->hmem_attrs[access].read_latency = value;
232 target->hmem_attrs[access].write_latency = value;
233 break;
234 case ACPI_HMAT_READ_LATENCY:
235 target->hmem_attrs[access].read_latency = value;
236 break;
237 case ACPI_HMAT_WRITE_LATENCY:
238 target->hmem_attrs[access].write_latency = value;
239 break;
240 case ACPI_HMAT_ACCESS_BANDWIDTH:
241 target->hmem_attrs[access].read_bandwidth = value;
242 target->hmem_attrs[access].write_bandwidth = value;
243 break;
244 case ACPI_HMAT_READ_BANDWIDTH:
245 target->hmem_attrs[access].read_bandwidth = value;
246 break;
247 case ACPI_HMAT_WRITE_BANDWIDTH:
248 target->hmem_attrs[access].write_bandwidth = value;
249 break;
250 default:
251 break;
252 }
253}
254
255static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
256{
257 struct memory_locality *loc;
258
259 loc = kzalloc(sizeof(*loc), GFP_KERNEL);
260 if (!loc) {
261 pr_notice_once("Failed to allocate HMAT locality\n");
262 return;
263 }
264
265 loc->hmat_loc = hmat_loc;
266 list_add_tail(&loc->node, &localities);
267
268 switch (hmat_loc->data_type) {
269 case ACPI_HMAT_ACCESS_LATENCY:
270 localities_types[READ_LATENCY] = loc;
271 localities_types[WRITE_LATENCY] = loc;
272 break;
273 case ACPI_HMAT_READ_LATENCY:
274 localities_types[READ_LATENCY] = loc;
275 break;
276 case ACPI_HMAT_WRITE_LATENCY:
277 localities_types[WRITE_LATENCY] = loc;
278 break;
279 case ACPI_HMAT_ACCESS_BANDWIDTH:
280 localities_types[READ_BANDWIDTH] = loc;
281 localities_types[WRITE_BANDWIDTH] = loc;
282 break;
283 case ACPI_HMAT_READ_BANDWIDTH:
284 localities_types[READ_BANDWIDTH] = loc;
285 break;
286 case ACPI_HMAT_WRITE_BANDWIDTH:
287 localities_types[WRITE_BANDWIDTH] = loc;
288 break;
289 default:
290 break;
291 }
292}
293
294static __init int hmat_parse_locality(union acpi_subtable_headers *header,
295 const unsigned long end)
296{
297 struct acpi_hmat_locality *hmat_loc = (void *)header;
298 struct memory_target *target;
299 unsigned int init, targ, total_size, ipds, tpds;
300 u32 *inits, *targs, value;
301 u16 *entries;
302 u8 type, mem_hier;
303
304 if (hmat_loc->header.length < sizeof(*hmat_loc)) {
305 pr_notice("HMAT: Unexpected locality header length: %u\n",
306 hmat_loc->header.length);
307 return -EINVAL;
308 }
309
310 type = hmat_loc->data_type;
311 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
312 ipds = hmat_loc->number_of_initiator_Pds;
313 tpds = hmat_loc->number_of_target_Pds;
314 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
315 sizeof(*inits) * ipds + sizeof(*targs) * tpds;
316 if (hmat_loc->header.length < total_size) {
317 pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
318 hmat_loc->header.length, total_size);
319 return -EINVAL;
320 }
321
322 pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
323 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
324 hmat_loc->entry_base_unit);
325
326 inits = (u32 *)(hmat_loc + 1);
327 targs = inits + ipds;
328 entries = (u16 *)(targs + tpds);
329 for (init = 0; init < ipds; init++) {
330 alloc_memory_initiator(inits[init]);
331 for (targ = 0; targ < tpds; targ++) {
332 value = hmat_normalize(entries[init * tpds + targ],
333 hmat_loc->entry_base_unit,
334 type);
335 pr_info(" Initiator-Target[%u-%u]:%u%s\n",
336 inits[init], targs[targ], value,
337 hmat_data_type_suffix(type));
338
339 if (mem_hier == ACPI_HMAT_MEMORY) {
340 target = find_mem_target(targs[targ]);
341 if (target && target->processor_pxm == inits[init]) {
342 hmat_update_target_access(target, type, value, 0);
343
344 if (node_state(pxm_to_node(inits[init]), N_CPU))
345 hmat_update_target_access(target, type, value, 1);
346 }
347 }
348 }
349 }
350
351 if (mem_hier == ACPI_HMAT_MEMORY)
352 hmat_add_locality(hmat_loc);
353
354 return 0;
355}
356
357static __init int hmat_parse_cache(union acpi_subtable_headers *header,
358 const unsigned long end)
359{
360 struct acpi_hmat_cache *cache = (void *)header;
361 struct memory_target *target;
362 struct target_cache *tcache;
363 u32 attrs;
364
365 if (cache->header.length < sizeof(*cache)) {
366 pr_notice("HMAT: Unexpected cache header length: %u\n",
367 cache->header.length);
368 return -EINVAL;
369 }
370
371 attrs = cache->cache_attributes;
372 pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
373 cache->memory_PD, cache->cache_size, attrs,
374 cache->number_of_SMBIOShandles);
375
376 target = find_mem_target(cache->memory_PD);
377 if (!target)
378 return 0;
379
380 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
381 if (!tcache) {
382 pr_notice_once("Failed to allocate HMAT cache info\n");
383 return 0;
384 }
385
386 tcache->cache_attrs.size = cache->cache_size;
387 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
388 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
389
390 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
391 case ACPI_HMAT_CA_DIRECT_MAPPED:
392 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
393 break;
394 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
395 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
396 break;
397 case ACPI_HMAT_CA_NONE:
398 default:
399 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
400 break;
401 }
402
403 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
404 case ACPI_HMAT_CP_WB:
405 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
406 break;
407 case ACPI_HMAT_CP_WT:
408 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
409 break;
410 case ACPI_HMAT_CP_NONE:
411 default:
412 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
413 break;
414 }
415 list_add_tail(&tcache->node, &target->caches);
416
417 return 0;
418}
419
420static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
421 const unsigned long end)
422{
423 struct acpi_hmat_proximity_domain *p = (void *)header;
424 struct memory_target *target = NULL;
425
426 if (p->header.length != sizeof(*p)) {
427 pr_notice("HMAT: Unexpected address range header length: %u\n",
428 p->header.length);
429 return -EINVAL;
430 }
431
432 if (hmat_revision == 1)
433 pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
434 p->reserved3, p->reserved4, p->flags, p->processor_PD,
435 p->memory_PD);
436 else
437 pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
438 p->flags, p->processor_PD, p->memory_PD);
439
440 if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
441 hmat_revision > 1) {
442 target = find_mem_target(p->memory_PD);
443 if (!target) {
444 pr_debug("HMAT: Memory Domain missing from SRAT\n");
445 return -EINVAL;
446 }
447 }
448 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
449 int p_node = pxm_to_node(p->processor_PD);
450
451 if (p_node == NUMA_NO_NODE) {
452 pr_debug("HMAT: Invalid Processor Domain\n");
453 return -EINVAL;
454 }
455 target->processor_pxm = p->processor_PD;
456 }
457
458 return 0;
459}
460
461static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
462 const unsigned long end)
463{
464 struct acpi_hmat_structure *hdr = (void *)header;
465
466 if (!hdr)
467 return -EINVAL;
468
469 switch (hdr->type) {
470 case ACPI_HMAT_TYPE_PROXIMITY:
471 return hmat_parse_proximity_domain(header, end);
472 case ACPI_HMAT_TYPE_LOCALITY:
473 return hmat_parse_locality(header, end);
474 case ACPI_HMAT_TYPE_CACHE:
475 return hmat_parse_cache(header, end);
476 default:
477 return -EINVAL;
478 }
479}
480
481static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
482 const unsigned long end)
483{
484 struct acpi_srat_mem_affinity *ma = (void *)header;
485
486 if (!ma)
487 return -EINVAL;
488 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
489 return 0;
490 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
491 return 0;
492}
493
494static u32 hmat_initiator_perf(struct memory_target *target,
495 struct memory_initiator *initiator,
496 struct acpi_hmat_locality *hmat_loc)
497{
498 unsigned int ipds, tpds, i, idx = 0, tdx = 0;
499 u32 *inits, *targs;
500 u16 *entries;
501
502 ipds = hmat_loc->number_of_initiator_Pds;
503 tpds = hmat_loc->number_of_target_Pds;
504 inits = (u32 *)(hmat_loc + 1);
505 targs = inits + ipds;
506 entries = (u16 *)(targs + tpds);
507
508 for (i = 0; i < ipds; i++) {
509 if (inits[i] == initiator->processor_pxm) {
510 idx = i;
511 break;
512 }
513 }
514
515 if (i == ipds)
516 return 0;
517
518 for (i = 0; i < tpds; i++) {
519 if (targs[i] == target->memory_pxm) {
520 tdx = i;
521 break;
522 }
523 }
524 if (i == tpds)
525 return 0;
526
527 return hmat_normalize(entries[idx * tpds + tdx],
528 hmat_loc->entry_base_unit,
529 hmat_loc->data_type);
530}
531
532static bool hmat_update_best(u8 type, u32 value, u32 *best)
533{
534 bool updated = false;
535
536 if (!value)
537 return false;
538
539 switch (type) {
540 case ACPI_HMAT_ACCESS_LATENCY:
541 case ACPI_HMAT_READ_LATENCY:
542 case ACPI_HMAT_WRITE_LATENCY:
543 if (!*best || *best > value) {
544 *best = value;
545 updated = true;
546 }
547 break;
548 case ACPI_HMAT_ACCESS_BANDWIDTH:
549 case ACPI_HMAT_READ_BANDWIDTH:
550 case ACPI_HMAT_WRITE_BANDWIDTH:
551 if (!*best || *best < value) {
552 *best = value;
553 updated = true;
554 }
555 break;
556 }
557
558 return updated;
559}
560
561static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
562{
563 struct memory_initiator *ia;
564 struct memory_initiator *ib;
565 unsigned long *p_nodes = priv;
566
567 ia = list_entry(a, struct memory_initiator, node);
568 ib = list_entry(b, struct memory_initiator, node);
569
570 set_bit(ia->processor_pxm, p_nodes);
571 set_bit(ib->processor_pxm, p_nodes);
572
573 return ia->processor_pxm - ib->processor_pxm;
574}
575
576static void hmat_register_target_initiators(struct memory_target *target)
577{
578 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
579 struct memory_initiator *initiator;
580 unsigned int mem_nid, cpu_nid;
581 struct memory_locality *loc = NULL;
582 u32 best = 0;
583 bool access0done = false;
584 int i;
585
586 mem_nid = pxm_to_node(target->memory_pxm);
587
588
589
590
591
592 if (target->processor_pxm != PXM_INVAL) {
593 cpu_nid = pxm_to_node(target->processor_pxm);
594 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
595 access0done = true;
596 if (node_state(cpu_nid, N_CPU)) {
597 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
598 return;
599 }
600 }
601
602 if (list_empty(&localities))
603 return;
604
605
606
607
608
609
610
611 bitmap_zero(p_nodes, MAX_NUMNODES);
612 list_sort(p_nodes, &initiators, initiator_cmp);
613 if (!access0done) {
614 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
615 loc = localities_types[i];
616 if (!loc)
617 continue;
618
619 best = 0;
620 list_for_each_entry(initiator, &initiators, node) {
621 u32 value;
622
623 if (!test_bit(initiator->processor_pxm, p_nodes))
624 continue;
625
626 value = hmat_initiator_perf(target, initiator,
627 loc->hmat_loc);
628 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
629 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
630 if (value != best)
631 clear_bit(initiator->processor_pxm, p_nodes);
632 }
633 if (best)
634 hmat_update_target_access(target, loc->hmat_loc->data_type,
635 best, 0);
636 }
637
638 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
639 cpu_nid = pxm_to_node(i);
640 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
641 }
642 }
643
644
645 bitmap_zero(p_nodes, MAX_NUMNODES);
646 list_sort(p_nodes, &initiators, initiator_cmp);
647 best = 0;
648 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
649 loc = localities_types[i];
650 if (!loc)
651 continue;
652
653 best = 0;
654 list_for_each_entry(initiator, &initiators, node) {
655 u32 value;
656
657 if (!initiator->has_cpu) {
658 clear_bit(initiator->processor_pxm, p_nodes);
659 continue;
660 }
661 if (!test_bit(initiator->processor_pxm, p_nodes))
662 continue;
663
664 value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
665 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
666 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
667 if (value != best)
668 clear_bit(initiator->processor_pxm, p_nodes);
669 }
670 if (best)
671 hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
672 }
673 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
674 cpu_nid = pxm_to_node(i);
675 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
676 }
677}
678
679static void hmat_register_target_cache(struct memory_target *target)
680{
681 unsigned mem_nid = pxm_to_node(target->memory_pxm);
682 struct target_cache *tcache;
683
684 list_for_each_entry(tcache, &target->caches, node)
685 node_add_cache(mem_nid, &tcache->cache_attrs);
686}
687
688static void hmat_register_target_perf(struct memory_target *target, int access)
689{
690 unsigned mem_nid = pxm_to_node(target->memory_pxm);
691 node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
692}
693
694static void hmat_register_target_devices(struct memory_target *target)
695{
696 struct resource *res;
697
698
699
700
701
702 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
703 return;
704
705 for (res = target->memregions.child; res; res = res->sibling) {
706 int target_nid = acpi_map_pxm_to_node(target->memory_pxm);
707
708 hmem_register_device(target_nid, res);
709 }
710}
711
712static void hmat_register_target(struct memory_target *target)
713{
714 int nid = pxm_to_node(target->memory_pxm);
715
716
717
718
719
720 hmat_register_target_devices(target);
721
722
723
724
725
726
727
728
729 if (nid == NUMA_NO_NODE || !node_online(nid))
730 return;
731
732 mutex_lock(&target_lock);
733 if (!target->registered) {
734 hmat_register_target_initiators(target);
735 hmat_register_target_cache(target);
736 hmat_register_target_perf(target, 0);
737 hmat_register_target_perf(target, 1);
738 target->registered = true;
739 }
740 mutex_unlock(&target_lock);
741}
742
743static void hmat_register_targets(void)
744{
745 struct memory_target *target;
746
747 list_for_each_entry(target, &targets, node)
748 hmat_register_target(target);
749}
750
751static int hmat_callback(struct notifier_block *self,
752 unsigned long action, void *arg)
753{
754 struct memory_target *target;
755 struct memory_notify *mnb = arg;
756 int pxm, nid = mnb->status_change_nid;
757
758 if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
759 return NOTIFY_OK;
760
761 pxm = node_to_pxm(nid);
762 target = find_mem_target(pxm);
763 if (!target)
764 return NOTIFY_OK;
765
766 hmat_register_target(target);
767 return NOTIFY_OK;
768}
769
770static struct notifier_block hmat_callback_nb = {
771 .notifier_call = hmat_callback,
772 .priority = 2,
773};
774
775static __init void hmat_free_structures(void)
776{
777 struct memory_target *target, *tnext;
778 struct memory_locality *loc, *lnext;
779 struct memory_initiator *initiator, *inext;
780 struct target_cache *tcache, *cnext;
781
782 list_for_each_entry_safe(target, tnext, &targets, node) {
783 struct resource *res, *res_next;
784
785 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
786 list_del(&tcache->node);
787 kfree(tcache);
788 }
789
790 list_del(&target->node);
791 res = target->memregions.child;
792 while (res) {
793 res_next = res->sibling;
794 __release_region(&target->memregions, res->start,
795 resource_size(res));
796 res = res_next;
797 }
798 kfree(target);
799 }
800
801 list_for_each_entry_safe(initiator, inext, &initiators, node) {
802 list_del(&initiator->node);
803 kfree(initiator);
804 }
805
806 list_for_each_entry_safe(loc, lnext, &localities, node) {
807 list_del(&loc->node);
808 kfree(loc);
809 }
810}
811
812static __init int hmat_init(void)
813{
814 struct acpi_table_header *tbl;
815 enum acpi_hmat_type i;
816 acpi_status status;
817
818 if (srat_disabled() || hmat_disable)
819 return 0;
820
821 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
822 if (ACPI_FAILURE(status))
823 return 0;
824
825 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
826 sizeof(struct acpi_table_srat),
827 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
828 srat_parse_mem_affinity, 0) < 0)
829 goto out_put;
830 acpi_put_table(tbl);
831
832 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
833 if (ACPI_FAILURE(status))
834 goto out_put;
835
836 hmat_revision = tbl->revision;
837 switch (hmat_revision) {
838 case 1:
839 case 2:
840 break;
841 default:
842 pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
843 goto out_put;
844 }
845
846 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
847 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
848 sizeof(struct acpi_table_hmat), i,
849 hmat_parse_subtable, 0) < 0) {
850 pr_notice("Ignoring HMAT: Invalid table");
851 goto out_put;
852 }
853 }
854 hmat_register_targets();
855
856
857 if (!register_hotmemory_notifier(&hmat_callback_nb))
858 return 0;
859out_put:
860 hmat_free_structures();
861 acpi_put_table(tbl);
862 return 0;
863}
864device_initcall(hmat_init);
865