linux/drivers/gpu/drm/i915/i915_active.c
<<
>>
Prefs
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16#include "i915_globals.h"
  17
  18/*
  19 * Active refs memory management
  20 *
  21 * To be more economical with memory, we reap all the i915_active trees as
  22 * they idle (when we know the active requests are inactive) and allocate the
  23 * nodes from a local slab cache to hopefully reduce the fragmentation.
  24 */
  25static struct i915_global_active {
  26        struct i915_global base;
  27        struct kmem_cache *slab_cache;
  28} global;
  29
  30struct active_node {
  31        struct rb_node node;
  32        struct i915_active_fence base;
  33        struct i915_active *ref;
  34        u64 timeline;
  35};
  36
  37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  38
  39static inline struct active_node *
  40node_from_active(struct i915_active_fence *active)
  41{
  42        return container_of(active, struct active_node, base);
  43}
  44
  45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  46
  47static inline bool is_barrier(const struct i915_active_fence *active)
  48{
  49        return IS_ERR(rcu_access_pointer(active->fence));
  50}
  51
  52static inline struct llist_node *barrier_to_ll(struct active_node *node)
  53{
  54        GEM_BUG_ON(!is_barrier(&node->base));
  55        return (struct llist_node *)&node->base.cb.node;
  56}
  57
  58static inline struct intel_engine_cs *
  59__barrier_to_engine(struct active_node *node)
  60{
  61        return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  62}
  63
  64static inline struct intel_engine_cs *
  65barrier_to_engine(struct active_node *node)
  66{
  67        GEM_BUG_ON(!is_barrier(&node->base));
  68        return __barrier_to_engine(node);
  69}
  70
  71static inline struct active_node *barrier_from_ll(struct llist_node *x)
  72{
  73        return container_of((struct list_head *)x,
  74                            struct active_node, base.cb.node);
  75}
  76
  77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  78
  79static void *active_debug_hint(void *addr)
  80{
  81        struct i915_active *ref = addr;
  82
  83        return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  84}
  85
  86static const struct debug_obj_descr active_debug_desc = {
  87        .name = "i915_active",
  88        .debug_hint = active_debug_hint,
  89};
  90
  91static void debug_active_init(struct i915_active *ref)
  92{
  93        debug_object_init(ref, &active_debug_desc);
  94}
  95
  96static void debug_active_activate(struct i915_active *ref)
  97{
  98        lockdep_assert_held(&ref->tree_lock);
  99        if (!atomic_read(&ref->count)) /* before the first inc */
 100                debug_object_activate(ref, &active_debug_desc);
 101}
 102
 103static void debug_active_deactivate(struct i915_active *ref)
 104{
 105        lockdep_assert_held(&ref->tree_lock);
 106        if (!atomic_read(&ref->count)) /* after the last dec */
 107                debug_object_deactivate(ref, &active_debug_desc);
 108}
 109
 110static void debug_active_fini(struct i915_active *ref)
 111{
 112        debug_object_free(ref, &active_debug_desc);
 113}
 114
 115static void debug_active_assert(struct i915_active *ref)
 116{
 117        debug_object_assert_init(ref, &active_debug_desc);
 118}
 119
 120#else
 121
 122static inline void debug_active_init(struct i915_active *ref) { }
 123static inline void debug_active_activate(struct i915_active *ref) { }
 124static inline void debug_active_deactivate(struct i915_active *ref) { }
 125static inline void debug_active_fini(struct i915_active *ref) { }
 126static inline void debug_active_assert(struct i915_active *ref) { }
 127
 128#endif
 129
 130static void
 131__active_retire(struct i915_active *ref)
 132{
 133        struct rb_root root = RB_ROOT;
 134        struct active_node *it, *n;
 135        unsigned long flags;
 136
 137        GEM_BUG_ON(i915_active_is_idle(ref));
 138
 139        /* return the unused nodes to our slabcache -- flushing the allocator */
 140        if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 141                return;
 142
 143        GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 144        debug_active_deactivate(ref);
 145
 146        /* Even if we have not used the cache, we may still have a barrier */
 147        if (!ref->cache)
 148                ref->cache = fetch_node(ref->tree.rb_node);
 149
 150        /* Keep the MRU cached node for reuse */
 151        if (ref->cache) {
 152                /* Discard all other nodes in the tree */
 153                rb_erase(&ref->cache->node, &ref->tree);
 154                root = ref->tree;
 155
 156                /* Rebuild the tree with only the cached node */
 157                rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 158                rb_insert_color(&ref->cache->node, &ref->tree);
 159                GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 160
 161                /* Make the cached node available for reuse with any timeline */
 162                ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 163        }
 164
 165        spin_unlock_irqrestore(&ref->tree_lock, flags);
 166
 167        /* After the final retire, the entire struct may be freed */
 168        if (ref->retire)
 169                ref->retire(ref);
 170
 171        /* ... except if you wait on it, you must manage your own references! */
 172        wake_up_var(ref);
 173
 174        /* Finally free the discarded timeline tree  */
 175        rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 176                GEM_BUG_ON(i915_active_fence_isset(&it->base));
 177                kmem_cache_free(global.slab_cache, it);
 178        }
 179}
 180
 181static void
 182active_work(struct work_struct *wrk)
 183{
 184        struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 185
 186        GEM_BUG_ON(!atomic_read(&ref->count));
 187        if (atomic_add_unless(&ref->count, -1, 1))
 188                return;
 189
 190        __active_retire(ref);
 191}
 192
 193static void
 194active_retire(struct i915_active *ref)
 195{
 196        GEM_BUG_ON(!atomic_read(&ref->count));
 197        if (atomic_add_unless(&ref->count, -1, 1))
 198                return;
 199
 200        if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 201                queue_work(system_unbound_wq, &ref->work);
 202                return;
 203        }
 204
 205        __active_retire(ref);
 206}
 207
 208static inline struct dma_fence **
 209__active_fence_slot(struct i915_active_fence *active)
 210{
 211        return (struct dma_fence ** __force)&active->fence;
 212}
 213
 214static inline bool
 215active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 216{
 217        struct i915_active_fence *active =
 218                container_of(cb, typeof(*active), cb);
 219
 220        return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
 221}
 222
 223static void
 224node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 225{
 226        if (active_fence_cb(fence, cb))
 227                active_retire(container_of(cb, struct active_node, base.cb)->ref);
 228}
 229
 230static void
 231excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 232{
 233        if (active_fence_cb(fence, cb))
 234                active_retire(container_of(cb, struct i915_active, excl.cb));
 235}
 236
 237static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 238{
 239        struct active_node *it;
 240
 241        GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 242
 243        /*
 244         * We track the most recently used timeline to skip a rbtree search
 245         * for the common case, under typical loads we never need the rbtree
 246         * at all. We can reuse the last slot if it is empty, that is
 247         * after the previous activity has been retired, or if it matches the
 248         * current timeline.
 249         */
 250        it = READ_ONCE(ref->cache);
 251        if (it) {
 252                u64 cached = READ_ONCE(it->timeline);
 253
 254                /* Once claimed, this slot will only belong to this idx */
 255                if (cached == idx)
 256                        return it;
 257
 258                /*
 259                 * An unclaimed cache [.timeline=0] can only be claimed once.
 260                 *
 261                 * If the value is already non-zero, some other thread has
 262                 * claimed the cache and we know that is does not match our
 263                 * idx. If, and only if, the timeline is currently zero is it
 264                 * worth competing to claim it atomically for ourselves (for
 265                 * only the winner of that race will cmpxchg return the old
 266                 * value of 0).
 267                 */
 268                if (!cached && !cmpxchg64(&it->timeline, 0, idx))
 269                        return it;
 270        }
 271
 272        BUILD_BUG_ON(offsetof(typeof(*it), node));
 273
 274        /* While active, the tree can only be built; not destroyed */
 275        GEM_BUG_ON(i915_active_is_idle(ref));
 276
 277        it = fetch_node(ref->tree.rb_node);
 278        while (it) {
 279                if (it->timeline < idx) {
 280                        it = fetch_node(it->node.rb_right);
 281                } else if (it->timeline > idx) {
 282                        it = fetch_node(it->node.rb_left);
 283                } else {
 284                        WRITE_ONCE(ref->cache, it);
 285                        break;
 286                }
 287        }
 288
 289        /* NB: If the tree rotated beneath us, we may miss our target. */
 290        return it;
 291}
 292
 293static struct i915_active_fence *
 294active_instance(struct i915_active *ref, u64 idx)
 295{
 296        struct active_node *node, *prealloc;
 297        struct rb_node **p, *parent;
 298
 299        node = __active_lookup(ref, idx);
 300        if (likely(node))
 301                return &node->base;
 302
 303        /* Preallocate a replacement, just in case */
 304        prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 305        if (!prealloc)
 306                return NULL;
 307
 308        spin_lock_irq(&ref->tree_lock);
 309        GEM_BUG_ON(i915_active_is_idle(ref));
 310
 311        parent = NULL;
 312        p = &ref->tree.rb_node;
 313        while (*p) {
 314                parent = *p;
 315
 316                node = rb_entry(parent, struct active_node, node);
 317                if (node->timeline == idx) {
 318                        kmem_cache_free(global.slab_cache, prealloc);
 319                        goto out;
 320                }
 321
 322                if (node->timeline < idx)
 323                        p = &parent->rb_right;
 324                else
 325                        p = &parent->rb_left;
 326        }
 327
 328        node = prealloc;
 329        __i915_active_fence_init(&node->base, NULL, node_retire);
 330        node->ref = ref;
 331        node->timeline = idx;
 332
 333        rb_link_node(&node->node, parent, p);
 334        rb_insert_color(&node->node, &ref->tree);
 335
 336out:
 337        WRITE_ONCE(ref->cache, node);
 338        spin_unlock_irq(&ref->tree_lock);
 339
 340        return &node->base;
 341}
 342
 343void __i915_active_init(struct i915_active *ref,
 344                        int (*active)(struct i915_active *ref),
 345                        void (*retire)(struct i915_active *ref),
 346                        struct lock_class_key *mkey,
 347                        struct lock_class_key *wkey)
 348{
 349        unsigned long bits;
 350
 351        debug_active_init(ref);
 352
 353        ref->flags = 0;
 354        ref->active = active;
 355        ref->retire = ptr_unpack_bits(retire, &bits, 2);
 356        if (bits & I915_ACTIVE_MAY_SLEEP)
 357                ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
 358
 359        spin_lock_init(&ref->tree_lock);
 360        ref->tree = RB_ROOT;
 361        ref->cache = NULL;
 362
 363        init_llist_head(&ref->preallocated_barriers);
 364        atomic_set(&ref->count, 0);
 365        __mutex_init(&ref->mutex, "i915_active", mkey);
 366        __i915_active_fence_init(&ref->excl, NULL, excl_retire);
 367        INIT_WORK(&ref->work, active_work);
 368#if IS_ENABLED(CONFIG_LOCKDEP)
 369        lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 370#endif
 371}
 372
 373static bool ____active_del_barrier(struct i915_active *ref,
 374                                   struct active_node *node,
 375                                   struct intel_engine_cs *engine)
 376
 377{
 378        struct llist_node *head = NULL, *tail = NULL;
 379        struct llist_node *pos, *next;
 380
 381        GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 382
 383        /*
 384         * Rebuild the llist excluding our node. We may perform this
 385         * outside of the kernel_context timeline mutex and so someone
 386         * else may be manipulating the engine->barrier_tasks, in
 387         * which case either we or they will be upset :)
 388         *
 389         * A second __active_del_barrier() will report failure to claim
 390         * the active_node and the caller will just shrug and know not to
 391         * claim ownership of its node.
 392         *
 393         * A concurrent i915_request_add_active_barriers() will miss adding
 394         * any of the tasks, but we will try again on the next -- and since
 395         * we are actively using the barrier, we know that there will be
 396         * at least another opportunity when we idle.
 397         */
 398        llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 399                if (node == barrier_from_ll(pos)) {
 400                        node = NULL;
 401                        continue;
 402                }
 403
 404                pos->next = head;
 405                head = pos;
 406                if (!tail)
 407                        tail = pos;
 408        }
 409        if (head)
 410                llist_add_batch(head, tail, &engine->barrier_tasks);
 411
 412        return !node;
 413}
 414
 415static bool
 416__active_del_barrier(struct i915_active *ref, struct active_node *node)
 417{
 418        return ____active_del_barrier(ref, node, barrier_to_engine(node));
 419}
 420
 421static bool
 422replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 423{
 424        if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 425                return false;
 426
 427        /*
 428         * This request is on the kernel_context timeline, and so
 429         * we can use it to substitute for the pending idle-barrer
 430         * request that we want to emit on the kernel_context.
 431         */
 432        __active_del_barrier(ref, node_from_active(active));
 433        return true;
 434}
 435
 436int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 437{
 438        struct i915_active_fence *active;
 439        int err;
 440
 441        /* Prevent reaping in case we malloc/wait while building the tree */
 442        err = i915_active_acquire(ref);
 443        if (err)
 444                return err;
 445
 446        active = active_instance(ref, idx);
 447        if (!active) {
 448                err = -ENOMEM;
 449                goto out;
 450        }
 451
 452        if (replace_barrier(ref, active)) {
 453                RCU_INIT_POINTER(active->fence, NULL);
 454                atomic_dec(&ref->count);
 455        }
 456        if (!__i915_active_fence_set(active, fence))
 457                __i915_active_acquire(ref);
 458
 459out:
 460        i915_active_release(ref);
 461        return err;
 462}
 463
 464static struct dma_fence *
 465__i915_active_set_fence(struct i915_active *ref,
 466                        struct i915_active_fence *active,
 467                        struct dma_fence *fence)
 468{
 469        struct dma_fence *prev;
 470
 471        if (replace_barrier(ref, active)) {
 472                RCU_INIT_POINTER(active->fence, fence);
 473                return NULL;
 474        }
 475
 476        rcu_read_lock();
 477        prev = __i915_active_fence_set(active, fence);
 478        if (prev)
 479                prev = dma_fence_get_rcu(prev);
 480        else
 481                __i915_active_acquire(ref);
 482        rcu_read_unlock();
 483
 484        return prev;
 485}
 486
 487static struct i915_active_fence *
 488__active_fence(struct i915_active *ref, u64 idx)
 489{
 490        struct active_node *it;
 491
 492        it = __active_lookup(ref, idx);
 493        if (unlikely(!it)) { /* Contention with parallel tree builders! */
 494                spin_lock_irq(&ref->tree_lock);
 495                it = __active_lookup(ref, idx);
 496                spin_unlock_irq(&ref->tree_lock);
 497        }
 498        GEM_BUG_ON(!it); /* slot must be preallocated */
 499
 500        return &it->base;
 501}
 502
 503struct dma_fence *
 504__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 505{
 506        /* Only valid while active, see i915_active_acquire_for_context() */
 507        return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
 508}
 509
 510struct dma_fence *
 511i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 512{
 513        /* We expect the caller to manage the exclusive timeline ordering */
 514        return __i915_active_set_fence(ref, &ref->excl, f);
 515}
 516
 517bool i915_active_acquire_if_busy(struct i915_active *ref)
 518{
 519        debug_active_assert(ref);
 520        return atomic_add_unless(&ref->count, 1, 0);
 521}
 522
 523static void __i915_active_activate(struct i915_active *ref)
 524{
 525        spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 526        if (!atomic_fetch_inc(&ref->count))
 527                debug_active_activate(ref);
 528        spin_unlock_irq(&ref->tree_lock);
 529}
 530
 531int i915_active_acquire(struct i915_active *ref)
 532{
 533        int err;
 534
 535        if (i915_active_acquire_if_busy(ref))
 536                return 0;
 537
 538        if (!ref->active) {
 539                __i915_active_activate(ref);
 540                return 0;
 541        }
 542
 543        err = mutex_lock_interruptible(&ref->mutex);
 544        if (err)
 545                return err;
 546
 547        if (likely(!i915_active_acquire_if_busy(ref))) {
 548                err = ref->active(ref);
 549                if (!err)
 550                        __i915_active_activate(ref);
 551        }
 552
 553        mutex_unlock(&ref->mutex);
 554
 555        return err;
 556}
 557
 558int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 559{
 560        struct i915_active_fence *active;
 561        int err;
 562
 563        err = i915_active_acquire(ref);
 564        if (err)
 565                return err;
 566
 567        active = active_instance(ref, idx);
 568        if (!active) {
 569                i915_active_release(ref);
 570                return -ENOMEM;
 571        }
 572
 573        return 0; /* return with active ref */
 574}
 575
 576void i915_active_release(struct i915_active *ref)
 577{
 578        debug_active_assert(ref);
 579        active_retire(ref);
 580}
 581
 582static void enable_signaling(struct i915_active_fence *active)
 583{
 584        struct dma_fence *fence;
 585
 586        if (unlikely(is_barrier(active)))
 587                return;
 588
 589        fence = i915_active_fence_get(active);
 590        if (!fence)
 591                return;
 592
 593        dma_fence_enable_sw_signaling(fence);
 594        dma_fence_put(fence);
 595}
 596
 597static int flush_barrier(struct active_node *it)
 598{
 599        struct intel_engine_cs *engine;
 600
 601        if (likely(!is_barrier(&it->base)))
 602                return 0;
 603
 604        engine = __barrier_to_engine(it);
 605        smp_rmb(); /* serialise with add_active_barriers */
 606        if (!is_barrier(&it->base))
 607                return 0;
 608
 609        return intel_engine_flush_barriers(engine);
 610}
 611
 612static int flush_lazy_signals(struct i915_active *ref)
 613{
 614        struct active_node *it, *n;
 615        int err = 0;
 616
 617        enable_signaling(&ref->excl);
 618        rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 619                err = flush_barrier(it); /* unconnected idle barrier? */
 620                if (err)
 621                        break;
 622
 623                enable_signaling(&it->base);
 624        }
 625
 626        return err;
 627}
 628
 629int __i915_active_wait(struct i915_active *ref, int state)
 630{
 631        might_sleep();
 632
 633        /* Any fence added after the wait begins will not be auto-signaled */
 634        if (i915_active_acquire_if_busy(ref)) {
 635                int err;
 636
 637                err = flush_lazy_signals(ref);
 638                i915_active_release(ref);
 639                if (err)
 640                        return err;
 641
 642                if (___wait_var_event(ref, i915_active_is_idle(ref),
 643                                      state, 0, 0, schedule()))
 644                        return -EINTR;
 645        }
 646
 647        /*
 648         * After the wait is complete, the caller may free the active.
 649         * We have to flush any concurrent retirement before returning.
 650         */
 651        flush_work(&ref->work);
 652        return 0;
 653}
 654
 655static int __await_active(struct i915_active_fence *active,
 656                          int (*fn)(void *arg, struct dma_fence *fence),
 657                          void *arg)
 658{
 659        struct dma_fence *fence;
 660
 661        if (is_barrier(active)) /* XXX flush the barrier? */
 662                return 0;
 663
 664        fence = i915_active_fence_get(active);
 665        if (fence) {
 666                int err;
 667
 668                err = fn(arg, fence);
 669                dma_fence_put(fence);
 670                if (err < 0)
 671                        return err;
 672        }
 673
 674        return 0;
 675}
 676
 677struct wait_barrier {
 678        struct wait_queue_entry base;
 679        struct i915_active *ref;
 680};
 681
 682static int
 683barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 684{
 685        struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 686
 687        if (i915_active_is_idle(wb->ref)) {
 688                list_del(&wq->entry);
 689                i915_sw_fence_complete(wq->private);
 690                kfree(wq);
 691        }
 692
 693        return 0;
 694}
 695
 696static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 697{
 698        struct wait_barrier *wb;
 699
 700        wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 701        if (unlikely(!wb))
 702                return -ENOMEM;
 703
 704        GEM_BUG_ON(i915_active_is_idle(ref));
 705        if (!i915_sw_fence_await(fence)) {
 706                kfree(wb);
 707                return -EINVAL;
 708        }
 709
 710        wb->base.flags = 0;
 711        wb->base.func = barrier_wake;
 712        wb->base.private = fence;
 713        wb->ref = ref;
 714
 715        add_wait_queue(__var_waitqueue(ref), &wb->base);
 716        return 0;
 717}
 718
 719static int await_active(struct i915_active *ref,
 720                        unsigned int flags,
 721                        int (*fn)(void *arg, struct dma_fence *fence),
 722                        void *arg, struct i915_sw_fence *barrier)
 723{
 724        int err = 0;
 725
 726        if (!i915_active_acquire_if_busy(ref))
 727                return 0;
 728
 729        if (flags & I915_ACTIVE_AWAIT_EXCL &&
 730            rcu_access_pointer(ref->excl.fence)) {
 731                err = __await_active(&ref->excl, fn, arg);
 732                if (err)
 733                        goto out;
 734        }
 735
 736        if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 737                struct active_node *it, *n;
 738
 739                rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 740                        err = __await_active(&it->base, fn, arg);
 741                        if (err)
 742                                goto out;
 743                }
 744        }
 745
 746        if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 747                err = flush_lazy_signals(ref);
 748                if (err)
 749                        goto out;
 750
 751                err = __await_barrier(ref, barrier);
 752                if (err)
 753                        goto out;
 754        }
 755
 756out:
 757        i915_active_release(ref);
 758        return err;
 759}
 760
 761static int rq_await_fence(void *arg, struct dma_fence *fence)
 762{
 763        return i915_request_await_dma_fence(arg, fence);
 764}
 765
 766int i915_request_await_active(struct i915_request *rq,
 767                              struct i915_active *ref,
 768                              unsigned int flags)
 769{
 770        return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 771}
 772
 773static int sw_await_fence(void *arg, struct dma_fence *fence)
 774{
 775        return i915_sw_fence_await_dma_fence(arg, fence, 0,
 776                                             GFP_NOWAIT | __GFP_NOWARN);
 777}
 778
 779int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 780                               struct i915_active *ref,
 781                               unsigned int flags)
 782{
 783        return await_active(ref, flags, sw_await_fence, fence, fence);
 784}
 785
 786void i915_active_fini(struct i915_active *ref)
 787{
 788        debug_active_fini(ref);
 789        GEM_BUG_ON(atomic_read(&ref->count));
 790        GEM_BUG_ON(work_pending(&ref->work));
 791        mutex_destroy(&ref->mutex);
 792
 793        if (ref->cache)
 794                kmem_cache_free(global.slab_cache, ref->cache);
 795}
 796
 797static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 798{
 799        return node->timeline == idx && !i915_active_fence_isset(&node->base);
 800}
 801
 802static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 803{
 804        struct rb_node *prev, *p;
 805
 806        if (RB_EMPTY_ROOT(&ref->tree))
 807                return NULL;
 808
 809        GEM_BUG_ON(i915_active_is_idle(ref));
 810
 811        /*
 812         * Try to reuse any existing barrier nodes already allocated for this
 813         * i915_active, due to overlapping active phases there is likely a
 814         * node kept alive (as we reuse before parking). We prefer to reuse
 815         * completely idle barriers (less hassle in manipulating the llists),
 816         * but otherwise any will do.
 817         */
 818        if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 819                p = &ref->cache->node;
 820                goto match;
 821        }
 822
 823        prev = NULL;
 824        p = ref->tree.rb_node;
 825        while (p) {
 826                struct active_node *node =
 827                        rb_entry(p, struct active_node, node);
 828
 829                if (is_idle_barrier(node, idx))
 830                        goto match;
 831
 832                prev = p;
 833                if (node->timeline < idx)
 834                        p = READ_ONCE(p->rb_right);
 835                else
 836                        p = READ_ONCE(p->rb_left);
 837        }
 838
 839        /*
 840         * No quick match, but we did find the leftmost rb_node for the
 841         * kernel_context. Walk the rb_tree in-order to see if there were
 842         * any idle-barriers on this timeline that we missed, or just use
 843         * the first pending barrier.
 844         */
 845        for (p = prev; p; p = rb_next(p)) {
 846                struct active_node *node =
 847                        rb_entry(p, struct active_node, node);
 848                struct intel_engine_cs *engine;
 849
 850                if (node->timeline > idx)
 851                        break;
 852
 853                if (node->timeline < idx)
 854                        continue;
 855
 856                if (is_idle_barrier(node, idx))
 857                        goto match;
 858
 859                /*
 860                 * The list of pending barriers is protected by the
 861                 * kernel_context timeline, which notably we do not hold
 862                 * here. i915_request_add_active_barriers() may consume
 863                 * the barrier before we claim it, so we have to check
 864                 * for success.
 865                 */
 866                engine = __barrier_to_engine(node);
 867                smp_rmb(); /* serialise with add_active_barriers */
 868                if (is_barrier(&node->base) &&
 869                    ____active_del_barrier(ref, node, engine))
 870                        goto match;
 871        }
 872
 873        return NULL;
 874
 875match:
 876        spin_lock_irq(&ref->tree_lock);
 877        rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 878        if (p == &ref->cache->node)
 879                WRITE_ONCE(ref->cache, NULL);
 880        spin_unlock_irq(&ref->tree_lock);
 881
 882        return rb_entry(p, struct active_node, node);
 883}
 884
 885int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 886                                            struct intel_engine_cs *engine)
 887{
 888        intel_engine_mask_t tmp, mask = engine->mask;
 889        struct llist_node *first = NULL, *last = NULL;
 890        struct intel_gt *gt = engine->gt;
 891
 892        GEM_BUG_ON(i915_active_is_idle(ref));
 893
 894        /* Wait until the previous preallocation is completed */
 895        while (!llist_empty(&ref->preallocated_barriers))
 896                cond_resched();
 897
 898        /*
 899         * Preallocate a node for each physical engine supporting the target
 900         * engine (remember virtual engines have more than one sibling).
 901         * We can then use the preallocated nodes in
 902         * i915_active_acquire_barrier()
 903         */
 904        GEM_BUG_ON(!mask);
 905        for_each_engine_masked(engine, gt, mask, tmp) {
 906                u64 idx = engine->kernel_context->timeline->fence_context;
 907                struct llist_node *prev = first;
 908                struct active_node *node;
 909
 910                rcu_read_lock();
 911                node = reuse_idle_barrier(ref, idx);
 912                rcu_read_unlock();
 913                if (!node) {
 914                        node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 915                        if (!node)
 916                                goto unwind;
 917
 918                        RCU_INIT_POINTER(node->base.fence, NULL);
 919                        node->base.cb.func = node_retire;
 920                        node->timeline = idx;
 921                        node->ref = ref;
 922                }
 923
 924                if (!i915_active_fence_isset(&node->base)) {
 925                        /*
 926                         * Mark this as being *our* unconnected proto-node.
 927                         *
 928                         * Since this node is not in any list, and we have
 929                         * decoupled it from the rbtree, we can reuse the
 930                         * request to indicate this is an idle-barrier node
 931                         * and then we can use the rb_node and list pointers
 932                         * for our tracking of the pending barrier.
 933                         */
 934                        RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 935                        node->base.cb.node.prev = (void *)engine;
 936                        __i915_active_acquire(ref);
 937                }
 938                GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 939
 940                GEM_BUG_ON(barrier_to_engine(node) != engine);
 941                first = barrier_to_ll(node);
 942                first->next = prev;
 943                if (!last)
 944                        last = first;
 945                intel_engine_pm_get(engine);
 946        }
 947
 948        GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 949        llist_add_batch(first, last, &ref->preallocated_barriers);
 950
 951        return 0;
 952
 953unwind:
 954        while (first) {
 955                struct active_node *node = barrier_from_ll(first);
 956
 957                first = first->next;
 958
 959                atomic_dec(&ref->count);
 960                intel_engine_pm_put(barrier_to_engine(node));
 961
 962                kmem_cache_free(global.slab_cache, node);
 963        }
 964        return -ENOMEM;
 965}
 966
 967void i915_active_acquire_barrier(struct i915_active *ref)
 968{
 969        struct llist_node *pos, *next;
 970        unsigned long flags;
 971
 972        GEM_BUG_ON(i915_active_is_idle(ref));
 973
 974        /*
 975         * Transfer the list of preallocated barriers into the
 976         * i915_active rbtree, but only as proto-nodes. They will be
 977         * populated by i915_request_add_active_barriers() to point to the
 978         * request that will eventually release them.
 979         */
 980        llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 981                struct active_node *node = barrier_from_ll(pos);
 982                struct intel_engine_cs *engine = barrier_to_engine(node);
 983                struct rb_node **p, *parent;
 984
 985                spin_lock_irqsave_nested(&ref->tree_lock, flags,
 986                                         SINGLE_DEPTH_NESTING);
 987                parent = NULL;
 988                p = &ref->tree.rb_node;
 989                while (*p) {
 990                        struct active_node *it;
 991
 992                        parent = *p;
 993
 994                        it = rb_entry(parent, struct active_node, node);
 995                        if (it->timeline < node->timeline)
 996                                p = &parent->rb_right;
 997                        else
 998                                p = &parent->rb_left;
 999                }
1000                rb_link_node(&node->node, parent, p);
1001                rb_insert_color(&node->node, &ref->tree);
1002                spin_unlock_irqrestore(&ref->tree_lock, flags);
1003
1004                GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1005                llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1006                intel_engine_pm_put_delay(engine, 1);
1007        }
1008}
1009
1010static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1011{
1012        return __active_fence_slot(&barrier_from_ll(node)->base);
1013}
1014
1015void i915_request_add_active_barriers(struct i915_request *rq)
1016{
1017        struct intel_engine_cs *engine = rq->engine;
1018        struct llist_node *node, *next;
1019        unsigned long flags;
1020
1021        GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1022        GEM_BUG_ON(intel_engine_is_virtual(engine));
1023        GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1024
1025        node = llist_del_all(&engine->barrier_tasks);
1026        if (!node)
1027                return;
1028        /*
1029         * Attach the list of proto-fences to the in-flight request such
1030         * that the parent i915_active will be released when this request
1031         * is retired.
1032         */
1033        spin_lock_irqsave(&rq->lock, flags);
1034        llist_for_each_safe(node, next, node) {
1035                /* serialise with reuse_idle_barrier */
1036                smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1037                list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1038        }
1039        spin_unlock_irqrestore(&rq->lock, flags);
1040}
1041
1042/*
1043 * __i915_active_fence_set: Update the last active fence along its timeline
1044 * @active: the active tracker
1045 * @fence: the new fence (under construction)
1046 *
1047 * Records the new @fence as the last active fence along its timeline in
1048 * this active tracker, moving the tracking callbacks from the previous
1049 * fence onto this one. Returns the previous fence (if not already completed),
1050 * which the caller must ensure is executed before the new fence. To ensure
1051 * that the order of fences within the timeline of the i915_active_fence is
1052 * understood, it should be locked by the caller.
1053 */
1054struct dma_fence *
1055__i915_active_fence_set(struct i915_active_fence *active,
1056                        struct dma_fence *fence)
1057{
1058        struct dma_fence *prev;
1059        unsigned long flags;
1060
1061        if (fence == rcu_access_pointer(active->fence))
1062                return fence;
1063
1064        GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1065
1066        /*
1067         * Consider that we have two threads arriving (A and B), with
1068         * C already resident as the active->fence.
1069         *
1070         * A does the xchg first, and so it sees C or NULL depending
1071         * on the timing of the interrupt handler. If it is NULL, the
1072         * previous fence must have been signaled and we know that
1073         * we are first on the timeline. If it is still present,
1074         * we acquire the lock on that fence and serialise with the interrupt
1075         * handler, in the process removing it from any future interrupt
1076         * callback. A will then wait on C before executing (if present).
1077         *
1078         * As B is second, it sees A as the previous fence and so waits for
1079         * it to complete its transition and takes over the occupancy for
1080         * itself -- remembering that it needs to wait on A before executing.
1081         *
1082         * Note the strong ordering of the timeline also provides consistent
1083         * nesting rules for the fence->lock; the inner lock is always the
1084         * older lock.
1085         */
1086        spin_lock_irqsave(fence->lock, flags);
1087        prev = xchg(__active_fence_slot(active), fence);
1088        if (prev) {
1089                GEM_BUG_ON(prev == fence);
1090                spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1091                __list_del_entry(&active->cb.node);
1092                spin_unlock(prev->lock); /* serialise with prev->cb_list */
1093        }
1094        list_add_tail(&active->cb.node, &fence->cb_list);
1095        spin_unlock_irqrestore(fence->lock, flags);
1096
1097        return prev;
1098}
1099
1100int i915_active_fence_set(struct i915_active_fence *active,
1101                          struct i915_request *rq)
1102{
1103        struct dma_fence *fence;
1104        int err = 0;
1105
1106        /* Must maintain timeline ordering wrt previous active requests */
1107        rcu_read_lock();
1108        fence = __i915_active_fence_set(active, &rq->fence);
1109        if (fence) /* but the previous fence may not belong to that timeline! */
1110                fence = dma_fence_get_rcu(fence);
1111        rcu_read_unlock();
1112        if (fence) {
1113                err = i915_request_await_dma_fence(rq, fence);
1114                dma_fence_put(fence);
1115        }
1116
1117        return err;
1118}
1119
1120void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1121{
1122        active_fence_cb(fence, cb);
1123}
1124
1125struct auto_active {
1126        struct i915_active base;
1127        struct kref ref;
1128};
1129
1130struct i915_active *i915_active_get(struct i915_active *ref)
1131{
1132        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1133
1134        kref_get(&aa->ref);
1135        return &aa->base;
1136}
1137
1138static void auto_release(struct kref *ref)
1139{
1140        struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1141
1142        i915_active_fini(&aa->base);
1143        kfree(aa);
1144}
1145
1146void i915_active_put(struct i915_active *ref)
1147{
1148        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1149
1150        kref_put(&aa->ref, auto_release);
1151}
1152
1153static int auto_active(struct i915_active *ref)
1154{
1155        i915_active_get(ref);
1156        return 0;
1157}
1158
1159__i915_active_call static void
1160auto_retire(struct i915_active *ref)
1161{
1162        i915_active_put(ref);
1163}
1164
1165struct i915_active *i915_active_create(void)
1166{
1167        struct auto_active *aa;
1168
1169        aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1170        if (!aa)
1171                return NULL;
1172
1173        kref_init(&aa->ref);
1174        i915_active_init(&aa->base, auto_active, auto_retire);
1175
1176        return &aa->base;
1177}
1178
1179#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180#include "selftests/i915_active.c"
1181#endif
1182
1183static void i915_global_active_shrink(void)
1184{
1185        kmem_cache_shrink(global.slab_cache);
1186}
1187
1188static void i915_global_active_exit(void)
1189{
1190        kmem_cache_destroy(global.slab_cache);
1191}
1192
1193static struct i915_global_active global = { {
1194        .shrink = i915_global_active_shrink,
1195        .exit = i915_global_active_exit,
1196} };
1197
1198int __init i915_global_active_init(void)
1199{
1200        global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1201        if (!global.slab_cache)
1202                return -ENOMEM;
1203
1204        i915_global_register(&global.base);
1205        return 0;
1206}
1207