linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <linux/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev, unsigned int txqueue);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120                                int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148                                  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156                            dma_addr_t buf)
 157{
 158        u32 lstatus;
 159
 160        bdp->bufPtr = cpu_to_be32(buf);
 161
 162        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164                lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166        gfar_wmb();
 167
 168        bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173        struct gfar_private *priv = netdev_priv(ndev);
 174        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175        struct gfar_priv_tx_q *tx_queue = NULL;
 176        struct gfar_priv_rx_q *rx_queue = NULL;
 177        struct txbd8 *txbdp;
 178        u32 __iomem *rfbptr;
 179        int i, j;
 180
 181        for (i = 0; i < priv->num_tx_queues; i++) {
 182                tx_queue = priv->tx_queue[i];
 183                /* Initialize some variables in our dev structure */
 184                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185                tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186                tx_queue->cur_tx = tx_queue->tx_bd_base;
 187                tx_queue->skb_curtx = 0;
 188                tx_queue->skb_dirtytx = 0;
 189
 190                /* Initialize Transmit Descriptor Ring */
 191                txbdp = tx_queue->tx_bd_base;
 192                for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193                        txbdp->lstatus = 0;
 194                        txbdp->bufPtr = 0;
 195                        txbdp++;
 196                }
 197
 198                /* Set the last descriptor in the ring to indicate wrap */
 199                txbdp--;
 200                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201                                            TXBD_WRAP);
 202        }
 203
 204        rfbptr = &regs->rfbptr0;
 205        for (i = 0; i < priv->num_rx_queues; i++) {
 206                rx_queue = priv->rx_queue[i];
 207
 208                rx_queue->next_to_clean = 0;
 209                rx_queue->next_to_use = 0;
 210                rx_queue->next_to_alloc = 0;
 211
 212                /* make sure next_to_clean != next_to_use after this
 213                 * by leaving at least 1 unused descriptor
 214                 */
 215                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217                rx_queue->rfbptr = rfbptr;
 218                rfbptr += 2;
 219        }
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224        void *vaddr;
 225        dma_addr_t addr;
 226        int i, j;
 227        struct gfar_private *priv = netdev_priv(ndev);
 228        struct device *dev = priv->dev;
 229        struct gfar_priv_tx_q *tx_queue = NULL;
 230        struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232        priv->total_tx_ring_size = 0;
 233        for (i = 0; i < priv->num_tx_queues; i++)
 234                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236        priv->total_rx_ring_size = 0;
 237        for (i = 0; i < priv->num_rx_queues; i++)
 238                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240        /* Allocate memory for the buffer descriptors */
 241        vaddr = dma_alloc_coherent(dev,
 242                                   (priv->total_tx_ring_size *
 243                                    sizeof(struct txbd8)) +
 244                                   (priv->total_rx_ring_size *
 245                                    sizeof(struct rxbd8)),
 246                                   &addr, GFP_KERNEL);
 247        if (!vaddr)
 248                return -ENOMEM;
 249
 250        for (i = 0; i < priv->num_tx_queues; i++) {
 251                tx_queue = priv->tx_queue[i];
 252                tx_queue->tx_bd_base = vaddr;
 253                tx_queue->tx_bd_dma_base = addr;
 254                tx_queue->dev = ndev;
 255                /* enet DMA only understands physical addresses */
 256                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258        }
 259
 260        /* Start the rx descriptor ring where the tx ring leaves off */
 261        for (i = 0; i < priv->num_rx_queues; i++) {
 262                rx_queue = priv->rx_queue[i];
 263                rx_queue->rx_bd_base = vaddr;
 264                rx_queue->rx_bd_dma_base = addr;
 265                rx_queue->ndev = ndev;
 266                rx_queue->dev = dev;
 267                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269        }
 270
 271        /* Setup the skbuff rings */
 272        for (i = 0; i < priv->num_tx_queues; i++) {
 273                tx_queue = priv->tx_queue[i];
 274                tx_queue->tx_skbuff =
 275                        kmalloc_array(tx_queue->tx_ring_size,
 276                                      sizeof(*tx_queue->tx_skbuff),
 277                                      GFP_KERNEL);
 278                if (!tx_queue->tx_skbuff)
 279                        goto cleanup;
 280
 281                for (j = 0; j < tx_queue->tx_ring_size; j++)
 282                        tx_queue->tx_skbuff[j] = NULL;
 283        }
 284
 285        for (i = 0; i < priv->num_rx_queues; i++) {
 286                rx_queue = priv->rx_queue[i];
 287                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288                                            sizeof(*rx_queue->rx_buff),
 289                                            GFP_KERNEL);
 290                if (!rx_queue->rx_buff)
 291                        goto cleanup;
 292        }
 293
 294        gfar_init_bds(ndev);
 295
 296        return 0;
 297
 298cleanup:
 299        free_skb_resources(priv);
 300        return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306        u32 __iomem *baddr;
 307        int i;
 308
 309        baddr = &regs->tbase0;
 310        for (i = 0; i < priv->num_tx_queues; i++) {
 311                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312                baddr += 2;
 313        }
 314
 315        baddr = &regs->rbase0;
 316        for (i = 0; i < priv->num_rx_queues; i++) {
 317                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318                baddr += 2;
 319        }
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325        u32 __iomem *baddr;
 326        int i;
 327
 328        baddr = &regs->rqprm0;
 329        for (i = 0; i < priv->num_rx_queues; i++) {
 330                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332                baddr++;
 333        }
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338        /* set this when rx hw offload (TOE) functions are being used */
 339        priv->uses_rxfcb = 0;
 340
 341        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342                priv->uses_rxfcb = 1;
 343
 344        if (priv->hwts_rx_en || priv->rx_filer_enable)
 345                priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351        u32 rctrl = 0;
 352
 353        if (priv->rx_filer_enable) {
 354                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355                /* Program the RIR0 reg with the required distribution */
 356                if (priv->poll_mode == GFAR_SQ_POLLING)
 357                        gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358                else /* GFAR_MQ_POLLING */
 359                        gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360        }
 361
 362        /* Restore PROMISC mode */
 363        if (priv->ndev->flags & IFF_PROMISC)
 364                rctrl |= RCTRL_PROM;
 365
 366        if (priv->ndev->features & NETIF_F_RXCSUM)
 367                rctrl |= RCTRL_CHECKSUMMING;
 368
 369        if (priv->extended_hash)
 370                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372        if (priv->padding) {
 373                rctrl &= ~RCTRL_PAL_MASK;
 374                rctrl |= RCTRL_PADDING(priv->padding);
 375        }
 376
 377        /* Enable HW time stamping if requested from user space */
 378        if (priv->hwts_rx_en)
 379                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384        /* Clear the LFC bit */
 385        gfar_write(&regs->rctrl, rctrl);
 386        /* Init flow control threshold values */
 387        gfar_init_rqprm(priv);
 388        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389        rctrl |= RCTRL_LFC;
 390
 391        /* Init rctrl based on our settings */
 392        gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398        u32 tctrl = 0;
 399
 400        if (priv->ndev->features & NETIF_F_IP_CSUM)
 401                tctrl |= TCTRL_INIT_CSUM;
 402
 403        if (priv->prio_sched_en)
 404                tctrl |= TCTRL_TXSCHED_PRIO;
 405        else {
 406                tctrl |= TCTRL_TXSCHED_WRRS;
 407                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409        }
 410
 411        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412                tctrl |= TCTRL_VLINS;
 413
 414        gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418                               unsigned long tx_mask, unsigned long rx_mask)
 419{
 420        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421        u32 __iomem *baddr;
 422
 423        if (priv->mode == MQ_MG_MODE) {
 424                int i = 0;
 425
 426                baddr = &regs->txic0;
 427                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428                        gfar_write(baddr + i, 0);
 429                        if (likely(priv->tx_queue[i]->txcoalescing))
 430                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431                }
 432
 433                baddr = &regs->rxic0;
 434                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435                        gfar_write(baddr + i, 0);
 436                        if (likely(priv->rx_queue[i]->rxcoalescing))
 437                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438                }
 439        } else {
 440                /* Backward compatible case -- even if we enable
 441                 * multiple queues, there's only single reg to program
 442                 */
 443                gfar_write(&regs->txic, 0);
 444                if (likely(priv->tx_queue[0]->txcoalescing))
 445                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447                gfar_write(&regs->rxic, 0);
 448                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450        }
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460        struct gfar_private *priv = netdev_priv(dev);
 461        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462        unsigned long tx_packets = 0, tx_bytes = 0;
 463        int i;
 464
 465        for (i = 0; i < priv->num_rx_queues; i++) {
 466                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469        }
 470
 471        dev->stats.rx_packets = rx_packets;
 472        dev->stats.rx_bytes   = rx_bytes;
 473        dev->stats.rx_dropped = rx_dropped;
 474
 475        for (i = 0; i < priv->num_tx_queues; i++) {
 476                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478        }
 479
 480        dev->stats.tx_bytes   = tx_bytes;
 481        dev->stats.tx_packets = tx_packets;
 482
 483        return &dev->stats;
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488        eth_mac_addr(dev, p);
 489
 490        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492        return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496        .ndo_open = gfar_enet_open,
 497        .ndo_start_xmit = gfar_start_xmit,
 498        .ndo_stop = gfar_close,
 499        .ndo_change_mtu = gfar_change_mtu,
 500        .ndo_set_features = gfar_set_features,
 501        .ndo_set_rx_mode = gfar_set_multi,
 502        .ndo_tx_timeout = gfar_timeout,
 503        .ndo_do_ioctl = gfar_ioctl,
 504        .ndo_get_stats = gfar_get_stats,
 505        .ndo_set_mac_address = gfar_set_mac_addr,
 506        .ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508        .ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514        int i;
 515        for (i = 0; i < priv->num_grps; i++) {
 516                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517                /* Clear IEVENT */
 518                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520                /* Initialize IMASK */
 521                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522        }
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527        int i;
 528        for (i = 0; i < priv->num_grps; i++) {
 529                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530                /* Unmask the interrupts we look for */
 531                gfar_write(&regs->imask, IMASK_DEFAULT);
 532        }
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537        int i;
 538
 539        for (i = 0; i < priv->num_tx_queues; i++) {
 540                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541                                            GFP_KERNEL);
 542                if (!priv->tx_queue[i])
 543                        return -ENOMEM;
 544
 545                priv->tx_queue[i]->tx_skbuff = NULL;
 546                priv->tx_queue[i]->qindex = i;
 547                priv->tx_queue[i]->dev = priv->ndev;
 548                spin_lock_init(&(priv->tx_queue[i]->txlock));
 549        }
 550        return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555        int i;
 556
 557        for (i = 0; i < priv->num_rx_queues; i++) {
 558                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559                                            GFP_KERNEL);
 560                if (!priv->rx_queue[i])
 561                        return -ENOMEM;
 562
 563                priv->rx_queue[i]->qindex = i;
 564                priv->rx_queue[i]->ndev = priv->ndev;
 565        }
 566        return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571        int i;
 572
 573        for (i = 0; i < priv->num_tx_queues; i++)
 574                kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579        int i;
 580
 581        for (i = 0; i < priv->num_rx_queues; i++)
 582                kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587        int i;
 588
 589        for (i = 0; i < MAXGROUPS; i++)
 590                if (priv->gfargrp[i].regs)
 591                        iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596        int i, j;
 597
 598        for (i = 0; i < priv->num_grps; i++)
 599                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600                        kfree(priv->gfargrp[i].irqinfo[j]);
 601                        priv->gfargrp[i].irqinfo[j] = NULL;
 602                }
 603
 604        free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609        int i;
 610
 611        for (i = 0; i < priv->num_grps; i++) {
 612                napi_disable(&priv->gfargrp[i].napi_rx);
 613                napi_disable(&priv->gfargrp[i].napi_tx);
 614        }
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619        int i;
 620
 621        for (i = 0; i < priv->num_grps; i++) {
 622                napi_enable(&priv->gfargrp[i].napi_rx);
 623                napi_enable(&priv->gfargrp[i].napi_tx);
 624        }
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628                            struct gfar_private *priv, const char *model)
 629{
 630        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631        int i;
 632
 633        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635                                          GFP_KERNEL);
 636                if (!grp->irqinfo[i])
 637                        return -ENOMEM;
 638        }
 639
 640        grp->regs = of_iomap(np, 0);
 641        if (!grp->regs)
 642                return -ENOMEM;
 643
 644        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646        /* If we aren't the FEC we have multiple interrupts */
 647        if (model && strcasecmp(model, "FEC")) {
 648                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650                if (!gfar_irq(grp, TX)->irq ||
 651                    !gfar_irq(grp, RX)->irq ||
 652                    !gfar_irq(grp, ER)->irq)
 653                        return -EINVAL;
 654        }
 655
 656        grp->priv = priv;
 657        spin_lock_init(&grp->grplock);
 658        if (priv->mode == MQ_MG_MODE) {
 659                u32 rxq_mask, txq_mask;
 660                int ret;
 661
 662                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665                ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666                if (!ret) {
 667                        grp->rx_bit_map = rxq_mask ?
 668                        rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669                }
 670
 671                ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672                if (!ret) {
 673                        grp->tx_bit_map = txq_mask ?
 674                        txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675                }
 676
 677                if (priv->poll_mode == GFAR_SQ_POLLING) {
 678                        /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679                        grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680                        grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681                }
 682        } else {
 683                grp->rx_bit_map = 0xFF;
 684                grp->tx_bit_map = 0xFF;
 685        }
 686
 687        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688         * right to left, so we need to revert the 8 bits to get the q index
 689         */
 690        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694         * also assign queues to groups
 695         */
 696        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697                if (!grp->rx_queue)
 698                        grp->rx_queue = priv->rx_queue[i];
 699                grp->num_rx_queues++;
 700                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702                priv->rx_queue[i]->grp = grp;
 703        }
 704
 705        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706                if (!grp->tx_queue)
 707                        grp->tx_queue = priv->tx_queue[i];
 708                grp->num_tx_queues++;
 709                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710                priv->tqueue |= (TQUEUE_EN0 >> i);
 711                priv->tx_queue[i]->grp = grp;
 712        }
 713
 714        priv->num_grps++;
 715
 716        return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721        struct device_node *child;
 722        int num = 0;
 723
 724        for_each_available_child_of_node(np, child)
 725                if (!of_node_cmp(child->name, "queue-group"))
 726                        num++;
 727
 728        return num;
 729}
 730
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733        const char *model;
 734        const char *ctype;
 735        const void *mac_addr;
 736        int err = 0, i;
 737        struct net_device *dev = NULL;
 738        struct gfar_private *priv = NULL;
 739        struct device_node *np = ofdev->dev.of_node;
 740        struct device_node *child = NULL;
 741        u32 stash_len = 0;
 742        u32 stash_idx = 0;
 743        unsigned int num_tx_qs, num_rx_qs;
 744        unsigned short mode, poll_mode;
 745
 746        if (!np)
 747                return -ENODEV;
 748
 749        if (of_device_is_compatible(np, "fsl,etsec2")) {
 750                mode = MQ_MG_MODE;
 751                poll_mode = GFAR_SQ_POLLING;
 752        } else {
 753                mode = SQ_SG_MODE;
 754                poll_mode = GFAR_SQ_POLLING;
 755        }
 756
 757        if (mode == SQ_SG_MODE) {
 758                num_tx_qs = 1;
 759                num_rx_qs = 1;
 760        } else { /* MQ_MG_MODE */
 761                /* get the actual number of supported groups */
 762                unsigned int num_grps = gfar_of_group_count(np);
 763
 764                if (num_grps == 0 || num_grps > MAXGROUPS) {
 765                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766                                num_grps);
 767                        pr_err("Cannot do alloc_etherdev, aborting\n");
 768                        return -EINVAL;
 769                }
 770
 771                if (poll_mode == GFAR_SQ_POLLING) {
 772                        num_tx_qs = num_grps; /* one txq per int group */
 773                        num_rx_qs = num_grps; /* one rxq per int group */
 774                } else { /* GFAR_MQ_POLLING */
 775                        u32 tx_queues, rx_queues;
 776                        int ret;
 777
 778                        /* parse the num of HW tx and rx queues */
 779                        ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780                                                   &tx_queues);
 781                        num_tx_qs = ret ? 1 : tx_queues;
 782
 783                        ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784                                                   &rx_queues);
 785                        num_rx_qs = ret ? 1 : rx_queues;
 786                }
 787        }
 788
 789        if (num_tx_qs > MAX_TX_QS) {
 790                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791                       num_tx_qs, MAX_TX_QS);
 792                pr_err("Cannot do alloc_etherdev, aborting\n");
 793                return -EINVAL;
 794        }
 795
 796        if (num_rx_qs > MAX_RX_QS) {
 797                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798                       num_rx_qs, MAX_RX_QS);
 799                pr_err("Cannot do alloc_etherdev, aborting\n");
 800                return -EINVAL;
 801        }
 802
 803        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804        dev = *pdev;
 805        if (NULL == dev)
 806                return -ENOMEM;
 807
 808        priv = netdev_priv(dev);
 809        priv->ndev = dev;
 810
 811        priv->mode = mode;
 812        priv->poll_mode = poll_mode;
 813
 814        priv->num_tx_queues = num_tx_qs;
 815        netif_set_real_num_rx_queues(dev, num_rx_qs);
 816        priv->num_rx_queues = num_rx_qs;
 817
 818        err = gfar_alloc_tx_queues(priv);
 819        if (err)
 820                goto tx_alloc_failed;
 821
 822        err = gfar_alloc_rx_queues(priv);
 823        if (err)
 824                goto rx_alloc_failed;
 825
 826        err = of_property_read_string(np, "model", &model);
 827        if (err) {
 828                pr_err("Device model property missing, aborting\n");
 829                goto rx_alloc_failed;
 830        }
 831
 832        /* Init Rx queue filer rule set linked list */
 833        INIT_LIST_HEAD(&priv->rx_list.list);
 834        priv->rx_list.count = 0;
 835        mutex_init(&priv->rx_queue_access);
 836
 837        for (i = 0; i < MAXGROUPS; i++)
 838                priv->gfargrp[i].regs = NULL;
 839
 840        /* Parse and initialize group specific information */
 841        if (priv->mode == MQ_MG_MODE) {
 842                for_each_available_child_of_node(np, child) {
 843                        if (of_node_cmp(child->name, "queue-group"))
 844                                continue;
 845
 846                        err = gfar_parse_group(child, priv, model);
 847                        if (err)
 848                                goto err_grp_init;
 849                }
 850        } else { /* SQ_SG_MODE */
 851                err = gfar_parse_group(np, priv, model);
 852                if (err)
 853                        goto err_grp_init;
 854        }
 855
 856        if (of_property_read_bool(np, "bd-stash")) {
 857                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858                priv->bd_stash_en = 1;
 859        }
 860
 861        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863        if (err == 0)
 864                priv->rx_stash_size = stash_len;
 865
 866        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868        if (err == 0)
 869                priv->rx_stash_index = stash_idx;
 870
 871        if (stash_len || stash_idx)
 872                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874        mac_addr = of_get_mac_address(np);
 875
 876        if (mac_addr)
 877                memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 878
 879        if (model && !strcasecmp(model, "TSEC"))
 880                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 882                                     FSL_GIANFAR_DEV_HAS_RMON |
 883                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885        if (model && !strcasecmp(model, "eTSEC"))
 886                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 888                                     FSL_GIANFAR_DEV_HAS_RMON |
 889                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890                                     FSL_GIANFAR_DEV_HAS_CSUM |
 891                                     FSL_GIANFAR_DEV_HAS_VLAN |
 892                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894                                     FSL_GIANFAR_DEV_HAS_TIMER |
 895                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897        err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899        /* We only care about rgmii-id.  The rest are autodetected */
 900        if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901                priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 902        else
 903                priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905        if (of_find_property(np, "fsl,magic-packet", NULL))
 906                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913        /* In the case of a fixed PHY, the DT node associated
 914         * to the PHY is the Ethernet MAC DT node.
 915         */
 916        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917                err = of_phy_register_fixed_link(np);
 918                if (err)
 919                        goto err_grp_init;
 920
 921                priv->phy_node = of_node_get(np);
 922        }
 923
 924        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927        return 0;
 928
 929err_grp_init:
 930        unmap_group_regs(priv);
 931rx_alloc_failed:
 932        gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934        gfar_free_tx_queues(priv);
 935        free_gfar_dev(priv);
 936        return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941        struct hwtstamp_config config;
 942        struct gfar_private *priv = netdev_priv(netdev);
 943
 944        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945                return -EFAULT;
 946
 947        /* reserved for future extensions */
 948        if (config.flags)
 949                return -EINVAL;
 950
 951        switch (config.tx_type) {
 952        case HWTSTAMP_TX_OFF:
 953                priv->hwts_tx_en = 0;
 954                break;
 955        case HWTSTAMP_TX_ON:
 956                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957                        return -ERANGE;
 958                priv->hwts_tx_en = 1;
 959                break;
 960        default:
 961                return -ERANGE;
 962        }
 963
 964        switch (config.rx_filter) {
 965        case HWTSTAMP_FILTER_NONE:
 966                if (priv->hwts_rx_en) {
 967                        priv->hwts_rx_en = 0;
 968                        reset_gfar(netdev);
 969                }
 970                break;
 971        default:
 972                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973                        return -ERANGE;
 974                if (!priv->hwts_rx_en) {
 975                        priv->hwts_rx_en = 1;
 976                        reset_gfar(netdev);
 977                }
 978                config.rx_filter = HWTSTAMP_FILTER_ALL;
 979                break;
 980        }
 981
 982        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983                -EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988        struct hwtstamp_config config;
 989        struct gfar_private *priv = netdev_priv(netdev);
 990
 991        config.flags = 0;
 992        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993        config.rx_filter = (priv->hwts_rx_en ?
 994                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997                -EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002        struct phy_device *phydev = dev->phydev;
1003
1004        if (!netif_running(dev))
1005                return -EINVAL;
1006
1007        if (cmd == SIOCSHWTSTAMP)
1008                return gfar_hwtstamp_set(dev, rq);
1009        if (cmd == SIOCGHWTSTAMP)
1010                return gfar_hwtstamp_get(dev, rq);
1011
1012        if (!phydev)
1013                return -ENODEV;
1014
1015        return phy_mii_ioctl(phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019                                   u32 class)
1020{
1021        u32 rqfpr = FPR_FILER_MASK;
1022        u32 rqfcr = 0x0;
1023
1024        rqfar--;
1025        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026        priv->ftp_rqfpr[rqfar] = rqfpr;
1027        priv->ftp_rqfcr[rqfar] = rqfcr;
1028        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030        rqfar--;
1031        rqfcr = RQFCR_CMP_NOMATCH;
1032        priv->ftp_rqfpr[rqfar] = rqfpr;
1033        priv->ftp_rqfcr[rqfar] = rqfcr;
1034        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036        rqfar--;
1037        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038        rqfpr = class;
1039        priv->ftp_rqfcr[rqfar] = rqfcr;
1040        priv->ftp_rqfpr[rqfar] = rqfpr;
1041        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043        rqfar--;
1044        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045        rqfpr = class;
1046        priv->ftp_rqfcr[rqfar] = rqfcr;
1047        priv->ftp_rqfpr[rqfar] = rqfpr;
1048        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050        return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055        int i = 0x0;
1056        u32 rqfar = MAX_FILER_IDX;
1057        u32 rqfcr = 0x0;
1058        u32 rqfpr = FPR_FILER_MASK;
1059
1060        /* Default rule */
1061        rqfcr = RQFCR_CMP_MATCH;
1062        priv->ftp_rqfcr[rqfar] = rqfcr;
1063        priv->ftp_rqfpr[rqfar] = rqfpr;
1064        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073        /* cur_filer_idx indicated the first non-masked rule */
1074        priv->cur_filer_idx = rqfar;
1075
1076        /* Rest are masked rules */
1077        rqfcr = RQFCR_CMP_NOMATCH;
1078        for (i = 0; i < rqfar; i++) {
1079                priv->ftp_rqfcr[i] = rqfcr;
1080                priv->ftp_rqfpr[i] = rqfpr;
1081                gfar_write_filer(priv, i, rqfcr, rqfpr);
1082        }
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088        unsigned int pvr = mfspr(SPRN_PVR);
1089        unsigned int svr = mfspr(SPRN_SVR);
1090        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091        unsigned int rev = svr & 0xffff;
1092
1093        /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                priv->errata |= GFAR_ERRATA_74;
1097
1098        /* MPC8313 and MPC837x all rev */
1099        if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101                priv->errata |= GFAR_ERRATA_76;
1102
1103        /* MPC8313 Rev < 2.0 */
1104        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105                priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110        unsigned int svr = mfspr(SPRN_SVR);
1111
1112        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113                priv->errata |= GFAR_ERRATA_12;
1114        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124        struct device *dev = &priv->ofdev->dev;
1125
1126        /* no plans to fix */
1127        priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131                __gfar_detect_errata_85xx(priv);
1132        else /* non-mpc85xx parts, i.e. e300 core based */
1133                __gfar_detect_errata_83xx(priv);
1134#endif
1135
1136        if (priv->errata)
1137                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138                         priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144        u32 tempval;
1145
1146        /* Reset MAC layer */
1147        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149        /* We need to delay at least 3 TX clocks */
1150        udelay(3);
1151
1152        /* the soft reset bit is not self-resetting, so we need to
1153         * clear it before resuming normal operation
1154         */
1155        gfar_write(&regs->maccfg1, 0);
1156
1157        udelay(3);
1158
1159        gfar_rx_offload_en(priv);
1160
1161        /* Initialize the max receive frame/buffer lengths */
1162        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165        /* Initialize the Minimum Frame Length Register */
1166        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168        /* Initialize MACCFG2. */
1169        tempval = MACCFG2_INIT_SETTINGS;
1170
1171        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173         * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174         */
1175        if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178        gfar_write(&regs->maccfg2, tempval);
1179
1180        /* Clear mac addr hash registers */
1181        gfar_write(&regs->igaddr0, 0);
1182        gfar_write(&regs->igaddr1, 0);
1183        gfar_write(&regs->igaddr2, 0);
1184        gfar_write(&regs->igaddr3, 0);
1185        gfar_write(&regs->igaddr4, 0);
1186        gfar_write(&regs->igaddr5, 0);
1187        gfar_write(&regs->igaddr6, 0);
1188        gfar_write(&regs->igaddr7, 0);
1189
1190        gfar_write(&regs->gaddr0, 0);
1191        gfar_write(&regs->gaddr1, 0);
1192        gfar_write(&regs->gaddr2, 0);
1193        gfar_write(&regs->gaddr3, 0);
1194        gfar_write(&regs->gaddr4, 0);
1195        gfar_write(&regs->gaddr5, 0);
1196        gfar_write(&regs->gaddr6, 0);
1197        gfar_write(&regs->gaddr7, 0);
1198
1199        if (priv->extended_hash)
1200                gfar_clear_exact_match(priv->ndev);
1201
1202        gfar_mac_rx_config(priv);
1203
1204        gfar_mac_tx_config(priv);
1205
1206        gfar_set_mac_address(priv->ndev);
1207
1208        gfar_set_multi(priv->ndev);
1209
1210        /* clear ievent and imask before configuring coalescing */
1211        gfar_ints_disable(priv);
1212
1213        /* Configure the coalescing support */
1214        gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220        u32 attrs;
1221
1222        /* Stop the DMA engine now, in case it was running before
1223         * (The firmware could have used it, and left it running).
1224         */
1225        gfar_halt(priv);
1226
1227        gfar_mac_reset(priv);
1228
1229        /* Zero out the rmon mib registers if it has them */
1230        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231                memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233                /* Mask off the CAM interrupts */
1234                gfar_write(&regs->rmon.cam1, 0xffffffff);
1235                gfar_write(&regs->rmon.cam2, 0xffffffff);
1236        }
1237
1238        /* Initialize ECNTRL */
1239        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241        /* Set the extraction length and index */
1242        attrs = ATTRELI_EL(priv->rx_stash_size) |
1243                ATTRELI_EI(priv->rx_stash_index);
1244
1245        gfar_write(&regs->attreli, attrs);
1246
1247        /* Start with defaults, and add stashing
1248         * depending on driver parameters
1249         */
1250        attrs = ATTR_INIT_SETTINGS;
1251
1252        if (priv->bd_stash_en)
1253                attrs |= ATTR_BDSTASH;
1254
1255        if (priv->rx_stash_size != 0)
1256                attrs |= ATTR_BUFSTASH;
1257
1258        gfar_write(&regs->attr, attrs);
1259
1260        /* FIFO configs */
1261        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265        /* Program the interrupt steering regs, only for MG devices */
1266        if (priv->num_grps > 1)
1267                gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275                priv->extended_hash = 1;
1276                priv->hash_width = 9;
1277
1278                priv->hash_regs[0] = &regs->igaddr0;
1279                priv->hash_regs[1] = &regs->igaddr1;
1280                priv->hash_regs[2] = &regs->igaddr2;
1281                priv->hash_regs[3] = &regs->igaddr3;
1282                priv->hash_regs[4] = &regs->igaddr4;
1283                priv->hash_regs[5] = &regs->igaddr5;
1284                priv->hash_regs[6] = &regs->igaddr6;
1285                priv->hash_regs[7] = &regs->igaddr7;
1286                priv->hash_regs[8] = &regs->gaddr0;
1287                priv->hash_regs[9] = &regs->gaddr1;
1288                priv->hash_regs[10] = &regs->gaddr2;
1289                priv->hash_regs[11] = &regs->gaddr3;
1290                priv->hash_regs[12] = &regs->gaddr4;
1291                priv->hash_regs[13] = &regs->gaddr5;
1292                priv->hash_regs[14] = &regs->gaddr6;
1293                priv->hash_regs[15] = &regs->gaddr7;
1294
1295        } else {
1296                priv->extended_hash = 0;
1297                priv->hash_width = 8;
1298
1299                priv->hash_regs[0] = &regs->gaddr0;
1300                priv->hash_regs[1] = &regs->gaddr1;
1301                priv->hash_regs[2] = &regs->gaddr2;
1302                priv->hash_regs[3] = &regs->gaddr3;
1303                priv->hash_regs[4] = &regs->gaddr4;
1304                priv->hash_regs[5] = &regs->gaddr5;
1305                priv->hash_regs[6] = &regs->gaddr6;
1306                priv->hash_regs[7] = &regs->gaddr7;
1307        }
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315        struct device_node *np = ofdev->dev.of_node;
1316        struct net_device *dev = NULL;
1317        struct gfar_private *priv = NULL;
1318        int err = 0, i;
1319
1320        err = gfar_of_init(ofdev, &dev);
1321
1322        if (err)
1323                return err;
1324
1325        priv = netdev_priv(dev);
1326        priv->ndev = dev;
1327        priv->ofdev = ofdev;
1328        priv->dev = &ofdev->dev;
1329        SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331        INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333        platform_set_drvdata(ofdev, priv);
1334
1335        gfar_detect_errata(priv);
1336
1337        /* Set the dev->base_addr to the gfar reg region */
1338        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340        /* Fill in the dev structure */
1341        dev->watchdog_timeo = TX_TIMEOUT;
1342        /* MTU range: 50 - 9586 */
1343        dev->mtu = 1500;
1344        dev->min_mtu = 50;
1345        dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346        dev->netdev_ops = &gfar_netdev_ops;
1347        dev->ethtool_ops = &gfar_ethtool_ops;
1348
1349        /* Register for napi ...We are registering NAPI for each grp */
1350        for (i = 0; i < priv->num_grps; i++) {
1351                if (priv->poll_mode == GFAR_SQ_POLLING) {
1352                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353                                       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355                                       gfar_poll_tx_sq, 2);
1356                } else {
1357                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358                                       gfar_poll_rx, GFAR_DEV_WEIGHT);
1359                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360                                       gfar_poll_tx, 2);
1361                }
1362        }
1363
1364        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366                                   NETIF_F_RXCSUM;
1367                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369        }
1370
1371        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373                                    NETIF_F_HW_VLAN_CTAG_RX;
1374                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375        }
1376
1377        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378
1379        gfar_init_addr_hash_table(priv);
1380
1381        /* Insert receive time stamps into padding alignment bytes, and
1382         * plus 2 bytes padding to ensure the cpu alignment.
1383         */
1384        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385                priv->padding = 8 + DEFAULT_PADDING;
1386
1387        if (dev->features & NETIF_F_IP_CSUM ||
1388            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389                dev->needed_headroom = GMAC_FCB_LEN;
1390
1391        /* Initializing some of the rx/tx queue level parameters */
1392        for (i = 0; i < priv->num_tx_queues; i++) {
1393                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1394                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1395                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1396                priv->tx_queue[i]->txic = DEFAULT_TXIC;
1397        }
1398
1399        for (i = 0; i < priv->num_rx_queues; i++) {
1400                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1401                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1402                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1403        }
1404
1405        /* Always enable rx filer if available */
1406        priv->rx_filer_enable =
1407            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1408        /* Enable most messages by default */
1409        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1410        /* use pritority h/w tx queue scheduling for single queue devices */
1411        if (priv->num_tx_queues == 1)
1412                priv->prio_sched_en = 1;
1413
1414        set_bit(GFAR_DOWN, &priv->state);
1415
1416        gfar_hw_init(priv);
1417
1418        /* Carrier starts down, phylib will bring it up */
1419        netif_carrier_off(dev);
1420
1421        err = register_netdev(dev);
1422
1423        if (err) {
1424                pr_err("%s: Cannot register net device, aborting\n", dev->name);
1425                goto register_fail;
1426        }
1427
1428        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1429                priv->wol_supported |= GFAR_WOL_MAGIC;
1430
1431        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1432            priv->rx_filer_enable)
1433                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1434
1435        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1436
1437        /* fill out IRQ number and name fields */
1438        for (i = 0; i < priv->num_grps; i++) {
1439                struct gfar_priv_grp *grp = &priv->gfargrp[i];
1440                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1441                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1442                                dev->name, "_g", '0' + i, "_tx");
1443                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1444                                dev->name, "_g", '0' + i, "_rx");
1445                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1446                                dev->name, "_g", '0' + i, "_er");
1447                } else
1448                        strcpy(gfar_irq(grp, TX)->name, dev->name);
1449        }
1450
1451        /* Initialize the filer table */
1452        gfar_init_filer_table(priv);
1453
1454        /* Print out the device info */
1455        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1456
1457        /* Even more device info helps when determining which kernel
1458         * provided which set of benchmarks.
1459         */
1460        netdev_info(dev, "Running with NAPI enabled\n");
1461        for (i = 0; i < priv->num_rx_queues; i++)
1462                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1463                            i, priv->rx_queue[i]->rx_ring_size);
1464        for (i = 0; i < priv->num_tx_queues; i++)
1465                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1466                            i, priv->tx_queue[i]->tx_ring_size);
1467
1468        return 0;
1469
1470register_fail:
1471        if (of_phy_is_fixed_link(np))
1472                of_phy_deregister_fixed_link(np);
1473        unmap_group_regs(priv);
1474        gfar_free_rx_queues(priv);
1475        gfar_free_tx_queues(priv);
1476        of_node_put(priv->phy_node);
1477        of_node_put(priv->tbi_node);
1478        free_gfar_dev(priv);
1479        return err;
1480}
1481
1482static int gfar_remove(struct platform_device *ofdev)
1483{
1484        struct gfar_private *priv = platform_get_drvdata(ofdev);
1485        struct device_node *np = ofdev->dev.of_node;
1486
1487        of_node_put(priv->phy_node);
1488        of_node_put(priv->tbi_node);
1489
1490        unregister_netdev(priv->ndev);
1491
1492        if (of_phy_is_fixed_link(np))
1493                of_phy_deregister_fixed_link(np);
1494
1495        unmap_group_regs(priv);
1496        gfar_free_rx_queues(priv);
1497        gfar_free_tx_queues(priv);
1498        free_gfar_dev(priv);
1499
1500        return 0;
1501}
1502
1503#ifdef CONFIG_PM
1504
1505static void __gfar_filer_disable(struct gfar_private *priv)
1506{
1507        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1508        u32 temp;
1509
1510        temp = gfar_read(&regs->rctrl);
1511        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1512        gfar_write(&regs->rctrl, temp);
1513}
1514
1515static void __gfar_filer_enable(struct gfar_private *priv)
1516{
1517        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1518        u32 temp;
1519
1520        temp = gfar_read(&regs->rctrl);
1521        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1522        gfar_write(&regs->rctrl, temp);
1523}
1524
1525/* Filer rules implementing wol capabilities */
1526static void gfar_filer_config_wol(struct gfar_private *priv)
1527{
1528        unsigned int i;
1529        u32 rqfcr;
1530
1531        __gfar_filer_disable(priv);
1532
1533        /* clear the filer table, reject any packet by default */
1534        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1535        for (i = 0; i <= MAX_FILER_IDX; i++)
1536                gfar_write_filer(priv, i, rqfcr, 0);
1537
1538        i = 0;
1539        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1540                /* unicast packet, accept it */
1541                struct net_device *ndev = priv->ndev;
1542                /* get the default rx queue index */
1543                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1544                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1545                                    (ndev->dev_addr[1] << 8) |
1546                                     ndev->dev_addr[2];
1547
1548                rqfcr = (qindex << 10) | RQFCR_AND |
1549                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1550
1551                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1552
1553                dest_mac_addr = (ndev->dev_addr[3] << 16) |
1554                                (ndev->dev_addr[4] << 8) |
1555                                 ndev->dev_addr[5];
1556                rqfcr = (qindex << 10) | RQFCR_GPI |
1557                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1558                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1559        }
1560
1561        __gfar_filer_enable(priv);
1562}
1563
1564static void gfar_filer_restore_table(struct gfar_private *priv)
1565{
1566        u32 rqfcr, rqfpr;
1567        unsigned int i;
1568
1569        __gfar_filer_disable(priv);
1570
1571        for (i = 0; i <= MAX_FILER_IDX; i++) {
1572                rqfcr = priv->ftp_rqfcr[i];
1573                rqfpr = priv->ftp_rqfpr[i];
1574                gfar_write_filer(priv, i, rqfcr, rqfpr);
1575        }
1576
1577        __gfar_filer_enable(priv);
1578}
1579
1580/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1581static void gfar_start_wol_filer(struct gfar_private *priv)
1582{
1583        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584        u32 tempval;
1585        int i = 0;
1586
1587        /* Enable Rx hw queues */
1588        gfar_write(&regs->rqueue, priv->rqueue);
1589
1590        /* Initialize DMACTRL to have WWR and WOP */
1591        tempval = gfar_read(&regs->dmactrl);
1592        tempval |= DMACTRL_INIT_SETTINGS;
1593        gfar_write(&regs->dmactrl, tempval);
1594
1595        /* Make sure we aren't stopped */
1596        tempval = gfar_read(&regs->dmactrl);
1597        tempval &= ~DMACTRL_GRS;
1598        gfar_write(&regs->dmactrl, tempval);
1599
1600        for (i = 0; i < priv->num_grps; i++) {
1601                regs = priv->gfargrp[i].regs;
1602                /* Clear RHLT, so that the DMA starts polling now */
1603                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1604                /* enable the Filer General Purpose Interrupt */
1605                gfar_write(&regs->imask, IMASK_FGPI);
1606        }
1607
1608        /* Enable Rx DMA */
1609        tempval = gfar_read(&regs->maccfg1);
1610        tempval |= MACCFG1_RX_EN;
1611        gfar_write(&regs->maccfg1, tempval);
1612}
1613
1614static int gfar_suspend(struct device *dev)
1615{
1616        struct gfar_private *priv = dev_get_drvdata(dev);
1617        struct net_device *ndev = priv->ndev;
1618        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619        u32 tempval;
1620        u16 wol = priv->wol_opts;
1621
1622        if (!netif_running(ndev))
1623                return 0;
1624
1625        disable_napi(priv);
1626        netif_tx_lock(ndev);
1627        netif_device_detach(ndev);
1628        netif_tx_unlock(ndev);
1629
1630        gfar_halt(priv);
1631
1632        if (wol & GFAR_WOL_MAGIC) {
1633                /* Enable interrupt on Magic Packet */
1634                gfar_write(&regs->imask, IMASK_MAG);
1635
1636                /* Enable Magic Packet mode */
1637                tempval = gfar_read(&regs->maccfg2);
1638                tempval |= MACCFG2_MPEN;
1639                gfar_write(&regs->maccfg2, tempval);
1640
1641                /* re-enable the Rx block */
1642                tempval = gfar_read(&regs->maccfg1);
1643                tempval |= MACCFG1_RX_EN;
1644                gfar_write(&regs->maccfg1, tempval);
1645
1646        } else if (wol & GFAR_WOL_FILER_UCAST) {
1647                gfar_filer_config_wol(priv);
1648                gfar_start_wol_filer(priv);
1649
1650        } else {
1651                phy_stop(ndev->phydev);
1652        }
1653
1654        return 0;
1655}
1656
1657static int gfar_resume(struct device *dev)
1658{
1659        struct gfar_private *priv = dev_get_drvdata(dev);
1660        struct net_device *ndev = priv->ndev;
1661        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662        u32 tempval;
1663        u16 wol = priv->wol_opts;
1664
1665        if (!netif_running(ndev))
1666                return 0;
1667
1668        if (wol & GFAR_WOL_MAGIC) {
1669                /* Disable Magic Packet mode */
1670                tempval = gfar_read(&regs->maccfg2);
1671                tempval &= ~MACCFG2_MPEN;
1672                gfar_write(&regs->maccfg2, tempval);
1673
1674        } else if (wol & GFAR_WOL_FILER_UCAST) {
1675                /* need to stop rx only, tx is already down */
1676                gfar_halt(priv);
1677                gfar_filer_restore_table(priv);
1678
1679        } else {
1680                phy_start(ndev->phydev);
1681        }
1682
1683        gfar_start(priv);
1684
1685        netif_device_attach(ndev);
1686        enable_napi(priv);
1687
1688        return 0;
1689}
1690
1691static int gfar_restore(struct device *dev)
1692{
1693        struct gfar_private *priv = dev_get_drvdata(dev);
1694        struct net_device *ndev = priv->ndev;
1695
1696        if (!netif_running(ndev)) {
1697                netif_device_attach(ndev);
1698
1699                return 0;
1700        }
1701
1702        gfar_init_bds(ndev);
1703
1704        gfar_mac_reset(priv);
1705
1706        gfar_init_tx_rx_base(priv);
1707
1708        gfar_start(priv);
1709
1710        priv->oldlink = 0;
1711        priv->oldspeed = 0;
1712        priv->oldduplex = -1;
1713
1714        if (ndev->phydev)
1715                phy_start(ndev->phydev);
1716
1717        netif_device_attach(ndev);
1718        enable_napi(priv);
1719
1720        return 0;
1721}
1722
1723static const struct dev_pm_ops gfar_pm_ops = {
1724        .suspend = gfar_suspend,
1725        .resume = gfar_resume,
1726        .freeze = gfar_suspend,
1727        .thaw = gfar_resume,
1728        .restore = gfar_restore,
1729};
1730
1731#define GFAR_PM_OPS (&gfar_pm_ops)
1732
1733#else
1734
1735#define GFAR_PM_OPS NULL
1736
1737#endif
1738
1739/* Reads the controller's registers to determine what interface
1740 * connects it to the PHY.
1741 */
1742static phy_interface_t gfar_get_interface(struct net_device *dev)
1743{
1744        struct gfar_private *priv = netdev_priv(dev);
1745        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1746        u32 ecntrl;
1747
1748        ecntrl = gfar_read(&regs->ecntrl);
1749
1750        if (ecntrl & ECNTRL_SGMII_MODE)
1751                return PHY_INTERFACE_MODE_SGMII;
1752
1753        if (ecntrl & ECNTRL_TBI_MODE) {
1754                if (ecntrl & ECNTRL_REDUCED_MODE)
1755                        return PHY_INTERFACE_MODE_RTBI;
1756                else
1757                        return PHY_INTERFACE_MODE_TBI;
1758        }
1759
1760        if (ecntrl & ECNTRL_REDUCED_MODE) {
1761                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1762                        return PHY_INTERFACE_MODE_RMII;
1763                }
1764                else {
1765                        phy_interface_t interface = priv->interface;
1766
1767                        /* This isn't autodetected right now, so it must
1768                         * be set by the device tree or platform code.
1769                         */
1770                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1771                                return PHY_INTERFACE_MODE_RGMII_ID;
1772
1773                        return PHY_INTERFACE_MODE_RGMII;
1774                }
1775        }
1776
1777        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1778                return PHY_INTERFACE_MODE_GMII;
1779
1780        return PHY_INTERFACE_MODE_MII;
1781}
1782
1783
1784/* Initializes driver's PHY state, and attaches to the PHY.
1785 * Returns 0 on success.
1786 */
1787static int init_phy(struct net_device *dev)
1788{
1789        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1790        struct gfar_private *priv = netdev_priv(dev);
1791        phy_interface_t interface;
1792        struct phy_device *phydev;
1793        struct ethtool_eee edata;
1794
1795        linkmode_set_bit_array(phy_10_100_features_array,
1796                               ARRAY_SIZE(phy_10_100_features_array),
1797                               mask);
1798        linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1799        linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1800        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1801                linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1802
1803        priv->oldlink = 0;
1804        priv->oldspeed = 0;
1805        priv->oldduplex = -1;
1806
1807        interface = gfar_get_interface(dev);
1808
1809        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1810                                interface);
1811        if (!phydev) {
1812                dev_err(&dev->dev, "could not attach to PHY\n");
1813                return -ENODEV;
1814        }
1815
1816        if (interface == PHY_INTERFACE_MODE_SGMII)
1817                gfar_configure_serdes(dev);
1818
1819        /* Remove any features not supported by the controller */
1820        linkmode_and(phydev->supported, phydev->supported, mask);
1821        linkmode_copy(phydev->advertising, phydev->supported);
1822
1823        /* Add support for flow control */
1824        phy_support_asym_pause(phydev);
1825
1826        /* disable EEE autoneg, EEE not supported by eTSEC */
1827        memset(&edata, 0, sizeof(struct ethtool_eee));
1828        phy_ethtool_set_eee(phydev, &edata);
1829
1830        return 0;
1831}
1832
1833/* Initialize TBI PHY interface for communicating with the
1834 * SERDES lynx PHY on the chip.  We communicate with this PHY
1835 * through the MDIO bus on each controller, treating it as a
1836 * "normal" PHY at the address found in the TBIPA register.  We assume
1837 * that the TBIPA register is valid.  Either the MDIO bus code will set
1838 * it to a value that doesn't conflict with other PHYs on the bus, or the
1839 * value doesn't matter, as there are no other PHYs on the bus.
1840 */
1841static void gfar_configure_serdes(struct net_device *dev)
1842{
1843        struct gfar_private *priv = netdev_priv(dev);
1844        struct phy_device *tbiphy;
1845
1846        if (!priv->tbi_node) {
1847                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1848                                    "device tree specify a tbi-handle\n");
1849                return;
1850        }
1851
1852        tbiphy = of_phy_find_device(priv->tbi_node);
1853        if (!tbiphy) {
1854                dev_err(&dev->dev, "error: Could not get TBI device\n");
1855                return;
1856        }
1857
1858        /* If the link is already up, we must already be ok, and don't need to
1859         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1860         * everything for us?  Resetting it takes the link down and requires
1861         * several seconds for it to come back.
1862         */
1863        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1864                put_device(&tbiphy->mdio.dev);
1865                return;
1866        }
1867
1868        /* Single clk mode, mii mode off(for serdes communication) */
1869        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1870
1871        phy_write(tbiphy, MII_ADVERTISE,
1872                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1873                  ADVERTISE_1000XPSE_ASYM);
1874
1875        phy_write(tbiphy, MII_BMCR,
1876                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1877                  BMCR_SPEED1000);
1878
1879        put_device(&tbiphy->mdio.dev);
1880}
1881
1882static int __gfar_is_rx_idle(struct gfar_private *priv)
1883{
1884        u32 res;
1885
1886        /* Normaly TSEC should not hang on GRS commands, so we should
1887         * actually wait for IEVENT_GRSC flag.
1888         */
1889        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1890                return 0;
1891
1892        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1893         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1894         * and the Rx can be safely reset.
1895         */
1896        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1897        res &= 0x7f807f80;
1898        if ((res & 0xffff) == (res >> 16))
1899                return 1;
1900
1901        return 0;
1902}
1903
1904/* Halt the receive and transmit queues */
1905static void gfar_halt_nodisable(struct gfar_private *priv)
1906{
1907        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1908        u32 tempval;
1909        unsigned int timeout;
1910        int stopped;
1911
1912        gfar_ints_disable(priv);
1913
1914        if (gfar_is_dma_stopped(priv))
1915                return;
1916
1917        /* Stop the DMA, and wait for it to stop */
1918        tempval = gfar_read(&regs->dmactrl);
1919        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1920        gfar_write(&regs->dmactrl, tempval);
1921
1922retry:
1923        timeout = 1000;
1924        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1925                cpu_relax();
1926                timeout--;
1927        }
1928
1929        if (!timeout)
1930                stopped = gfar_is_dma_stopped(priv);
1931
1932        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1933            !__gfar_is_rx_idle(priv))
1934                goto retry;
1935}
1936
1937/* Halt the receive and transmit queues */
1938void gfar_halt(struct gfar_private *priv)
1939{
1940        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1941        u32 tempval;
1942
1943        /* Dissable the Rx/Tx hw queues */
1944        gfar_write(&regs->rqueue, 0);
1945        gfar_write(&regs->tqueue, 0);
1946
1947        mdelay(10);
1948
1949        gfar_halt_nodisable(priv);
1950
1951        /* Disable Rx/Tx DMA */
1952        tempval = gfar_read(&regs->maccfg1);
1953        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1954        gfar_write(&regs->maccfg1, tempval);
1955}
1956
1957void stop_gfar(struct net_device *dev)
1958{
1959        struct gfar_private *priv = netdev_priv(dev);
1960
1961        netif_tx_stop_all_queues(dev);
1962
1963        smp_mb__before_atomic();
1964        set_bit(GFAR_DOWN, &priv->state);
1965        smp_mb__after_atomic();
1966
1967        disable_napi(priv);
1968
1969        /* disable ints and gracefully shut down Rx/Tx DMA */
1970        gfar_halt(priv);
1971
1972        phy_stop(dev->phydev);
1973
1974        free_skb_resources(priv);
1975}
1976
1977static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1978{
1979        struct txbd8 *txbdp;
1980        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1981        int i, j;
1982
1983        txbdp = tx_queue->tx_bd_base;
1984
1985        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1986                if (!tx_queue->tx_skbuff[i])
1987                        continue;
1988
1989                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1990                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1991                txbdp->lstatus = 0;
1992                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1993                     j++) {
1994                        txbdp++;
1995                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1996                                       be16_to_cpu(txbdp->length),
1997                                       DMA_TO_DEVICE);
1998                }
1999                txbdp++;
2000                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
2001                tx_queue->tx_skbuff[i] = NULL;
2002        }
2003        kfree(tx_queue->tx_skbuff);
2004        tx_queue->tx_skbuff = NULL;
2005}
2006
2007static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2008{
2009        int i;
2010
2011        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2012
2013        if (rx_queue->skb)
2014                dev_kfree_skb(rx_queue->skb);
2015
2016        for (i = 0; i < rx_queue->rx_ring_size; i++) {
2017                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2018
2019                rxbdp->lstatus = 0;
2020                rxbdp->bufPtr = 0;
2021                rxbdp++;
2022
2023                if (!rxb->page)
2024                        continue;
2025
2026                dma_unmap_page(rx_queue->dev, rxb->dma,
2027                               PAGE_SIZE, DMA_FROM_DEVICE);
2028                __free_page(rxb->page);
2029
2030                rxb->page = NULL;
2031        }
2032
2033        kfree(rx_queue->rx_buff);
2034        rx_queue->rx_buff = NULL;
2035}
2036
2037/* If there are any tx skbs or rx skbs still around, free them.
2038 * Then free tx_skbuff and rx_skbuff
2039 */
2040static void free_skb_resources(struct gfar_private *priv)
2041{
2042        struct gfar_priv_tx_q *tx_queue = NULL;
2043        struct gfar_priv_rx_q *rx_queue = NULL;
2044        int i;
2045
2046        /* Go through all the buffer descriptors and free their data buffers */
2047        for (i = 0; i < priv->num_tx_queues; i++) {
2048                struct netdev_queue *txq;
2049
2050                tx_queue = priv->tx_queue[i];
2051                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2052                if (tx_queue->tx_skbuff)
2053                        free_skb_tx_queue(tx_queue);
2054                netdev_tx_reset_queue(txq);
2055        }
2056
2057        for (i = 0; i < priv->num_rx_queues; i++) {
2058                rx_queue = priv->rx_queue[i];
2059                if (rx_queue->rx_buff)
2060                        free_skb_rx_queue(rx_queue);
2061        }
2062
2063        dma_free_coherent(priv->dev,
2064                          sizeof(struct txbd8) * priv->total_tx_ring_size +
2065                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
2066                          priv->tx_queue[0]->tx_bd_base,
2067                          priv->tx_queue[0]->tx_bd_dma_base);
2068}
2069
2070void gfar_start(struct gfar_private *priv)
2071{
2072        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2073        u32 tempval;
2074        int i = 0;
2075
2076        /* Enable Rx/Tx hw queues */
2077        gfar_write(&regs->rqueue, priv->rqueue);
2078        gfar_write(&regs->tqueue, priv->tqueue);
2079
2080        /* Initialize DMACTRL to have WWR and WOP */
2081        tempval = gfar_read(&regs->dmactrl);
2082        tempval |= DMACTRL_INIT_SETTINGS;
2083        gfar_write(&regs->dmactrl, tempval);
2084
2085        /* Make sure we aren't stopped */
2086        tempval = gfar_read(&regs->dmactrl);
2087        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2088        gfar_write(&regs->dmactrl, tempval);
2089
2090        for (i = 0; i < priv->num_grps; i++) {
2091                regs = priv->gfargrp[i].regs;
2092                /* Clear THLT/RHLT, so that the DMA starts polling now */
2093                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2094                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2095        }
2096
2097        /* Enable Rx/Tx DMA */
2098        tempval = gfar_read(&regs->maccfg1);
2099        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2100        gfar_write(&regs->maccfg1, tempval);
2101
2102        gfar_ints_enable(priv);
2103
2104        netif_trans_update(priv->ndev); /* prevent tx timeout */
2105}
2106
2107static void free_grp_irqs(struct gfar_priv_grp *grp)
2108{
2109        free_irq(gfar_irq(grp, TX)->irq, grp);
2110        free_irq(gfar_irq(grp, RX)->irq, grp);
2111        free_irq(gfar_irq(grp, ER)->irq, grp);
2112}
2113
2114static int register_grp_irqs(struct gfar_priv_grp *grp)
2115{
2116        struct gfar_private *priv = grp->priv;
2117        struct net_device *dev = priv->ndev;
2118        int err;
2119
2120        /* If the device has multiple interrupts, register for
2121         * them.  Otherwise, only register for the one
2122         */
2123        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2124                /* Install our interrupt handlers for Error,
2125                 * Transmit, and Receive
2126                 */
2127                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2128                                  gfar_irq(grp, ER)->name, grp);
2129                if (err < 0) {
2130                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2131                                  gfar_irq(grp, ER)->irq);
2132
2133                        goto err_irq_fail;
2134                }
2135                enable_irq_wake(gfar_irq(grp, ER)->irq);
2136
2137                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2138                                  gfar_irq(grp, TX)->name, grp);
2139                if (err < 0) {
2140                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2141                                  gfar_irq(grp, TX)->irq);
2142                        goto tx_irq_fail;
2143                }
2144                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2145                                  gfar_irq(grp, RX)->name, grp);
2146                if (err < 0) {
2147                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2148                                  gfar_irq(grp, RX)->irq);
2149                        goto rx_irq_fail;
2150                }
2151                enable_irq_wake(gfar_irq(grp, RX)->irq);
2152
2153        } else {
2154                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2155                                  gfar_irq(grp, TX)->name, grp);
2156                if (err < 0) {
2157                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2158                                  gfar_irq(grp, TX)->irq);
2159                        goto err_irq_fail;
2160                }
2161                enable_irq_wake(gfar_irq(grp, TX)->irq);
2162        }
2163
2164        return 0;
2165
2166rx_irq_fail:
2167        free_irq(gfar_irq(grp, TX)->irq, grp);
2168tx_irq_fail:
2169        free_irq(gfar_irq(grp, ER)->irq, grp);
2170err_irq_fail:
2171        return err;
2172
2173}
2174
2175static void gfar_free_irq(struct gfar_private *priv)
2176{
2177        int i;
2178
2179        /* Free the IRQs */
2180        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2181                for (i = 0; i < priv->num_grps; i++)
2182                        free_grp_irqs(&priv->gfargrp[i]);
2183        } else {
2184                for (i = 0; i < priv->num_grps; i++)
2185                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2186                                 &priv->gfargrp[i]);
2187        }
2188}
2189
2190static int gfar_request_irq(struct gfar_private *priv)
2191{
2192        int err, i, j;
2193
2194        for (i = 0; i < priv->num_grps; i++) {
2195                err = register_grp_irqs(&priv->gfargrp[i]);
2196                if (err) {
2197                        for (j = 0; j < i; j++)
2198                                free_grp_irqs(&priv->gfargrp[j]);
2199                        return err;
2200                }
2201        }
2202
2203        return 0;
2204}
2205
2206/* Bring the controller up and running */
2207int startup_gfar(struct net_device *ndev)
2208{
2209        struct gfar_private *priv = netdev_priv(ndev);
2210        int err;
2211
2212        gfar_mac_reset(priv);
2213
2214        err = gfar_alloc_skb_resources(ndev);
2215        if (err)
2216                return err;
2217
2218        gfar_init_tx_rx_base(priv);
2219
2220        smp_mb__before_atomic();
2221        clear_bit(GFAR_DOWN, &priv->state);
2222        smp_mb__after_atomic();
2223
2224        /* Start Rx/Tx DMA and enable the interrupts */
2225        gfar_start(priv);
2226
2227        /* force link state update after mac reset */
2228        priv->oldlink = 0;
2229        priv->oldspeed = 0;
2230        priv->oldduplex = -1;
2231
2232        phy_start(ndev->phydev);
2233
2234        enable_napi(priv);
2235
2236        netif_tx_wake_all_queues(ndev);
2237
2238        return 0;
2239}
2240
2241/* Called when something needs to use the ethernet device
2242 * Returns 0 for success.
2243 */
2244static int gfar_enet_open(struct net_device *dev)
2245{
2246        struct gfar_private *priv = netdev_priv(dev);
2247        int err;
2248
2249        err = init_phy(dev);
2250        if (err)
2251                return err;
2252
2253        err = gfar_request_irq(priv);
2254        if (err)
2255                return err;
2256
2257        err = startup_gfar(dev);
2258        if (err)
2259                return err;
2260
2261        return err;
2262}
2263
2264static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2265{
2266        struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2267
2268        memset(fcb, 0, GMAC_FCB_LEN);
2269
2270        return fcb;
2271}
2272
2273static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2274                                    int fcb_length)
2275{
2276        /* If we're here, it's a IP packet with a TCP or UDP
2277         * payload.  We set it to checksum, using a pseudo-header
2278         * we provide
2279         */
2280        u8 flags = TXFCB_DEFAULT;
2281
2282        /* Tell the controller what the protocol is
2283         * And provide the already calculated phcs
2284         */
2285        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2286                flags |= TXFCB_UDP;
2287                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2288        } else
2289                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2290
2291        /* l3os is the distance between the start of the
2292         * frame (skb->data) and the start of the IP hdr.
2293         * l4os is the distance between the start of the
2294         * l3 hdr and the l4 hdr
2295         */
2296        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2297        fcb->l4os = skb_network_header_len(skb);
2298
2299        fcb->flags = flags;
2300}
2301
2302static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2303{
2304        fcb->flags |= TXFCB_VLN;
2305        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2306}
2307
2308static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2309                                      struct txbd8 *base, int ring_size)
2310{
2311        struct txbd8 *new_bd = bdp + stride;
2312
2313        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2314}
2315
2316static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2317                                      int ring_size)
2318{
2319        return skip_txbd(bdp, 1, base, ring_size);
2320}
2321
2322/* eTSEC12: csum generation not supported for some fcb offsets */
2323static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2324                                       unsigned long fcb_addr)
2325{
2326        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2327               (fcb_addr % 0x20) > 0x18);
2328}
2329
2330/* eTSEC76: csum generation for frames larger than 2500 may
2331 * cause excess delays before start of transmission
2332 */
2333static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2334                                       unsigned int len)
2335{
2336        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2337               (len > 2500));
2338}
2339
2340/* This is called by the kernel when a frame is ready for transmission.
2341 * It is pointed to by the dev->hard_start_xmit function pointer
2342 */
2343static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2344{
2345        struct gfar_private *priv = netdev_priv(dev);
2346        struct gfar_priv_tx_q *tx_queue = NULL;
2347        struct netdev_queue *txq;
2348        struct gfar __iomem *regs = NULL;
2349        struct txfcb *fcb = NULL;
2350        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2351        u32 lstatus;
2352        skb_frag_t *frag;
2353        int i, rq = 0;
2354        int do_tstamp, do_csum, do_vlan;
2355        u32 bufaddr;
2356        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2357
2358        rq = skb->queue_mapping;
2359        tx_queue = priv->tx_queue[rq];
2360        txq = netdev_get_tx_queue(dev, rq);
2361        base = tx_queue->tx_bd_base;
2362        regs = tx_queue->grp->regs;
2363
2364        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2365        do_vlan = skb_vlan_tag_present(skb);
2366        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2367                    priv->hwts_tx_en;
2368
2369        if (do_csum || do_vlan)
2370                fcb_len = GMAC_FCB_LEN;
2371
2372        /* check if time stamp should be generated */
2373        if (unlikely(do_tstamp))
2374                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2375
2376        /* make space for additional header when fcb is needed */
2377        if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2378                struct sk_buff *skb_new;
2379
2380                skb_new = skb_realloc_headroom(skb, fcb_len);
2381                if (!skb_new) {
2382                        dev->stats.tx_errors++;
2383                        dev_kfree_skb_any(skb);
2384                        return NETDEV_TX_OK;
2385                }
2386
2387                if (skb->sk)
2388                        skb_set_owner_w(skb_new, skb->sk);
2389                dev_consume_skb_any(skb);
2390                skb = skb_new;
2391        }
2392
2393        /* total number of fragments in the SKB */
2394        nr_frags = skb_shinfo(skb)->nr_frags;
2395
2396        /* calculate the required number of TxBDs for this skb */
2397        if (unlikely(do_tstamp))
2398                nr_txbds = nr_frags + 2;
2399        else
2400                nr_txbds = nr_frags + 1;
2401
2402        /* check if there is space to queue this packet */
2403        if (nr_txbds > tx_queue->num_txbdfree) {
2404                /* no space, stop the queue */
2405                netif_tx_stop_queue(txq);
2406                dev->stats.tx_fifo_errors++;
2407                return NETDEV_TX_BUSY;
2408        }
2409
2410        /* Update transmit stats */
2411        bytes_sent = skb->len;
2412        tx_queue->stats.tx_bytes += bytes_sent;
2413        /* keep Tx bytes on wire for BQL accounting */
2414        GFAR_CB(skb)->bytes_sent = bytes_sent;
2415        tx_queue->stats.tx_packets++;
2416
2417        txbdp = txbdp_start = tx_queue->cur_tx;
2418        lstatus = be32_to_cpu(txbdp->lstatus);
2419
2420        /* Add TxPAL between FCB and frame if required */
2421        if (unlikely(do_tstamp)) {
2422                skb_push(skb, GMAC_TXPAL_LEN);
2423                memset(skb->data, 0, GMAC_TXPAL_LEN);
2424        }
2425
2426        /* Add TxFCB if required */
2427        if (fcb_len) {
2428                fcb = gfar_add_fcb(skb);
2429                lstatus |= BD_LFLAG(TXBD_TOE);
2430        }
2431
2432        /* Set up checksumming */
2433        if (do_csum) {
2434                gfar_tx_checksum(skb, fcb, fcb_len);
2435
2436                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2437                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2438                        __skb_pull(skb, GMAC_FCB_LEN);
2439                        skb_checksum_help(skb);
2440                        if (do_vlan || do_tstamp) {
2441                                /* put back a new fcb for vlan/tstamp TOE */
2442                                fcb = gfar_add_fcb(skb);
2443                        } else {
2444                                /* Tx TOE not used */
2445                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
2446                                fcb = NULL;
2447                        }
2448                }
2449        }
2450
2451        if (do_vlan)
2452                gfar_tx_vlan(skb, fcb);
2453
2454        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2455                                 DMA_TO_DEVICE);
2456        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2457                goto dma_map_err;
2458
2459        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2460
2461        /* Time stamp insertion requires one additional TxBD */
2462        if (unlikely(do_tstamp))
2463                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2464                                                 tx_queue->tx_ring_size);
2465
2466        if (likely(!nr_frags)) {
2467                if (likely(!do_tstamp))
2468                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2469        } else {
2470                u32 lstatus_start = lstatus;
2471
2472                /* Place the fragment addresses and lengths into the TxBDs */
2473                frag = &skb_shinfo(skb)->frags[0];
2474                for (i = 0; i < nr_frags; i++, frag++) {
2475                        unsigned int size;
2476
2477                        /* Point at the next BD, wrapping as needed */
2478                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2479
2480                        size = skb_frag_size(frag);
2481
2482                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
2483                                  BD_LFLAG(TXBD_READY);
2484
2485                        /* Handle the last BD specially */
2486                        if (i == nr_frags - 1)
2487                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2488
2489                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2490                                                   size, DMA_TO_DEVICE);
2491                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2492                                goto dma_map_err;
2493
2494                        /* set the TxBD length and buffer pointer */
2495                        txbdp->bufPtr = cpu_to_be32(bufaddr);
2496                        txbdp->lstatus = cpu_to_be32(lstatus);
2497                }
2498
2499                lstatus = lstatus_start;
2500        }
2501
2502        /* If time stamping is requested one additional TxBD must be set up. The
2503         * first TxBD points to the FCB and must have a data length of
2504         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2505         * the full frame length.
2506         */
2507        if (unlikely(do_tstamp)) {
2508                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2509
2510                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2511                bufaddr += fcb_len;
2512
2513                lstatus_ts |= BD_LFLAG(TXBD_READY) |
2514                              (skb_headlen(skb) - fcb_len);
2515                if (!nr_frags)
2516                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2517
2518                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2519                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2520                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2521
2522                /* Setup tx hardware time stamping */
2523                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2524                fcb->ptp = 1;
2525        } else {
2526                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2527        }
2528
2529        netdev_tx_sent_queue(txq, bytes_sent);
2530
2531        gfar_wmb();
2532
2533        txbdp_start->lstatus = cpu_to_be32(lstatus);
2534
2535        gfar_wmb(); /* force lstatus write before tx_skbuff */
2536
2537        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2538
2539        /* Update the current skb pointer to the next entry we will use
2540         * (wrapping if necessary)
2541         */
2542        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2543                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2544
2545        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2546
2547        /* We can work in parallel with gfar_clean_tx_ring(), except
2548         * when modifying num_txbdfree. Note that we didn't grab the lock
2549         * when we were reading the num_txbdfree and checking for available
2550         * space, that's because outside of this function it can only grow.
2551         */
2552        spin_lock_bh(&tx_queue->txlock);
2553        /* reduce TxBD free count */
2554        tx_queue->num_txbdfree -= (nr_txbds);
2555        spin_unlock_bh(&tx_queue->txlock);
2556
2557        /* If the next BD still needs to be cleaned up, then the bds
2558         * are full.  We need to tell the kernel to stop sending us stuff.
2559         */
2560        if (!tx_queue->num_txbdfree) {
2561                netif_tx_stop_queue(txq);
2562
2563                dev->stats.tx_fifo_errors++;
2564        }
2565
2566        /* Tell the DMA to go go go */
2567        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2568
2569        return NETDEV_TX_OK;
2570
2571dma_map_err:
2572        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2573        if (do_tstamp)
2574                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2575        for (i = 0; i < nr_frags; i++) {
2576                lstatus = be32_to_cpu(txbdp->lstatus);
2577                if (!(lstatus & BD_LFLAG(TXBD_READY)))
2578                        break;
2579
2580                lstatus &= ~BD_LFLAG(TXBD_READY);
2581                txbdp->lstatus = cpu_to_be32(lstatus);
2582                bufaddr = be32_to_cpu(txbdp->bufPtr);
2583                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2584                               DMA_TO_DEVICE);
2585                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2586        }
2587        gfar_wmb();
2588        dev_kfree_skb_any(skb);
2589        return NETDEV_TX_OK;
2590}
2591
2592/* Stops the kernel queue, and halts the controller */
2593static int gfar_close(struct net_device *dev)
2594{
2595        struct gfar_private *priv = netdev_priv(dev);
2596
2597        cancel_work_sync(&priv->reset_task);
2598        stop_gfar(dev);
2599
2600        /* Disconnect from the PHY */
2601        phy_disconnect(dev->phydev);
2602
2603        gfar_free_irq(priv);
2604
2605        return 0;
2606}
2607
2608/* Changes the mac address if the controller is not running. */
2609static int gfar_set_mac_address(struct net_device *dev)
2610{
2611        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2612
2613        return 0;
2614}
2615
2616static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2617{
2618        struct gfar_private *priv = netdev_priv(dev);
2619
2620        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2621                cpu_relax();
2622
2623        if (dev->flags & IFF_UP)
2624                stop_gfar(dev);
2625
2626        dev->mtu = new_mtu;
2627
2628        if (dev->flags & IFF_UP)
2629                startup_gfar(dev);
2630
2631        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2632
2633        return 0;
2634}
2635
2636void reset_gfar(struct net_device *ndev)
2637{
2638        struct gfar_private *priv = netdev_priv(ndev);
2639
2640        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2641                cpu_relax();
2642
2643        stop_gfar(ndev);
2644        startup_gfar(ndev);
2645
2646        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2647}
2648
2649/* gfar_reset_task gets scheduled when a packet has not been
2650 * transmitted after a set amount of time.
2651 * For now, assume that clearing out all the structures, and
2652 * starting over will fix the problem.
2653 */
2654static void gfar_reset_task(struct work_struct *work)
2655{
2656        struct gfar_private *priv = container_of(work, struct gfar_private,
2657                                                 reset_task);
2658        reset_gfar(priv->ndev);
2659}
2660
2661static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2662{
2663        struct gfar_private *priv = netdev_priv(dev);
2664
2665        dev->stats.tx_errors++;
2666        schedule_work(&priv->reset_task);
2667}
2668
2669/* Interrupt Handler for Transmit complete */
2670static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2671{
2672        struct net_device *dev = tx_queue->dev;
2673        struct netdev_queue *txq;
2674        struct gfar_private *priv = netdev_priv(dev);
2675        struct txbd8 *bdp, *next = NULL;
2676        struct txbd8 *lbdp = NULL;
2677        struct txbd8 *base = tx_queue->tx_bd_base;
2678        struct sk_buff *skb;
2679        int skb_dirtytx;
2680        int tx_ring_size = tx_queue->tx_ring_size;
2681        int frags = 0, nr_txbds = 0;
2682        int i;
2683        int howmany = 0;
2684        int tqi = tx_queue->qindex;
2685        unsigned int bytes_sent = 0;
2686        u32 lstatus;
2687        size_t buflen;
2688
2689        txq = netdev_get_tx_queue(dev, tqi);
2690        bdp = tx_queue->dirty_tx;
2691        skb_dirtytx = tx_queue->skb_dirtytx;
2692
2693        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2694
2695                frags = skb_shinfo(skb)->nr_frags;
2696
2697                /* When time stamping, one additional TxBD must be freed.
2698                 * Also, we need to dma_unmap_single() the TxPAL.
2699                 */
2700                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2701                        nr_txbds = frags + 2;
2702                else
2703                        nr_txbds = frags + 1;
2704
2705                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2706
2707                lstatus = be32_to_cpu(lbdp->lstatus);
2708
2709                /* Only clean completed frames */
2710                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2711                    (lstatus & BD_LENGTH_MASK))
2712                        break;
2713
2714                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2715                        next = next_txbd(bdp, base, tx_ring_size);
2716                        buflen = be16_to_cpu(next->length) +
2717                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2718                } else
2719                        buflen = be16_to_cpu(bdp->length);
2720
2721                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2722                                 buflen, DMA_TO_DEVICE);
2723
2724                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2725                        struct skb_shared_hwtstamps shhwtstamps;
2726                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2727                                          ~0x7UL);
2728
2729                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2730                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2731                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2732                        skb_tstamp_tx(skb, &shhwtstamps);
2733                        gfar_clear_txbd_status(bdp);
2734                        bdp = next;
2735                }
2736
2737                gfar_clear_txbd_status(bdp);
2738                bdp = next_txbd(bdp, base, tx_ring_size);
2739
2740                for (i = 0; i < frags; i++) {
2741                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2742                                       be16_to_cpu(bdp->length),
2743                                       DMA_TO_DEVICE);
2744                        gfar_clear_txbd_status(bdp);
2745                        bdp = next_txbd(bdp, base, tx_ring_size);
2746                }
2747
2748                bytes_sent += GFAR_CB(skb)->bytes_sent;
2749
2750                dev_kfree_skb_any(skb);
2751
2752                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2753
2754                skb_dirtytx = (skb_dirtytx + 1) &
2755                              TX_RING_MOD_MASK(tx_ring_size);
2756
2757                howmany++;
2758                spin_lock(&tx_queue->txlock);
2759                tx_queue->num_txbdfree += nr_txbds;
2760                spin_unlock(&tx_queue->txlock);
2761        }
2762
2763        /* If we freed a buffer, we can restart transmission, if necessary */
2764        if (tx_queue->num_txbdfree &&
2765            netif_tx_queue_stopped(txq) &&
2766            !(test_bit(GFAR_DOWN, &priv->state)))
2767                netif_wake_subqueue(priv->ndev, tqi);
2768
2769        /* Update dirty indicators */
2770        tx_queue->skb_dirtytx = skb_dirtytx;
2771        tx_queue->dirty_tx = bdp;
2772
2773        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2774}
2775
2776static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2777{
2778        struct page *page;
2779        dma_addr_t addr;
2780
2781        page = dev_alloc_page();
2782        if (unlikely(!page))
2783                return false;
2784
2785        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2786        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2787                __free_page(page);
2788
2789                return false;
2790        }
2791
2792        rxb->dma = addr;
2793        rxb->page = page;
2794        rxb->page_offset = 0;
2795
2796        return true;
2797}
2798
2799static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2800{
2801        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2802        struct gfar_extra_stats *estats = &priv->extra_stats;
2803
2804        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2805        atomic64_inc(&estats->rx_alloc_err);
2806}
2807
2808static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2809                                int alloc_cnt)
2810{
2811        struct rxbd8 *bdp;
2812        struct gfar_rx_buff *rxb;
2813        int i;
2814
2815        i = rx_queue->next_to_use;
2816        bdp = &rx_queue->rx_bd_base[i];
2817        rxb = &rx_queue->rx_buff[i];
2818
2819        while (alloc_cnt--) {
2820                /* try reuse page */
2821                if (unlikely(!rxb->page)) {
2822                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2823                                gfar_rx_alloc_err(rx_queue);
2824                                break;
2825                        }
2826                }
2827
2828                /* Setup the new RxBD */
2829                gfar_init_rxbdp(rx_queue, bdp,
2830                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2831
2832                /* Update to the next pointer */
2833                bdp++;
2834                rxb++;
2835
2836                if (unlikely(++i == rx_queue->rx_ring_size)) {
2837                        i = 0;
2838                        bdp = rx_queue->rx_bd_base;
2839                        rxb = rx_queue->rx_buff;
2840                }
2841        }
2842
2843        rx_queue->next_to_use = i;
2844        rx_queue->next_to_alloc = i;
2845}
2846
2847static void count_errors(u32 lstatus, struct net_device *ndev)
2848{
2849        struct gfar_private *priv = netdev_priv(ndev);
2850        struct net_device_stats *stats = &ndev->stats;
2851        struct gfar_extra_stats *estats = &priv->extra_stats;
2852
2853        /* If the packet was truncated, none of the other errors matter */
2854        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2855                stats->rx_length_errors++;
2856
2857                atomic64_inc(&estats->rx_trunc);
2858
2859                return;
2860        }
2861        /* Count the errors, if there were any */
2862        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2863                stats->rx_length_errors++;
2864
2865                if (lstatus & BD_LFLAG(RXBD_LARGE))
2866                        atomic64_inc(&estats->rx_large);
2867                else
2868                        atomic64_inc(&estats->rx_short);
2869        }
2870        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2871                stats->rx_frame_errors++;
2872                atomic64_inc(&estats->rx_nonoctet);
2873        }
2874        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2875                atomic64_inc(&estats->rx_crcerr);
2876                stats->rx_crc_errors++;
2877        }
2878        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2879                atomic64_inc(&estats->rx_overrun);
2880                stats->rx_over_errors++;
2881        }
2882}
2883
2884irqreturn_t gfar_receive(int irq, void *grp_id)
2885{
2886        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2887        unsigned long flags;
2888        u32 imask, ievent;
2889
2890        ievent = gfar_read(&grp->regs->ievent);
2891
2892        if (unlikely(ievent & IEVENT_FGPI)) {
2893                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2894                return IRQ_HANDLED;
2895        }
2896
2897        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2898                spin_lock_irqsave(&grp->grplock, flags);
2899                imask = gfar_read(&grp->regs->imask);
2900                imask &= IMASK_RX_DISABLED;
2901                gfar_write(&grp->regs->imask, imask);
2902                spin_unlock_irqrestore(&grp->grplock, flags);
2903                __napi_schedule(&grp->napi_rx);
2904        } else {
2905                /* Clear IEVENT, so interrupts aren't called again
2906                 * because of the packets that have already arrived.
2907                 */
2908                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2909        }
2910
2911        return IRQ_HANDLED;
2912}
2913
2914/* Interrupt Handler for Transmit complete */
2915static irqreturn_t gfar_transmit(int irq, void *grp_id)
2916{
2917        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2918        unsigned long flags;
2919        u32 imask;
2920
2921        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2922                spin_lock_irqsave(&grp->grplock, flags);
2923                imask = gfar_read(&grp->regs->imask);
2924                imask &= IMASK_TX_DISABLED;
2925                gfar_write(&grp->regs->imask, imask);
2926                spin_unlock_irqrestore(&grp->grplock, flags);
2927                __napi_schedule(&grp->napi_tx);
2928        } else {
2929                /* Clear IEVENT, so interrupts aren't called again
2930                 * because of the packets that have already arrived.
2931                 */
2932                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2933        }
2934
2935        return IRQ_HANDLED;
2936}
2937
2938static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2939                             struct sk_buff *skb, bool first)
2940{
2941        int size = lstatus & BD_LENGTH_MASK;
2942        struct page *page = rxb->page;
2943
2944        if (likely(first)) {
2945                skb_put(skb, size);
2946        } else {
2947                /* the last fragments' length contains the full frame length */
2948                if (lstatus & BD_LFLAG(RXBD_LAST))
2949                        size -= skb->len;
2950
2951                skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2952                                rxb->page_offset + RXBUF_ALIGNMENT,
2953                                size, GFAR_RXB_TRUESIZE);
2954        }
2955
2956        /* try reuse page */
2957        if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2958                return false;
2959
2960        /* change offset to the other half */
2961        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2962
2963        page_ref_inc(page);
2964
2965        return true;
2966}
2967
2968static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2969                               struct gfar_rx_buff *old_rxb)
2970{
2971        struct gfar_rx_buff *new_rxb;
2972        u16 nta = rxq->next_to_alloc;
2973
2974        new_rxb = &rxq->rx_buff[nta];
2975
2976        /* find next buf that can reuse a page */
2977        nta++;
2978        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2979
2980        /* copy page reference */
2981        *new_rxb = *old_rxb;
2982
2983        /* sync for use by the device */
2984        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2985                                         old_rxb->page_offset,
2986                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2987}
2988
2989static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2990                                            u32 lstatus, struct sk_buff *skb)
2991{
2992        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2993        struct page *page = rxb->page;
2994        bool first = false;
2995
2996        if (likely(!skb)) {
2997                void *buff_addr = page_address(page) + rxb->page_offset;
2998
2999                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3000                if (unlikely(!skb)) {
3001                        gfar_rx_alloc_err(rx_queue);
3002                        return NULL;
3003                }
3004                skb_reserve(skb, RXBUF_ALIGNMENT);
3005                first = true;
3006        }
3007
3008        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3009                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3010
3011        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3012                /* reuse the free half of the page */
3013                gfar_reuse_rx_page(rx_queue, rxb);
3014        } else {
3015                /* page cannot be reused, unmap it */
3016                dma_unmap_page(rx_queue->dev, rxb->dma,
3017                               PAGE_SIZE, DMA_FROM_DEVICE);
3018        }
3019
3020        /* clear rxb content */
3021        rxb->page = NULL;
3022
3023        return skb;
3024}
3025
3026static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3027{
3028        /* If valid headers were found, and valid sums
3029         * were verified, then we tell the kernel that no
3030         * checksumming is necessary.  Otherwise, it is [FIXME]
3031         */
3032        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3033            (RXFCB_CIP | RXFCB_CTU))
3034                skb->ip_summed = CHECKSUM_UNNECESSARY;
3035        else
3036                skb_checksum_none_assert(skb);
3037}
3038
3039/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3040static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3041{
3042        struct gfar_private *priv = netdev_priv(ndev);
3043        struct rxfcb *fcb = NULL;
3044
3045        /* fcb is at the beginning if exists */
3046        fcb = (struct rxfcb *)skb->data;
3047
3048        /* Remove the FCB from the skb
3049         * Remove the padded bytes, if there are any
3050         */
3051        if (priv->uses_rxfcb)
3052                skb_pull(skb, GMAC_FCB_LEN);
3053
3054        /* Get receive timestamp from the skb */
3055        if (priv->hwts_rx_en) {
3056                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3057                u64 *ns = (u64 *) skb->data;
3058
3059                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3060                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3061        }
3062
3063        if (priv->padding)
3064                skb_pull(skb, priv->padding);
3065
3066        /* Trim off the FCS */
3067        pskb_trim(skb, skb->len - ETH_FCS_LEN);
3068
3069        if (ndev->features & NETIF_F_RXCSUM)
3070                gfar_rx_checksum(skb, fcb);
3071
3072        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3073         * Even if vlan rx accel is disabled, on some chips
3074         * RXFCB_VLN is pseudo randomly set.
3075         */
3076        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3077            be16_to_cpu(fcb->flags) & RXFCB_VLN)
3078                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3079                                       be16_to_cpu(fcb->vlctl));
3080}
3081
3082/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3083 * until the budget/quota has been reached. Returns the number
3084 * of frames handled
3085 */
3086int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3087{
3088        struct net_device *ndev = rx_queue->ndev;
3089        struct gfar_private *priv = netdev_priv(ndev);
3090        struct rxbd8 *bdp;
3091        int i, howmany = 0;
3092        struct sk_buff *skb = rx_queue->skb;
3093        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3094        unsigned int total_bytes = 0, total_pkts = 0;
3095
3096        /* Get the first full descriptor */
3097        i = rx_queue->next_to_clean;
3098
3099        while (rx_work_limit--) {
3100                u32 lstatus;
3101
3102                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3103                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3104                        cleaned_cnt = 0;
3105                }
3106
3107                bdp = &rx_queue->rx_bd_base[i];
3108                lstatus = be32_to_cpu(bdp->lstatus);
3109                if (lstatus & BD_LFLAG(RXBD_EMPTY))
3110                        break;
3111
3112                /* order rx buffer descriptor reads */
3113                rmb();
3114
3115                /* fetch next to clean buffer from the ring */
3116                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3117                if (unlikely(!skb))
3118                        break;
3119
3120                cleaned_cnt++;
3121                howmany++;
3122
3123                if (unlikely(++i == rx_queue->rx_ring_size))
3124                        i = 0;
3125
3126                rx_queue->next_to_clean = i;
3127
3128                /* fetch next buffer if not the last in frame */
3129                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3130                        continue;
3131
3132                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3133                        count_errors(lstatus, ndev);
3134
3135                        /* discard faulty buffer */
3136                        dev_kfree_skb(skb);
3137                        skb = NULL;
3138                        rx_queue->stats.rx_dropped++;
3139                        continue;
3140                }
3141
3142                gfar_process_frame(ndev, skb);
3143
3144                /* Increment the number of packets */
3145                total_pkts++;
3146                total_bytes += skb->len;
3147
3148                skb_record_rx_queue(skb, rx_queue->qindex);
3149
3150                skb->protocol = eth_type_trans(skb, ndev);
3151
3152                /* Send the packet up the stack */
3153                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3154
3155                skb = NULL;
3156        }
3157
3158        /* Store incomplete frames for completion */
3159        rx_queue->skb = skb;
3160
3161        rx_queue->stats.rx_packets += total_pkts;
3162        rx_queue->stats.rx_bytes += total_bytes;
3163
3164        if (cleaned_cnt)
3165                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3166
3167        /* Update Last Free RxBD pointer for LFC */
3168        if (unlikely(priv->tx_actual_en)) {
3169                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3170
3171                gfar_write(rx_queue->rfbptr, bdp_dma);
3172        }
3173
3174        return howmany;
3175}
3176
3177static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3178{
3179        struct gfar_priv_grp *gfargrp =
3180                container_of(napi, struct gfar_priv_grp, napi_rx);
3181        struct gfar __iomem *regs = gfargrp->regs;
3182        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3183        int work_done = 0;
3184
3185        /* Clear IEVENT, so interrupts aren't called again
3186         * because of the packets that have already arrived
3187         */
3188        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3189
3190        work_done = gfar_clean_rx_ring(rx_queue, budget);
3191
3192        if (work_done < budget) {
3193                u32 imask;
3194                napi_complete_done(napi, work_done);
3195                /* Clear the halt bit in RSTAT */
3196                gfar_write(&regs->rstat, gfargrp->rstat);
3197
3198                spin_lock_irq(&gfargrp->grplock);
3199                imask = gfar_read(&regs->imask);
3200                imask |= IMASK_RX_DEFAULT;
3201                gfar_write(&regs->imask, imask);
3202                spin_unlock_irq(&gfargrp->grplock);
3203        }
3204
3205        return work_done;
3206}
3207
3208static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3209{
3210        struct gfar_priv_grp *gfargrp =
3211                container_of(napi, struct gfar_priv_grp, napi_tx);
3212        struct gfar __iomem *regs = gfargrp->regs;
3213        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3214        u32 imask;
3215
3216        /* Clear IEVENT, so interrupts aren't called again
3217         * because of the packets that have already arrived
3218         */
3219        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3220
3221        /* run Tx cleanup to completion */
3222        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3223                gfar_clean_tx_ring(tx_queue);
3224
3225        napi_complete(napi);
3226
3227        spin_lock_irq(&gfargrp->grplock);
3228        imask = gfar_read(&regs->imask);
3229        imask |= IMASK_TX_DEFAULT;
3230        gfar_write(&regs->imask, imask);
3231        spin_unlock_irq(&gfargrp->grplock);
3232
3233        return 0;
3234}
3235
3236static int gfar_poll_rx(struct napi_struct *napi, int budget)
3237{
3238        struct gfar_priv_grp *gfargrp =
3239                container_of(napi, struct gfar_priv_grp, napi_rx);
3240        struct gfar_private *priv = gfargrp->priv;
3241        struct gfar __iomem *regs = gfargrp->regs;
3242        struct gfar_priv_rx_q *rx_queue = NULL;
3243        int work_done = 0, work_done_per_q = 0;
3244        int i, budget_per_q = 0;
3245        unsigned long rstat_rxf;
3246        int num_act_queues;
3247
3248        /* Clear IEVENT, so interrupts aren't called again
3249         * because of the packets that have already arrived
3250         */
3251        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3252
3253        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3254
3255        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3256        if (num_act_queues)
3257                budget_per_q = budget/num_act_queues;
3258
3259        for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3260                /* skip queue if not active */
3261                if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3262                        continue;
3263
3264                rx_queue = priv->rx_queue[i];
3265                work_done_per_q =
3266                        gfar_clean_rx_ring(rx_queue, budget_per_q);
3267                work_done += work_done_per_q;
3268
3269                /* finished processing this queue */
3270                if (work_done_per_q < budget_per_q) {
3271                        /* clear active queue hw indication */
3272                        gfar_write(&regs->rstat,
3273                                   RSTAT_CLEAR_RXF0 >> i);
3274                        num_act_queues--;
3275
3276                        if (!num_act_queues)
3277                                break;
3278                }
3279        }
3280
3281        if (!num_act_queues) {
3282                u32 imask;
3283                napi_complete_done(napi, work_done);
3284
3285                /* Clear the halt bit in RSTAT */
3286                gfar_write(&regs->rstat, gfargrp->rstat);
3287
3288                spin_lock_irq(&gfargrp->grplock);
3289                imask = gfar_read(&regs->imask);
3290                imask |= IMASK_RX_DEFAULT;
3291                gfar_write(&regs->imask, imask);
3292                spin_unlock_irq(&gfargrp->grplock);
3293        }
3294
3295        return work_done;
3296}
3297
3298static int gfar_poll_tx(struct napi_struct *napi, int budget)
3299{
3300        struct gfar_priv_grp *gfargrp =
3301                container_of(napi, struct gfar_priv_grp, napi_tx);
3302        struct gfar_private *priv = gfargrp->priv;
3303        struct gfar __iomem *regs = gfargrp->regs;
3304        struct gfar_priv_tx_q *tx_queue = NULL;
3305        int has_tx_work = 0;
3306        int i;
3307
3308        /* Clear IEVENT, so interrupts aren't called again
3309         * because of the packets that have already arrived
3310         */
3311        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3312
3313        for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3314                tx_queue = priv->tx_queue[i];
3315                /* run Tx cleanup to completion */
3316                if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3317                        gfar_clean_tx_ring(tx_queue);
3318                        has_tx_work = 1;
3319                }
3320        }
3321
3322        if (!has_tx_work) {
3323                u32 imask;
3324                napi_complete(napi);
3325
3326                spin_lock_irq(&gfargrp->grplock);
3327                imask = gfar_read(&regs->imask);
3328                imask |= IMASK_TX_DEFAULT;
3329                gfar_write(&regs->imask, imask);
3330                spin_unlock_irq(&gfargrp->grplock);
3331        }
3332
3333        return 0;
3334}
3335
3336
3337#ifdef CONFIG_NET_POLL_CONTROLLER
3338/* Polling 'interrupt' - used by things like netconsole to send skbs
3339 * without having to re-enable interrupts. It's not called while
3340 * the interrupt routine is executing.
3341 */
3342static void gfar_netpoll(struct net_device *dev)
3343{
3344        struct gfar_private *priv = netdev_priv(dev);
3345        int i;
3346
3347        /* If the device has multiple interrupts, run tx/rx */
3348        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3349                for (i = 0; i < priv->num_grps; i++) {
3350                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3351
3352                        disable_irq(gfar_irq(grp, TX)->irq);
3353                        disable_irq(gfar_irq(grp, RX)->irq);
3354                        disable_irq(gfar_irq(grp, ER)->irq);
3355                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3356                        enable_irq(gfar_irq(grp, ER)->irq);
3357                        enable_irq(gfar_irq(grp, RX)->irq);
3358                        enable_irq(gfar_irq(grp, TX)->irq);
3359                }
3360        } else {
3361                for (i = 0; i < priv->num_grps; i++) {
3362                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3363
3364                        disable_irq(gfar_irq(grp, TX)->irq);
3365                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3366                        enable_irq(gfar_irq(grp, TX)->irq);
3367                }
3368        }
3369}
3370#endif
3371
3372/* The interrupt handler for devices with one interrupt */
3373static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3374{
3375        struct gfar_priv_grp *gfargrp = grp_id;
3376
3377        /* Save ievent for future reference */
3378        u32 events = gfar_read(&gfargrp->regs->ievent);
3379
3380        /* Check for reception */
3381        if (events & IEVENT_RX_MASK)
3382                gfar_receive(irq, grp_id);
3383
3384        /* Check for transmit completion */
3385        if (events & IEVENT_TX_MASK)
3386                gfar_transmit(irq, grp_id);
3387
3388        /* Check for errors */
3389        if (events & IEVENT_ERR_MASK)
3390                gfar_error(irq, grp_id);
3391
3392        return IRQ_HANDLED;
3393}
3394
3395/* Called every time the controller might need to be made
3396 * aware of new link state.  The PHY code conveys this
3397 * information through variables in the phydev structure, and this
3398 * function converts those variables into the appropriate
3399 * register values, and can bring down the device if needed.
3400 */
3401static void adjust_link(struct net_device *dev)
3402{
3403        struct gfar_private *priv = netdev_priv(dev);
3404        struct phy_device *phydev = dev->phydev;
3405
3406        if (unlikely(phydev->link != priv->oldlink ||
3407                     (phydev->link && (phydev->duplex != priv->oldduplex ||
3408                                       phydev->speed != priv->oldspeed))))
3409                gfar_update_link_state(priv);
3410}
3411
3412/* Update the hash table based on the current list of multicast
3413 * addresses we subscribe to.  Also, change the promiscuity of
3414 * the device based on the flags (this function is called
3415 * whenever dev->flags is changed
3416 */
3417static void gfar_set_multi(struct net_device *dev)
3418{
3419        struct netdev_hw_addr *ha;
3420        struct gfar_private *priv = netdev_priv(dev);
3421        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3422        u32 tempval;
3423
3424        if (dev->flags & IFF_PROMISC) {
3425                /* Set RCTRL to PROM */
3426                tempval = gfar_read(&regs->rctrl);
3427                tempval |= RCTRL_PROM;
3428                gfar_write(&regs->rctrl, tempval);
3429        } else {
3430                /* Set RCTRL to not PROM */
3431                tempval = gfar_read(&regs->rctrl);
3432                tempval &= ~(RCTRL_PROM);
3433                gfar_write(&regs->rctrl, tempval);
3434        }
3435
3436        if (dev->flags & IFF_ALLMULTI) {
3437                /* Set the hash to rx all multicast frames */
3438                gfar_write(&regs->igaddr0, 0xffffffff);
3439                gfar_write(&regs->igaddr1, 0xffffffff);
3440                gfar_write(&regs->igaddr2, 0xffffffff);
3441                gfar_write(&regs->igaddr3, 0xffffffff);
3442                gfar_write(&regs->igaddr4, 0xffffffff);
3443                gfar_write(&regs->igaddr5, 0xffffffff);
3444                gfar_write(&regs->igaddr6, 0xffffffff);
3445                gfar_write(&regs->igaddr7, 0xffffffff);
3446                gfar_write(&regs->gaddr0, 0xffffffff);
3447                gfar_write(&regs->gaddr1, 0xffffffff);
3448                gfar_write(&regs->gaddr2, 0xffffffff);
3449                gfar_write(&regs->gaddr3, 0xffffffff);
3450                gfar_write(&regs->gaddr4, 0xffffffff);
3451                gfar_write(&regs->gaddr5, 0xffffffff);
3452                gfar_write(&regs->gaddr6, 0xffffffff);
3453                gfar_write(&regs->gaddr7, 0xffffffff);
3454        } else {
3455                int em_num;
3456                int idx;
3457
3458                /* zero out the hash */
3459                gfar_write(&regs->igaddr0, 0x0);
3460                gfar_write(&regs->igaddr1, 0x0);
3461                gfar_write(&regs->igaddr2, 0x0);
3462                gfar_write(&regs->igaddr3, 0x0);
3463                gfar_write(&regs->igaddr4, 0x0);
3464                gfar_write(&regs->igaddr5, 0x0);
3465                gfar_write(&regs->igaddr6, 0x0);
3466                gfar_write(&regs->igaddr7, 0x0);
3467                gfar_write(&regs->gaddr0, 0x0);
3468                gfar_write(&regs->gaddr1, 0x0);
3469                gfar_write(&regs->gaddr2, 0x0);
3470                gfar_write(&regs->gaddr3, 0x0);
3471                gfar_write(&regs->gaddr4, 0x0);
3472                gfar_write(&regs->gaddr5, 0x0);
3473                gfar_write(&regs->gaddr6, 0x0);
3474                gfar_write(&regs->gaddr7, 0x0);
3475
3476                /* If we have extended hash tables, we need to
3477                 * clear the exact match registers to prepare for
3478                 * setting them
3479                 */
3480                if (priv->extended_hash) {
3481                        em_num = GFAR_EM_NUM + 1;
3482                        gfar_clear_exact_match(dev);
3483                        idx = 1;
3484                } else {
3485                        idx = 0;
3486                        em_num = 0;
3487                }
3488
3489                if (netdev_mc_empty(dev))
3490                        return;
3491
3492                /* Parse the list, and set the appropriate bits */
3493                netdev_for_each_mc_addr(ha, dev) {
3494                        if (idx < em_num) {
3495                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3496                                idx++;
3497                        } else
3498                                gfar_set_hash_for_addr(dev, ha->addr);
3499                }
3500        }
3501}
3502
3503
3504/* Clears each of the exact match registers to zero, so they
3505 * don't interfere with normal reception
3506 */
3507static void gfar_clear_exact_match(struct net_device *dev)
3508{
3509        int idx;
3510        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3511
3512        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3513                gfar_set_mac_for_addr(dev, idx, zero_arr);
3514}
3515
3516/* Set the appropriate hash bit for the given addr */
3517/* The algorithm works like so:
3518 * 1) Take the Destination Address (ie the multicast address), and
3519 * do a CRC on it (little endian), and reverse the bits of the
3520 * result.
3521 * 2) Use the 8 most significant bits as a hash into a 256-entry
3522 * table.  The table is controlled through 8 32-bit registers:
3523 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3524 * gaddr7.  This means that the 3 most significant bits in the
3525 * hash index which gaddr register to use, and the 5 other bits
3526 * indicate which bit (assuming an IBM numbering scheme, which
3527 * for PowerPC (tm) is usually the case) in the register holds
3528 * the entry.
3529 */
3530static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3531{
3532        u32 tempval;
3533        struct gfar_private *priv = netdev_priv(dev);
3534        u32 result = ether_crc(ETH_ALEN, addr);
3535        int width = priv->hash_width;
3536        u8 whichbit = (result >> (32 - width)) & 0x1f;
3537        u8 whichreg = result >> (32 - width + 5);
3538        u32 value = (1 << (31-whichbit));
3539
3540        tempval = gfar_read(priv->hash_regs[whichreg]);
3541        tempval |= value;
3542        gfar_write(priv->hash_regs[whichreg], tempval);
3543}
3544
3545
3546/* There are multiple MAC Address register pairs on some controllers
3547 * This function sets the numth pair to a given address
3548 */
3549static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3550                                  const u8 *addr)
3551{
3552        struct gfar_private *priv = netdev_priv(dev);
3553        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3554        u32 tempval;
3555        u32 __iomem *macptr = &regs->macstnaddr1;
3556
3557        macptr += num*2;
3558
3559        /* For a station address of 0x12345678ABCD in transmission
3560         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3561         * MACnADDR2 is set to 0x34120000.
3562         */
3563        tempval = (addr[5] << 24) | (addr[4] << 16) |
3564                  (addr[3] << 8)  |  addr[2];
3565
3566        gfar_write(macptr, tempval);
3567
3568        tempval = (addr[1] << 24) | (addr[0] << 16);
3569
3570        gfar_write(macptr+1, tempval);
3571}
3572
3573/* GFAR error interrupt handler */
3574static irqreturn_t gfar_error(int irq, void *grp_id)
3575{
3576        struct gfar_priv_grp *gfargrp = grp_id;
3577        struct gfar __iomem *regs = gfargrp->regs;
3578        struct gfar_private *priv= gfargrp->priv;
3579        struct net_device *dev = priv->ndev;
3580
3581        /* Save ievent for future reference */
3582        u32 events = gfar_read(&regs->ievent);
3583
3584        /* Clear IEVENT */
3585        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3586
3587        /* Magic Packet is not an error. */
3588        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3589            (events & IEVENT_MAG))
3590                events &= ~IEVENT_MAG;
3591
3592        /* Hmm... */
3593        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3594                netdev_dbg(dev,
3595                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3596                           events, gfar_read(&regs->imask));
3597
3598        /* Update the error counters */
3599        if (events & IEVENT_TXE) {
3600                dev->stats.tx_errors++;
3601
3602                if (events & IEVENT_LC)
3603                        dev->stats.tx_window_errors++;
3604                if (events & IEVENT_CRL)
3605                        dev->stats.tx_aborted_errors++;
3606                if (events & IEVENT_XFUN) {
3607                        netif_dbg(priv, tx_err, dev,
3608                                  "TX FIFO underrun, packet dropped\n");
3609                        dev->stats.tx_dropped++;
3610                        atomic64_inc(&priv->extra_stats.tx_underrun);
3611
3612                        schedule_work(&priv->reset_task);
3613                }
3614                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3615        }
3616        if (events & IEVENT_BSY) {
3617                dev->stats.rx_over_errors++;
3618                atomic64_inc(&priv->extra_stats.rx_bsy);
3619
3620                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3621                          gfar_read(&regs->rstat));
3622        }
3623        if (events & IEVENT_BABR) {
3624                dev->stats.rx_errors++;
3625                atomic64_inc(&priv->extra_stats.rx_babr);
3626
3627                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3628        }
3629        if (events & IEVENT_EBERR) {
3630                atomic64_inc(&priv->extra_stats.eberr);
3631                netif_dbg(priv, rx_err, dev, "bus error\n");
3632        }
3633        if (events & IEVENT_RXC)
3634                netif_dbg(priv, rx_status, dev, "control frame\n");
3635
3636        if (events & IEVENT_BABT) {
3637                atomic64_inc(&priv->extra_stats.tx_babt);
3638                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3639        }
3640        return IRQ_HANDLED;
3641}
3642
3643static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3644{
3645        struct net_device *ndev = priv->ndev;
3646        struct phy_device *phydev = ndev->phydev;
3647        u32 val = 0;
3648
3649        if (!phydev->duplex)
3650                return val;
3651
3652        if (!priv->pause_aneg_en) {
3653                if (priv->tx_pause_en)
3654                        val |= MACCFG1_TX_FLOW;
3655                if (priv->rx_pause_en)
3656                        val |= MACCFG1_RX_FLOW;
3657        } else {
3658                u16 lcl_adv, rmt_adv;
3659                u8 flowctrl;
3660                /* get link partner capabilities */
3661                rmt_adv = 0;
3662                if (phydev->pause)
3663                        rmt_adv = LPA_PAUSE_CAP;
3664                if (phydev->asym_pause)
3665                        rmt_adv |= LPA_PAUSE_ASYM;
3666
3667                lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3668                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3669                if (flowctrl & FLOW_CTRL_TX)
3670                        val |= MACCFG1_TX_FLOW;
3671                if (flowctrl & FLOW_CTRL_RX)
3672                        val |= MACCFG1_RX_FLOW;
3673        }
3674
3675        return val;
3676}
3677
3678static noinline void gfar_update_link_state(struct gfar_private *priv)
3679{
3680        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3681        struct net_device *ndev = priv->ndev;
3682        struct phy_device *phydev = ndev->phydev;
3683        struct gfar_priv_rx_q *rx_queue = NULL;
3684        int i;
3685
3686        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3687                return;
3688
3689        if (phydev->link) {
3690                u32 tempval1 = gfar_read(&regs->maccfg1);
3691                u32 tempval = gfar_read(&regs->maccfg2);
3692                u32 ecntrl = gfar_read(&regs->ecntrl);
3693                u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3694
3695                if (phydev->duplex != priv->oldduplex) {
3696                        if (!(phydev->duplex))
3697                                tempval &= ~(MACCFG2_FULL_DUPLEX);
3698                        else
3699                                tempval |= MACCFG2_FULL_DUPLEX;
3700
3701                        priv->oldduplex = phydev->duplex;
3702                }
3703
3704                if (phydev->speed != priv->oldspeed) {
3705                        switch (phydev->speed) {
3706                        case 1000:
3707                                tempval =
3708                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3709
3710                                ecntrl &= ~(ECNTRL_R100);
3711                                break;
3712                        case 100:
3713                        case 10:
3714                                tempval =
3715                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3716
3717                                /* Reduced mode distinguishes
3718                                 * between 10 and 100
3719                                 */
3720                                if (phydev->speed == SPEED_100)
3721                                        ecntrl |= ECNTRL_R100;
3722                                else
3723                                        ecntrl &= ~(ECNTRL_R100);
3724                                break;
3725                        default:
3726                                netif_warn(priv, link, priv->ndev,
3727                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
3728                                           phydev->speed);
3729                                break;
3730                        }
3731
3732                        priv->oldspeed = phydev->speed;
3733                }
3734
3735                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3736                tempval1 |= gfar_get_flowctrl_cfg(priv);
3737
3738                /* Turn last free buffer recording on */
3739                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3740                        for (i = 0; i < priv->num_rx_queues; i++) {
3741                                u32 bdp_dma;
3742
3743                                rx_queue = priv->rx_queue[i];
3744                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3745                                gfar_write(rx_queue->rfbptr, bdp_dma);
3746                        }
3747
3748                        priv->tx_actual_en = 1;
3749                }
3750
3751                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3752                        priv->tx_actual_en = 0;
3753
3754                gfar_write(&regs->maccfg1, tempval1);
3755                gfar_write(&regs->maccfg2, tempval);
3756                gfar_write(&regs->ecntrl, ecntrl);
3757
3758                if (!priv->oldlink)
3759                        priv->oldlink = 1;
3760
3761        } else if (priv->oldlink) {
3762                priv->oldlink = 0;
3763                priv->oldspeed = 0;
3764                priv->oldduplex = -1;
3765        }
3766
3767        if (netif_msg_link(priv))
3768                phy_print_status(phydev);
3769}
3770
3771static const struct of_device_id gfar_match[] =
3772{
3773        {
3774                .type = "network",
3775                .compatible = "gianfar",
3776        },
3777        {
3778                .compatible = "fsl,etsec2",
3779        },
3780        {},
3781};
3782MODULE_DEVICE_TABLE(of, gfar_match);
3783
3784/* Structure for a device driver */
3785static struct platform_driver gfar_driver = {
3786        .driver = {
3787                .name = "fsl-gianfar",
3788                .pm = GFAR_PM_OPS,
3789                .of_match_table = gfar_match,
3790        },
3791        .probe = gfar_probe,
3792        .remove = gfar_remove,
3793};
3794
3795module_platform_driver(gfar_driver);
3796