linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012-15 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: AMD
  23 *
  24 */
  25
  26
  27#include "reg_helper.h"
  28#include "dcn10_optc.h"
  29#include "dc.h"
  30
  31#define REG(reg)\
  32        optc1->tg_regs->reg
  33
  34#define CTX \
  35        optc1->base.ctx
  36
  37#undef FN
  38#define FN(reg_name, field_name) \
  39        optc1->tg_shift->field_name, optc1->tg_mask->field_name
  40
  41#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
  42
  43/**
  44* apply_front_porch_workaround  TODO FPGA still need?
  45*
  46* This is a workaround for a bug that has existed since R5xx and has not been
  47* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
  48*/
  49static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
  50{
  51        if (timing->flags.INTERLACE == 1) {
  52                if (timing->v_front_porch < 2)
  53                        timing->v_front_porch = 2;
  54        } else {
  55                if (timing->v_front_porch < 1)
  56                        timing->v_front_porch = 1;
  57        }
  58}
  59
  60void optc1_program_global_sync(
  61                struct timing_generator *optc,
  62                int vready_offset,
  63                int vstartup_start,
  64                int vupdate_offset,
  65                int vupdate_width)
  66{
  67        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  68
  69        optc1->vready_offset = vready_offset;
  70        optc1->vstartup_start = vstartup_start;
  71        optc1->vupdate_offset = vupdate_offset;
  72        optc1->vupdate_width = vupdate_width;
  73
  74        if (optc1->vstartup_start == 0) {
  75                BREAK_TO_DEBUGGER();
  76                return;
  77        }
  78
  79        REG_SET(OTG_VSTARTUP_PARAM, 0,
  80                VSTARTUP_START, optc1->vstartup_start);
  81
  82        REG_SET_2(OTG_VUPDATE_PARAM, 0,
  83                        VUPDATE_OFFSET, optc1->vupdate_offset,
  84                        VUPDATE_WIDTH, optc1->vupdate_width);
  85
  86        REG_SET(OTG_VREADY_PARAM, 0,
  87                        VREADY_OFFSET, optc1->vready_offset);
  88}
  89
  90static void optc1_disable_stereo(struct timing_generator *optc)
  91{
  92        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  93
  94        REG_SET(OTG_STEREO_CONTROL, 0,
  95                OTG_STEREO_EN, 0);
  96
  97        REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
  98                OTG_3D_STRUCTURE_EN, 0,
  99                OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
 100}
 101
 102void optc1_setup_vertical_interrupt0(
 103                struct timing_generator *optc,
 104                uint32_t start_line,
 105                uint32_t end_line)
 106{
 107        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 108
 109        REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
 110                        OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
 111                        OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
 112}
 113
 114void optc1_setup_vertical_interrupt1(
 115                struct timing_generator *optc,
 116                uint32_t start_line)
 117{
 118        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 119
 120        REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
 121                                OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
 122}
 123
 124void optc1_setup_vertical_interrupt2(
 125                struct timing_generator *optc,
 126                uint32_t start_line)
 127{
 128        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 129
 130        REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
 131                        OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
 132}
 133
 134/**
 135 * program_timing_generator   used by mode timing set
 136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
 137 * Including SYNC. Call BIOS command table to program Timings.
 138 */
 139void optc1_program_timing(
 140        struct timing_generator *optc,
 141        const struct dc_crtc_timing *dc_crtc_timing,
 142        int vready_offset,
 143        int vstartup_start,
 144        int vupdate_offset,
 145        int vupdate_width,
 146        const enum signal_type signal,
 147        bool use_vbios)
 148{
 149        struct dc_crtc_timing patched_crtc_timing;
 150        uint32_t asic_blank_end;
 151        uint32_t asic_blank_start;
 152        uint32_t v_total;
 153        uint32_t v_sync_end;
 154        uint32_t h_sync_polarity, v_sync_polarity;
 155        uint32_t start_point = 0;
 156        uint32_t field_num = 0;
 157        enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
 158
 159        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 160
 161        optc1->signal = signal;
 162        optc1->vready_offset = vready_offset;
 163        optc1->vstartup_start = vstartup_start;
 164        optc1->vupdate_offset = vupdate_offset;
 165        optc1->vupdate_width = vupdate_width;
 166        patched_crtc_timing = *dc_crtc_timing;
 167        apply_front_porch_workaround(&patched_crtc_timing);
 168
 169        /* Load horizontal timing */
 170
 171        /* CRTC_H_TOTAL = vesa.h_total - 1 */
 172        REG_SET(OTG_H_TOTAL, 0,
 173                        OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
 174
 175        /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
 176        REG_UPDATE_2(OTG_H_SYNC_A,
 177                        OTG_H_SYNC_A_START, 0,
 178                        OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
 179
 180        /* blank_start = line end - front porch */
 181        asic_blank_start = patched_crtc_timing.h_total -
 182                        patched_crtc_timing.h_front_porch;
 183
 184        /* blank_end = blank_start - active */
 185        asic_blank_end = asic_blank_start -
 186                        patched_crtc_timing.h_border_right -
 187                        patched_crtc_timing.h_addressable -
 188                        patched_crtc_timing.h_border_left;
 189
 190        REG_UPDATE_2(OTG_H_BLANK_START_END,
 191                        OTG_H_BLANK_START, asic_blank_start,
 192                        OTG_H_BLANK_END, asic_blank_end);
 193
 194        /* h_sync polarity */
 195        h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
 196                        0 : 1;
 197
 198        REG_UPDATE(OTG_H_SYNC_A_CNTL,
 199                        OTG_H_SYNC_A_POL, h_sync_polarity);
 200
 201        v_total = patched_crtc_timing.v_total - 1;
 202
 203        REG_SET(OTG_V_TOTAL, 0,
 204                        OTG_V_TOTAL, v_total);
 205
 206        /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
 207         * OTG_V_TOTAL_MIN are equal to V_TOTAL.
 208         */
 209        REG_SET(OTG_V_TOTAL_MAX, 0,
 210                OTG_V_TOTAL_MAX, v_total);
 211        REG_SET(OTG_V_TOTAL_MIN, 0,
 212                OTG_V_TOTAL_MIN, v_total);
 213
 214        /* v_sync_start = 0, v_sync_end = v_sync_width */
 215        v_sync_end = patched_crtc_timing.v_sync_width;
 216
 217        REG_UPDATE_2(OTG_V_SYNC_A,
 218                        OTG_V_SYNC_A_START, 0,
 219                        OTG_V_SYNC_A_END, v_sync_end);
 220
 221        /* blank_start = frame end - front porch */
 222        asic_blank_start = patched_crtc_timing.v_total -
 223                        patched_crtc_timing.v_front_porch;
 224
 225        /* blank_end = blank_start - active */
 226        asic_blank_end = asic_blank_start -
 227                        patched_crtc_timing.v_border_bottom -
 228                        patched_crtc_timing.v_addressable -
 229                        patched_crtc_timing.v_border_top;
 230
 231        REG_UPDATE_2(OTG_V_BLANK_START_END,
 232                        OTG_V_BLANK_START, asic_blank_start,
 233                        OTG_V_BLANK_END, asic_blank_end);
 234
 235        /* v_sync polarity */
 236        v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
 237                        0 : 1;
 238
 239        REG_UPDATE(OTG_V_SYNC_A_CNTL,
 240                OTG_V_SYNC_A_POL, v_sync_polarity);
 241
 242        if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
 243                        optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
 244                        optc1->signal == SIGNAL_TYPE_EDP) {
 245                start_point = 1;
 246                if (patched_crtc_timing.flags.INTERLACE == 1)
 247                        field_num = 1;
 248        }
 249
 250        /* Interlace */
 251        if (REG(OTG_INTERLACE_CONTROL)) {
 252                if (patched_crtc_timing.flags.INTERLACE == 1)
 253                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 254                                        OTG_INTERLACE_ENABLE, 1);
 255                else
 256                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 257                                        OTG_INTERLACE_ENABLE, 0);
 258        }
 259
 260        /* VTG enable set to 0 first VInit */
 261        REG_UPDATE(CONTROL,
 262                        VTG0_ENABLE, 0);
 263
 264        /* original code is using VTG offset to address OTG reg, seems wrong */
 265        REG_UPDATE_2(OTG_CONTROL,
 266                        OTG_START_POINT_CNTL, start_point,
 267                        OTG_FIELD_NUMBER_CNTL, field_num);
 268
 269        optc->funcs->program_global_sync(optc,
 270                        vready_offset,
 271                        vstartup_start,
 272                        vupdate_offset,
 273                        vupdate_width);
 274
 275        optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
 276
 277        /* TODO
 278         * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
 279         * program_horz_count_by_2
 280         * for DVI 30bpp mode, 0 otherwise
 281         * program_horz_count_by_2(optc, &patched_crtc_timing);
 282         */
 283
 284        /* Enable stereo - only when we need to pack 3D frame. Other types
 285         * of stereo handled in explicit call
 286         */
 287
 288        if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
 289                h_div = H_TIMING_DIV_BY2;
 290
 291        if (REG(OPTC_DATA_FORMAT_CONTROL)) {
 292                uint32_t data_fmt = 0;
 293
 294                if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
 295                        data_fmt = 1;
 296                else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
 297                        data_fmt = 2;
 298
 299                REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
 300        }
 301
 302        if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
 303                if (optc1->opp_count == 4)
 304                        h_div = H_TIMING_DIV_BY4;
 305
 306                REG_UPDATE(OTG_H_TIMING_CNTL,
 307                OTG_H_TIMING_DIV_MODE, h_div);
 308        } else {
 309                REG_UPDATE(OTG_H_TIMING_CNTL,
 310                OTG_H_TIMING_DIV_BY2, h_div);
 311        }
 312}
 313
 314void optc1_set_vtg_params(struct timing_generator *optc,
 315                const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
 316{
 317        struct dc_crtc_timing patched_crtc_timing;
 318        uint32_t asic_blank_end;
 319        uint32_t v_init;
 320        uint32_t v_fp2 = 0;
 321        int32_t vertical_line_start;
 322
 323        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 324
 325        patched_crtc_timing = *dc_crtc_timing;
 326        apply_front_porch_workaround(&patched_crtc_timing);
 327
 328        /* VCOUNT_INIT is the start of blank */
 329        v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
 330
 331        /* end of blank = v_init - active */
 332        asic_blank_end = v_init -
 333                        patched_crtc_timing.v_border_bottom -
 334                        patched_crtc_timing.v_addressable -
 335                        patched_crtc_timing.v_border_top;
 336
 337        /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
 338        vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
 339        if (vertical_line_start < 0)
 340                v_fp2 = -vertical_line_start;
 341
 342        /* Interlace */
 343        if (REG(OTG_INTERLACE_CONTROL)) {
 344                if (patched_crtc_timing.flags.INTERLACE == 1) {
 345                        v_init = v_init / 2;
 346                        if ((optc1->vstartup_start/2)*2 > asic_blank_end)
 347                                v_fp2 = v_fp2 / 2;
 348                }
 349        }
 350
 351        if (program_fp2)
 352                REG_UPDATE_2(CONTROL,
 353                                VTG0_FP2, v_fp2,
 354                                VTG0_VCOUNT_INIT, v_init);
 355        else
 356                REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
 357}
 358
 359void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
 360{
 361        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 362
 363        uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
 364
 365        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 366                        OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
 367}
 368
 369/**
 370 * optc1_set_timing_double_buffer() - DRR double buffering control
 371 *
 372 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
 373 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
 374 *
 375 * Options: any time,  start of frame, dp start of frame (range timing)
 376 */
 377void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
 378{
 379        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 380        uint32_t mode = enable ? 2 : 0;
 381
 382        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 383                   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
 384}
 385
 386/**
 387 * unblank_crtc
 388 * Call ASIC Control Object to UnBlank CRTC.
 389 */
 390static void optc1_unblank_crtc(struct timing_generator *optc)
 391{
 392        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 393
 394        REG_UPDATE_2(OTG_BLANK_CONTROL,
 395                        OTG_BLANK_DATA_EN, 0,
 396                        OTG_BLANK_DE_MODE, 0);
 397
 398        /* W/A for automated testing
 399         * Automated testing will fail underflow test as there
 400         * sporadic underflows which occur during the optc blank
 401         * sequence.  As a w/a, clear underflow on unblank.
 402         * This prevents the failure, but will not mask actual
 403         * underflow that affect real use cases.
 404         */
 405        optc1_clear_optc_underflow(optc);
 406}
 407
 408/**
 409 * blank_crtc
 410 * Call ASIC Control Object to Blank CRTC.
 411 */
 412
 413static void optc1_blank_crtc(struct timing_generator *optc)
 414{
 415        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 416
 417        REG_UPDATE_2(OTG_BLANK_CONTROL,
 418                        OTG_BLANK_DATA_EN, 1,
 419                        OTG_BLANK_DE_MODE, 0);
 420
 421        optc1_set_blank_data_double_buffer(optc, false);
 422}
 423
 424void optc1_set_blank(struct timing_generator *optc,
 425                bool enable_blanking)
 426{
 427        if (enable_blanking)
 428                optc1_blank_crtc(optc);
 429        else
 430                optc1_unblank_crtc(optc);
 431}
 432
 433bool optc1_is_blanked(struct timing_generator *optc)
 434{
 435        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 436        uint32_t blank_en;
 437        uint32_t blank_state;
 438
 439        REG_GET_2(OTG_BLANK_CONTROL,
 440                        OTG_BLANK_DATA_EN, &blank_en,
 441                        OTG_CURRENT_BLANK_STATE, &blank_state);
 442
 443        return blank_en && blank_state;
 444}
 445
 446void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
 447{
 448        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 449
 450        if (enable) {
 451                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 452                                OPTC_INPUT_CLK_EN, 1,
 453                                OPTC_INPUT_CLK_GATE_DIS, 1);
 454
 455                REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
 456                                OPTC_INPUT_CLK_ON, 1,
 457                                1, 1000);
 458
 459                /* Enable clock */
 460                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 461                                OTG_CLOCK_EN, 1,
 462                                OTG_CLOCK_GATE_DIS, 1);
 463                REG_WAIT(OTG_CLOCK_CONTROL,
 464                                OTG_CLOCK_ON, 1,
 465                                1, 1000);
 466        } else  {
 467                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 468                                OTG_CLOCK_GATE_DIS, 0,
 469                                OTG_CLOCK_EN, 0);
 470
 471                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 472                                OPTC_INPUT_CLK_GATE_DIS, 0,
 473                                OPTC_INPUT_CLK_EN, 0);
 474        }
 475}
 476
 477/**
 478 * Enable CRTC
 479 * Enable CRTC - call ASIC Control Object to enable Timing generator.
 480 */
 481static bool optc1_enable_crtc(struct timing_generator *optc)
 482{
 483        /* TODO FPGA wait for answer
 484         * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
 485         * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
 486         */
 487        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 488
 489        /* opp instance for OTG. For DCN1.0, ODM is remoed.
 490         * OPP and OPTC should 1:1 mapping
 491         */
 492        REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
 493                        OPTC_SRC_SEL, optc->inst);
 494
 495        /* VTG enable first is for HW workaround */
 496        REG_UPDATE(CONTROL,
 497                        VTG0_ENABLE, 1);
 498
 499        REG_SEQ_START();
 500
 501        /* Enable CRTC */
 502        REG_UPDATE_2(OTG_CONTROL,
 503                        OTG_DISABLE_POINT_CNTL, 3,
 504                        OTG_MASTER_EN, 1);
 505
 506        REG_SEQ_SUBMIT();
 507        REG_SEQ_WAIT_DONE();
 508
 509        return true;
 510}
 511
 512/* disable_crtc - call ASIC Control Object to disable Timing generator. */
 513bool optc1_disable_crtc(struct timing_generator *optc)
 514{
 515        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 516
 517        /* disable otg request until end of the first line
 518         * in the vertical blank region
 519         */
 520        REG_UPDATE_2(OTG_CONTROL,
 521                        OTG_DISABLE_POINT_CNTL, 3,
 522                        OTG_MASTER_EN, 0);
 523
 524        REG_UPDATE(CONTROL,
 525                        VTG0_ENABLE, 0);
 526
 527        /* CRTC disabled, so disable  clock. */
 528        REG_WAIT(OTG_CLOCK_CONTROL,
 529                        OTG_BUSY, 0,
 530                        1, 100000);
 531
 532        return true;
 533}
 534
 535
 536void optc1_program_blank_color(
 537                struct timing_generator *optc,
 538                const struct tg_color *black_color)
 539{
 540        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 541
 542        REG_SET_3(OTG_BLACK_COLOR, 0,
 543                        OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
 544                        OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
 545                        OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
 546}
 547
 548bool optc1_validate_timing(
 549        struct timing_generator *optc,
 550        const struct dc_crtc_timing *timing)
 551{
 552        uint32_t v_blank;
 553        uint32_t h_blank;
 554        uint32_t min_v_blank;
 555        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 556
 557        ASSERT(timing != NULL);
 558
 559        v_blank = (timing->v_total - timing->v_addressable -
 560                                        timing->v_border_top - timing->v_border_bottom);
 561
 562        h_blank = (timing->h_total - timing->h_addressable -
 563                timing->h_border_right -
 564                timing->h_border_left);
 565
 566        if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
 567                timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
 568                timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
 569                timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
 570                timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
 571                timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
 572                return false;
 573
 574        /* Temporarily blocking interlacing mode until it's supported */
 575        if (timing->flags.INTERLACE == 1)
 576                return false;
 577
 578        /* Check maximum number of pixels supported by Timing Generator
 579         * (Currently will never fail, in order to fail needs display which
 580         * needs more than 8192 horizontal and
 581         * more than 8192 vertical total pixels)
 582         */
 583        if (timing->h_total > optc1->max_h_total ||
 584                timing->v_total > optc1->max_v_total)
 585                return false;
 586
 587
 588        if (h_blank < optc1->min_h_blank)
 589                return false;
 590
 591        if (timing->h_sync_width  < optc1->min_h_sync_width ||
 592                 timing->v_sync_width  < optc1->min_v_sync_width)
 593                return false;
 594
 595        min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
 596
 597        if (v_blank < min_v_blank)
 598                return false;
 599
 600        return true;
 601
 602}
 603
 604/*
 605 * get_vblank_counter
 606 *
 607 * @brief
 608 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
 609 * holds the counter of frames.
 610 *
 611 * @param
 612 * struct timing_generator *optc - [in] timing generator which controls the
 613 * desired CRTC
 614 *
 615 * @return
 616 * Counter of frames, which should equal to number of vblanks.
 617 */
 618uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
 619{
 620        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 621        uint32_t frame_count;
 622
 623        REG_GET(OTG_STATUS_FRAME_COUNT,
 624                OTG_FRAME_COUNT, &frame_count);
 625
 626        return frame_count;
 627}
 628
 629void optc1_lock(struct timing_generator *optc)
 630{
 631        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 632        uint32_t regval = 0;
 633
 634        regval = REG_READ(OTG_CONTROL);
 635
 636        /* otg is not running, do not need to be locked */
 637        if ((regval & 0x1) == 0x0)
 638                return;
 639
 640        REG_SET(OTG_GLOBAL_CONTROL0, 0,
 641                        OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
 642        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 643                        OTG_MASTER_UPDATE_LOCK, 1);
 644
 645        /* Should be fast, status does not update on maximus */
 646        if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
 647
 648                REG_WAIT(OTG_MASTER_UPDATE_LOCK,
 649                                UPDATE_LOCK_STATUS, 1,
 650                                1, 10);
 651        }
 652}
 653
 654void optc1_unlock(struct timing_generator *optc)
 655{
 656        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 657
 658        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 659                        OTG_MASTER_UPDATE_LOCK, 0);
 660}
 661
 662bool optc1_is_locked(struct timing_generator *optc)
 663{
 664        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 665        uint32_t locked;
 666
 667        REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
 668
 669        return (locked == 1);
 670}
 671
 672void optc1_get_position(struct timing_generator *optc,
 673                struct crtc_position *position)
 674{
 675        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 676
 677        REG_GET_2(OTG_STATUS_POSITION,
 678                        OTG_HORZ_COUNT, &position->horizontal_count,
 679                        OTG_VERT_COUNT, &position->vertical_count);
 680
 681        REG_GET(OTG_NOM_VERT_POSITION,
 682                        OTG_VERT_COUNT_NOM, &position->nominal_vcount);
 683}
 684
 685bool optc1_is_counter_moving(struct timing_generator *optc)
 686{
 687        struct crtc_position position1, position2;
 688
 689        optc->funcs->get_position(optc, &position1);
 690        optc->funcs->get_position(optc, &position2);
 691
 692        if (position1.horizontal_count == position2.horizontal_count &&
 693                position1.vertical_count == position2.vertical_count)
 694                return false;
 695        else
 696                return true;
 697}
 698
 699bool optc1_did_triggered_reset_occur(
 700        struct timing_generator *optc)
 701{
 702        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 703        uint32_t occurred_force, occurred_vsync;
 704
 705        REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
 706                OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
 707
 708        REG_GET(OTG_VERT_SYNC_CONTROL,
 709                OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
 710
 711        return occurred_vsync != 0 || occurred_force != 0;
 712}
 713
 714void optc1_disable_reset_trigger(struct timing_generator *optc)
 715{
 716        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 717
 718        REG_WRITE(OTG_TRIGA_CNTL, 0);
 719
 720        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 721                OTG_FORCE_COUNT_NOW_CLEAR, 1);
 722
 723        REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 724                OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
 725}
 726
 727void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
 728{
 729        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 730        uint32_t falling_edge;
 731
 732        REG_GET(OTG_V_SYNC_A_CNTL,
 733                        OTG_V_SYNC_A_POL, &falling_edge);
 734
 735        if (falling_edge)
 736                REG_SET_3(OTG_TRIGA_CNTL, 0,
 737                                /* vsync signal from selected OTG pipe based
 738                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 739                                 */
 740                                OTG_TRIGA_SOURCE_SELECT, 20,
 741                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 742                                /* always detect falling edge */
 743                                OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
 744        else
 745                REG_SET_3(OTG_TRIGA_CNTL, 0,
 746                                /* vsync signal from selected OTG pipe based
 747                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 748                                 */
 749                                OTG_TRIGA_SOURCE_SELECT, 20,
 750                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 751                                /* always detect rising edge */
 752                                OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
 753
 754        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 755                        /* force H count to H_TOTAL and V count to V_TOTAL in
 756                         * progressive mode and V_TOTAL-1 in interlaced mode
 757                         */
 758                        OTG_FORCE_COUNT_NOW_MODE, 2);
 759}
 760
 761void optc1_enable_crtc_reset(
 762                struct timing_generator *optc,
 763                int source_tg_inst,
 764                struct crtc_trigger_info *crtc_tp)
 765{
 766        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 767        uint32_t falling_edge = 0;
 768        uint32_t rising_edge = 0;
 769
 770        switch (crtc_tp->event) {
 771
 772        case CRTC_EVENT_VSYNC_RISING:
 773                rising_edge = 1;
 774                break;
 775
 776        case CRTC_EVENT_VSYNC_FALLING:
 777                falling_edge = 1;
 778                break;
 779        }
 780
 781        REG_SET_4(OTG_TRIGA_CNTL, 0,
 782                 /* vsync signal from selected OTG pipe based
 783                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 784                  */
 785                  OTG_TRIGA_SOURCE_SELECT, 20,
 786                  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 787                  /* always detect falling edge */
 788                  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
 789                  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
 790
 791        switch (crtc_tp->delay) {
 792        case TRIGGER_DELAY_NEXT_LINE:
 793                REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 794                                OTG_AUTO_FORCE_VSYNC_MODE, 1);
 795                break;
 796        case TRIGGER_DELAY_NEXT_PIXEL:
 797                REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 798                        /* force H count to H_TOTAL and V count to V_TOTAL in
 799                         * progressive mode and V_TOTAL-1 in interlaced mode
 800                         */
 801                        OTG_FORCE_COUNT_NOW_MODE, 2);
 802                break;
 803        }
 804}
 805
 806void optc1_wait_for_state(struct timing_generator *optc,
 807                enum crtc_state state)
 808{
 809        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 810
 811        switch (state) {
 812        case CRTC_STATE_VBLANK:
 813                REG_WAIT(OTG_STATUS,
 814                                OTG_V_BLANK, 1,
 815                                1, 100000); /* 1 vupdate at 10hz */
 816                break;
 817
 818        case CRTC_STATE_VACTIVE:
 819                REG_WAIT(OTG_STATUS,
 820                                OTG_V_ACTIVE_DISP, 1,
 821                                1, 100000); /* 1 vupdate at 10hz */
 822                break;
 823
 824        default:
 825                break;
 826        }
 827}
 828
 829void optc1_set_early_control(
 830        struct timing_generator *optc,
 831        uint32_t early_cntl)
 832{
 833        /* asic design change, do not need this control
 834         * empty for share caller logic
 835         */
 836}
 837
 838
 839void optc1_set_static_screen_control(
 840        struct timing_generator *optc,
 841        uint32_t event_triggers,
 842        uint32_t num_frames)
 843{
 844        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 845
 846        // By register spec, it only takes 8 bit value
 847        if (num_frames > 0xFF)
 848                num_frames = 0xFF;
 849
 850        /* Bit 8 is no longer applicable in RV for PSR case,
 851         * set bit 8 to 0 if given
 852         */
 853        if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
 854                        != 0)
 855                event_triggers = event_triggers &
 856                ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
 857
 858        REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
 859                        OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
 860                        OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
 861}
 862
 863void optc1_setup_manual_trigger(struct timing_generator *optc)
 864{
 865        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 866
 867        REG_SET(OTG_GLOBAL_CONTROL2, 0,
 868                        MANUAL_FLOW_CONTROL_SEL, optc->inst);
 869
 870        REG_SET_8(OTG_TRIGA_CNTL, 0,
 871                        OTG_TRIGA_SOURCE_SELECT, 22,
 872                        OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
 873                        OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
 874                        OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
 875                        OTG_TRIGA_POLARITY_SELECT, 0,
 876                        OTG_TRIGA_FREQUENCY_SELECT, 0,
 877                        OTG_TRIGA_DELAY, 0,
 878                        OTG_TRIGA_CLEAR, 1);
 879}
 880
 881void optc1_program_manual_trigger(struct timing_generator *optc)
 882{
 883        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 884
 885        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 886                        MANUAL_FLOW_CONTROL, 1);
 887
 888        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 889                        MANUAL_FLOW_CONTROL, 0);
 890}
 891
 892
 893/**
 894 *****************************************************************************
 895 *  Function: set_drr
 896 *
 897 *  @brief
 898 *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
 899 *
 900 *****************************************************************************
 901 */
 902void optc1_set_drr(
 903        struct timing_generator *optc,
 904        const struct drr_params *params)
 905{
 906        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 907
 908        if (params != NULL &&
 909                params->vertical_total_max > 0 &&
 910                params->vertical_total_min > 0) {
 911
 912                if (params->vertical_total_mid != 0) {
 913
 914                        REG_SET(OTG_V_TOTAL_MID, 0,
 915                                OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
 916
 917                        REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
 918                                        OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
 919                                        OTG_VTOTAL_MID_FRAME_NUM,
 920                                        (uint8_t)params->vertical_total_mid_frame_num);
 921
 922                }
 923
 924                REG_SET(OTG_V_TOTAL_MAX, 0,
 925                        OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
 926
 927                REG_SET(OTG_V_TOTAL_MIN, 0,
 928                        OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
 929
 930                REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
 931                                OTG_V_TOTAL_MIN_SEL, 1,
 932                                OTG_V_TOTAL_MAX_SEL, 1,
 933                                OTG_FORCE_LOCK_ON_EVENT, 0,
 934                                OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
 935                                OTG_SET_V_TOTAL_MIN_MASK, 0);
 936
 937                // Setup manual flow control for EOF via TRIG_A
 938                optc->funcs->setup_manual_trigger(optc);
 939
 940        } else {
 941                REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
 942                                OTG_SET_V_TOTAL_MIN_MASK, 0,
 943                                OTG_V_TOTAL_MIN_SEL, 0,
 944                                OTG_V_TOTAL_MAX_SEL, 0,
 945                                OTG_FORCE_LOCK_ON_EVENT, 0);
 946
 947                REG_SET(OTG_V_TOTAL_MIN, 0,
 948                        OTG_V_TOTAL_MIN, 0);
 949
 950                REG_SET(OTG_V_TOTAL_MAX, 0,
 951                        OTG_V_TOTAL_MAX, 0);
 952        }
 953}
 954
 955static void optc1_set_test_pattern(
 956        struct timing_generator *optc,
 957        /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
 958         * because this is not DP-specific (which is probably somewhere in DP
 959         * encoder) */
 960        enum controller_dp_test_pattern test_pattern,
 961        enum dc_color_depth color_depth)
 962{
 963        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 964        enum test_pattern_color_format bit_depth;
 965        enum test_pattern_dyn_range dyn_range;
 966        enum test_pattern_mode mode;
 967        uint32_t pattern_mask;
 968        uint32_t pattern_data;
 969        /* color ramp generator mixes 16-bits color */
 970        uint32_t src_bpc = 16;
 971        /* requested bpc */
 972        uint32_t dst_bpc;
 973        uint32_t index;
 974        /* RGB values of the color bars.
 975         * Produce two RGB colors: RGB0 - white (all Fs)
 976         * and RGB1 - black (all 0s)
 977         * (three RGB components for two colors)
 978         */
 979        uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
 980                                                0x0000, 0x0000};
 981        /* dest color (converted to the specified color format) */
 982        uint16_t dst_color[6];
 983        uint32_t inc_base;
 984
 985        /* translate to bit depth */
 986        switch (color_depth) {
 987        case COLOR_DEPTH_666:
 988                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
 989        break;
 990        case COLOR_DEPTH_888:
 991                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 992        break;
 993        case COLOR_DEPTH_101010:
 994                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
 995        break;
 996        case COLOR_DEPTH_121212:
 997                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
 998        break;
 999        default:
1000                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1001        break;
1002        }
1003
1004        switch (test_pattern) {
1005        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1006        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1007        {
1008                dyn_range = (test_pattern ==
1009                                CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1010                                TEST_PATTERN_DYN_RANGE_CEA :
1011                                TEST_PATTERN_DYN_RANGE_VESA);
1012                mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1013
1014                REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1015                                OTG_TEST_PATTERN_VRES, 6,
1016                                OTG_TEST_PATTERN_HRES, 6);
1017
1018                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1019                                OTG_TEST_PATTERN_EN, 1,
1020                                OTG_TEST_PATTERN_MODE, mode,
1021                                OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1022                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1023        }
1024        break;
1025
1026        case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1027        case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1028        {
1029                mode = (test_pattern ==
1030                        CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1031                        TEST_PATTERN_MODE_VERTICALBARS :
1032                        TEST_PATTERN_MODE_HORIZONTALBARS);
1033
1034                switch (bit_depth) {
1035                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1036                        dst_bpc = 6;
1037                break;
1038                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1039                        dst_bpc = 8;
1040                break;
1041                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1042                        dst_bpc = 10;
1043                break;
1044                default:
1045                        dst_bpc = 8;
1046                break;
1047                }
1048
1049                /* adjust color to the required colorFormat */
1050                for (index = 0; index < 6; index++) {
1051                        /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1052                         * (srcBpc - dstBpc);
1053                         */
1054                        dst_color[index] =
1055                                src_color[index] >> (src_bpc - dst_bpc);
1056                /* CRTC_TEST_PATTERN_DATA has 16 bits,
1057                 * lowest 6 are hardwired to ZERO
1058                 * color bits should be left aligned aligned to MSB
1059                 * XXXXXXXXXX000000 for 10 bit,
1060                 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1061                 */
1062                        dst_color[index] <<= (16 - dst_bpc);
1063                }
1064
1065                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1066
1067                /* We have to write the mask before data, similar to pipeline.
1068                 * For example, for 8 bpc, if we want RGB0 to be magenta,
1069                 * and RGB1 to be cyan,
1070                 * we need to make 7 writes:
1071                 * MASK   DATA
1072                 * 000001 00000000 00000000                     set mask to R0
1073                 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1074                 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1075                 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1076                 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1077                 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1078                 * 100000 11111111 00000000     B1 255, 0xFF00
1079                 *
1080                 * we will make a loop of 6 in which we prepare the mask,
1081                 * then write, then prepare the color for next write.
1082                 * first iteration will write mask only,
1083                 * but each next iteration color prepared in
1084                 * previous iteration will be written within new mask,
1085                 * the last component will written separately,
1086                 * mask is not changing between 6th and 7th write
1087                 * and color will be prepared by last iteration
1088                 */
1089
1090                /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1091                 * is B1, G1, R1, B0, G0, R0
1092                 */
1093                pattern_data = 0;
1094                for (index = 0; index < 6; index++) {
1095                        /* prepare color mask, first write PATTERN_DATA
1096                         * will have all zeros
1097                         */
1098                        pattern_mask = (1 << index);
1099
1100                        /* write color component */
1101                        REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1102                                        OTG_TEST_PATTERN_MASK, pattern_mask,
1103                                        OTG_TEST_PATTERN_DATA, pattern_data);
1104
1105                        /* prepare next color component,
1106                         * will be written in the next iteration
1107                         */
1108                        pattern_data = dst_color[index];
1109                }
1110                /* write last color component,
1111                 * it's been already prepared in the loop
1112                 */
1113                REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1114                                OTG_TEST_PATTERN_MASK, pattern_mask,
1115                                OTG_TEST_PATTERN_DATA, pattern_data);
1116
1117                /* enable test pattern */
1118                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1119                                OTG_TEST_PATTERN_EN, 1,
1120                                OTG_TEST_PATTERN_MODE, mode,
1121                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1122                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1123        }
1124        break;
1125
1126        case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1127        {
1128                mode = (bit_depth ==
1129                        TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1130                        TEST_PATTERN_MODE_DUALRAMP_RGB :
1131                        TEST_PATTERN_MODE_SINGLERAMP_RGB);
1132
1133                switch (bit_depth) {
1134                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1135                        dst_bpc = 6;
1136                break;
1137                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1138                        dst_bpc = 8;
1139                break;
1140                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1141                        dst_bpc = 10;
1142                break;
1143                default:
1144                        dst_bpc = 8;
1145                break;
1146                }
1147
1148                /* increment for the first ramp for one color gradation
1149                 * 1 gradation for 6-bit color is 2^10
1150                 * gradations in 16-bit color
1151                 */
1152                inc_base = (src_bpc - dst_bpc);
1153
1154                switch (bit_depth) {
1155                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1156                {
1157                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1158                                        OTG_TEST_PATTERN_INC0, inc_base,
1159                                        OTG_TEST_PATTERN_INC1, 0,
1160                                        OTG_TEST_PATTERN_HRES, 6,
1161                                        OTG_TEST_PATTERN_VRES, 6,
1162                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1163                }
1164                break;
1165                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1166                {
1167                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1168                                        OTG_TEST_PATTERN_INC0, inc_base,
1169                                        OTG_TEST_PATTERN_INC1, 0,
1170                                        OTG_TEST_PATTERN_HRES, 8,
1171                                        OTG_TEST_PATTERN_VRES, 6,
1172                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1173                }
1174                break;
1175                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1176                {
1177                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1178                                        OTG_TEST_PATTERN_INC0, inc_base,
1179                                        OTG_TEST_PATTERN_INC1, inc_base + 2,
1180                                        OTG_TEST_PATTERN_HRES, 8,
1181                                        OTG_TEST_PATTERN_VRES, 5,
1182                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1183                }
1184                break;
1185                default:
1186                break;
1187                }
1188
1189                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1190
1191                /* enable test pattern */
1192                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1193
1194                REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1195                                OTG_TEST_PATTERN_EN, 1,
1196                                OTG_TEST_PATTERN_MODE, mode,
1197                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1198                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1199        }
1200        break;
1201        case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1202        {
1203                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1204                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1205                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1206        }
1207        break;
1208        default:
1209                break;
1210
1211        }
1212}
1213
1214void optc1_get_crtc_scanoutpos(
1215        struct timing_generator *optc,
1216        uint32_t *v_blank_start,
1217        uint32_t *v_blank_end,
1218        uint32_t *h_position,
1219        uint32_t *v_position)
1220{
1221        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1222        struct crtc_position position;
1223
1224        REG_GET_2(OTG_V_BLANK_START_END,
1225                        OTG_V_BLANK_START, v_blank_start,
1226                        OTG_V_BLANK_END, v_blank_end);
1227
1228        optc1_get_position(optc, &position);
1229
1230        *h_position = position.horizontal_count;
1231        *v_position = position.vertical_count;
1232}
1233
1234static void optc1_enable_stereo(struct timing_generator *optc,
1235        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1236{
1237        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1238
1239        if (flags) {
1240                uint32_t stereo_en;
1241                stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1242
1243                if (flags->PROGRAM_STEREO)
1244                        REG_UPDATE_3(OTG_STEREO_CONTROL,
1245                                OTG_STEREO_EN, stereo_en,
1246                                OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1247                                OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1248
1249                if (flags->PROGRAM_POLARITY)
1250                        REG_UPDATE(OTG_STEREO_CONTROL,
1251                                OTG_STEREO_EYE_FLAG_POLARITY,
1252                                flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1253
1254                if (flags->DISABLE_STEREO_DP_SYNC)
1255                        REG_UPDATE(OTG_STEREO_CONTROL,
1256                                OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1257
1258                if (flags->PROGRAM_STEREO)
1259                        REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1260                                OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1261                                OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1262
1263        }
1264}
1265
1266void optc1_program_stereo(struct timing_generator *optc,
1267        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1268{
1269        if (flags->PROGRAM_STEREO)
1270                optc1_enable_stereo(optc, timing, flags);
1271        else
1272                optc1_disable_stereo(optc);
1273}
1274
1275
1276bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1277{
1278        bool ret = false;
1279        uint32_t left_eye = 0;
1280        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1281
1282        REG_GET(OTG_STEREO_STATUS,
1283                OTG_STEREO_CURRENT_EYE, &left_eye);
1284        if (left_eye == 1)
1285                ret = true;
1286        else
1287                ret = false;
1288
1289        return ret;
1290}
1291
1292bool optc1_get_hw_timing(struct timing_generator *tg,
1293                struct dc_crtc_timing *hw_crtc_timing)
1294{
1295        struct dcn_otg_state s = {0};
1296
1297        if (tg == NULL || hw_crtc_timing == NULL)
1298                return false;
1299
1300        optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1301
1302        hw_crtc_timing->h_total = s.h_total + 1;
1303        hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1304        hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1305        hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1306
1307        hw_crtc_timing->v_total = s.v_total + 1;
1308        hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1309        hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1310        hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1311
1312        return true;
1313}
1314
1315
1316void optc1_read_otg_state(struct optc *optc1,
1317                struct dcn_otg_state *s)
1318{
1319        REG_GET(OTG_CONTROL,
1320                        OTG_MASTER_EN, &s->otg_enabled);
1321
1322        REG_GET_2(OTG_V_BLANK_START_END,
1323                        OTG_V_BLANK_START, &s->v_blank_start,
1324                        OTG_V_BLANK_END, &s->v_blank_end);
1325
1326        REG_GET(OTG_V_SYNC_A_CNTL,
1327                        OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1328
1329        REG_GET(OTG_V_TOTAL,
1330                        OTG_V_TOTAL, &s->v_total);
1331
1332        REG_GET(OTG_V_TOTAL_MAX,
1333                        OTG_V_TOTAL_MAX, &s->v_total_max);
1334
1335        REG_GET(OTG_V_TOTAL_MIN,
1336                        OTG_V_TOTAL_MIN, &s->v_total_min);
1337
1338        REG_GET(OTG_V_TOTAL_CONTROL,
1339                        OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1340
1341        REG_GET(OTG_V_TOTAL_CONTROL,
1342                        OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1343
1344        REG_GET_2(OTG_V_SYNC_A,
1345                        OTG_V_SYNC_A_START, &s->v_sync_a_start,
1346                        OTG_V_SYNC_A_END, &s->v_sync_a_end);
1347
1348        REG_GET_2(OTG_H_BLANK_START_END,
1349                        OTG_H_BLANK_START, &s->h_blank_start,
1350                        OTG_H_BLANK_END, &s->h_blank_end);
1351
1352        REG_GET_2(OTG_H_SYNC_A,
1353                        OTG_H_SYNC_A_START, &s->h_sync_a_start,
1354                        OTG_H_SYNC_A_END, &s->h_sync_a_end);
1355
1356        REG_GET(OTG_H_SYNC_A_CNTL,
1357                        OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1358
1359        REG_GET(OTG_H_TOTAL,
1360                        OTG_H_TOTAL, &s->h_total);
1361
1362        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1363                        OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1364}
1365
1366bool optc1_get_otg_active_size(struct timing_generator *optc,
1367                uint32_t *otg_active_width,
1368                uint32_t *otg_active_height)
1369{
1370        uint32_t otg_enabled;
1371        uint32_t v_blank_start;
1372        uint32_t v_blank_end;
1373        uint32_t h_blank_start;
1374        uint32_t h_blank_end;
1375        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1376
1377
1378        REG_GET(OTG_CONTROL,
1379                        OTG_MASTER_EN, &otg_enabled);
1380
1381        if (otg_enabled == 0)
1382                return false;
1383
1384        REG_GET_2(OTG_V_BLANK_START_END,
1385                        OTG_V_BLANK_START, &v_blank_start,
1386                        OTG_V_BLANK_END, &v_blank_end);
1387
1388        REG_GET_2(OTG_H_BLANK_START_END,
1389                        OTG_H_BLANK_START, &h_blank_start,
1390                        OTG_H_BLANK_END, &h_blank_end);
1391
1392        *otg_active_width = v_blank_start - v_blank_end;
1393        *otg_active_height = h_blank_start - h_blank_end;
1394        return true;
1395}
1396
1397void optc1_clear_optc_underflow(struct timing_generator *optc)
1398{
1399        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1400
1401        REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1402}
1403
1404void optc1_tg_init(struct timing_generator *optc)
1405{
1406        optc1_set_blank_data_double_buffer(optc, true);
1407        optc1_set_timing_double_buffer(optc, true);
1408        optc1_clear_optc_underflow(optc);
1409}
1410
1411bool optc1_is_tg_enabled(struct timing_generator *optc)
1412{
1413        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1414        uint32_t otg_enabled = 0;
1415
1416        REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1417
1418        return (otg_enabled != 0);
1419
1420}
1421
1422bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1423{
1424        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1425        uint32_t underflow_occurred = 0;
1426
1427        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1428                        OPTC_UNDERFLOW_OCCURRED_STATUS,
1429                        &underflow_occurred);
1430
1431        return (underflow_occurred == 1);
1432}
1433
1434bool optc1_configure_crc(struct timing_generator *optc,
1435                          const struct crc_params *params)
1436{
1437        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1438
1439        /* Cannot configure crc on a CRTC that is disabled */
1440        if (!optc1_is_tg_enabled(optc))
1441                return false;
1442
1443        REG_WRITE(OTG_CRC_CNTL, 0);
1444
1445        if (!params->enable)
1446                return true;
1447
1448        /* Program frame boundaries */
1449        /* Window A x axis start and end. */
1450        REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1451                        OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1452                        OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1453
1454        /* Window A y axis start and end. */
1455        REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1456                        OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1457                        OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1458
1459        /* Window B x axis start and end. */
1460        REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1461                        OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1462                        OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1463
1464        /* Window B y axis start and end. */
1465        REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1466                        OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1467                        OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1468
1469        /* Set crc mode and selection, and enable. Only using CRC0*/
1470        REG_UPDATE_3(OTG_CRC_CNTL,
1471                        OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1472                        OTG_CRC0_SELECT, params->selection,
1473                        OTG_CRC_EN, 1);
1474
1475        return true;
1476}
1477
1478bool optc1_get_crc(struct timing_generator *optc,
1479                    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1480{
1481        uint32_t field = 0;
1482        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1483
1484        REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1485
1486        /* Early return if CRC is not enabled for this CRTC */
1487        if (!field)
1488                return false;
1489
1490        REG_GET_2(OTG_CRC0_DATA_RG,
1491                        CRC0_R_CR, r_cr,
1492                        CRC0_G_Y, g_y);
1493
1494        REG_GET(OTG_CRC0_DATA_B,
1495                        CRC0_B_CB, b_cb);
1496
1497        return true;
1498}
1499
1500static const struct timing_generator_funcs dcn10_tg_funcs = {
1501                .validate_timing = optc1_validate_timing,
1502                .program_timing = optc1_program_timing,
1503                .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1504                .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1505                .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1506                .program_global_sync = optc1_program_global_sync,
1507                .enable_crtc = optc1_enable_crtc,
1508                .disable_crtc = optc1_disable_crtc,
1509                /* used by enable_timing_synchronization. Not need for FPGA */
1510                .is_counter_moving = optc1_is_counter_moving,
1511                .get_position = optc1_get_position,
1512                .get_frame_count = optc1_get_vblank_counter,
1513                .get_scanoutpos = optc1_get_crtc_scanoutpos,
1514                .get_otg_active_size = optc1_get_otg_active_size,
1515                .set_early_control = optc1_set_early_control,
1516                /* used by enable_timing_synchronization. Not need for FPGA */
1517                .wait_for_state = optc1_wait_for_state,
1518                .set_blank = optc1_set_blank,
1519                .is_blanked = optc1_is_blanked,
1520                .set_blank_color = optc1_program_blank_color,
1521                .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1522                .enable_reset_trigger = optc1_enable_reset_trigger,
1523                .enable_crtc_reset = optc1_enable_crtc_reset,
1524                .disable_reset_trigger = optc1_disable_reset_trigger,
1525                .lock = optc1_lock,
1526                .is_locked = optc1_is_locked,
1527                .unlock = optc1_unlock,
1528                .enable_optc_clock = optc1_enable_optc_clock,
1529                .set_drr = optc1_set_drr,
1530                .set_static_screen_control = optc1_set_static_screen_control,
1531                .set_test_pattern = optc1_set_test_pattern,
1532                .program_stereo = optc1_program_stereo,
1533                .is_stereo_left_eye = optc1_is_stereo_left_eye,
1534                .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1535                .tg_init = optc1_tg_init,
1536                .is_tg_enabled = optc1_is_tg_enabled,
1537                .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1538                .clear_optc_underflow = optc1_clear_optc_underflow,
1539                .get_crc = optc1_get_crc,
1540                .configure_crc = optc1_configure_crc,
1541                .set_vtg_params = optc1_set_vtg_params,
1542                .program_manual_trigger = optc1_program_manual_trigger,
1543                .setup_manual_trigger = optc1_setup_manual_trigger,
1544                .get_hw_timing = optc1_get_hw_timing,
1545};
1546
1547void dcn10_timing_generator_init(struct optc *optc1)
1548{
1549        optc1->base.funcs = &dcn10_tg_funcs;
1550
1551        optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1552        optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1553
1554        optc1->min_h_blank = 32;
1555        optc1->min_v_blank = 3;
1556        optc1->min_v_blank_interlace = 5;
1557        optc1->min_h_sync_width = 4;
1558        optc1->min_v_sync_width = 1;
1559}
1560
1561/* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1562 *
1563 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1564 *   containter rate.
1565 *
1566 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1567 *   halved to maintain the correct pixel rate.
1568 *
1569 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1570 *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1571 *
1572 */
1573bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1574{
1575        bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1576
1577        two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1578                        && !timing->dsc_cfg.ycbcr422_simple);
1579        return two_pix;
1580}
1581
1582