linux/drivers/rtc/interface.c
<<
>>
Prefs
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28        time64_t secs;
  29
  30        if (!rtc->offset_secs)
  31                return;
  32
  33        secs = rtc_tm_to_time64(tm);
  34
  35        /*
  36         * Since the reading time values from RTC device are always in the RTC
  37         * original valid range, but we need to skip the overlapped region
  38         * between expanded range and original range, which is no need to add
  39         * the offset.
  40         */
  41        if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42            (rtc->start_secs < rtc->range_min &&
  43             secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44                return;
  45
  46        rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51        time64_t secs;
  52
  53        if (!rtc->offset_secs)
  54                return;
  55
  56        secs = rtc_tm_to_time64(tm);
  57
  58        /*
  59         * If the setting time values are in the valid range of RTC hardware
  60         * device, then no need to subtract the offset when setting time to RTC
  61         * device. Otherwise we need to subtract the offset to make the time
  62         * values are valid for RTC hardware device.
  63         */
  64        if (secs >= rtc->range_min && secs <= rtc->range_max)
  65                return;
  66
  67        rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72        if (rtc->range_min != rtc->range_max) {
  73                time64_t time = rtc_tm_to_time64(tm);
  74                time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75                        rtc->range_min;
  76                time64_t range_max = rtc->set_start_time ?
  77                        (rtc->start_secs + rtc->range_max - rtc->range_min) :
  78                        rtc->range_max;
  79
  80                if (time < range_min || time > range_max)
  81                        return -ERANGE;
  82        }
  83
  84        return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89        int err;
  90        if (!rtc->ops)
  91                err = -ENODEV;
  92        else if (!rtc->ops->read_time)
  93                err = -EINVAL;
  94        else {
  95                memset(tm, 0, sizeof(struct rtc_time));
  96                err = rtc->ops->read_time(rtc->dev.parent, tm);
  97                if (err < 0) {
  98                        dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99                                err);
 100                        return err;
 101                }
 102
 103                rtc_add_offset(rtc, tm);
 104
 105                err = rtc_valid_tm(tm);
 106                if (err < 0)
 107                        dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108        }
 109        return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114        int err;
 115
 116        err = mutex_lock_interruptible(&rtc->ops_lock);
 117        if (err)
 118                return err;
 119
 120        err = __rtc_read_time(rtc, tm);
 121        mutex_unlock(&rtc->ops_lock);
 122
 123        trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124        return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130        int err, uie;
 131
 132        err = rtc_valid_tm(tm);
 133        if (err != 0)
 134                return err;
 135
 136        err = rtc_valid_range(rtc, tm);
 137        if (err)
 138                return err;
 139
 140        rtc_subtract_offset(rtc, tm);
 141
 142#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 143        uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
 144#else
 145        uie = rtc->uie_rtctimer.enabled;
 146#endif
 147        if (uie) {
 148                err = rtc_update_irq_enable(rtc, 0);
 149                if (err)
 150                        return err;
 151        }
 152
 153        err = mutex_lock_interruptible(&rtc->ops_lock);
 154        if (err)
 155                return err;
 156
 157        if (!rtc->ops)
 158                err = -ENODEV;
 159        else if (rtc->ops->set_time)
 160                err = rtc->ops->set_time(rtc->dev.parent, tm);
 161        else if (rtc->ops->set_mmss64) {
 162                time64_t secs64 = rtc_tm_to_time64(tm);
 163
 164                err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 165        } else if (rtc->ops->set_mmss) {
 166                time64_t secs64 = rtc_tm_to_time64(tm);
 167                err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 168        } else
 169                err = -EINVAL;
 170
 171        pm_stay_awake(rtc->dev.parent);
 172        mutex_unlock(&rtc->ops_lock);
 173        /* A timer might have just expired */
 174        schedule_work(&rtc->irqwork);
 175
 176        if (uie) {
 177                err = rtc_update_irq_enable(rtc, 1);
 178                if (err)
 179                        return err;
 180        }
 181
 182        trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 183        return err;
 184}
 185EXPORT_SYMBOL_GPL(rtc_set_time);
 186
 187static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 188{
 189        int err;
 190
 191        err = mutex_lock_interruptible(&rtc->ops_lock);
 192        if (err)
 193                return err;
 194
 195        if (rtc->ops == NULL)
 196                err = -ENODEV;
 197        else if (!rtc->ops->read_alarm)
 198                err = -EINVAL;
 199        else {
 200                alarm->enabled = 0;
 201                alarm->pending = 0;
 202                alarm->time.tm_sec = -1;
 203                alarm->time.tm_min = -1;
 204                alarm->time.tm_hour = -1;
 205                alarm->time.tm_mday = -1;
 206                alarm->time.tm_mon = -1;
 207                alarm->time.tm_year = -1;
 208                alarm->time.tm_wday = -1;
 209                alarm->time.tm_yday = -1;
 210                alarm->time.tm_isdst = -1;
 211                err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 212        }
 213
 214        mutex_unlock(&rtc->ops_lock);
 215
 216        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 217        return err;
 218}
 219
 220int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 221{
 222        int err;
 223        struct rtc_time before, now;
 224        int first_time = 1;
 225        time64_t t_now, t_alm;
 226        enum { none, day, month, year } missing = none;
 227        unsigned days;
 228
 229        /* The lower level RTC driver may return -1 in some fields,
 230         * creating invalid alarm->time values, for reasons like:
 231         *
 232         *   - The hardware may not be capable of filling them in;
 233         *     many alarms match only on time-of-day fields, not
 234         *     day/month/year calendar data.
 235         *
 236         *   - Some hardware uses illegal values as "wildcard" match
 237         *     values, which non-Linux firmware (like a BIOS) may try
 238         *     to set up as e.g. "alarm 15 minutes after each hour".
 239         *     Linux uses only oneshot alarms.
 240         *
 241         * When we see that here, we deal with it by using values from
 242         * a current RTC timestamp for any missing (-1) values.  The
 243         * RTC driver prevents "periodic alarm" modes.
 244         *
 245         * But this can be racey, because some fields of the RTC timestamp
 246         * may have wrapped in the interval since we read the RTC alarm,
 247         * which would lead to us inserting inconsistent values in place
 248         * of the -1 fields.
 249         *
 250         * Reading the alarm and timestamp in the reverse sequence
 251         * would have the same race condition, and not solve the issue.
 252         *
 253         * So, we must first read the RTC timestamp,
 254         * then read the RTC alarm value,
 255         * and then read a second RTC timestamp.
 256         *
 257         * If any fields of the second timestamp have changed
 258         * when compared with the first timestamp, then we know
 259         * our timestamp may be inconsistent with that used by
 260         * the low-level rtc_read_alarm_internal() function.
 261         *
 262         * So, when the two timestamps disagree, we just loop and do
 263         * the process again to get a fully consistent set of values.
 264         *
 265         * This could all instead be done in the lower level driver,
 266         * but since more than one lower level RTC implementation needs it,
 267         * then it's probably best best to do it here instead of there..
 268         */
 269
 270        /* Get the "before" timestamp */
 271        err = rtc_read_time(rtc, &before);
 272        if (err < 0)
 273                return err;
 274        do {
 275                if (!first_time)
 276                        memcpy(&before, &now, sizeof(struct rtc_time));
 277                first_time = 0;
 278
 279                /* get the RTC alarm values, which may be incomplete */
 280                err = rtc_read_alarm_internal(rtc, alarm);
 281                if (err)
 282                        return err;
 283
 284                /* full-function RTCs won't have such missing fields */
 285                if (rtc_valid_tm(&alarm->time) == 0) {
 286                        rtc_add_offset(rtc, &alarm->time);
 287                        return 0;
 288                }
 289
 290                /* get the "after" timestamp, to detect wrapped fields */
 291                err = rtc_read_time(rtc, &now);
 292                if (err < 0)
 293                        return err;
 294
 295                /* note that tm_sec is a "don't care" value here: */
 296        } while (   before.tm_min   != now.tm_min
 297                 || before.tm_hour  != now.tm_hour
 298                 || before.tm_mon   != now.tm_mon
 299                 || before.tm_year  != now.tm_year);
 300
 301        /* Fill in the missing alarm fields using the timestamp; we
 302         * know there's at least one since alarm->time is invalid.
 303         */
 304        if (alarm->time.tm_sec == -1)
 305                alarm->time.tm_sec = now.tm_sec;
 306        if (alarm->time.tm_min == -1)
 307                alarm->time.tm_min = now.tm_min;
 308        if (alarm->time.tm_hour == -1)
 309                alarm->time.tm_hour = now.tm_hour;
 310
 311        /* For simplicity, only support date rollover for now */
 312        if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 313                alarm->time.tm_mday = now.tm_mday;
 314                missing = day;
 315        }
 316        if ((unsigned)alarm->time.tm_mon >= 12) {
 317                alarm->time.tm_mon = now.tm_mon;
 318                if (missing == none)
 319                        missing = month;
 320        }
 321        if (alarm->time.tm_year == -1) {
 322                alarm->time.tm_year = now.tm_year;
 323                if (missing == none)
 324                        missing = year;
 325        }
 326
 327        /* Can't proceed if alarm is still invalid after replacing
 328         * missing fields.
 329         */
 330        err = rtc_valid_tm(&alarm->time);
 331        if (err)
 332                goto done;
 333
 334        /* with luck, no rollover is needed */
 335        t_now = rtc_tm_to_time64(&now);
 336        t_alm = rtc_tm_to_time64(&alarm->time);
 337        if (t_now < t_alm)
 338                goto done;
 339
 340        switch (missing) {
 341
 342        /* 24 hour rollover ... if it's now 10am Monday, an alarm that
 343         * that will trigger at 5am will do so at 5am Tuesday, which
 344         * could also be in the next month or year.  This is a common
 345         * case, especially for PCs.
 346         */
 347        case day:
 348                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 349                t_alm += 24 * 60 * 60;
 350                rtc_time64_to_tm(t_alm, &alarm->time);
 351                break;
 352
 353        /* Month rollover ... if it's the 31th, an alarm on the 3rd will
 354         * be next month.  An alarm matching on the 30th, 29th, or 28th
 355         * may end up in the month after that!  Many newer PCs support
 356         * this type of alarm.
 357         */
 358        case month:
 359                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 360                do {
 361                        if (alarm->time.tm_mon < 11)
 362                                alarm->time.tm_mon++;
 363                        else {
 364                                alarm->time.tm_mon = 0;
 365                                alarm->time.tm_year++;
 366                        }
 367                        days = rtc_month_days(alarm->time.tm_mon,
 368                                        alarm->time.tm_year);
 369                } while (days < alarm->time.tm_mday);
 370                break;
 371
 372        /* Year rollover ... easy except for leap years! */
 373        case year:
 374                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 375                do {
 376                        alarm->time.tm_year++;
 377                } while (!is_leap_year(alarm->time.tm_year + 1900)
 378                        && rtc_valid_tm(&alarm->time) != 0);
 379                break;
 380
 381        default:
 382                dev_warn(&rtc->dev, "alarm rollover not handled\n");
 383        }
 384
 385        err = rtc_valid_tm(&alarm->time);
 386
 387done:
 388        if (err) {
 389                dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 390                        alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 391                        alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 392                        alarm->time.tm_sec);
 393        }
 394
 395        return err;
 396}
 397
 398int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 399{
 400        int err;
 401
 402        err = mutex_lock_interruptible(&rtc->ops_lock);
 403        if (err)
 404                return err;
 405        if (rtc->ops == NULL)
 406                err = -ENODEV;
 407        else if (!rtc->ops->read_alarm)
 408                err = -EINVAL;
 409        else {
 410                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 411                alarm->enabled = rtc->aie_timer.enabled;
 412                alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 413        }
 414        mutex_unlock(&rtc->ops_lock);
 415
 416        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 417        return err;
 418}
 419EXPORT_SYMBOL_GPL(rtc_read_alarm);
 420
 421static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 422{
 423        struct rtc_time tm;
 424        time64_t now, scheduled;
 425        int err;
 426
 427        err = rtc_valid_tm(&alarm->time);
 428        if (err)
 429                return err;
 430
 431        scheduled = rtc_tm_to_time64(&alarm->time);
 432
 433        /* Make sure we're not setting alarms in the past */
 434        err = __rtc_read_time(rtc, &tm);
 435        if (err)
 436                return err;
 437        now = rtc_tm_to_time64(&tm);
 438        if (scheduled <= now)
 439                return -ETIME;
 440        /*
 441         * XXX - We just checked to make sure the alarm time is not
 442         * in the past, but there is still a race window where if
 443         * the is alarm set for the next second and the second ticks
 444         * over right here, before we set the alarm.
 445         */
 446
 447        rtc_subtract_offset(rtc, &alarm->time);
 448
 449        if (!rtc->ops)
 450                err = -ENODEV;
 451        else if (!rtc->ops->set_alarm)
 452                err = -EINVAL;
 453        else
 454                err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 455
 456        trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 457        return err;
 458}
 459
 460int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 461{
 462        int err;
 463
 464        if (!rtc->ops)
 465                return -ENODEV;
 466        else if (!rtc->ops->set_alarm)
 467                return -EINVAL;
 468
 469        err = rtc_valid_tm(&alarm->time);
 470        if (err != 0)
 471                return err;
 472
 473        err = rtc_valid_range(rtc, &alarm->time);
 474        if (err)
 475                return err;
 476
 477        err = mutex_lock_interruptible(&rtc->ops_lock);
 478        if (err)
 479                return err;
 480        if (rtc->aie_timer.enabled)
 481                rtc_timer_remove(rtc, &rtc->aie_timer);
 482
 483        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 484        rtc->aie_timer.period = 0;
 485        if (alarm->enabled)
 486                err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 487
 488        mutex_unlock(&rtc->ops_lock);
 489
 490        return err;
 491}
 492EXPORT_SYMBOL_GPL(rtc_set_alarm);
 493
 494/* Called once per device from rtc_device_register */
 495int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 496{
 497        int err;
 498        struct rtc_time now;
 499
 500        err = rtc_valid_tm(&alarm->time);
 501        if (err != 0)
 502                return err;
 503
 504        err = rtc_read_time(rtc, &now);
 505        if (err)
 506                return err;
 507
 508        err = mutex_lock_interruptible(&rtc->ops_lock);
 509        if (err)
 510                return err;
 511
 512        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 513        rtc->aie_timer.period = 0;
 514
 515        /* Alarm has to be enabled & in the future for us to enqueue it */
 516        if (alarm->enabled && (rtc_tm_to_ktime(now) <
 517                         rtc->aie_timer.node.expires)) {
 518
 519                rtc->aie_timer.enabled = 1;
 520                timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 521                trace_rtc_timer_enqueue(&rtc->aie_timer);
 522        }
 523        mutex_unlock(&rtc->ops_lock);
 524        return err;
 525}
 526EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 527
 528int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 529{
 530        int err = mutex_lock_interruptible(&rtc->ops_lock);
 531        if (err)
 532                return err;
 533
 534        if (rtc->aie_timer.enabled != enabled) {
 535                if (enabled)
 536                        err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 537                else
 538                        rtc_timer_remove(rtc, &rtc->aie_timer);
 539        }
 540
 541        if (err)
 542                /* nothing */;
 543        else if (!rtc->ops)
 544                err = -ENODEV;
 545        else if (!rtc->ops->alarm_irq_enable)
 546                err = -EINVAL;
 547        else
 548                err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 549
 550        mutex_unlock(&rtc->ops_lock);
 551
 552        trace_rtc_alarm_irq_enable(enabled, err);
 553        return err;
 554}
 555EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 556
 557int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 558{
 559        int rc = 0, err;
 560
 561        err = mutex_lock_interruptible(&rtc->ops_lock);
 562        if (err)
 563                return err;
 564
 565#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 566        if (enabled == 0 && rtc->uie_irq_active) {
 567                mutex_unlock(&rtc->ops_lock);
 568                return rtc_dev_update_irq_enable_emul(rtc, 0);
 569        }
 570#endif
 571        /* make sure we're changing state */
 572        if (rtc->uie_rtctimer.enabled == enabled)
 573                goto out;
 574
 575        if (rtc->uie_unsupported) {
 576                err = -EINVAL;
 577                goto out;
 578        }
 579
 580        if (enabled) {
 581                struct rtc_time tm;
 582                ktime_t now, onesec;
 583
 584                rc = __rtc_read_time(rtc, &tm);
 585                if (rc)
 586                        goto out;
 587                onesec = ktime_set(1, 0);
 588                now = rtc_tm_to_ktime(tm);
 589                rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 590                rtc->uie_rtctimer.period = ktime_set(1, 0);
 591                err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 592        } else
 593                rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 594
 595out:
 596        mutex_unlock(&rtc->ops_lock);
 597
 598        /*
 599         * __rtc_read_time() failed, this probably means that the RTC time has
 600         * never been set or less probably there is a transient error on the
 601         * bus. In any case, avoid enabling emulation has this will fail when
 602         * reading the time too.
 603         */
 604        if (rc)
 605                return rc;
 606
 607#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 608        /*
 609         * Enable emulation if the driver returned -EINVAL to signal that it has
 610         * been configured without interrupts or they are not available at the
 611         * moment.
 612         */
 613        if (err == -EINVAL)
 614                err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 615#endif
 616        return err;
 617
 618}
 619EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 620
 621
 622/**
 623 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 624 * @rtc: pointer to the rtc device
 625 *
 626 * This function is called when an AIE, UIE or PIE mode interrupt
 627 * has occurred (or been emulated).
 628 *
 629 * Triggers the registered irq_task function callback.
 630 */
 631void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 632{
 633        unsigned long flags;
 634
 635        /* mark one irq of the appropriate mode */
 636        spin_lock_irqsave(&rtc->irq_lock, flags);
 637        rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 638        spin_unlock_irqrestore(&rtc->irq_lock, flags);
 639
 640        /* call the task func */
 641        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 642        if (rtc->irq_task)
 643                rtc->irq_task->func(rtc->irq_task->private_data);
 644        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 645
 646        wake_up_interruptible(&rtc->irq_queue);
 647        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 648}
 649
 650
 651/**
 652 * rtc_aie_update_irq - AIE mode rtctimer hook
 653 * @private: pointer to the rtc_device
 654 *
 655 * This functions is called when the aie_timer expires.
 656 */
 657void rtc_aie_update_irq(void *private)
 658{
 659        struct rtc_device *rtc = (struct rtc_device *)private;
 660        rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 661}
 662
 663
 664/**
 665 * rtc_uie_update_irq - UIE mode rtctimer hook
 666 * @private: pointer to the rtc_device
 667 *
 668 * This functions is called when the uie_timer expires.
 669 */
 670void rtc_uie_update_irq(void *private)
 671{
 672        struct rtc_device *rtc = (struct rtc_device *)private;
 673        rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 674}
 675
 676
 677/**
 678 * rtc_pie_update_irq - PIE mode hrtimer hook
 679 * @timer: pointer to the pie mode hrtimer
 680 *
 681 * This function is used to emulate PIE mode interrupts
 682 * using an hrtimer. This function is called when the periodic
 683 * hrtimer expires.
 684 */
 685enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 686{
 687        struct rtc_device *rtc;
 688        ktime_t period;
 689        int count;
 690        rtc = container_of(timer, struct rtc_device, pie_timer);
 691
 692        period = NSEC_PER_SEC / rtc->irq_freq;
 693        count = hrtimer_forward_now(timer, period);
 694
 695        rtc_handle_legacy_irq(rtc, count, RTC_PF);
 696
 697        return HRTIMER_RESTART;
 698}
 699
 700/**
 701 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 702 * @rtc: the rtc device
 703 * @num: how many irqs are being reported (usually one)
 704 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 705 * Context: any
 706 */
 707void rtc_update_irq(struct rtc_device *rtc,
 708                unsigned long num, unsigned long events)
 709{
 710        if (IS_ERR_OR_NULL(rtc))
 711                return;
 712
 713        pm_stay_awake(rtc->dev.parent);
 714        schedule_work(&rtc->irqwork);
 715}
 716EXPORT_SYMBOL_GPL(rtc_update_irq);
 717
 718struct rtc_device *rtc_class_open(const char *name)
 719{
 720        struct device *dev;
 721        struct rtc_device *rtc = NULL;
 722
 723        dev = class_find_device_by_name(rtc_class, name);
 724        if (dev)
 725                rtc = to_rtc_device(dev);
 726
 727        if (rtc) {
 728                if (!try_module_get(rtc->owner)) {
 729                        put_device(dev);
 730                        rtc = NULL;
 731                }
 732        }
 733
 734        return rtc;
 735}
 736EXPORT_SYMBOL_GPL(rtc_class_open);
 737
 738void rtc_class_close(struct rtc_device *rtc)
 739{
 740        module_put(rtc->owner);
 741        put_device(&rtc->dev);
 742}
 743EXPORT_SYMBOL_GPL(rtc_class_close);
 744
 745int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 746{
 747        int retval = -EBUSY;
 748
 749        if (task == NULL || task->func == NULL)
 750                return -EINVAL;
 751
 752        /* Cannot register while the char dev is in use */
 753        if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 754                return -EBUSY;
 755
 756        spin_lock_irq(&rtc->irq_task_lock);
 757        if (rtc->irq_task == NULL) {
 758                rtc->irq_task = task;
 759                retval = 0;
 760        }
 761        spin_unlock_irq(&rtc->irq_task_lock);
 762
 763        clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 764
 765        return retval;
 766}
 767EXPORT_SYMBOL_GPL(rtc_irq_register);
 768
 769void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 770{
 771        spin_lock_irq(&rtc->irq_task_lock);
 772        if (rtc->irq_task == task)
 773                rtc->irq_task = NULL;
 774        spin_unlock_irq(&rtc->irq_task_lock);
 775}
 776EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 777
 778static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 779{
 780        /*
 781         * We always cancel the timer here first, because otherwise
 782         * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 783         * when we manage to start the timer before the callback
 784         * returns HRTIMER_RESTART.
 785         *
 786         * We cannot use hrtimer_cancel() here as a running callback
 787         * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 788         * would spin forever.
 789         */
 790        if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 791                return -1;
 792
 793        if (enabled) {
 794                ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 795
 796                hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 797        }
 798        return 0;
 799}
 800
 801/**
 802 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 803 * @rtc: the rtc device
 804 * @task: currently registered with rtc_irq_register()
 805 * @enabled: true to enable periodic IRQs
 806 * Context: any
 807 *
 808 * Note that rtc_irq_set_freq() should previously have been used to
 809 * specify the desired frequency of periodic IRQ task->func() callbacks.
 810 */
 811int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 812{
 813        int err = 0;
 814        unsigned long flags;
 815
 816retry:
 817        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 818        if (rtc->irq_task != NULL && task == NULL)
 819                err = -EBUSY;
 820        else if (rtc->irq_task != task)
 821                err = -EACCES;
 822        else {
 823                if (rtc_update_hrtimer(rtc, enabled) < 0) {
 824                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 825                        cpu_relax();
 826                        goto retry;
 827                }
 828                rtc->pie_enabled = enabled;
 829        }
 830        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 831
 832        trace_rtc_irq_set_state(enabled, err);
 833        return err;
 834}
 835EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 836
 837/**
 838 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 839 * @rtc: the rtc device
 840 * @task: currently registered with rtc_irq_register()
 841 * @freq: positive frequency with which task->func() will be called
 842 * Context: any
 843 *
 844 * Note that rtc_irq_set_state() is used to enable or disable the
 845 * periodic IRQs.
 846 */
 847int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 848{
 849        int err = 0;
 850        unsigned long flags;
 851
 852        if (freq <= 0 || freq > RTC_MAX_FREQ)
 853                return -EINVAL;
 854retry:
 855        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 856        if (rtc->irq_task != NULL && task == NULL)
 857                err = -EBUSY;
 858        else if (rtc->irq_task != task)
 859                err = -EACCES;
 860        else {
 861                rtc->irq_freq = freq;
 862                if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 863                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 864                        cpu_relax();
 865                        goto retry;
 866                }
 867        }
 868        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 869
 870        trace_rtc_irq_set_freq(freq, err);
 871        return err;
 872}
 873EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 874
 875/**
 876 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 877 * @rtc rtc device
 878 * @timer timer being added.
 879 *
 880 * Enqueues a timer onto the rtc devices timerqueue and sets
 881 * the next alarm event appropriately.
 882 *
 883 * Sets the enabled bit on the added timer.
 884 *
 885 * Must hold ops_lock for proper serialization of timerqueue
 886 */
 887static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 888{
 889        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 890        struct rtc_time tm;
 891        ktime_t now;
 892
 893        timer->enabled = 1;
 894        __rtc_read_time(rtc, &tm);
 895        now = rtc_tm_to_ktime(tm);
 896
 897        /* Skip over expired timers */
 898        while (next) {
 899                if (next->expires >= now)
 900                        break;
 901                next = timerqueue_iterate_next(next);
 902        }
 903
 904        timerqueue_add(&rtc->timerqueue, &timer->node);
 905        trace_rtc_timer_enqueue(timer);
 906        if (!next || ktime_before(timer->node.expires, next->expires)) {
 907                struct rtc_wkalrm alarm;
 908                int err;
 909                alarm.time = rtc_ktime_to_tm(timer->node.expires);
 910                alarm.enabled = 1;
 911                err = __rtc_set_alarm(rtc, &alarm);
 912                if (err == -ETIME) {
 913                        pm_stay_awake(rtc->dev.parent);
 914                        schedule_work(&rtc->irqwork);
 915                } else if (err) {
 916                        timerqueue_del(&rtc->timerqueue, &timer->node);
 917                        trace_rtc_timer_dequeue(timer);
 918                        timer->enabled = 0;
 919                        return err;
 920                }
 921        }
 922        return 0;
 923}
 924
 925static void rtc_alarm_disable(struct rtc_device *rtc)
 926{
 927        if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 928                return;
 929
 930        rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 931        trace_rtc_alarm_irq_enable(0, 0);
 932}
 933
 934/**
 935 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 936 * @rtc rtc device
 937 * @timer timer being removed.
 938 *
 939 * Removes a timer onto the rtc devices timerqueue and sets
 940 * the next alarm event appropriately.
 941 *
 942 * Clears the enabled bit on the removed timer.
 943 *
 944 * Must hold ops_lock for proper serialization of timerqueue
 945 */
 946static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 947{
 948        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 949        timerqueue_del(&rtc->timerqueue, &timer->node);
 950        trace_rtc_timer_dequeue(timer);
 951        timer->enabled = 0;
 952        if (next == &timer->node) {
 953                struct rtc_wkalrm alarm;
 954                int err;
 955                next = timerqueue_getnext(&rtc->timerqueue);
 956                if (!next) {
 957                        rtc_alarm_disable(rtc);
 958                        return;
 959                }
 960                alarm.time = rtc_ktime_to_tm(next->expires);
 961                alarm.enabled = 1;
 962                err = __rtc_set_alarm(rtc, &alarm);
 963                if (err == -ETIME) {
 964                        pm_stay_awake(rtc->dev.parent);
 965                        schedule_work(&rtc->irqwork);
 966                }
 967        }
 968}
 969
 970/**
 971 * rtc_timer_do_work - Expires rtc timers
 972 * @rtc rtc device
 973 * @timer timer being removed.
 974 *
 975 * Expires rtc timers. Reprograms next alarm event if needed.
 976 * Called via worktask.
 977 *
 978 * Serializes access to timerqueue via ops_lock mutex
 979 */
 980void rtc_timer_do_work(struct work_struct *work)
 981{
 982        struct rtc_timer *timer;
 983        struct timerqueue_node *next;
 984        ktime_t now;
 985        struct rtc_time tm;
 986
 987        struct rtc_device *rtc =
 988                container_of(work, struct rtc_device, irqwork);
 989
 990        mutex_lock(&rtc->ops_lock);
 991again:
 992        __rtc_read_time(rtc, &tm);
 993        now = rtc_tm_to_ktime(tm);
 994        while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 995                if (next->expires > now)
 996                        break;
 997
 998                /* expire timer */
 999                timer = container_of(next, struct rtc_timer, node);
1000                timerqueue_del(&rtc->timerqueue, &timer->node);
1001                trace_rtc_timer_dequeue(timer);
1002                timer->enabled = 0;
1003                if (timer->task.func)
1004                        timer->task.func(timer->task.private_data);
1005
1006                trace_rtc_timer_fired(timer);
1007                /* Re-add/fwd periodic timers */
1008                if (ktime_to_ns(timer->period)) {
1009                        timer->node.expires = ktime_add(timer->node.expires,
1010                                                        timer->period);
1011                        timer->enabled = 1;
1012                        timerqueue_add(&rtc->timerqueue, &timer->node);
1013                        trace_rtc_timer_enqueue(timer);
1014                }
1015        }
1016
1017        /* Set next alarm */
1018        if (next) {
1019                struct rtc_wkalrm alarm;
1020                int err;
1021                int retry = 3;
1022
1023                alarm.time = rtc_ktime_to_tm(next->expires);
1024                alarm.enabled = 1;
1025reprogram:
1026                err = __rtc_set_alarm(rtc, &alarm);
1027                if (err == -ETIME)
1028                        goto again;
1029                else if (err) {
1030                        if (retry-- > 0)
1031                                goto reprogram;
1032
1033                        timer = container_of(next, struct rtc_timer, node);
1034                        timerqueue_del(&rtc->timerqueue, &timer->node);
1035                        trace_rtc_timer_dequeue(timer);
1036                        timer->enabled = 0;
1037                        dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1038                        goto again;
1039                }
1040        } else
1041                rtc_alarm_disable(rtc);
1042
1043        pm_relax(rtc->dev.parent);
1044        mutex_unlock(&rtc->ops_lock);
1045}
1046
1047
1048/* rtc_timer_init - Initializes an rtc_timer
1049 * @timer: timer to be intiialized
1050 * @f: function pointer to be called when timer fires
1051 * @data: private data passed to function pointer
1052 *
1053 * Kernel interface to initializing an rtc_timer.
1054 */
1055void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1056{
1057        timerqueue_init(&timer->node);
1058        timer->enabled = 0;
1059        timer->task.func = f;
1060        timer->task.private_data = data;
1061}
1062
1063/* rtc_timer_start - Sets an rtc_timer to fire in the future
1064 * @ rtc: rtc device to be used
1065 * @ timer: timer being set
1066 * @ expires: time at which to expire the timer
1067 * @ period: period that the timer will recur
1068 *
1069 * Kernel interface to set an rtc_timer
1070 */
1071int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1072                        ktime_t expires, ktime_t period)
1073{
1074        int ret = 0;
1075        mutex_lock(&rtc->ops_lock);
1076        if (timer->enabled)
1077                rtc_timer_remove(rtc, timer);
1078
1079        timer->node.expires = expires;
1080        timer->period = period;
1081
1082        ret = rtc_timer_enqueue(rtc, timer);
1083
1084        mutex_unlock(&rtc->ops_lock);
1085        return ret;
1086}
1087
1088/* rtc_timer_cancel - Stops an rtc_timer
1089 * @ rtc: rtc device to be used
1090 * @ timer: timer being set
1091 *
1092 * Kernel interface to cancel an rtc_timer
1093 */
1094void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1095{
1096        mutex_lock(&rtc->ops_lock);
1097        if (timer->enabled)
1098                rtc_timer_remove(rtc, timer);
1099        mutex_unlock(&rtc->ops_lock);
1100}
1101
1102/**
1103 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1104 * @ rtc: rtc device to be used
1105 * @ offset: the offset in parts per billion
1106 *
1107 * see below for details.
1108 *
1109 * Kernel interface to read rtc clock offset
1110 * Returns 0 on success, or a negative number on error.
1111 * If read_offset() is not implemented for the rtc, return -EINVAL
1112 */
1113int rtc_read_offset(struct rtc_device *rtc, long *offset)
1114{
1115        int ret;
1116
1117        if (!rtc->ops)
1118                return -ENODEV;
1119
1120        if (!rtc->ops->read_offset)
1121                return -EINVAL;
1122
1123        mutex_lock(&rtc->ops_lock);
1124        ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1125        mutex_unlock(&rtc->ops_lock);
1126
1127        trace_rtc_read_offset(*offset, ret);
1128        return ret;
1129}
1130
1131/**
1132 * rtc_set_offset - Adjusts the duration of the average second
1133 * @ rtc: rtc device to be used
1134 * @ offset: the offset in parts per billion
1135 *
1136 * Some rtc's allow an adjustment to the average duration of a second
1137 * to compensate for differences in the actual clock rate due to temperature,
1138 * the crystal, capacitor, etc.
1139 *
1140 * The adjustment applied is as follows:
1141 *   t = t0 * (1 + offset * 1e-9)
1142 * where t0 is the measured length of 1 RTC second with offset = 0
1143 *
1144 * Kernel interface to adjust an rtc clock offset.
1145 * Return 0 on success, or a negative number on error.
1146 * If the rtc offset is not setable (or not implemented), return -EINVAL
1147 */
1148int rtc_set_offset(struct rtc_device *rtc, long offset)
1149{
1150        int ret;
1151
1152        if (!rtc->ops)
1153                return -ENODEV;
1154
1155        if (!rtc->ops->set_offset)
1156                return -EINVAL;
1157
1158        mutex_lock(&rtc->ops_lock);
1159        ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1160        mutex_unlock(&rtc->ops_lock);
1161
1162        trace_rtc_set_offset(offset, ret);
1163        return ret;
1164}
1165