linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include "amdgpu.h"
  24#include "amdgpu_amdkfd.h"
  25#include "gfx_v8_0.h"
  26#include "gca/gfx_8_0_sh_mask.h"
  27#include "gca/gfx_8_0_d.h"
  28#include "gca/gfx_8_0_enum.h"
  29#include "oss/oss_3_0_sh_mask.h"
  30#include "oss/oss_3_0_d.h"
  31#include "gmc/gmc_8_1_sh_mask.h"
  32#include "gmc/gmc_8_1_d.h"
  33#include "vi_structs.h"
  34#include "vid.h"
  35
  36enum hqd_dequeue_request_type {
  37        NO_ACTION = 0,
  38        DRAIN_PIPE,
  39        RESET_WAVES
  40};
  41
  42static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  43{
  44        return (struct amdgpu_device *)kgd;
  45}
  46
  47static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  48                        uint32_t queue, uint32_t vmid)
  49{
  50        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  51        uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  52
  53        mutex_lock(&adev->srbm_mutex);
  54        WREG32(mmSRBM_GFX_CNTL, value);
  55}
  56
  57static void unlock_srbm(struct kgd_dev *kgd)
  58{
  59        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  60
  61        WREG32(mmSRBM_GFX_CNTL, 0);
  62        mutex_unlock(&adev->srbm_mutex);
  63}
  64
  65static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  66                                uint32_t queue_id)
  67{
  68        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  69
  70        uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  71        uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  72
  73        lock_srbm(kgd, mec, pipe, queue_id, 0);
  74}
  75
  76static void release_queue(struct kgd_dev *kgd)
  77{
  78        unlock_srbm(kgd);
  79}
  80
  81static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  82                                        uint32_t sh_mem_config,
  83                                        uint32_t sh_mem_ape1_base,
  84                                        uint32_t sh_mem_ape1_limit,
  85                                        uint32_t sh_mem_bases)
  86{
  87        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  88
  89        lock_srbm(kgd, 0, 0, 0, vmid);
  90
  91        WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  92        WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  93        WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  94        WREG32(mmSH_MEM_BASES, sh_mem_bases);
  95
  96        unlock_srbm(kgd);
  97}
  98
  99static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
 100                                        unsigned int vmid)
 101{
 102        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 103
 104        /*
 105         * We have to assume that there is no outstanding mapping.
 106         * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
 107         * a mapping is in progress or because a mapping finished
 108         * and the SW cleared it.
 109         * So the protocol is to always wait & clear.
 110         */
 111        uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
 112                        ATC_VMID0_PASID_MAPPING__VALID_MASK;
 113
 114        WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
 115
 116        while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
 117                cpu_relax();
 118        WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
 119
 120        /* Mapping vmid to pasid also for IH block */
 121        WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
 122
 123        return 0;
 124}
 125
 126static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
 127{
 128        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 129        uint32_t mec;
 130        uint32_t pipe;
 131
 132        mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 133        pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 134
 135        lock_srbm(kgd, mec, pipe, 0, 0);
 136
 137        WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
 138                        CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
 139
 140        unlock_srbm(kgd);
 141
 142        return 0;
 143}
 144
 145static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
 146{
 147        uint32_t retval;
 148
 149        retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
 150                m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
 151
 152        pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
 153                        m->sdma_engine_id, m->sdma_queue_id, retval);
 154
 155        return retval;
 156}
 157
 158static inline struct vi_mqd *get_mqd(void *mqd)
 159{
 160        return (struct vi_mqd *)mqd;
 161}
 162
 163static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
 164{
 165        return (struct vi_sdma_mqd *)mqd;
 166}
 167
 168static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
 169                        uint32_t queue_id, uint32_t __user *wptr,
 170                        uint32_t wptr_shift, uint32_t wptr_mask,
 171                        struct mm_struct *mm)
 172{
 173        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 174        struct vi_mqd *m;
 175        uint32_t *mqd_hqd;
 176        uint32_t reg, wptr_val, data;
 177        bool valid_wptr = false;
 178
 179        m = get_mqd(mqd);
 180
 181        acquire_queue(kgd, pipe_id, queue_id);
 182
 183        /* HIQ is set during driver init period with vmid set to 0*/
 184        if (m->cp_hqd_vmid == 0) {
 185                uint32_t value, mec, pipe;
 186
 187                mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 188                pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 189
 190                pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
 191                        mec, pipe, queue_id);
 192                value = RREG32(mmRLC_CP_SCHEDULERS);
 193                value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
 194                        ((mec << 5) | (pipe << 3) | queue_id | 0x80));
 195                WREG32(mmRLC_CP_SCHEDULERS, value);
 196        }
 197
 198        /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
 199        mqd_hqd = &m->cp_mqd_base_addr_lo;
 200
 201        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
 202                WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 203
 204        /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
 205         * This is safe since EOP RPTR==WPTR for any inactive HQD
 206         * on ASICs that do not support context-save.
 207         * EOP writes/reads can start anywhere in the ring.
 208         */
 209        if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
 210                WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
 211                WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
 212                WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
 213        }
 214
 215        for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
 216                WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 217
 218        /* Copy userspace write pointer value to register.
 219         * Activate doorbell logic to monitor subsequent changes.
 220         */
 221        data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
 222                             CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
 223        WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
 224
 225        /* read_user_ptr may take the mm->mmap_lock.
 226         * release srbm_mutex to avoid circular dependency between
 227         * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
 228         */
 229        release_queue(kgd);
 230        valid_wptr = read_user_wptr(mm, wptr, wptr_val);
 231        acquire_queue(kgd, pipe_id, queue_id);
 232        if (valid_wptr)
 233                WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
 234
 235        data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
 236        WREG32(mmCP_HQD_ACTIVE, data);
 237
 238        release_queue(kgd);
 239
 240        return 0;
 241}
 242
 243static int kgd_hqd_dump(struct kgd_dev *kgd,
 244                        uint32_t pipe_id, uint32_t queue_id,
 245                        uint32_t (**dump)[2], uint32_t *n_regs)
 246{
 247        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 248        uint32_t i = 0, reg;
 249#define HQD_N_REGS (54+4)
 250#define DUMP_REG(addr) do {                             \
 251                if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
 252                        break;                          \
 253                (*dump)[i][0] = (addr) << 2;            \
 254                (*dump)[i++][1] = RREG32(addr);         \
 255        } while (0)
 256
 257        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 258        if (*dump == NULL)
 259                return -ENOMEM;
 260
 261        acquire_queue(kgd, pipe_id, queue_id);
 262
 263        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
 264        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
 265        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
 266        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
 267
 268        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
 269                DUMP_REG(reg);
 270
 271        release_queue(kgd);
 272
 273        WARN_ON_ONCE(i != HQD_N_REGS);
 274        *n_regs = i;
 275
 276        return 0;
 277}
 278
 279static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
 280                             uint32_t __user *wptr, struct mm_struct *mm)
 281{
 282        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 283        struct vi_sdma_mqd *m;
 284        unsigned long end_jiffies;
 285        uint32_t sdma_rlc_reg_offset;
 286        uint32_t data;
 287
 288        m = get_sdma_mqd(mqd);
 289        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 290        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 291                m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
 292
 293        end_jiffies = msecs_to_jiffies(2000) + jiffies;
 294        while (true) {
 295                data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 296                if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 297                        break;
 298                if (time_after(jiffies, end_jiffies)) {
 299                        pr_err("SDMA RLC not idle in %s\n", __func__);
 300                        return -ETIME;
 301                }
 302                usleep_range(500, 1000);
 303        }
 304
 305        data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
 306                             ENABLE, 1);
 307        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
 308        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
 309                                m->sdmax_rlcx_rb_rptr);
 310
 311        if (read_user_wptr(mm, wptr, data))
 312                WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
 313        else
 314                WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
 315                       m->sdmax_rlcx_rb_rptr);
 316
 317        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
 318                                m->sdmax_rlcx_virtual_addr);
 319        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
 320        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
 321                        m->sdmax_rlcx_rb_base_hi);
 322        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
 323                        m->sdmax_rlcx_rb_rptr_addr_lo);
 324        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
 325                        m->sdmax_rlcx_rb_rptr_addr_hi);
 326
 327        data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
 328                             RB_ENABLE, 1);
 329        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
 330
 331        return 0;
 332}
 333
 334static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
 335                             uint32_t engine_id, uint32_t queue_id,
 336                             uint32_t (**dump)[2], uint32_t *n_regs)
 337{
 338        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 339        uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
 340                queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
 341        uint32_t i = 0, reg;
 342#undef HQD_N_REGS
 343#define HQD_N_REGS (19+4+2+3+7)
 344
 345        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 346        if (*dump == NULL)
 347                return -ENOMEM;
 348
 349        for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
 350                DUMP_REG(sdma_offset + reg);
 351        for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
 352             reg++)
 353                DUMP_REG(sdma_offset + reg);
 354        for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
 355             reg++)
 356                DUMP_REG(sdma_offset + reg);
 357        for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
 358             reg++)
 359                DUMP_REG(sdma_offset + reg);
 360        for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
 361             reg++)
 362                DUMP_REG(sdma_offset + reg);
 363
 364        WARN_ON_ONCE(i != HQD_N_REGS);
 365        *n_regs = i;
 366
 367        return 0;
 368}
 369
 370static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
 371                                uint32_t pipe_id, uint32_t queue_id)
 372{
 373        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 374        uint32_t act;
 375        bool retval = false;
 376        uint32_t low, high;
 377
 378        acquire_queue(kgd, pipe_id, queue_id);
 379        act = RREG32(mmCP_HQD_ACTIVE);
 380        if (act) {
 381                low = lower_32_bits(queue_address >> 8);
 382                high = upper_32_bits(queue_address >> 8);
 383
 384                if (low == RREG32(mmCP_HQD_PQ_BASE) &&
 385                                high == RREG32(mmCP_HQD_PQ_BASE_HI))
 386                        retval = true;
 387        }
 388        release_queue(kgd);
 389        return retval;
 390}
 391
 392static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
 393{
 394        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 395        struct vi_sdma_mqd *m;
 396        uint32_t sdma_rlc_reg_offset;
 397        uint32_t sdma_rlc_rb_cntl;
 398
 399        m = get_sdma_mqd(mqd);
 400        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 401
 402        sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 403
 404        if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
 405                return true;
 406
 407        return false;
 408}
 409
 410static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
 411                                enum kfd_preempt_type reset_type,
 412                                unsigned int utimeout, uint32_t pipe_id,
 413                                uint32_t queue_id)
 414{
 415        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 416        uint32_t temp;
 417        enum hqd_dequeue_request_type type;
 418        unsigned long flags, end_jiffies;
 419        int retry;
 420        struct vi_mqd *m = get_mqd(mqd);
 421
 422        if (amdgpu_in_reset(adev))
 423                return -EIO;
 424
 425        acquire_queue(kgd, pipe_id, queue_id);
 426
 427        if (m->cp_hqd_vmid == 0)
 428                WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
 429
 430        switch (reset_type) {
 431        case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
 432                type = DRAIN_PIPE;
 433                break;
 434        case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
 435                type = RESET_WAVES;
 436                break;
 437        default:
 438                type = DRAIN_PIPE;
 439                break;
 440        }
 441
 442        /* Workaround: If IQ timer is active and the wait time is close to or
 443         * equal to 0, dequeueing is not safe. Wait until either the wait time
 444         * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
 445         * cleared before continuing. Also, ensure wait times are set to at
 446         * least 0x3.
 447         */
 448        local_irq_save(flags);
 449        preempt_disable();
 450        retry = 5000; /* wait for 500 usecs at maximum */
 451        while (true) {
 452                temp = RREG32(mmCP_HQD_IQ_TIMER);
 453                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
 454                        pr_debug("HW is processing IQ\n");
 455                        goto loop;
 456                }
 457                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
 458                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
 459                                        == 3) /* SEM-rearm is safe */
 460                                break;
 461                        /* Wait time 3 is safe for CP, but our MMIO read/write
 462                         * time is close to 1 microsecond, so check for 10 to
 463                         * leave more buffer room
 464                         */
 465                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
 466                                        >= 10)
 467                                break;
 468                        pr_debug("IQ timer is active\n");
 469                } else
 470                        break;
 471loop:
 472                if (!retry) {
 473                        pr_err("CP HQD IQ timer status time out\n");
 474                        break;
 475                }
 476                ndelay(100);
 477                --retry;
 478        }
 479        retry = 1000;
 480        while (true) {
 481                temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
 482                if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
 483                        break;
 484                pr_debug("Dequeue request is pending\n");
 485
 486                if (!retry) {
 487                        pr_err("CP HQD dequeue request time out\n");
 488                        break;
 489                }
 490                ndelay(100);
 491                --retry;
 492        }
 493        local_irq_restore(flags);
 494        preempt_enable();
 495
 496        WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
 497
 498        end_jiffies = (utimeout * HZ / 1000) + jiffies;
 499        while (true) {
 500                temp = RREG32(mmCP_HQD_ACTIVE);
 501                if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
 502                        break;
 503                if (time_after(jiffies, end_jiffies)) {
 504                        pr_err("cp queue preemption time out.\n");
 505                        release_queue(kgd);
 506                        return -ETIME;
 507                }
 508                usleep_range(500, 1000);
 509        }
 510
 511        release_queue(kgd);
 512        return 0;
 513}
 514
 515static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
 516                                unsigned int utimeout)
 517{
 518        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 519        struct vi_sdma_mqd *m;
 520        uint32_t sdma_rlc_reg_offset;
 521        uint32_t temp;
 522        unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
 523
 524        m = get_sdma_mqd(mqd);
 525        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 526
 527        temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 528        temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
 529        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
 530
 531        while (true) {
 532                temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 533                if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 534                        break;
 535                if (time_after(jiffies, end_jiffies)) {
 536                        pr_err("SDMA RLC not idle in %s\n", __func__);
 537                        return -ETIME;
 538                }
 539                usleep_range(500, 1000);
 540        }
 541
 542        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
 543        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 544                RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
 545                SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
 546
 547        m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
 548
 549        return 0;
 550}
 551
 552static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
 553                                        uint8_t vmid, uint16_t *p_pasid)
 554{
 555        uint32_t value;
 556        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 557
 558        value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
 559        *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 560
 561        return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
 562}
 563
 564static int kgd_address_watch_disable(struct kgd_dev *kgd)
 565{
 566        return 0;
 567}
 568
 569static int kgd_address_watch_execute(struct kgd_dev *kgd,
 570                                        unsigned int watch_point_id,
 571                                        uint32_t cntl_val,
 572                                        uint32_t addr_hi,
 573                                        uint32_t addr_lo)
 574{
 575        return 0;
 576}
 577
 578static int kgd_wave_control_execute(struct kgd_dev *kgd,
 579                                        uint32_t gfx_index_val,
 580                                        uint32_t sq_cmd)
 581{
 582        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 583        uint32_t data = 0;
 584
 585        mutex_lock(&adev->grbm_idx_mutex);
 586
 587        WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
 588        WREG32(mmSQ_CMD, sq_cmd);
 589
 590        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 591                INSTANCE_BROADCAST_WRITES, 1);
 592        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 593                SH_BROADCAST_WRITES, 1);
 594        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 595                SE_BROADCAST_WRITES, 1);
 596
 597        WREG32(mmGRBM_GFX_INDEX, data);
 598        mutex_unlock(&adev->grbm_idx_mutex);
 599
 600        return 0;
 601}
 602
 603static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
 604                                        unsigned int watch_point_id,
 605                                        unsigned int reg_offset)
 606{
 607        return 0;
 608}
 609
 610static void set_scratch_backing_va(struct kgd_dev *kgd,
 611                                        uint64_t va, uint32_t vmid)
 612{
 613        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 614
 615        lock_srbm(kgd, 0, 0, 0, vmid);
 616        WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
 617        unlock_srbm(kgd);
 618}
 619
 620static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
 621                uint64_t page_table_base)
 622{
 623        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 624
 625        if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
 626                pr_err("trying to set page table base for wrong VMID\n");
 627                return;
 628        }
 629        WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
 630                        lower_32_bits(page_table_base));
 631}
 632
 633const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
 634        .program_sh_mem_settings = kgd_program_sh_mem_settings,
 635        .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
 636        .init_interrupts = kgd_init_interrupts,
 637        .hqd_load = kgd_hqd_load,
 638        .hqd_sdma_load = kgd_hqd_sdma_load,
 639        .hqd_dump = kgd_hqd_dump,
 640        .hqd_sdma_dump = kgd_hqd_sdma_dump,
 641        .hqd_is_occupied = kgd_hqd_is_occupied,
 642        .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
 643        .hqd_destroy = kgd_hqd_destroy,
 644        .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
 645        .address_watch_disable = kgd_address_watch_disable,
 646        .address_watch_execute = kgd_address_watch_execute,
 647        .wave_control_execute = kgd_wave_control_execute,
 648        .address_watch_get_offset = kgd_address_watch_get_offset,
 649        .get_atc_vmid_pasid_mapping_info =
 650                        get_atc_vmid_pasid_mapping_info,
 651        .set_scratch_backing_va = set_scratch_backing_va,
 652        .set_vm_context_page_table_base = set_vm_context_page_table_base,
 653};
 654