linux/drivers/media/rc/nuvoton-cir.c
<<
>>
Prefs
   1/*
   2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
   3 *
   4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
   5 * Copyright (C) 2009 Nuvoton PS Team
   6 *
   7 * Special thanks to Nuvoton for providing hardware, spec sheets and
   8 * sample code upon which portions of this driver are based. Indirect
   9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
  10 * modeled after.
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License as
  14 * published by the Free Software Foundation; either version 2 of the
  15 * License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful, but
  18 * WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20 * General Public License for more details.
  21 */
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/pnp.h>
  28#include <linux/io.h>
  29#include <linux/interrupt.h>
  30#include <linux/sched.h>
  31#include <linux/slab.h>
  32#include <media/rc-core.h>
  33#include <linux/pci_ids.h>
  34
  35#include "nuvoton-cir.h"
  36
  37static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
  38
  39static const struct nvt_chip nvt_chips[] = {
  40        { "w83667hg", NVT_W83667HG },
  41        { "NCT6775F", NVT_6775F },
  42        { "NCT6776F", NVT_6776F },
  43        { "NCT6779D", NVT_6779D },
  44};
  45
  46static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
  47{
  48        return nvt->rdev->dev.parent;
  49}
  50
  51static inline bool is_w83667hg(struct nvt_dev *nvt)
  52{
  53        return nvt->chip_ver == NVT_W83667HG;
  54}
  55
  56/* write val to config reg */
  57static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
  58{
  59        outb(reg, nvt->cr_efir);
  60        outb(val, nvt->cr_efdr);
  61}
  62
  63/* read val from config reg */
  64static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
  65{
  66        outb(reg, nvt->cr_efir);
  67        return inb(nvt->cr_efdr);
  68}
  69
  70/* update config register bit without changing other bits */
  71static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
  72{
  73        u8 tmp = nvt_cr_read(nvt, reg) | val;
  74        nvt_cr_write(nvt, tmp, reg);
  75}
  76
  77/* clear config register bit without changing other bits */
  78static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
  79{
  80        u8 tmp = nvt_cr_read(nvt, reg) & ~val;
  81        nvt_cr_write(nvt, tmp, reg);
  82}
  83
  84/* enter extended function mode */
  85static inline int nvt_efm_enable(struct nvt_dev *nvt)
  86{
  87        if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
  88                return -EBUSY;
  89
  90        /* Enabling Extended Function Mode explicitly requires writing 2x */
  91        outb(EFER_EFM_ENABLE, nvt->cr_efir);
  92        outb(EFER_EFM_ENABLE, nvt->cr_efir);
  93
  94        return 0;
  95}
  96
  97/* exit extended function mode */
  98static inline void nvt_efm_disable(struct nvt_dev *nvt)
  99{
 100        outb(EFER_EFM_DISABLE, nvt->cr_efir);
 101
 102        release_region(nvt->cr_efir, 2);
 103}
 104
 105/*
 106 * When you want to address a specific logical device, write its logical
 107 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
 108 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
 109 */
 110static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
 111{
 112        nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
 113}
 114
 115/* select and enable logical device with setting EFM mode*/
 116static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
 117{
 118        nvt_efm_enable(nvt);
 119        nvt_select_logical_dev(nvt, ldev);
 120        nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
 121        nvt_efm_disable(nvt);
 122}
 123
 124/* select and disable logical device with setting EFM mode*/
 125static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
 126{
 127        nvt_efm_enable(nvt);
 128        nvt_select_logical_dev(nvt, ldev);
 129        nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
 130        nvt_efm_disable(nvt);
 131}
 132
 133/* write val to cir config register */
 134static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
 135{
 136        outb(val, nvt->cir_addr + offset);
 137}
 138
 139/* read val from cir config register */
 140static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
 141{
 142        return inb(nvt->cir_addr + offset);
 143}
 144
 145/* write val to cir wake register */
 146static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
 147                                          u8 val, u8 offset)
 148{
 149        outb(val, nvt->cir_wake_addr + offset);
 150}
 151
 152/* read val from cir wake config register */
 153static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
 154{
 155        return inb(nvt->cir_wake_addr + offset);
 156}
 157
 158/* don't override io address if one is set already */
 159static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
 160{
 161        unsigned long old_addr;
 162
 163        old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
 164        old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
 165
 166        if (old_addr)
 167                *ioaddr = old_addr;
 168        else {
 169                nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
 170                nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
 171        }
 172}
 173
 174static void nvt_write_wakeup_codes(struct rc_dev *dev,
 175                                   const u8 *wbuf, int count)
 176{
 177        u8 tolerance, config;
 178        struct nvt_dev *nvt = dev->priv;
 179        unsigned long flags;
 180        int i;
 181
 182        /* hardcode the tolerance to 10% */
 183        tolerance = DIV_ROUND_UP(count, 10);
 184
 185        spin_lock_irqsave(&nvt->lock, flags);
 186
 187        nvt_clear_cir_wake_fifo(nvt);
 188        nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
 189        nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
 190
 191        config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
 192
 193        /* enable writes to wake fifo */
 194        nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
 195                               CIR_WAKE_IRCON);
 196
 197        if (count)
 198                pr_info("Wake samples (%d) =", count);
 199        else
 200                pr_info("Wake sample fifo cleared");
 201
 202        for (i = 0; i < count; i++)
 203                nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
 204
 205        nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
 206
 207        spin_unlock_irqrestore(&nvt->lock, flags);
 208}
 209
 210static ssize_t wakeup_data_show(struct device *dev,
 211                                struct device_attribute *attr,
 212                                char *buf)
 213{
 214        struct rc_dev *rc_dev = to_rc_dev(dev);
 215        struct nvt_dev *nvt = rc_dev->priv;
 216        int fifo_len, duration;
 217        unsigned long flags;
 218        ssize_t buf_len = 0;
 219        int i;
 220
 221        spin_lock_irqsave(&nvt->lock, flags);
 222
 223        fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
 224        fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
 225
 226        /* go to first element to be read */
 227        while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
 228                nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
 229
 230        for (i = 0; i < fifo_len; i++) {
 231                duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
 232                duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
 233                buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
 234                                    "%d ", duration);
 235        }
 236        buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
 237
 238        spin_unlock_irqrestore(&nvt->lock, flags);
 239
 240        return buf_len;
 241}
 242
 243static ssize_t wakeup_data_store(struct device *dev,
 244                                 struct device_attribute *attr,
 245                                 const char *buf, size_t len)
 246{
 247        struct rc_dev *rc_dev = to_rc_dev(dev);
 248        u8 wake_buf[WAKEUP_MAX_SIZE];
 249        char **argv;
 250        int i, count;
 251        unsigned int val;
 252        ssize_t ret;
 253
 254        argv = argv_split(GFP_KERNEL, buf, &count);
 255        if (!argv)
 256                return -ENOMEM;
 257        if (!count || count > WAKEUP_MAX_SIZE) {
 258                ret = -EINVAL;
 259                goto out;
 260        }
 261
 262        for (i = 0; i < count; i++) {
 263                ret = kstrtouint(argv[i], 10, &val);
 264                if (ret)
 265                        goto out;
 266                val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
 267                if (!val || val > 0x7f) {
 268                        ret = -EINVAL;
 269                        goto out;
 270                }
 271                wake_buf[i] = val;
 272                /* sequence must start with a pulse */
 273                if (i % 2 == 0)
 274                        wake_buf[i] |= BUF_PULSE_BIT;
 275        }
 276
 277        nvt_write_wakeup_codes(rc_dev, wake_buf, count);
 278
 279        ret = len;
 280out:
 281        argv_free(argv);
 282        return ret;
 283}
 284static DEVICE_ATTR_RW(wakeup_data);
 285
 286/* dump current cir register contents */
 287static void cir_dump_regs(struct nvt_dev *nvt)
 288{
 289        nvt_efm_enable(nvt);
 290        nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
 291
 292        pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
 293        pr_info(" * CR CIR ACTIVE :   0x%x\n",
 294                nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
 295        pr_info(" * CR CIR BASE ADDR: 0x%x\n",
 296                (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
 297                nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
 298        pr_info(" * CR CIR IRQ NUM:   0x%x\n",
 299                nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
 300
 301        nvt_efm_disable(nvt);
 302
 303        pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
 304        pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
 305        pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
 306        pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
 307        pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
 308        pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
 309        pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
 310        pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
 311        pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
 312        pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
 313        pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
 314        pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
 315        pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
 316        pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
 317        pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
 318        pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
 319        pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
 320}
 321
 322/* dump current cir wake register contents */
 323static void cir_wake_dump_regs(struct nvt_dev *nvt)
 324{
 325        u8 i, fifo_len;
 326
 327        nvt_efm_enable(nvt);
 328        nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
 329
 330        pr_info("%s: Dump CIR WAKE logical device registers:\n",
 331                NVT_DRIVER_NAME);
 332        pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
 333                nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
 334        pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
 335                (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
 336                nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
 337        pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
 338                nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
 339
 340        nvt_efm_disable(nvt);
 341
 342        pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
 343        pr_info(" * IRCON:          0x%x\n",
 344                nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
 345        pr_info(" * IRSTS:          0x%x\n",
 346                nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
 347        pr_info(" * IREN:           0x%x\n",
 348                nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
 349        pr_info(" * FIFO CMP DEEP:  0x%x\n",
 350                nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
 351        pr_info(" * FIFO CMP TOL:   0x%x\n",
 352                nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
 353        pr_info(" * FIFO COUNT:     0x%x\n",
 354                nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
 355        pr_info(" * SLCH:           0x%x\n",
 356                nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
 357        pr_info(" * SLCL:           0x%x\n",
 358                nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
 359        pr_info(" * FIFOCON:        0x%x\n",
 360                nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
 361        pr_info(" * SRXFSTS:        0x%x\n",
 362                nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
 363        pr_info(" * SAMPLE RX FIFO: 0x%x\n",
 364                nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
 365        pr_info(" * WR FIFO DATA:   0x%x\n",
 366                nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
 367        pr_info(" * RD FIFO ONLY:   0x%x\n",
 368                nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
 369        pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
 370                nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
 371        pr_info(" * FIFO IGNORE:    0x%x\n",
 372                nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
 373        pr_info(" * IRFSM:          0x%x\n",
 374                nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
 375
 376        fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
 377        pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
 378        pr_info("* Contents =");
 379        for (i = 0; i < fifo_len; i++)
 380                pr_cont(" %02x",
 381                        nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
 382        pr_cont("\n");
 383}
 384
 385static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
 386{
 387        int i;
 388
 389        for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
 390                if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
 391                        nvt->chip_ver = nvt_chips[i].chip_ver;
 392                        return nvt_chips[i].name;
 393                }
 394
 395        return NULL;
 396}
 397
 398
 399/* detect hardware features */
 400static int nvt_hw_detect(struct nvt_dev *nvt)
 401{
 402        struct device *dev = nvt_get_dev(nvt);
 403        const char *chip_name;
 404        int chip_id;
 405
 406        nvt_efm_enable(nvt);
 407
 408        /* Check if we're wired for the alternate EFER setup */
 409        nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
 410        if (nvt->chip_major == 0xff) {
 411                nvt_efm_disable(nvt);
 412                nvt->cr_efir = CR_EFIR2;
 413                nvt->cr_efdr = CR_EFDR2;
 414                nvt_efm_enable(nvt);
 415                nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
 416        }
 417        nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
 418
 419        nvt_efm_disable(nvt);
 420
 421        chip_id = nvt->chip_major << 8 | nvt->chip_minor;
 422        if (chip_id == NVT_INVALID) {
 423                dev_err(dev, "No device found on either EFM port\n");
 424                return -ENODEV;
 425        }
 426
 427        chip_name = nvt_find_chip(nvt, chip_id);
 428
 429        /* warn, but still let the driver load, if we don't know this chip */
 430        if (!chip_name)
 431                dev_warn(dev,
 432                         "unknown chip, id: 0x%02x 0x%02x, it may not work...",
 433                         nvt->chip_major, nvt->chip_minor);
 434        else
 435                dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
 436                         chip_name, nvt->chip_major, nvt->chip_minor);
 437
 438        return 0;
 439}
 440
 441static void nvt_cir_ldev_init(struct nvt_dev *nvt)
 442{
 443        u8 val, psreg, psmask, psval;
 444
 445        if (is_w83667hg(nvt)) {
 446                psreg = CR_MULTIFUNC_PIN_SEL;
 447                psmask = MULTIFUNC_PIN_SEL_MASK;
 448                psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
 449        } else {
 450                psreg = CR_OUTPUT_PIN_SEL;
 451                psmask = OUTPUT_PIN_SEL_MASK;
 452                psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
 453        }
 454
 455        /* output pin selection: enable CIR, with WB sensor enabled */
 456        val = nvt_cr_read(nvt, psreg);
 457        val &= psmask;
 458        val |= psval;
 459        nvt_cr_write(nvt, val, psreg);
 460
 461        /* Select CIR logical device */
 462        nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
 463
 464        nvt_set_ioaddr(nvt, &nvt->cir_addr);
 465
 466        nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
 467
 468        nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
 469                nvt->cir_addr, nvt->cir_irq);
 470}
 471
 472static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
 473{
 474        /* Select ACPI logical device and anable it */
 475        nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
 476        nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
 477
 478        /* Enable CIR Wake via PSOUT# (Pin60) */
 479        nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
 480
 481        /* enable pme interrupt of cir wakeup event */
 482        nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
 483
 484        /* Select CIR Wake logical device */
 485        nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
 486
 487        nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
 488
 489        nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
 490                nvt->cir_wake_addr);
 491}
 492
 493/* clear out the hardware's cir rx fifo */
 494static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
 495{
 496        u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
 497        nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
 498}
 499
 500/* clear out the hardware's cir wake rx fifo */
 501static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
 502{
 503        u8 val, config;
 504
 505        config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
 506
 507        /* clearing wake fifo works in learning mode only */
 508        nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
 509                               CIR_WAKE_IRCON);
 510
 511        val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
 512        nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
 513                               CIR_WAKE_FIFOCON);
 514
 515        nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
 516}
 517
 518/* clear out the hardware's cir tx fifo */
 519static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
 520{
 521        u8 val;
 522
 523        val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
 524        nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
 525}
 526
 527/* enable RX Trigger Level Reach and Packet End interrupts */
 528static void nvt_set_cir_iren(struct nvt_dev *nvt)
 529{
 530        u8 iren;
 531
 532        iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
 533        nvt_cir_reg_write(nvt, iren, CIR_IREN);
 534}
 535
 536static void nvt_cir_regs_init(struct nvt_dev *nvt)
 537{
 538        nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
 539
 540        /* set sample limit count (PE interrupt raised when reached) */
 541        nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
 542        nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
 543
 544        /* set fifo irq trigger levels */
 545        nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
 546                          CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
 547
 548        /* clear hardware rx and tx fifos */
 549        nvt_clear_cir_fifo(nvt);
 550        nvt_clear_tx_fifo(nvt);
 551
 552        nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
 553}
 554
 555static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
 556{
 557        nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
 558
 559        /*
 560         * Disable RX, set specific carrier on = low, off = high,
 561         * and sample period (currently 50us)
 562         */
 563        nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
 564                               CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
 565                               CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
 566                               CIR_WAKE_IRCON);
 567
 568        /* clear any and all stray interrupts */
 569        nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
 570}
 571
 572static void nvt_enable_wake(struct nvt_dev *nvt)
 573{
 574        unsigned long flags;
 575
 576        nvt_efm_enable(nvt);
 577
 578        nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
 579        nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
 580        nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
 581
 582        nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
 583        nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
 584
 585        nvt_efm_disable(nvt);
 586
 587        spin_lock_irqsave(&nvt->lock, flags);
 588
 589        nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
 590                               CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
 591                               CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
 592                               CIR_WAKE_IRCON);
 593        nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
 594        nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
 595
 596        spin_unlock_irqrestore(&nvt->lock, flags);
 597}
 598
 599#if 0 /* Currently unused */
 600/* rx carrier detect only works in learning mode, must be called w/lock */
 601static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
 602{
 603        u32 count, carrier, duration = 0;
 604        int i;
 605
 606        count = nvt_cir_reg_read(nvt, CIR_FCCL) |
 607                nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
 608
 609        for (i = 0; i < nvt->pkts; i++) {
 610                if (nvt->buf[i] & BUF_PULSE_BIT)
 611                        duration += nvt->buf[i] & BUF_LEN_MASK;
 612        }
 613
 614        duration *= SAMPLE_PERIOD;
 615
 616        if (!count || !duration) {
 617                dev_notice(nvt_get_dev(nvt),
 618                           "Unable to determine carrier! (c:%u, d:%u)",
 619                           count, duration);
 620                return 0;
 621        }
 622
 623        carrier = MS_TO_NS(count) / duration;
 624
 625        if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
 626                nvt_dbg("WTF? Carrier frequency out of range!");
 627
 628        nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
 629                carrier, count, duration);
 630
 631        return carrier;
 632}
 633#endif
 634/*
 635 * set carrier frequency
 636 *
 637 * set carrier on 2 registers: CP & CC
 638 * always set CP as 0x81
 639 * set CC by SPEC, CC = 3MHz/carrier - 1
 640 */
 641static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
 642{
 643        struct nvt_dev *nvt = dev->priv;
 644        u16 val;
 645
 646        if (carrier == 0)
 647                return -EINVAL;
 648
 649        nvt_cir_reg_write(nvt, 1, CIR_CP);
 650        val = 3000000 / (carrier) - 1;
 651        nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
 652
 653        nvt_dbg("cp: 0x%x cc: 0x%x\n",
 654                nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
 655
 656        return 0;
 657}
 658
 659static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
 660                                        struct rc_scancode_filter *sc_filter)
 661{
 662        u8 buf_val;
 663        int i, ret, count;
 664        unsigned int val;
 665        struct ir_raw_event *raw;
 666        u8 wake_buf[WAKEUP_MAX_SIZE];
 667        bool complete;
 668
 669        /* Require mask to be set */
 670        if (!sc_filter->mask)
 671                return 0;
 672
 673        raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
 674        if (!raw)
 675                return -ENOMEM;
 676
 677        ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
 678                                     raw, WAKEUP_MAX_SIZE);
 679        complete = (ret != -ENOBUFS);
 680        if (!complete)
 681                ret = WAKEUP_MAX_SIZE;
 682        else if (ret < 0)
 683                goto out_raw;
 684
 685        /* Inspect the ir samples */
 686        for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
 687                /* NS to US */
 688                val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
 689
 690                /* Split too large values into several smaller ones */
 691                while (val > 0 && count < WAKEUP_MAX_SIZE) {
 692                        /* Skip last value for better comparison tolerance */
 693                        if (complete && i == ret - 1 && val < BUF_LEN_MASK)
 694                                break;
 695
 696                        /* Clamp values to BUF_LEN_MASK at most */
 697                        buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
 698
 699                        wake_buf[count] = buf_val;
 700                        val -= buf_val;
 701                        if ((raw[i]).pulse)
 702                                wake_buf[count] |= BUF_PULSE_BIT;
 703                        count++;
 704                }
 705        }
 706
 707        nvt_write_wakeup_codes(dev, wake_buf, count);
 708        ret = 0;
 709out_raw:
 710        kfree(raw);
 711
 712        return ret;
 713}
 714
 715/* dump contents of the last rx buffer we got from the hw rx fifo */
 716static void nvt_dump_rx_buf(struct nvt_dev *nvt)
 717{
 718        int i;
 719
 720        printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
 721        for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
 722                printk(KERN_CONT "0x%02x ", nvt->buf[i]);
 723        printk(KERN_CONT "\n");
 724}
 725
 726/*
 727 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
 728 * trigger decode when appropriate.
 729 *
 730 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
 731 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
 732 * (default 50us) intervals for that pulse/space. A discrete signal is
 733 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
 734 * to signal more IR coming (repeats) or end of IR, respectively. We store
 735 * sample data in the raw event kfifo until we see 0x7<something> (except f)
 736 * or 0x80, at which time, we trigger a decode operation.
 737 */
 738static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
 739{
 740        DEFINE_IR_RAW_EVENT(rawir);
 741        u8 sample;
 742        int i;
 743
 744        nvt_dbg_verbose("%s firing", __func__);
 745
 746        if (debug)
 747                nvt_dump_rx_buf(nvt);
 748
 749        nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
 750
 751        for (i = 0; i < nvt->pkts; i++) {
 752                sample = nvt->buf[i];
 753
 754                rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
 755                rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
 756                                          * SAMPLE_PERIOD);
 757
 758                nvt_dbg("Storing %s with duration %d",
 759                        rawir.pulse ? "pulse" : "space", rawir.duration);
 760
 761                ir_raw_event_store_with_filter(nvt->rdev, &rawir);
 762        }
 763
 764        nvt->pkts = 0;
 765
 766        nvt_dbg("Calling ir_raw_event_handle\n");
 767        ir_raw_event_handle(nvt->rdev);
 768
 769        nvt_dbg_verbose("%s done", __func__);
 770}
 771
 772static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
 773{
 774        dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
 775
 776        nvt->pkts = 0;
 777        nvt_clear_cir_fifo(nvt);
 778        ir_raw_event_reset(nvt->rdev);
 779}
 780
 781/* copy data from hardware rx fifo into driver buffer */
 782static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
 783{
 784        u8 fifocount;
 785        int i;
 786
 787        /* Get count of how many bytes to read from RX FIFO */
 788        fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
 789
 790        nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
 791
 792        /* Read fifocount bytes from CIR Sample RX FIFO register */
 793        for (i = 0; i < fifocount; i++)
 794                nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
 795
 796        nvt->pkts = fifocount;
 797        nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
 798
 799        nvt_process_rx_ir_data(nvt);
 800}
 801
 802static void nvt_cir_log_irqs(u8 status, u8 iren)
 803{
 804        nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
 805                status, iren,
 806                status & CIR_IRSTS_RDR  ? " RDR"        : "",
 807                status & CIR_IRSTS_RTR  ? " RTR"        : "",
 808                status & CIR_IRSTS_PE   ? " PE"         : "",
 809                status & CIR_IRSTS_RFO  ? " RFO"        : "",
 810                status & CIR_IRSTS_TE   ? " TE"         : "",
 811                status & CIR_IRSTS_TTR  ? " TTR"        : "",
 812                status & CIR_IRSTS_TFU  ? " TFU"        : "",
 813                status & CIR_IRSTS_GH   ? " GH"         : "",
 814                status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
 815                           CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
 816                           CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
 817}
 818
 819/* interrupt service routine for incoming and outgoing CIR data */
 820static irqreturn_t nvt_cir_isr(int irq, void *data)
 821{
 822        struct nvt_dev *nvt = data;
 823        u8 status, iren;
 824
 825        nvt_dbg_verbose("%s firing", __func__);
 826
 827        spin_lock(&nvt->lock);
 828
 829        /*
 830         * Get IR Status register contents. Write 1 to ack/clear
 831         *
 832         * bit: reg name      - description
 833         *   7: CIR_IRSTS_RDR - RX Data Ready
 834         *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
 835         *   5: CIR_IRSTS_PE  - Packet End
 836         *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
 837         *   3: CIR_IRSTS_TE  - TX FIFO Empty
 838         *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
 839         *   1: CIR_IRSTS_TFU - TX FIFO Underrun
 840         *   0: CIR_IRSTS_GH  - Min Length Detected
 841         */
 842        status = nvt_cir_reg_read(nvt, CIR_IRSTS);
 843        iren = nvt_cir_reg_read(nvt, CIR_IREN);
 844
 845        /* At least NCT6779D creates a spurious interrupt when the
 846         * logical device is being disabled.
 847         */
 848        if (status == 0xff && iren == 0xff) {
 849                spin_unlock(&nvt->lock);
 850                nvt_dbg_verbose("Spurious interrupt detected");
 851                return IRQ_HANDLED;
 852        }
 853
 854        /* IRQ may be shared with CIR WAKE, therefore check for each
 855         * status bit whether the related interrupt source is enabled
 856         */
 857        if (!(status & iren)) {
 858                spin_unlock(&nvt->lock);
 859                nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
 860                return IRQ_NONE;
 861        }
 862
 863        /* ack/clear all irq flags we've got */
 864        nvt_cir_reg_write(nvt, status, CIR_IRSTS);
 865        nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
 866
 867        nvt_cir_log_irqs(status, iren);
 868
 869        if (status & CIR_IRSTS_RFO)
 870                nvt_handle_rx_fifo_overrun(nvt);
 871        else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
 872                nvt_get_rx_ir_data(nvt);
 873
 874        spin_unlock(&nvt->lock);
 875
 876        nvt_dbg_verbose("%s done", __func__);
 877        return IRQ_HANDLED;
 878}
 879
 880static void nvt_enable_cir(struct nvt_dev *nvt)
 881{
 882        unsigned long flags;
 883
 884        /* enable the CIR logical device */
 885        nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
 886
 887        spin_lock_irqsave(&nvt->lock, flags);
 888
 889        /*
 890         * Enable TX and RX, specify carrier on = low, off = high, and set
 891         * sample period (currently 50us)
 892         */
 893        nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
 894                          CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
 895                          CIR_IRCON);
 896
 897        /* clear all pending interrupts */
 898        nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
 899
 900        /* enable interrupts */
 901        nvt_set_cir_iren(nvt);
 902
 903        spin_unlock_irqrestore(&nvt->lock, flags);
 904}
 905
 906static void nvt_disable_cir(struct nvt_dev *nvt)
 907{
 908        unsigned long flags;
 909
 910        spin_lock_irqsave(&nvt->lock, flags);
 911
 912        /* disable CIR interrupts */
 913        nvt_cir_reg_write(nvt, 0, CIR_IREN);
 914
 915        /* clear any and all pending interrupts */
 916        nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
 917
 918        /* clear all function enable flags */
 919        nvt_cir_reg_write(nvt, 0, CIR_IRCON);
 920
 921        /* clear hardware rx and tx fifos */
 922        nvt_clear_cir_fifo(nvt);
 923        nvt_clear_tx_fifo(nvt);
 924
 925        spin_unlock_irqrestore(&nvt->lock, flags);
 926
 927        /* disable the CIR logical device */
 928        nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
 929}
 930
 931static int nvt_open(struct rc_dev *dev)
 932{
 933        struct nvt_dev *nvt = dev->priv;
 934
 935        nvt_enable_cir(nvt);
 936
 937        return 0;
 938}
 939
 940static void nvt_close(struct rc_dev *dev)
 941{
 942        struct nvt_dev *nvt = dev->priv;
 943
 944        nvt_disable_cir(nvt);
 945}
 946
 947/* Allocate memory, probe hardware, and initialize everything */
 948static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
 949{
 950        struct nvt_dev *nvt;
 951        struct rc_dev *rdev;
 952        int ret;
 953
 954        nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
 955        if (!nvt)
 956                return -ENOMEM;
 957
 958        /* input device for IR remote */
 959        nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
 960        if (!nvt->rdev)
 961                return -ENOMEM;
 962        rdev = nvt->rdev;
 963
 964        /* activate pnp device */
 965        ret = pnp_activate_dev(pdev);
 966        if (ret) {
 967                dev_err(&pdev->dev, "Could not activate PNP device!\n");
 968                return ret;
 969        }
 970
 971        /* validate pnp resources */
 972        if (!pnp_port_valid(pdev, 0) ||
 973            pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
 974                dev_err(&pdev->dev, "IR PNP Port not valid!\n");
 975                return -EINVAL;
 976        }
 977
 978        if (!pnp_irq_valid(pdev, 0)) {
 979                dev_err(&pdev->dev, "PNP IRQ not valid!\n");
 980                return -EINVAL;
 981        }
 982
 983        if (!pnp_port_valid(pdev, 1) ||
 984            pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
 985                dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
 986                return -EINVAL;
 987        }
 988
 989        nvt->cir_addr = pnp_port_start(pdev, 0);
 990        nvt->cir_irq  = pnp_irq(pdev, 0);
 991
 992        nvt->cir_wake_addr = pnp_port_start(pdev, 1);
 993
 994        nvt->cr_efir = CR_EFIR;
 995        nvt->cr_efdr = CR_EFDR;
 996
 997        spin_lock_init(&nvt->lock);
 998
 999        pnp_set_drvdata(pdev, nvt);
1000
1001        ret = nvt_hw_detect(nvt);
1002        if (ret)
1003                return ret;
1004
1005        /* Initialize CIR & CIR Wake Logical Devices */
1006        nvt_efm_enable(nvt);
1007        nvt_cir_ldev_init(nvt);
1008        nvt_cir_wake_ldev_init(nvt);
1009        nvt_efm_disable(nvt);
1010
1011        /*
1012         * Initialize CIR & CIR Wake Config Registers
1013         * and enable logical devices
1014         */
1015        nvt_cir_regs_init(nvt);
1016        nvt_cir_wake_regs_init(nvt);
1017
1018        /* Set up the rc device */
1019        rdev->priv = nvt;
1020        rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
1021        rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
1022        rdev->encode_wakeup = true;
1023        rdev->open = nvt_open;
1024        rdev->close = nvt_close;
1025        rdev->s_tx_carrier = nvt_set_tx_carrier;
1026        rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1027        rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1028        rdev->input_phys = "nuvoton/cir0";
1029        rdev->input_id.bustype = BUS_HOST;
1030        rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1031        rdev->input_id.product = nvt->chip_major;
1032        rdev->input_id.version = nvt->chip_minor;
1033        rdev->driver_name = NVT_DRIVER_NAME;
1034        rdev->map_name = RC_MAP_RC6_MCE;
1035        rdev->timeout = MS_TO_NS(100);
1036        /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1037        rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1038#if 0
1039        rdev->min_timeout = XYZ;
1040        rdev->max_timeout = XYZ;
1041#endif
1042        ret = devm_rc_register_device(&pdev->dev, rdev);
1043        if (ret)
1044                return ret;
1045
1046        /* now claim resources */
1047        if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1048                            CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1049                return -EBUSY;
1050
1051        ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1052                               IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1053        if (ret)
1054                return ret;
1055
1056        if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1057                            CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1058                return -EBUSY;
1059
1060        ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1061        if (ret)
1062                return ret;
1063
1064        device_init_wakeup(&pdev->dev, true);
1065
1066        dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1067        if (debug) {
1068                cir_dump_regs(nvt);
1069                cir_wake_dump_regs(nvt);
1070        }
1071
1072        return 0;
1073}
1074
1075static void nvt_remove(struct pnp_dev *pdev)
1076{
1077        struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1078
1079        device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1080
1081        nvt_disable_cir(nvt);
1082
1083        /* enable CIR Wake (for IR power-on) */
1084        nvt_enable_wake(nvt);
1085}
1086
1087static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1088{
1089        struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1090
1091        nvt_dbg("%s called", __func__);
1092
1093        mutex_lock(&nvt->rdev->lock);
1094        if (nvt->rdev->users)
1095                nvt_disable_cir(nvt);
1096        mutex_unlock(&nvt->rdev->lock);
1097
1098        /* make sure wake is enabled */
1099        nvt_enable_wake(nvt);
1100
1101        return 0;
1102}
1103
1104static int nvt_resume(struct pnp_dev *pdev)
1105{
1106        struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1107
1108        nvt_dbg("%s called", __func__);
1109
1110        nvt_cir_regs_init(nvt);
1111        nvt_cir_wake_regs_init(nvt);
1112
1113        mutex_lock(&nvt->rdev->lock);
1114        if (nvt->rdev->users)
1115                nvt_enable_cir(nvt);
1116        mutex_unlock(&nvt->rdev->lock);
1117
1118        return 0;
1119}
1120
1121static void nvt_shutdown(struct pnp_dev *pdev)
1122{
1123        struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1124
1125        nvt_enable_wake(nvt);
1126}
1127
1128static const struct pnp_device_id nvt_ids[] = {
1129        { "WEC0530", 0 },   /* CIR */
1130        { "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1131        { "", 0 },
1132};
1133
1134static struct pnp_driver nvt_driver = {
1135        .name           = NVT_DRIVER_NAME,
1136        .id_table       = nvt_ids,
1137        .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1138        .probe          = nvt_probe,
1139        .remove         = nvt_remove,
1140        .suspend        = nvt_suspend,
1141        .resume         = nvt_resume,
1142        .shutdown       = nvt_shutdown,
1143};
1144
1145module_param(debug, int, S_IRUGO | S_IWUSR);
1146MODULE_PARM_DESC(debug, "Enable debugging output");
1147
1148MODULE_DEVICE_TABLE(pnp, nvt_ids);
1149MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1150
1151MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1152MODULE_LICENSE("GPL");
1153
1154module_pnp_driver(nvt_driver);
1155