linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5
   6#include "iavf.h"
   7#include "iavf_trace.h"
   8#include "iavf_prototype.h"
   9
  10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  11                                u32 td_tag)
  12{
  13        return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  14                           ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  15                           ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  16                           ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  17                           ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  18}
  19
  20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  21
  22/**
  23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  24 * @ring:      the ring that owns the buffer
  25 * @tx_buffer: the buffer to free
  26 **/
  27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  28                                            struct iavf_tx_buffer *tx_buffer)
  29{
  30        if (tx_buffer->skb) {
  31                if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  32                        kfree(tx_buffer->raw_buf);
  33                else
  34                        dev_kfree_skb_any(tx_buffer->skb);
  35                if (dma_unmap_len(tx_buffer, len))
  36                        dma_unmap_single(ring->dev,
  37                                         dma_unmap_addr(tx_buffer, dma),
  38                                         dma_unmap_len(tx_buffer, len),
  39                                         DMA_TO_DEVICE);
  40        } else if (dma_unmap_len(tx_buffer, len)) {
  41                dma_unmap_page(ring->dev,
  42                               dma_unmap_addr(tx_buffer, dma),
  43                               dma_unmap_len(tx_buffer, len),
  44                               DMA_TO_DEVICE);
  45        }
  46
  47        tx_buffer->next_to_watch = NULL;
  48        tx_buffer->skb = NULL;
  49        dma_unmap_len_set(tx_buffer, len, 0);
  50        /* tx_buffer must be completely set up in the transmit path */
  51}
  52
  53/**
  54 * iavf_clean_tx_ring - Free any empty Tx buffers
  55 * @tx_ring: ring to be cleaned
  56 **/
  57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  58{
  59        unsigned long bi_size;
  60        u16 i;
  61
  62        /* ring already cleared, nothing to do */
  63        if (!tx_ring->tx_bi)
  64                return;
  65
  66        /* Free all the Tx ring sk_buffs */
  67        for (i = 0; i < tx_ring->count; i++)
  68                iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  69
  70        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  71        memset(tx_ring->tx_bi, 0, bi_size);
  72
  73        /* Zero out the descriptor ring */
  74        memset(tx_ring->desc, 0, tx_ring->size);
  75
  76        tx_ring->next_to_use = 0;
  77        tx_ring->next_to_clean = 0;
  78
  79        if (!tx_ring->netdev)
  80                return;
  81
  82        /* cleanup Tx queue statistics */
  83        netdev_tx_reset_queue(txring_txq(tx_ring));
  84}
  85
  86/**
  87 * iavf_free_tx_resources - Free Tx resources per queue
  88 * @tx_ring: Tx descriptor ring for a specific queue
  89 *
  90 * Free all transmit software resources
  91 **/
  92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  93{
  94        iavf_clean_tx_ring(tx_ring);
  95        kfree(tx_ring->tx_bi);
  96        tx_ring->tx_bi = NULL;
  97
  98        if (tx_ring->desc) {
  99                dma_free_coherent(tx_ring->dev, tx_ring->size,
 100                                  tx_ring->desc, tx_ring->dma);
 101                tx_ring->desc = NULL;
 102        }
 103}
 104
 105/**
 106 * iavf_get_tx_pending - how many Tx descriptors not processed
 107 * @ring: the ring of descriptors
 108 * @in_sw: is tx_pending being checked in SW or HW
 109 *
 110 * Since there is no access to the ring head register
 111 * in XL710, we need to use our local copies
 112 **/
 113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 114{
 115        u32 head, tail;
 116
 117        head = ring->next_to_clean;
 118        tail = readl(ring->tail);
 119
 120        if (head != tail)
 121                return (head < tail) ?
 122                        tail - head : (tail + ring->count - head);
 123
 124        return 0;
 125}
 126
 127/**
 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 129 * @vsi:  pointer to vsi struct with tx queues
 130 *
 131 * VSI has netdev and netdev has TX queues. This function is to check each of
 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 133 **/
 134void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 135{
 136        struct iavf_ring *tx_ring = NULL;
 137        struct net_device *netdev;
 138        unsigned int i;
 139        int packets;
 140
 141        if (!vsi)
 142                return;
 143
 144        if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 145                return;
 146
 147        netdev = vsi->netdev;
 148        if (!netdev)
 149                return;
 150
 151        if (!netif_carrier_ok(netdev))
 152                return;
 153
 154        for (i = 0; i < vsi->back->num_active_queues; i++) {
 155                tx_ring = &vsi->back->tx_rings[i];
 156                if (tx_ring && tx_ring->desc) {
 157                        /* If packet counter has not changed the queue is
 158                         * likely stalled, so force an interrupt for this
 159                         * queue.
 160                         *
 161                         * prev_pkt_ctr would be negative if there was no
 162                         * pending work.
 163                         */
 164                        packets = tx_ring->stats.packets & INT_MAX;
 165                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 166                                iavf_force_wb(vsi, tx_ring->q_vector);
 167                                continue;
 168                        }
 169
 170                        /* Memory barrier between read of packet count and call
 171                         * to iavf_get_tx_pending()
 172                         */
 173                        smp_rmb();
 174                        tx_ring->tx_stats.prev_pkt_ctr =
 175                          iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 176                }
 177        }
 178}
 179
 180#define WB_STRIDE 4
 181
 182/**
 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 184 * @vsi: the VSI we care about
 185 * @tx_ring: Tx ring to clean
 186 * @napi_budget: Used to determine if we are in netpoll
 187 *
 188 * Returns true if there's any budget left (e.g. the clean is finished)
 189 **/
 190static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 191                              struct iavf_ring *tx_ring, int napi_budget)
 192{
 193        int i = tx_ring->next_to_clean;
 194        struct iavf_tx_buffer *tx_buf;
 195        struct iavf_tx_desc *tx_desc;
 196        unsigned int total_bytes = 0, total_packets = 0;
 197        unsigned int budget = vsi->work_limit;
 198
 199        tx_buf = &tx_ring->tx_bi[i];
 200        tx_desc = IAVF_TX_DESC(tx_ring, i);
 201        i -= tx_ring->count;
 202
 203        do {
 204                struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 205
 206                /* if next_to_watch is not set then there is no work pending */
 207                if (!eop_desc)
 208                        break;
 209
 210                /* prevent any other reads prior to eop_desc */
 211                smp_rmb();
 212
 213                iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 214                /* if the descriptor isn't done, no work yet to do */
 215                if (!(eop_desc->cmd_type_offset_bsz &
 216                      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 217                        break;
 218
 219                /* clear next_to_watch to prevent false hangs */
 220                tx_buf->next_to_watch = NULL;
 221
 222                /* update the statistics for this packet */
 223                total_bytes += tx_buf->bytecount;
 224                total_packets += tx_buf->gso_segs;
 225
 226                /* free the skb */
 227                napi_consume_skb(tx_buf->skb, napi_budget);
 228
 229                /* unmap skb header data */
 230                dma_unmap_single(tx_ring->dev,
 231                                 dma_unmap_addr(tx_buf, dma),
 232                                 dma_unmap_len(tx_buf, len),
 233                                 DMA_TO_DEVICE);
 234
 235                /* clear tx_buffer data */
 236                tx_buf->skb = NULL;
 237                dma_unmap_len_set(tx_buf, len, 0);
 238
 239                /* unmap remaining buffers */
 240                while (tx_desc != eop_desc) {
 241                        iavf_trace(clean_tx_irq_unmap,
 242                                   tx_ring, tx_desc, tx_buf);
 243
 244                        tx_buf++;
 245                        tx_desc++;
 246                        i++;
 247                        if (unlikely(!i)) {
 248                                i -= tx_ring->count;
 249                                tx_buf = tx_ring->tx_bi;
 250                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
 251                        }
 252
 253                        /* unmap any remaining paged data */
 254                        if (dma_unmap_len(tx_buf, len)) {
 255                                dma_unmap_page(tx_ring->dev,
 256                                               dma_unmap_addr(tx_buf, dma),
 257                                               dma_unmap_len(tx_buf, len),
 258                                               DMA_TO_DEVICE);
 259                                dma_unmap_len_set(tx_buf, len, 0);
 260                        }
 261                }
 262
 263                /* move us one more past the eop_desc for start of next pkt */
 264                tx_buf++;
 265                tx_desc++;
 266                i++;
 267                if (unlikely(!i)) {
 268                        i -= tx_ring->count;
 269                        tx_buf = tx_ring->tx_bi;
 270                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
 271                }
 272
 273                prefetch(tx_desc);
 274
 275                /* update budget accounting */
 276                budget--;
 277        } while (likely(budget));
 278
 279        i += tx_ring->count;
 280        tx_ring->next_to_clean = i;
 281        u64_stats_update_begin(&tx_ring->syncp);
 282        tx_ring->stats.bytes += total_bytes;
 283        tx_ring->stats.packets += total_packets;
 284        u64_stats_update_end(&tx_ring->syncp);
 285        tx_ring->q_vector->tx.total_bytes += total_bytes;
 286        tx_ring->q_vector->tx.total_packets += total_packets;
 287
 288        if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 289                /* check to see if there are < 4 descriptors
 290                 * waiting to be written back, then kick the hardware to force
 291                 * them to be written back in case we stay in NAPI.
 292                 * In this mode on X722 we do not enable Interrupt.
 293                 */
 294                unsigned int j = iavf_get_tx_pending(tx_ring, false);
 295
 296                if (budget &&
 297                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 298                    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 299                    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 300                        tx_ring->arm_wb = true;
 301        }
 302
 303        /* notify netdev of completed buffers */
 304        netdev_tx_completed_queue(txring_txq(tx_ring),
 305                                  total_packets, total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 309                     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310                /* Make sure that anybody stopping the queue after this
 311                 * sees the new next_to_clean.
 312                 */
 313                smp_mb();
 314                if (__netif_subqueue_stopped(tx_ring->netdev,
 315                                             tx_ring->queue_index) &&
 316                   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 317                        netif_wake_subqueue(tx_ring->netdev,
 318                                            tx_ring->queue_index);
 319                        ++tx_ring->tx_stats.restart_queue;
 320                }
 321        }
 322
 323        return !!budget;
 324}
 325
 326/**
 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 328 * @vsi: the VSI we care about
 329 * @q_vector: the vector on which to enable writeback
 330 *
 331 **/
 332static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 333                                  struct iavf_q_vector *q_vector)
 334{
 335        u16 flags = q_vector->tx.ring[0].flags;
 336        u32 val;
 337
 338        if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 339                return;
 340
 341        if (q_vector->arm_wb_state)
 342                return;
 343
 344        val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 345              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 346
 347        wr32(&vsi->back->hw,
 348             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 349        q_vector->arm_wb_state = true;
 350}
 351
 352/**
 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 354 * @vsi: the VSI we care about
 355 * @q_vector: the vector  on which to force writeback
 356 *
 357 **/
 358void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 359{
 360        u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 361                  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 362                  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 363                  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 364                  /* allow 00 to be written to the index */;
 365
 366        wr32(&vsi->back->hw,
 367             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 368             val);
 369}
 370
 371static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 372                                        struct iavf_ring_container *rc)
 373{
 374        return &q_vector->rx == rc;
 375}
 376
 377static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
 378{
 379        unsigned int divisor;
 380
 381        switch (q_vector->adapter->link_speed) {
 382        case VIRTCHNL_LINK_SPEED_40GB:
 383                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
 384                break;
 385        case VIRTCHNL_LINK_SPEED_25GB:
 386        case VIRTCHNL_LINK_SPEED_20GB:
 387                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
 388                break;
 389        default:
 390        case VIRTCHNL_LINK_SPEED_10GB:
 391                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
 392                break;
 393        case VIRTCHNL_LINK_SPEED_1GB:
 394        case VIRTCHNL_LINK_SPEED_100MB:
 395                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
 396                break;
 397        }
 398
 399        return divisor;
 400}
 401
 402/**
 403 * iavf_update_itr - update the dynamic ITR value based on statistics
 404 * @q_vector: structure containing interrupt and ring information
 405 * @rc: structure containing ring performance data
 406 *
 407 * Stores a new ITR value based on packets and byte
 408 * counts during the last interrupt.  The advantage of per interrupt
 409 * computation is faster updates and more accurate ITR for the current
 410 * traffic pattern.  Constants in this function were computed
 411 * based on theoretical maximum wire speed and thresholds were set based
 412 * on testing data as well as attempting to minimize response time
 413 * while increasing bulk throughput.
 414 **/
 415static void iavf_update_itr(struct iavf_q_vector *q_vector,
 416                            struct iavf_ring_container *rc)
 417{
 418        unsigned int avg_wire_size, packets, bytes, itr;
 419        unsigned long next_update = jiffies;
 420
 421        /* If we don't have any rings just leave ourselves set for maximum
 422         * possible latency so we take ourselves out of the equation.
 423         */
 424        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 425                return;
 426
 427        /* For Rx we want to push the delay up and default to low latency.
 428         * for Tx we want to pull the delay down and default to high latency.
 429         */
 430        itr = iavf_container_is_rx(q_vector, rc) ?
 431              IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 432              IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 433
 434        /* If we didn't update within up to 1 - 2 jiffies we can assume
 435         * that either packets are coming in so slow there hasn't been
 436         * any work, or that there is so much work that NAPI is dealing
 437         * with interrupt moderation and we don't need to do anything.
 438         */
 439        if (time_after(next_update, rc->next_update))
 440                goto clear_counts;
 441
 442        /* If itr_countdown is set it means we programmed an ITR within
 443         * the last 4 interrupt cycles. This has a side effect of us
 444         * potentially firing an early interrupt. In order to work around
 445         * this we need to throw out any data received for a few
 446         * interrupts following the update.
 447         */
 448        if (q_vector->itr_countdown) {
 449                itr = rc->target_itr;
 450                goto clear_counts;
 451        }
 452
 453        packets = rc->total_packets;
 454        bytes = rc->total_bytes;
 455
 456        if (iavf_container_is_rx(q_vector, rc)) {
 457                /* If Rx there are 1 to 4 packets and bytes are less than
 458                 * 9000 assume insufficient data to use bulk rate limiting
 459                 * approach unless Tx is already in bulk rate limiting. We
 460                 * are likely latency driven.
 461                 */
 462                if (packets && packets < 4 && bytes < 9000 &&
 463                    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 464                        itr = IAVF_ITR_ADAPTIVE_LATENCY;
 465                        goto adjust_by_size;
 466                }
 467        } else if (packets < 4) {
 468                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
 469                 * bulk mode and we are receiving 4 or fewer packets just
 470                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 471                 * that the Rx can relax.
 472                 */
 473                if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 474                    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 475                     IAVF_ITR_ADAPTIVE_MAX_USECS)
 476                        goto clear_counts;
 477        } else if (packets > 32) {
 478                /* If we have processed over 32 packets in a single interrupt
 479                 * for Tx assume we need to switch over to "bulk" mode.
 480                 */
 481                rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 482        }
 483
 484        /* We have no packets to actually measure against. This means
 485         * either one of the other queues on this vector is active or
 486         * we are a Tx queue doing TSO with too high of an interrupt rate.
 487         *
 488         * Between 4 and 56 we can assume that our current interrupt delay
 489         * is only slightly too low. As such we should increase it by a small
 490         * fixed amount.
 491         */
 492        if (packets < 56) {
 493                itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 494                if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 495                        itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 496                        itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 497                }
 498                goto clear_counts;
 499        }
 500
 501        if (packets <= 256) {
 502                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 503                itr &= IAVF_ITR_MASK;
 504
 505                /* Between 56 and 112 is our "goldilocks" zone where we are
 506                 * working out "just right". Just report that our current
 507                 * ITR is good for us.
 508                 */
 509                if (packets <= 112)
 510                        goto clear_counts;
 511
 512                /* If packet count is 128 or greater we are likely looking
 513                 * at a slight overrun of the delay we want. Try halving
 514                 * our delay to see if that will cut the number of packets
 515                 * in half per interrupt.
 516                 */
 517                itr /= 2;
 518                itr &= IAVF_ITR_MASK;
 519                if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 520                        itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 521
 522                goto clear_counts;
 523        }
 524
 525        /* The paths below assume we are dealing with a bulk ITR since
 526         * number of packets is greater than 256. We are just going to have
 527         * to compute a value and try to bring the count under control,
 528         * though for smaller packet sizes there isn't much we can do as
 529         * NAPI polling will likely be kicking in sooner rather than later.
 530         */
 531        itr = IAVF_ITR_ADAPTIVE_BULK;
 532
 533adjust_by_size:
 534        /* If packet counts are 256 or greater we can assume we have a gross
 535         * overestimation of what the rate should be. Instead of trying to fine
 536         * tune it just use the formula below to try and dial in an exact value
 537         * give the current packet size of the frame.
 538         */
 539        avg_wire_size = bytes / packets;
 540
 541        /* The following is a crude approximation of:
 542         *  wmem_default / (size + overhead) = desired_pkts_per_int
 543         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 544         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 545         *
 546         * Assuming wmem_default is 212992 and overhead is 640 bytes per
 547         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 548         * formula down to
 549         *
 550         *  (170 * (size + 24)) / (size + 640) = ITR
 551         *
 552         * We first do some math on the packet size and then finally bitshift
 553         * by 8 after rounding up. We also have to account for PCIe link speed
 554         * difference as ITR scales based on this.
 555         */
 556        if (avg_wire_size <= 60) {
 557                /* Start at 250k ints/sec */
 558                avg_wire_size = 4096;
 559        } else if (avg_wire_size <= 380) {
 560                /* 250K ints/sec to 60K ints/sec */
 561                avg_wire_size *= 40;
 562                avg_wire_size += 1696;
 563        } else if (avg_wire_size <= 1084) {
 564                /* 60K ints/sec to 36K ints/sec */
 565                avg_wire_size *= 15;
 566                avg_wire_size += 11452;
 567        } else if (avg_wire_size <= 1980) {
 568                /* 36K ints/sec to 30K ints/sec */
 569                avg_wire_size *= 5;
 570                avg_wire_size += 22420;
 571        } else {
 572                /* plateau at a limit of 30K ints/sec */
 573                avg_wire_size = 32256;
 574        }
 575
 576        /* If we are in low latency mode halve our delay which doubles the
 577         * rate to somewhere between 100K to 16K ints/sec
 578         */
 579        if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 580                avg_wire_size /= 2;
 581
 582        /* Resultant value is 256 times larger than it needs to be. This
 583         * gives us room to adjust the value as needed to either increase
 584         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 585         *
 586         * Use addition as we have already recorded the new latency flag
 587         * for the ITR value.
 588         */
 589        itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
 590               IAVF_ITR_ADAPTIVE_MIN_INC;
 591
 592        if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 593                itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 594                itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 595        }
 596
 597clear_counts:
 598        /* write back value */
 599        rc->target_itr = itr;
 600
 601        /* next update should occur within next jiffy */
 602        rc->next_update = next_update + 1;
 603
 604        rc->total_bytes = 0;
 605        rc->total_packets = 0;
 606}
 607
 608/**
 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 610 * @tx_ring: the tx ring to set up
 611 *
 612 * Return 0 on success, negative on error
 613 **/
 614int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 615{
 616        struct device *dev = tx_ring->dev;
 617        int bi_size;
 618
 619        if (!dev)
 620                return -ENOMEM;
 621
 622        /* warn if we are about to overwrite the pointer */
 623        WARN_ON(tx_ring->tx_bi);
 624        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 625        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 626        if (!tx_ring->tx_bi)
 627                goto err;
 628
 629        /* round up to nearest 4K */
 630        tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 631        tx_ring->size = ALIGN(tx_ring->size, 4096);
 632        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 633                                           &tx_ring->dma, GFP_KERNEL);
 634        if (!tx_ring->desc) {
 635                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 636                         tx_ring->size);
 637                goto err;
 638        }
 639
 640        tx_ring->next_to_use = 0;
 641        tx_ring->next_to_clean = 0;
 642        tx_ring->tx_stats.prev_pkt_ctr = -1;
 643        return 0;
 644
 645err:
 646        kfree(tx_ring->tx_bi);
 647        tx_ring->tx_bi = NULL;
 648        return -ENOMEM;
 649}
 650
 651/**
 652 * iavf_clean_rx_ring - Free Rx buffers
 653 * @rx_ring: ring to be cleaned
 654 **/
 655void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 656{
 657        unsigned long bi_size;
 658        u16 i;
 659
 660        /* ring already cleared, nothing to do */
 661        if (!rx_ring->rx_bi)
 662                return;
 663
 664        if (rx_ring->skb) {
 665                dev_kfree_skb(rx_ring->skb);
 666                rx_ring->skb = NULL;
 667        }
 668
 669        /* Free all the Rx ring sk_buffs */
 670        for (i = 0; i < rx_ring->count; i++) {
 671                struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 672
 673                if (!rx_bi->page)
 674                        continue;
 675
 676                /* Invalidate cache lines that may have been written to by
 677                 * device so that we avoid corrupting memory.
 678                 */
 679                dma_sync_single_range_for_cpu(rx_ring->dev,
 680                                              rx_bi->dma,
 681                                              rx_bi->page_offset,
 682                                              rx_ring->rx_buf_len,
 683                                              DMA_FROM_DEVICE);
 684
 685                /* free resources associated with mapping */
 686                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 687                                     iavf_rx_pg_size(rx_ring),
 688                                     DMA_FROM_DEVICE,
 689                                     IAVF_RX_DMA_ATTR);
 690
 691                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 692
 693                rx_bi->page = NULL;
 694                rx_bi->page_offset = 0;
 695        }
 696
 697        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 698        memset(rx_ring->rx_bi, 0, bi_size);
 699
 700        /* Zero out the descriptor ring */
 701        memset(rx_ring->desc, 0, rx_ring->size);
 702
 703        rx_ring->next_to_alloc = 0;
 704        rx_ring->next_to_clean = 0;
 705        rx_ring->next_to_use = 0;
 706}
 707
 708/**
 709 * iavf_free_rx_resources - Free Rx resources
 710 * @rx_ring: ring to clean the resources from
 711 *
 712 * Free all receive software resources
 713 **/
 714void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 715{
 716        iavf_clean_rx_ring(rx_ring);
 717        kfree(rx_ring->rx_bi);
 718        rx_ring->rx_bi = NULL;
 719
 720        if (rx_ring->desc) {
 721                dma_free_coherent(rx_ring->dev, rx_ring->size,
 722                                  rx_ring->desc, rx_ring->dma);
 723                rx_ring->desc = NULL;
 724        }
 725}
 726
 727/**
 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 730 *
 731 * Returns 0 on success, negative on failure
 732 **/
 733int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 734{
 735        struct device *dev = rx_ring->dev;
 736        int bi_size;
 737
 738        /* warn if we are about to overwrite the pointer */
 739        WARN_ON(rx_ring->rx_bi);
 740        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 741        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 742        if (!rx_ring->rx_bi)
 743                goto err;
 744
 745        u64_stats_init(&rx_ring->syncp);
 746
 747        /* Round up to nearest 4K */
 748        rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 749        rx_ring->size = ALIGN(rx_ring->size, 4096);
 750        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 751                                           &rx_ring->dma, GFP_KERNEL);
 752
 753        if (!rx_ring->desc) {
 754                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 755                         rx_ring->size);
 756                goto err;
 757        }
 758
 759        rx_ring->next_to_alloc = 0;
 760        rx_ring->next_to_clean = 0;
 761        rx_ring->next_to_use = 0;
 762
 763        return 0;
 764err:
 765        kfree(rx_ring->rx_bi);
 766        rx_ring->rx_bi = NULL;
 767        return -ENOMEM;
 768}
 769
 770/**
 771 * iavf_release_rx_desc - Store the new tail and head values
 772 * @rx_ring: ring to bump
 773 * @val: new head index
 774 **/
 775static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 776{
 777        rx_ring->next_to_use = val;
 778
 779        /* update next to alloc since we have filled the ring */
 780        rx_ring->next_to_alloc = val;
 781
 782        /* Force memory writes to complete before letting h/w
 783         * know there are new descriptors to fetch.  (Only
 784         * applicable for weak-ordered memory model archs,
 785         * such as IA-64).
 786         */
 787        wmb();
 788        writel(val, rx_ring->tail);
 789}
 790
 791/**
 792 * iavf_rx_offset - Return expected offset into page to access data
 793 * @rx_ring: Ring we are requesting offset of
 794 *
 795 * Returns the offset value for ring into the data buffer.
 796 */
 797static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 798{
 799        return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 800}
 801
 802/**
 803 * iavf_alloc_mapped_page - recycle or make a new page
 804 * @rx_ring: ring to use
 805 * @bi: rx_buffer struct to modify
 806 *
 807 * Returns true if the page was successfully allocated or
 808 * reused.
 809 **/
 810static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 811                                   struct iavf_rx_buffer *bi)
 812{
 813        struct page *page = bi->page;
 814        dma_addr_t dma;
 815
 816        /* since we are recycling buffers we should seldom need to alloc */
 817        if (likely(page)) {
 818                rx_ring->rx_stats.page_reuse_count++;
 819                return true;
 820        }
 821
 822        /* alloc new page for storage */
 823        page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 824        if (unlikely(!page)) {
 825                rx_ring->rx_stats.alloc_page_failed++;
 826                return false;
 827        }
 828
 829        /* map page for use */
 830        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 831                                 iavf_rx_pg_size(rx_ring),
 832                                 DMA_FROM_DEVICE,
 833                                 IAVF_RX_DMA_ATTR);
 834
 835        /* if mapping failed free memory back to system since
 836         * there isn't much point in holding memory we can't use
 837         */
 838        if (dma_mapping_error(rx_ring->dev, dma)) {
 839                __free_pages(page, iavf_rx_pg_order(rx_ring));
 840                rx_ring->rx_stats.alloc_page_failed++;
 841                return false;
 842        }
 843
 844        bi->dma = dma;
 845        bi->page = page;
 846        bi->page_offset = iavf_rx_offset(rx_ring);
 847
 848        /* initialize pagecnt_bias to 1 representing we fully own page */
 849        bi->pagecnt_bias = 1;
 850
 851        return true;
 852}
 853
 854/**
 855 * iavf_receive_skb - Send a completed packet up the stack
 856 * @rx_ring:  rx ring in play
 857 * @skb: packet to send up
 858 * @vlan_tag: vlan tag for packet
 859 **/
 860static void iavf_receive_skb(struct iavf_ring *rx_ring,
 861                             struct sk_buff *skb, u16 vlan_tag)
 862{
 863        struct iavf_q_vector *q_vector = rx_ring->q_vector;
 864
 865        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 866            (vlan_tag & VLAN_VID_MASK))
 867                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 868
 869        napi_gro_receive(&q_vector->napi, skb);
 870}
 871
 872/**
 873 * iavf_alloc_rx_buffers - Replace used receive buffers
 874 * @rx_ring: ring to place buffers on
 875 * @cleaned_count: number of buffers to replace
 876 *
 877 * Returns false if all allocations were successful, true if any fail
 878 **/
 879bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 880{
 881        u16 ntu = rx_ring->next_to_use;
 882        union iavf_rx_desc *rx_desc;
 883        struct iavf_rx_buffer *bi;
 884
 885        /* do nothing if no valid netdev defined */
 886        if (!rx_ring->netdev || !cleaned_count)
 887                return false;
 888
 889        rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 890        bi = &rx_ring->rx_bi[ntu];
 891
 892        do {
 893                if (!iavf_alloc_mapped_page(rx_ring, bi))
 894                        goto no_buffers;
 895
 896                /* sync the buffer for use by the device */
 897                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 898                                                 bi->page_offset,
 899                                                 rx_ring->rx_buf_len,
 900                                                 DMA_FROM_DEVICE);
 901
 902                /* Refresh the desc even if buffer_addrs didn't change
 903                 * because each write-back erases this info.
 904                 */
 905                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 906
 907                rx_desc++;
 908                bi++;
 909                ntu++;
 910                if (unlikely(ntu == rx_ring->count)) {
 911                        rx_desc = IAVF_RX_DESC(rx_ring, 0);
 912                        bi = rx_ring->rx_bi;
 913                        ntu = 0;
 914                }
 915
 916                /* clear the status bits for the next_to_use descriptor */
 917                rx_desc->wb.qword1.status_error_len = 0;
 918
 919                cleaned_count--;
 920        } while (cleaned_count);
 921
 922        if (rx_ring->next_to_use != ntu)
 923                iavf_release_rx_desc(rx_ring, ntu);
 924
 925        return false;
 926
 927no_buffers:
 928        if (rx_ring->next_to_use != ntu)
 929                iavf_release_rx_desc(rx_ring, ntu);
 930
 931        /* make sure to come back via polling to try again after
 932         * allocation failure
 933         */
 934        return true;
 935}
 936
 937/**
 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 939 * @vsi: the VSI we care about
 940 * @skb: skb currently being received and modified
 941 * @rx_desc: the receive descriptor
 942 **/
 943static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
 944                                    struct sk_buff *skb,
 945                                    union iavf_rx_desc *rx_desc)
 946{
 947        struct iavf_rx_ptype_decoded decoded;
 948        u32 rx_error, rx_status;
 949        bool ipv4, ipv6;
 950        u8 ptype;
 951        u64 qword;
 952
 953        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 954        ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
 955        rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
 956                   IAVF_RXD_QW1_ERROR_SHIFT;
 957        rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
 958                    IAVF_RXD_QW1_STATUS_SHIFT;
 959        decoded = decode_rx_desc_ptype(ptype);
 960
 961        skb->ip_summed = CHECKSUM_NONE;
 962
 963        skb_checksum_none_assert(skb);
 964
 965        /* Rx csum enabled and ip headers found? */
 966        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 967                return;
 968
 969        /* did the hardware decode the packet and checksum? */
 970        if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 971                return;
 972
 973        /* both known and outer_ip must be set for the below code to work */
 974        if (!(decoded.known && decoded.outer_ip))
 975                return;
 976
 977        ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 978               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
 979        ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 980               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
 981
 982        if (ipv4 &&
 983            (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 984                         BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 985                goto checksum_fail;
 986
 987        /* likely incorrect csum if alternate IP extension headers found */
 988        if (ipv6 &&
 989            rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 990                /* don't increment checksum err here, non-fatal err */
 991                return;
 992
 993        /* there was some L4 error, count error and punt packet to the stack */
 994        if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
 995                goto checksum_fail;
 996
 997        /* handle packets that were not able to be checksummed due
 998         * to arrival speed, in this case the stack can compute
 999         * the csum.
1000         */
1001        if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1002                return;
1003
1004        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1005        switch (decoded.inner_prot) {
1006        case IAVF_RX_PTYPE_INNER_PROT_TCP:
1007        case IAVF_RX_PTYPE_INNER_PROT_UDP:
1008        case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1009                skb->ip_summed = CHECKSUM_UNNECESSARY;
1010                fallthrough;
1011        default:
1012                break;
1013        }
1014
1015        return;
1016
1017checksum_fail:
1018        vsi->back->hw_csum_rx_error++;
1019}
1020
1021/**
1022 * iavf_ptype_to_htype - get a hash type
1023 * @ptype: the ptype value from the descriptor
1024 *
1025 * Returns a hash type to be used by skb_set_hash
1026 **/
1027static inline int iavf_ptype_to_htype(u8 ptype)
1028{
1029        struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1030
1031        if (!decoded.known)
1032                return PKT_HASH_TYPE_NONE;
1033
1034        if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1035            decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1036                return PKT_HASH_TYPE_L4;
1037        else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038                 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1039                return PKT_HASH_TYPE_L3;
1040        else
1041                return PKT_HASH_TYPE_L2;
1042}
1043
1044/**
1045 * iavf_rx_hash - set the hash value in the skb
1046 * @ring: descriptor ring
1047 * @rx_desc: specific descriptor
1048 * @skb: skb currently being received and modified
1049 * @rx_ptype: Rx packet type
1050 **/
1051static inline void iavf_rx_hash(struct iavf_ring *ring,
1052                                union iavf_rx_desc *rx_desc,
1053                                struct sk_buff *skb,
1054                                u8 rx_ptype)
1055{
1056        u32 hash;
1057        const __le64 rss_mask =
1058                cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1059                            IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1060
1061        if (ring->netdev->features & NETIF_F_RXHASH)
1062                return;
1063
1064        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1065                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1066                skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1067        }
1068}
1069
1070/**
1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1072 * @rx_ring: rx descriptor ring packet is being transacted on
1073 * @rx_desc: pointer to the EOP Rx descriptor
1074 * @skb: pointer to current skb being populated
1075 * @rx_ptype: the packet type decoded by hardware
1076 *
1077 * This function checks the ring, descriptor, and packet information in
1078 * order to populate the hash, checksum, VLAN, protocol, and
1079 * other fields within the skb.
1080 **/
1081static inline
1082void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1083                             union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1084                             u8 rx_ptype)
1085{
1086        iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1087
1088        iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1089
1090        skb_record_rx_queue(skb, rx_ring->queue_index);
1091
1092        /* modifies the skb - consumes the enet header */
1093        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1094}
1095
1096/**
1097 * iavf_cleanup_headers - Correct empty headers
1098 * @rx_ring: rx descriptor ring packet is being transacted on
1099 * @skb: pointer to current skb being fixed
1100 *
1101 * Also address the case where we are pulling data in on pages only
1102 * and as such no data is present in the skb header.
1103 *
1104 * In addition if skb is not at least 60 bytes we need to pad it so that
1105 * it is large enough to qualify as a valid Ethernet frame.
1106 *
1107 * Returns true if an error was encountered and skb was freed.
1108 **/
1109static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1110{
1111        /* if eth_skb_pad returns an error the skb was freed */
1112        if (eth_skb_pad(skb))
1113                return true;
1114
1115        return false;
1116}
1117
1118/**
1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1120 * @rx_ring: rx descriptor ring to store buffers on
1121 * @old_buff: donor buffer to have page reused
1122 *
1123 * Synchronizes page for reuse by the adapter
1124 **/
1125static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1126                               struct iavf_rx_buffer *old_buff)
1127{
1128        struct iavf_rx_buffer *new_buff;
1129        u16 nta = rx_ring->next_to_alloc;
1130
1131        new_buff = &rx_ring->rx_bi[nta];
1132
1133        /* update, and store next to alloc */
1134        nta++;
1135        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1136
1137        /* transfer page from old buffer to new buffer */
1138        new_buff->dma           = old_buff->dma;
1139        new_buff->page          = old_buff->page;
1140        new_buff->page_offset   = old_buff->page_offset;
1141        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1142}
1143
1144/**
1145 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1146 * the adapter for another receive
1147 *
1148 * @rx_buffer: buffer containing the page
1149 *
1150 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1151 * an unused region in the page.
1152 *
1153 * For small pages, @truesize will be a constant value, half the size
1154 * of the memory at page.  We'll attempt to alternate between high and
1155 * low halves of the page, with one half ready for use by the hardware
1156 * and the other half being consumed by the stack.  We use the page
1157 * ref count to determine whether the stack has finished consuming the
1158 * portion of this page that was passed up with a previous packet.  If
1159 * the page ref count is >1, we'll assume the "other" half page is
1160 * still busy, and this page cannot be reused.
1161 *
1162 * For larger pages, @truesize will be the actual space used by the
1163 * received packet (adjusted upward to an even multiple of the cache
1164 * line size).  This will advance through the page by the amount
1165 * actually consumed by the received packets while there is still
1166 * space for a buffer.  Each region of larger pages will be used at
1167 * most once, after which the page will not be reused.
1168 *
1169 * In either case, if the page is reusable its refcount is increased.
1170 **/
1171static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1172{
1173        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1174        struct page *page = rx_buffer->page;
1175
1176        /* Is any reuse possible? */
1177        if (!dev_page_is_reusable(page))
1178                return false;
1179
1180#if (PAGE_SIZE < 8192)
1181        /* if we are only owner of page we can reuse it */
1182        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1183                return false;
1184#else
1185#define IAVF_LAST_OFFSET \
1186        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1187        if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1188                return false;
1189#endif
1190
1191        /* If we have drained the page fragment pool we need to update
1192         * the pagecnt_bias and page count so that we fully restock the
1193         * number of references the driver holds.
1194         */
1195        if (unlikely(!pagecnt_bias)) {
1196                page_ref_add(page, USHRT_MAX);
1197                rx_buffer->pagecnt_bias = USHRT_MAX;
1198        }
1199
1200        return true;
1201}
1202
1203/**
1204 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1205 * @rx_ring: rx descriptor ring to transact packets on
1206 * @rx_buffer: buffer containing page to add
1207 * @skb: sk_buff to place the data into
1208 * @size: packet length from rx_desc
1209 *
1210 * This function will add the data contained in rx_buffer->page to the skb.
1211 * It will just attach the page as a frag to the skb.
1212 *
1213 * The function will then update the page offset.
1214 **/
1215static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1216                             struct iavf_rx_buffer *rx_buffer,
1217                             struct sk_buff *skb,
1218                             unsigned int size)
1219{
1220#if (PAGE_SIZE < 8192)
1221        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1222#else
1223        unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1224#endif
1225
1226        if (!size)
1227                return;
1228
1229        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1230                        rx_buffer->page_offset, size, truesize);
1231
1232        /* page is being used so we must update the page offset */
1233#if (PAGE_SIZE < 8192)
1234        rx_buffer->page_offset ^= truesize;
1235#else
1236        rx_buffer->page_offset += truesize;
1237#endif
1238}
1239
1240/**
1241 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1242 * @rx_ring: rx descriptor ring to transact packets on
1243 * @size: size of buffer to add to skb
1244 *
1245 * This function will pull an Rx buffer from the ring and synchronize it
1246 * for use by the CPU.
1247 */
1248static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1249                                                 const unsigned int size)
1250{
1251        struct iavf_rx_buffer *rx_buffer;
1252
1253        if (!size)
1254                return NULL;
1255
1256        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1257        prefetchw(rx_buffer->page);
1258
1259        /* we are reusing so sync this buffer for CPU use */
1260        dma_sync_single_range_for_cpu(rx_ring->dev,
1261                                      rx_buffer->dma,
1262                                      rx_buffer->page_offset,
1263                                      size,
1264                                      DMA_FROM_DEVICE);
1265
1266        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1267        rx_buffer->pagecnt_bias--;
1268
1269        return rx_buffer;
1270}
1271
1272/**
1273 * iavf_construct_skb - Allocate skb and populate it
1274 * @rx_ring: rx descriptor ring to transact packets on
1275 * @rx_buffer: rx buffer to pull data from
1276 * @size: size of buffer to add to skb
1277 *
1278 * This function allocates an skb.  It then populates it with the page
1279 * data from the current receive descriptor, taking care to set up the
1280 * skb correctly.
1281 */
1282static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1283                                          struct iavf_rx_buffer *rx_buffer,
1284                                          unsigned int size)
1285{
1286        void *va;
1287#if (PAGE_SIZE < 8192)
1288        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1289#else
1290        unsigned int truesize = SKB_DATA_ALIGN(size);
1291#endif
1292        unsigned int headlen;
1293        struct sk_buff *skb;
1294
1295        if (!rx_buffer)
1296                return NULL;
1297        /* prefetch first cache line of first page */
1298        va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1299        net_prefetch(va);
1300
1301        /* allocate a skb to store the frags */
1302        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1303                               IAVF_RX_HDR_SIZE,
1304                               GFP_ATOMIC | __GFP_NOWARN);
1305        if (unlikely(!skb))
1306                return NULL;
1307
1308        /* Determine available headroom for copy */
1309        headlen = size;
1310        if (headlen > IAVF_RX_HDR_SIZE)
1311                headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1312
1313        /* align pull length to size of long to optimize memcpy performance */
1314        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1315
1316        /* update all of the pointers */
1317        size -= headlen;
1318        if (size) {
1319                skb_add_rx_frag(skb, 0, rx_buffer->page,
1320                                rx_buffer->page_offset + headlen,
1321                                size, truesize);
1322
1323                /* buffer is used by skb, update page_offset */
1324#if (PAGE_SIZE < 8192)
1325                rx_buffer->page_offset ^= truesize;
1326#else
1327                rx_buffer->page_offset += truesize;
1328#endif
1329        } else {
1330                /* buffer is unused, reset bias back to rx_buffer */
1331                rx_buffer->pagecnt_bias++;
1332        }
1333
1334        return skb;
1335}
1336
1337/**
1338 * iavf_build_skb - Build skb around an existing buffer
1339 * @rx_ring: Rx descriptor ring to transact packets on
1340 * @rx_buffer: Rx buffer to pull data from
1341 * @size: size of buffer to add to skb
1342 *
1343 * This function builds an skb around an existing Rx buffer, taking care
1344 * to set up the skb correctly and avoid any memcpy overhead.
1345 */
1346static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1347                                      struct iavf_rx_buffer *rx_buffer,
1348                                      unsigned int size)
1349{
1350        void *va;
1351#if (PAGE_SIZE < 8192)
1352        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1353#else
1354        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1355                                SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1356#endif
1357        struct sk_buff *skb;
1358
1359        if (!rx_buffer)
1360                return NULL;
1361        /* prefetch first cache line of first page */
1362        va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1363        net_prefetch(va);
1364
1365        /* build an skb around the page buffer */
1366        skb = build_skb(va - IAVF_SKB_PAD, truesize);
1367        if (unlikely(!skb))
1368                return NULL;
1369
1370        /* update pointers within the skb to store the data */
1371        skb_reserve(skb, IAVF_SKB_PAD);
1372        __skb_put(skb, size);
1373
1374        /* buffer is used by skb, update page_offset */
1375#if (PAGE_SIZE < 8192)
1376        rx_buffer->page_offset ^= truesize;
1377#else
1378        rx_buffer->page_offset += truesize;
1379#endif
1380
1381        return skb;
1382}
1383
1384/**
1385 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1386 * @rx_ring: rx descriptor ring to transact packets on
1387 * @rx_buffer: rx buffer to pull data from
1388 *
1389 * This function will clean up the contents of the rx_buffer.  It will
1390 * either recycle the buffer or unmap it and free the associated resources.
1391 */
1392static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1393                               struct iavf_rx_buffer *rx_buffer)
1394{
1395        if (!rx_buffer)
1396                return;
1397
1398        if (iavf_can_reuse_rx_page(rx_buffer)) {
1399                /* hand second half of page back to the ring */
1400                iavf_reuse_rx_page(rx_ring, rx_buffer);
1401                rx_ring->rx_stats.page_reuse_count++;
1402        } else {
1403                /* we are not reusing the buffer so unmap it */
1404                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1405                                     iavf_rx_pg_size(rx_ring),
1406                                     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1407                __page_frag_cache_drain(rx_buffer->page,
1408                                        rx_buffer->pagecnt_bias);
1409        }
1410
1411        /* clear contents of buffer_info */
1412        rx_buffer->page = NULL;
1413}
1414
1415/**
1416 * iavf_is_non_eop - process handling of non-EOP buffers
1417 * @rx_ring: Rx ring being processed
1418 * @rx_desc: Rx descriptor for current buffer
1419 * @skb: Current socket buffer containing buffer in progress
1420 *
1421 * This function updates next to clean.  If the buffer is an EOP buffer
1422 * this function exits returning false, otherwise it will place the
1423 * sk_buff in the next buffer to be chained and return true indicating
1424 * that this is in fact a non-EOP buffer.
1425 **/
1426static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1427                            union iavf_rx_desc *rx_desc,
1428                            struct sk_buff *skb)
1429{
1430        u32 ntc = rx_ring->next_to_clean + 1;
1431
1432        /* fetch, update, and store next to clean */
1433        ntc = (ntc < rx_ring->count) ? ntc : 0;
1434        rx_ring->next_to_clean = ntc;
1435
1436        prefetch(IAVF_RX_DESC(rx_ring, ntc));
1437
1438        /* if we are the last buffer then there is nothing else to do */
1439#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1440        if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1441                return false;
1442
1443        rx_ring->rx_stats.non_eop_descs++;
1444
1445        return true;
1446}
1447
1448/**
1449 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1450 * @rx_ring: rx descriptor ring to transact packets on
1451 * @budget: Total limit on number of packets to process
1452 *
1453 * This function provides a "bounce buffer" approach to Rx interrupt
1454 * processing.  The advantage to this is that on systems that have
1455 * expensive overhead for IOMMU access this provides a means of avoiding
1456 * it by maintaining the mapping of the page to the system.
1457 *
1458 * Returns amount of work completed
1459 **/
1460static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1461{
1462        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1463        struct sk_buff *skb = rx_ring->skb;
1464        u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1465        bool failure = false;
1466
1467        while (likely(total_rx_packets < (unsigned int)budget)) {
1468                struct iavf_rx_buffer *rx_buffer;
1469                union iavf_rx_desc *rx_desc;
1470                unsigned int size;
1471                u16 vlan_tag;
1472                u8 rx_ptype;
1473                u64 qword;
1474
1475                /* return some buffers to hardware, one at a time is too slow */
1476                if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1477                        failure = failure ||
1478                                  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1479                        cleaned_count = 0;
1480                }
1481
1482                rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1483
1484                /* status_error_len will always be zero for unused descriptors
1485                 * because it's cleared in cleanup, and overlaps with hdr_addr
1486                 * which is always zero because packet split isn't used, if the
1487                 * hardware wrote DD then the length will be non-zero
1488                 */
1489                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1490
1491                /* This memory barrier is needed to keep us from reading
1492                 * any other fields out of the rx_desc until we have
1493                 * verified the descriptor has been written back.
1494                 */
1495                dma_rmb();
1496#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1497                if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1498                        break;
1499
1500                size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1501                       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1502
1503                iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1504                rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1505
1506                /* retrieve a buffer from the ring */
1507                if (skb)
1508                        iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1509                else if (ring_uses_build_skb(rx_ring))
1510                        skb = iavf_build_skb(rx_ring, rx_buffer, size);
1511                else
1512                        skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1513
1514                /* exit if we failed to retrieve a buffer */
1515                if (!skb) {
1516                        rx_ring->rx_stats.alloc_buff_failed++;
1517                        if (rx_buffer)
1518                                rx_buffer->pagecnt_bias++;
1519                        break;
1520                }
1521
1522                iavf_put_rx_buffer(rx_ring, rx_buffer);
1523                cleaned_count++;
1524
1525                if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1526                        continue;
1527
1528                /* ERR_MASK will only have valid bits if EOP set, and
1529                 * what we are doing here is actually checking
1530                 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1531                 * the error field
1532                 */
1533                if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1534                        dev_kfree_skb_any(skb);
1535                        skb = NULL;
1536                        continue;
1537                }
1538
1539                if (iavf_cleanup_headers(rx_ring, skb)) {
1540                        skb = NULL;
1541                        continue;
1542                }
1543
1544                /* probably a little skewed due to removing CRC */
1545                total_rx_bytes += skb->len;
1546
1547                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1548                rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1549                           IAVF_RXD_QW1_PTYPE_SHIFT;
1550
1551                /* populate checksum, VLAN, and protocol */
1552                iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1553
1554
1555                vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1556                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1557
1558                iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1559                iavf_receive_skb(rx_ring, skb, vlan_tag);
1560                skb = NULL;
1561
1562                /* update budget accounting */
1563                total_rx_packets++;
1564        }
1565
1566        rx_ring->skb = skb;
1567
1568        u64_stats_update_begin(&rx_ring->syncp);
1569        rx_ring->stats.packets += total_rx_packets;
1570        rx_ring->stats.bytes += total_rx_bytes;
1571        u64_stats_update_end(&rx_ring->syncp);
1572        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1573        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1574
1575        /* guarantee a trip back through this routine if there was a failure */
1576        return failure ? budget : (int)total_rx_packets;
1577}
1578
1579static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1580{
1581        u32 val;
1582
1583        /* We don't bother with setting the CLEARPBA bit as the data sheet
1584         * points out doing so is "meaningless since it was already
1585         * auto-cleared". The auto-clearing happens when the interrupt is
1586         * asserted.
1587         *
1588         * Hardware errata 28 for also indicates that writing to a
1589         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1590         * an event in the PBA anyway so we need to rely on the automask
1591         * to hold pending events for us until the interrupt is re-enabled
1592         *
1593         * The itr value is reported in microseconds, and the register
1594         * value is recorded in 2 microsecond units. For this reason we
1595         * only need to shift by the interval shift - 1 instead of the
1596         * full value.
1597         */
1598        itr &= IAVF_ITR_MASK;
1599
1600        val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1601              (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1602              (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1603
1604        return val;
1605}
1606
1607/* a small macro to shorten up some long lines */
1608#define INTREG IAVF_VFINT_DYN_CTLN1
1609
1610/* The act of updating the ITR will cause it to immediately trigger. In order
1611 * to prevent this from throwing off adaptive update statistics we defer the
1612 * update so that it can only happen so often. So after either Tx or Rx are
1613 * updated we make the adaptive scheme wait until either the ITR completely
1614 * expires via the next_update expiration or we have been through at least
1615 * 3 interrupts.
1616 */
1617#define ITR_COUNTDOWN_START 3
1618
1619/**
1620 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1621 * @vsi: the VSI we care about
1622 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1623 *
1624 **/
1625static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1626                                          struct iavf_q_vector *q_vector)
1627{
1628        struct iavf_hw *hw = &vsi->back->hw;
1629        u32 intval;
1630
1631        /* These will do nothing if dynamic updates are not enabled */
1632        iavf_update_itr(q_vector, &q_vector->tx);
1633        iavf_update_itr(q_vector, &q_vector->rx);
1634
1635        /* This block of logic allows us to get away with only updating
1636         * one ITR value with each interrupt. The idea is to perform a
1637         * pseudo-lazy update with the following criteria.
1638         *
1639         * 1. Rx is given higher priority than Tx if both are in same state
1640         * 2. If we must reduce an ITR that is given highest priority.
1641         * 3. We then give priority to increasing ITR based on amount.
1642         */
1643        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1644                /* Rx ITR needs to be reduced, this is highest priority */
1645                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1646                                           q_vector->rx.target_itr);
1647                q_vector->rx.current_itr = q_vector->rx.target_itr;
1648                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1649        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1650                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1651                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1652                /* Tx ITR needs to be reduced, this is second priority
1653                 * Tx ITR needs to be increased more than Rx, fourth priority
1654                 */
1655                intval = iavf_buildreg_itr(IAVF_TX_ITR,
1656                                           q_vector->tx.target_itr);
1657                q_vector->tx.current_itr = q_vector->tx.target_itr;
1658                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1659        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1660                /* Rx ITR needs to be increased, third priority */
1661                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1662                                           q_vector->rx.target_itr);
1663                q_vector->rx.current_itr = q_vector->rx.target_itr;
1664                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1665        } else {
1666                /* No ITR update, lowest priority */
1667                intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1668                if (q_vector->itr_countdown)
1669                        q_vector->itr_countdown--;
1670        }
1671
1672        if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1673                wr32(hw, INTREG(q_vector->reg_idx), intval);
1674}
1675
1676/**
1677 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1678 * @napi: napi struct with our devices info in it
1679 * @budget: amount of work driver is allowed to do this pass, in packets
1680 *
1681 * This function will clean all queues associated with a q_vector.
1682 *
1683 * Returns the amount of work done
1684 **/
1685int iavf_napi_poll(struct napi_struct *napi, int budget)
1686{
1687        struct iavf_q_vector *q_vector =
1688                               container_of(napi, struct iavf_q_vector, napi);
1689        struct iavf_vsi *vsi = q_vector->vsi;
1690        struct iavf_ring *ring;
1691        bool clean_complete = true;
1692        bool arm_wb = false;
1693        int budget_per_ring;
1694        int work_done = 0;
1695
1696        if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1697                napi_complete(napi);
1698                return 0;
1699        }
1700
1701        /* Since the actual Tx work is minimal, we can give the Tx a larger
1702         * budget and be more aggressive about cleaning up the Tx descriptors.
1703         */
1704        iavf_for_each_ring(ring, q_vector->tx) {
1705                if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1706                        clean_complete = false;
1707                        continue;
1708                }
1709                arm_wb |= ring->arm_wb;
1710                ring->arm_wb = false;
1711        }
1712
1713        /* Handle case where we are called by netpoll with a budget of 0 */
1714        if (budget <= 0)
1715                goto tx_only;
1716
1717        /* We attempt to distribute budget to each Rx queue fairly, but don't
1718         * allow the budget to go below 1 because that would exit polling early.
1719         */
1720        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1721
1722        iavf_for_each_ring(ring, q_vector->rx) {
1723                int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1724
1725                work_done += cleaned;
1726                /* if we clean as many as budgeted, we must not be done */
1727                if (cleaned >= budget_per_ring)
1728                        clean_complete = false;
1729        }
1730
1731        /* If work not completed, return budget and polling will return */
1732        if (!clean_complete) {
1733                int cpu_id = smp_processor_id();
1734
1735                /* It is possible that the interrupt affinity has changed but,
1736                 * if the cpu is pegged at 100%, polling will never exit while
1737                 * traffic continues and the interrupt will be stuck on this
1738                 * cpu.  We check to make sure affinity is correct before we
1739                 * continue to poll, otherwise we must stop polling so the
1740                 * interrupt can move to the correct cpu.
1741                 */
1742                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1743                        /* Tell napi that we are done polling */
1744                        napi_complete_done(napi, work_done);
1745
1746                        /* Force an interrupt */
1747                        iavf_force_wb(vsi, q_vector);
1748
1749                        /* Return budget-1 so that polling stops */
1750                        return budget - 1;
1751                }
1752tx_only:
1753                if (arm_wb) {
1754                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1755                        iavf_enable_wb_on_itr(vsi, q_vector);
1756                }
1757                return budget;
1758        }
1759
1760        if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1761                q_vector->arm_wb_state = false;
1762
1763        /* Exit the polling mode, but don't re-enable interrupts if stack might
1764         * poll us due to busy-polling
1765         */
1766        if (likely(napi_complete_done(napi, work_done)))
1767                iavf_update_enable_itr(vsi, q_vector);
1768
1769        return min(work_done, budget - 1);
1770}
1771
1772/**
1773 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1774 * @skb:     send buffer
1775 * @tx_ring: ring to send buffer on
1776 * @flags:   the tx flags to be set
1777 *
1778 * Checks the skb and set up correspondingly several generic transmit flags
1779 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1780 *
1781 * Returns error code indicate the frame should be dropped upon error and the
1782 * otherwise  returns 0 to indicate the flags has been set properly.
1783 **/
1784static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1785                                             struct iavf_ring *tx_ring,
1786                                             u32 *flags)
1787{
1788        __be16 protocol = skb->protocol;
1789        u32  tx_flags = 0;
1790
1791        if (protocol == htons(ETH_P_8021Q) &&
1792            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1793                /* When HW VLAN acceleration is turned off by the user the
1794                 * stack sets the protocol to 8021q so that the driver
1795                 * can take any steps required to support the SW only
1796                 * VLAN handling.  In our case the driver doesn't need
1797                 * to take any further steps so just set the protocol
1798                 * to the encapsulated ethertype.
1799                 */
1800                skb->protocol = vlan_get_protocol(skb);
1801                goto out;
1802        }
1803
1804        /* if we have a HW VLAN tag being added, default to the HW one */
1805        if (skb_vlan_tag_present(skb)) {
1806                tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1807                tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1808        /* else if it is a SW VLAN, check the next protocol and store the tag */
1809        } else if (protocol == htons(ETH_P_8021Q)) {
1810                struct vlan_hdr *vhdr, _vhdr;
1811
1812                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1813                if (!vhdr)
1814                        return -EINVAL;
1815
1816                protocol = vhdr->h_vlan_encapsulated_proto;
1817                tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1818                tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1819        }
1820
1821out:
1822        *flags = tx_flags;
1823        return 0;
1824}
1825
1826/**
1827 * iavf_tso - set up the tso context descriptor
1828 * @first:    pointer to first Tx buffer for xmit
1829 * @hdr_len:  ptr to the size of the packet header
1830 * @cd_type_cmd_tso_mss: Quad Word 1
1831 *
1832 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1833 **/
1834static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1835                    u64 *cd_type_cmd_tso_mss)
1836{
1837        struct sk_buff *skb = first->skb;
1838        u64 cd_cmd, cd_tso_len, cd_mss;
1839        union {
1840                struct iphdr *v4;
1841                struct ipv6hdr *v6;
1842                unsigned char *hdr;
1843        } ip;
1844        union {
1845                struct tcphdr *tcp;
1846                struct udphdr *udp;
1847                unsigned char *hdr;
1848        } l4;
1849        u32 paylen, l4_offset;
1850        u16 gso_segs, gso_size;
1851        int err;
1852
1853        if (skb->ip_summed != CHECKSUM_PARTIAL)
1854                return 0;
1855
1856        if (!skb_is_gso(skb))
1857                return 0;
1858
1859        err = skb_cow_head(skb, 0);
1860        if (err < 0)
1861                return err;
1862
1863        ip.hdr = skb_network_header(skb);
1864        l4.hdr = skb_transport_header(skb);
1865
1866        /* initialize outer IP header fields */
1867        if (ip.v4->version == 4) {
1868                ip.v4->tot_len = 0;
1869                ip.v4->check = 0;
1870        } else {
1871                ip.v6->payload_len = 0;
1872        }
1873
1874        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1875                                         SKB_GSO_GRE_CSUM |
1876                                         SKB_GSO_IPXIP4 |
1877                                         SKB_GSO_IPXIP6 |
1878                                         SKB_GSO_UDP_TUNNEL |
1879                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1880                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1881                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1882                        l4.udp->len = 0;
1883
1884                        /* determine offset of outer transport header */
1885                        l4_offset = l4.hdr - skb->data;
1886
1887                        /* remove payload length from outer checksum */
1888                        paylen = skb->len - l4_offset;
1889                        csum_replace_by_diff(&l4.udp->check,
1890                                             (__force __wsum)htonl(paylen));
1891                }
1892
1893                /* reset pointers to inner headers */
1894                ip.hdr = skb_inner_network_header(skb);
1895                l4.hdr = skb_inner_transport_header(skb);
1896
1897                /* initialize inner IP header fields */
1898                if (ip.v4->version == 4) {
1899                        ip.v4->tot_len = 0;
1900                        ip.v4->check = 0;
1901                } else {
1902                        ip.v6->payload_len = 0;
1903                }
1904        }
1905
1906        /* determine offset of inner transport header */
1907        l4_offset = l4.hdr - skb->data;
1908        /* remove payload length from inner checksum */
1909        paylen = skb->len - l4_offset;
1910
1911        if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1912                csum_replace_by_diff(&l4.udp->check,
1913                                     (__force __wsum)htonl(paylen));
1914                /* compute length of UDP segmentation header */
1915                *hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1916        } else {
1917                csum_replace_by_diff(&l4.tcp->check,
1918                                     (__force __wsum)htonl(paylen));
1919                /* compute length of TCP segmentation header */
1920                *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1921        }
1922
1923        /* pull values out of skb_shinfo */
1924        gso_size = skb_shinfo(skb)->gso_size;
1925        gso_segs = skb_shinfo(skb)->gso_segs;
1926
1927        /* update GSO size and bytecount with header size */
1928        first->gso_segs = gso_segs;
1929        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1930
1931        /* find the field values */
1932        cd_cmd = IAVF_TX_CTX_DESC_TSO;
1933        cd_tso_len = skb->len - *hdr_len;
1934        cd_mss = gso_size;
1935        *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1936                                (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1937                                (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1938        return 1;
1939}
1940
1941/**
1942 * iavf_tx_enable_csum - Enable Tx checksum offloads
1943 * @skb: send buffer
1944 * @tx_flags: pointer to Tx flags currently set
1945 * @td_cmd: Tx descriptor command bits to set
1946 * @td_offset: Tx descriptor header offsets to set
1947 * @tx_ring: Tx descriptor ring
1948 * @cd_tunneling: ptr to context desc bits
1949 **/
1950static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1951                               u32 *td_cmd, u32 *td_offset,
1952                               struct iavf_ring *tx_ring,
1953                               u32 *cd_tunneling)
1954{
1955        union {
1956                struct iphdr *v4;
1957                struct ipv6hdr *v6;
1958                unsigned char *hdr;
1959        } ip;
1960        union {
1961                struct tcphdr *tcp;
1962                struct udphdr *udp;
1963                unsigned char *hdr;
1964        } l4;
1965        unsigned char *exthdr;
1966        u32 offset, cmd = 0;
1967        __be16 frag_off;
1968        u8 l4_proto = 0;
1969
1970        if (skb->ip_summed != CHECKSUM_PARTIAL)
1971                return 0;
1972
1973        ip.hdr = skb_network_header(skb);
1974        l4.hdr = skb_transport_header(skb);
1975
1976        /* compute outer L2 header size */
1977        offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1978
1979        if (skb->encapsulation) {
1980                u32 tunnel = 0;
1981                /* define outer network header type */
1982                if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1983                        tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1984                                  IAVF_TX_CTX_EXT_IP_IPV4 :
1985                                  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1986
1987                        l4_proto = ip.v4->protocol;
1988                } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1989                        tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1990
1991                        exthdr = ip.hdr + sizeof(*ip.v6);
1992                        l4_proto = ip.v6->nexthdr;
1993                        if (l4.hdr != exthdr)
1994                                ipv6_skip_exthdr(skb, exthdr - skb->data,
1995                                                 &l4_proto, &frag_off);
1996                }
1997
1998                /* define outer transport */
1999                switch (l4_proto) {
2000                case IPPROTO_UDP:
2001                        tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2002                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2003                        break;
2004                case IPPROTO_GRE:
2005                        tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2006                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2007                        break;
2008                case IPPROTO_IPIP:
2009                case IPPROTO_IPV6:
2010                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2011                        l4.hdr = skb_inner_network_header(skb);
2012                        break;
2013                default:
2014                        if (*tx_flags & IAVF_TX_FLAGS_TSO)
2015                                return -1;
2016
2017                        skb_checksum_help(skb);
2018                        return 0;
2019                }
2020
2021                /* compute outer L3 header size */
2022                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2023                          IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2024
2025                /* switch IP header pointer from outer to inner header */
2026                ip.hdr = skb_inner_network_header(skb);
2027
2028                /* compute tunnel header size */
2029                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2030                          IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2031
2032                /* indicate if we need to offload outer UDP header */
2033                if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2034                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2035                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2036                        tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2037
2038                /* record tunnel offload values */
2039                *cd_tunneling |= tunnel;
2040
2041                /* switch L4 header pointer from outer to inner */
2042                l4.hdr = skb_inner_transport_header(skb);
2043                l4_proto = 0;
2044
2045                /* reset type as we transition from outer to inner headers */
2046                *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2047                if (ip.v4->version == 4)
2048                        *tx_flags |= IAVF_TX_FLAGS_IPV4;
2049                if (ip.v6->version == 6)
2050                        *tx_flags |= IAVF_TX_FLAGS_IPV6;
2051        }
2052
2053        /* Enable IP checksum offloads */
2054        if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2055                l4_proto = ip.v4->protocol;
2056                /* the stack computes the IP header already, the only time we
2057                 * need the hardware to recompute it is in the case of TSO.
2058                 */
2059                cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2060                       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2061                       IAVF_TX_DESC_CMD_IIPT_IPV4;
2062        } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2063                cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2064
2065                exthdr = ip.hdr + sizeof(*ip.v6);
2066                l4_proto = ip.v6->nexthdr;
2067                if (l4.hdr != exthdr)
2068                        ipv6_skip_exthdr(skb, exthdr - skb->data,
2069                                         &l4_proto, &frag_off);
2070        }
2071
2072        /* compute inner L3 header size */
2073        offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2074
2075        /* Enable L4 checksum offloads */
2076        switch (l4_proto) {
2077        case IPPROTO_TCP:
2078                /* enable checksum offloads */
2079                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2080                offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2081                break;
2082        case IPPROTO_SCTP:
2083                /* enable SCTP checksum offload */
2084                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2085                offset |= (sizeof(struct sctphdr) >> 2) <<
2086                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2087                break;
2088        case IPPROTO_UDP:
2089                /* enable UDP checksum offload */
2090                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2091                offset |= (sizeof(struct udphdr) >> 2) <<
2092                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2093                break;
2094        default:
2095                if (*tx_flags & IAVF_TX_FLAGS_TSO)
2096                        return -1;
2097                skb_checksum_help(skb);
2098                return 0;
2099        }
2100
2101        *td_cmd |= cmd;
2102        *td_offset |= offset;
2103
2104        return 1;
2105}
2106
2107/**
2108 * iavf_create_tx_ctx - Build the Tx context descriptor
2109 * @tx_ring:  ring to create the descriptor on
2110 * @cd_type_cmd_tso_mss: Quad Word 1
2111 * @cd_tunneling: Quad Word 0 - bits 0-31
2112 * @cd_l2tag2: Quad Word 0 - bits 32-63
2113 **/
2114static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2115                               const u64 cd_type_cmd_tso_mss,
2116                               const u32 cd_tunneling, const u32 cd_l2tag2)
2117{
2118        struct iavf_tx_context_desc *context_desc;
2119        int i = tx_ring->next_to_use;
2120
2121        if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2122            !cd_tunneling && !cd_l2tag2)
2123                return;
2124
2125        /* grab the next descriptor */
2126        context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2127
2128        i++;
2129        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2130
2131        /* cpu_to_le32 and assign to struct fields */
2132        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2133        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2134        context_desc->rsvd = cpu_to_le16(0);
2135        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2136}
2137
2138/**
2139 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2140 * @skb:      send buffer
2141 *
2142 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2143 * and so we need to figure out the cases where we need to linearize the skb.
2144 *
2145 * For TSO we need to count the TSO header and segment payload separately.
2146 * As such we need to check cases where we have 7 fragments or more as we
2147 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2148 * the segment payload in the first descriptor, and another 7 for the
2149 * fragments.
2150 **/
2151bool __iavf_chk_linearize(struct sk_buff *skb)
2152{
2153        const skb_frag_t *frag, *stale;
2154        int nr_frags, sum;
2155
2156        /* no need to check if number of frags is less than 7 */
2157        nr_frags = skb_shinfo(skb)->nr_frags;
2158        if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2159                return false;
2160
2161        /* We need to walk through the list and validate that each group
2162         * of 6 fragments totals at least gso_size.
2163         */
2164        nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2165        frag = &skb_shinfo(skb)->frags[0];
2166
2167        /* Initialize size to the negative value of gso_size minus 1.  We
2168         * use this as the worst case scenerio in which the frag ahead
2169         * of us only provides one byte which is why we are limited to 6
2170         * descriptors for a single transmit as the header and previous
2171         * fragment are already consuming 2 descriptors.
2172         */
2173        sum = 1 - skb_shinfo(skb)->gso_size;
2174
2175        /* Add size of frags 0 through 4 to create our initial sum */
2176        sum += skb_frag_size(frag++);
2177        sum += skb_frag_size(frag++);
2178        sum += skb_frag_size(frag++);
2179        sum += skb_frag_size(frag++);
2180        sum += skb_frag_size(frag++);
2181
2182        /* Walk through fragments adding latest fragment, testing it, and
2183         * then removing stale fragments from the sum.
2184         */
2185        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2186                int stale_size = skb_frag_size(stale);
2187
2188                sum += skb_frag_size(frag++);
2189
2190                /* The stale fragment may present us with a smaller
2191                 * descriptor than the actual fragment size. To account
2192                 * for that we need to remove all the data on the front and
2193                 * figure out what the remainder would be in the last
2194                 * descriptor associated with the fragment.
2195                 */
2196                if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2197                        int align_pad = -(skb_frag_off(stale)) &
2198                                        (IAVF_MAX_READ_REQ_SIZE - 1);
2199
2200                        sum -= align_pad;
2201                        stale_size -= align_pad;
2202
2203                        do {
2204                                sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2205                                stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2206                        } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2207                }
2208
2209                /* if sum is negative we failed to make sufficient progress */
2210                if (sum < 0)
2211                        return true;
2212
2213                if (!nr_frags--)
2214                        break;
2215
2216                sum -= stale_size;
2217        }
2218
2219        return false;
2220}
2221
2222/**
2223 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2224 * @tx_ring: the ring to be checked
2225 * @size:    the size buffer we want to assure is available
2226 *
2227 * Returns -EBUSY if a stop is needed, else 0
2228 **/
2229int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2230{
2231        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2232        /* Memory barrier before checking head and tail */
2233        smp_mb();
2234
2235        /* Check again in a case another CPU has just made room available. */
2236        if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2237                return -EBUSY;
2238
2239        /* A reprieve! - use start_queue because it doesn't call schedule */
2240        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2241        ++tx_ring->tx_stats.restart_queue;
2242        return 0;
2243}
2244
2245/**
2246 * iavf_tx_map - Build the Tx descriptor
2247 * @tx_ring:  ring to send buffer on
2248 * @skb:      send buffer
2249 * @first:    first buffer info buffer to use
2250 * @tx_flags: collected send information
2251 * @hdr_len:  size of the packet header
2252 * @td_cmd:   the command field in the descriptor
2253 * @td_offset: offset for checksum or crc
2254 **/
2255static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2256                               struct iavf_tx_buffer *first, u32 tx_flags,
2257                               const u8 hdr_len, u32 td_cmd, u32 td_offset)
2258{
2259        unsigned int data_len = skb->data_len;
2260        unsigned int size = skb_headlen(skb);
2261        skb_frag_t *frag;
2262        struct iavf_tx_buffer *tx_bi;
2263        struct iavf_tx_desc *tx_desc;
2264        u16 i = tx_ring->next_to_use;
2265        u32 td_tag = 0;
2266        dma_addr_t dma;
2267
2268        if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2269                td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2270                td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2271                         IAVF_TX_FLAGS_VLAN_SHIFT;
2272        }
2273
2274        first->tx_flags = tx_flags;
2275
2276        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2277
2278        tx_desc = IAVF_TX_DESC(tx_ring, i);
2279        tx_bi = first;
2280
2281        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2282                unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2283
2284                if (dma_mapping_error(tx_ring->dev, dma))
2285                        goto dma_error;
2286
2287                /* record length, and DMA address */
2288                dma_unmap_len_set(tx_bi, len, size);
2289                dma_unmap_addr_set(tx_bi, dma, dma);
2290
2291                /* align size to end of page */
2292                max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2293                tx_desc->buffer_addr = cpu_to_le64(dma);
2294
2295                while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2296                        tx_desc->cmd_type_offset_bsz =
2297                                build_ctob(td_cmd, td_offset,
2298                                           max_data, td_tag);
2299
2300                        tx_desc++;
2301                        i++;
2302
2303                        if (i == tx_ring->count) {
2304                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
2305                                i = 0;
2306                        }
2307
2308                        dma += max_data;
2309                        size -= max_data;
2310
2311                        max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2312                        tx_desc->buffer_addr = cpu_to_le64(dma);
2313                }
2314
2315                if (likely(!data_len))
2316                        break;
2317
2318                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2319                                                          size, td_tag);
2320
2321                tx_desc++;
2322                i++;
2323
2324                if (i == tx_ring->count) {
2325                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
2326                        i = 0;
2327                }
2328
2329                size = skb_frag_size(frag);
2330                data_len -= size;
2331
2332                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2333                                       DMA_TO_DEVICE);
2334
2335                tx_bi = &tx_ring->tx_bi[i];
2336        }
2337
2338        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2339
2340        i++;
2341        if (i == tx_ring->count)
2342                i = 0;
2343
2344        tx_ring->next_to_use = i;
2345
2346        iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2347
2348        /* write last descriptor with RS and EOP bits */
2349        td_cmd |= IAVF_TXD_CMD;
2350        tx_desc->cmd_type_offset_bsz =
2351                        build_ctob(td_cmd, td_offset, size, td_tag);
2352
2353        skb_tx_timestamp(skb);
2354
2355        /* Force memory writes to complete before letting h/w know there
2356         * are new descriptors to fetch.
2357         *
2358         * We also use this memory barrier to make certain all of the
2359         * status bits have been updated before next_to_watch is written.
2360         */
2361        wmb();
2362
2363        /* set next_to_watch value indicating a packet is present */
2364        first->next_to_watch = tx_desc;
2365
2366        /* notify HW of packet */
2367        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2368                writel(i, tx_ring->tail);
2369        }
2370
2371        return;
2372
2373dma_error:
2374        dev_info(tx_ring->dev, "TX DMA map failed\n");
2375
2376        /* clear dma mappings for failed tx_bi map */
2377        for (;;) {
2378                tx_bi = &tx_ring->tx_bi[i];
2379                iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2380                if (tx_bi == first)
2381                        break;
2382                if (i == 0)
2383                        i = tx_ring->count;
2384                i--;
2385        }
2386
2387        tx_ring->next_to_use = i;
2388}
2389
2390/**
2391 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2392 * @skb:     send buffer
2393 * @tx_ring: ring to send buffer on
2394 *
2395 * Returns NETDEV_TX_OK if sent, else an error code
2396 **/
2397static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2398                                        struct iavf_ring *tx_ring)
2399{
2400        u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2401        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2402        struct iavf_tx_buffer *first;
2403        u32 td_offset = 0;
2404        u32 tx_flags = 0;
2405        __be16 protocol;
2406        u32 td_cmd = 0;
2407        u8 hdr_len = 0;
2408        int tso, count;
2409
2410        /* prefetch the data, we'll need it later */
2411        prefetch(skb->data);
2412
2413        iavf_trace(xmit_frame_ring, skb, tx_ring);
2414
2415        count = iavf_xmit_descriptor_count(skb);
2416        if (iavf_chk_linearize(skb, count)) {
2417                if (__skb_linearize(skb)) {
2418                        dev_kfree_skb_any(skb);
2419                        return NETDEV_TX_OK;
2420                }
2421                count = iavf_txd_use_count(skb->len);
2422                tx_ring->tx_stats.tx_linearize++;
2423        }
2424
2425        /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2426         *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2427         *       + 4 desc gap to avoid the cache line where head is,
2428         *       + 1 desc for context descriptor,
2429         * otherwise try next time
2430         */
2431        if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2432                tx_ring->tx_stats.tx_busy++;
2433                return NETDEV_TX_BUSY;
2434        }
2435
2436        /* record the location of the first descriptor for this packet */
2437        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2438        first->skb = skb;
2439        first->bytecount = skb->len;
2440        first->gso_segs = 1;
2441
2442        /* prepare the xmit flags */
2443        if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2444                goto out_drop;
2445
2446        /* obtain protocol of skb */
2447        protocol = vlan_get_protocol(skb);
2448
2449        /* setup IPv4/IPv6 offloads */
2450        if (protocol == htons(ETH_P_IP))
2451                tx_flags |= IAVF_TX_FLAGS_IPV4;
2452        else if (protocol == htons(ETH_P_IPV6))
2453                tx_flags |= IAVF_TX_FLAGS_IPV6;
2454
2455        tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2456
2457        if (tso < 0)
2458                goto out_drop;
2459        else if (tso)
2460                tx_flags |= IAVF_TX_FLAGS_TSO;
2461
2462        /* Always offload the checksum, since it's in the data descriptor */
2463        tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2464                                  tx_ring, &cd_tunneling);
2465        if (tso < 0)
2466                goto out_drop;
2467
2468        /* always enable CRC insertion offload */
2469        td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2470
2471        iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2472                           cd_tunneling, cd_l2tag2);
2473
2474        iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2475                    td_cmd, td_offset);
2476
2477        return NETDEV_TX_OK;
2478
2479out_drop:
2480        iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2481        dev_kfree_skb_any(first->skb);
2482        first->skb = NULL;
2483        return NETDEV_TX_OK;
2484}
2485
2486/**
2487 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2488 * @skb:    send buffer
2489 * @netdev: network interface device structure
2490 *
2491 * Returns NETDEV_TX_OK if sent, else an error code
2492 **/
2493netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2494{
2495        struct iavf_adapter *adapter = netdev_priv(netdev);
2496        struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2497
2498        /* hardware can't handle really short frames, hardware padding works
2499         * beyond this point
2500         */
2501        if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2502                if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2503                        return NETDEV_TX_OK;
2504                skb->len = IAVF_MIN_TX_LEN;
2505                skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2506        }
2507
2508        return iavf_xmit_frame_ring(skb, tx_ring);
2509}
2510