linux/drivers/usb/core/urb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Released under the GPLv2 only.
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/string.h>
   8#include <linux/bitops.h>
   9#include <linux/slab.h>
  10#include <linux/log2.h>
  11#include <linux/usb.h>
  12#include <linux/wait.h>
  13#include <linux/usb/hcd.h>
  14#include <linux/scatterlist.h>
  15
  16#define to_urb(d) container_of(d, struct urb, kref)
  17
  18
  19static void urb_destroy(struct kref *kref)
  20{
  21        struct urb *urb = to_urb(kref);
  22
  23        if (urb->transfer_flags & URB_FREE_BUFFER)
  24                kfree(urb->transfer_buffer);
  25
  26        kfree(urb);
  27}
  28
  29/**
  30 * usb_init_urb - initializes a urb so that it can be used by a USB driver
  31 * @urb: pointer to the urb to initialize
  32 *
  33 * Initializes a urb so that the USB subsystem can use it properly.
  34 *
  35 * If a urb is created with a call to usb_alloc_urb() it is not
  36 * necessary to call this function.  Only use this if you allocate the
  37 * space for a struct urb on your own.  If you call this function, be
  38 * careful when freeing the memory for your urb that it is no longer in
  39 * use by the USB core.
  40 *
  41 * Only use this function if you _really_ understand what you are doing.
  42 */
  43void usb_init_urb(struct urb *urb)
  44{
  45        if (urb) {
  46                memset(urb, 0, sizeof(*urb));
  47                kref_init(&urb->kref);
  48                INIT_LIST_HEAD(&urb->urb_list);
  49                INIT_LIST_HEAD(&urb->anchor_list);
  50        }
  51}
  52EXPORT_SYMBOL_GPL(usb_init_urb);
  53
  54/**
  55 * usb_alloc_urb - creates a new urb for a USB driver to use
  56 * @iso_packets: number of iso packets for this urb
  57 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  58 *      valid options for this.
  59 *
  60 * Creates an urb for the USB driver to use, initializes a few internal
  61 * structures, increments the usage counter, and returns a pointer to it.
  62 *
  63 * If the driver want to use this urb for interrupt, control, or bulk
  64 * endpoints, pass '0' as the number of iso packets.
  65 *
  66 * The driver must call usb_free_urb() when it is finished with the urb.
  67 *
  68 * Return: A pointer to the new urb, or %NULL if no memory is available.
  69 */
  70struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  71{
  72        struct urb *urb;
  73
  74        urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
  75                      mem_flags);
  76        if (!urb)
  77                return NULL;
  78        usb_init_urb(urb);
  79        return urb;
  80}
  81EXPORT_SYMBOL_GPL(usb_alloc_urb);
  82
  83/**
  84 * usb_free_urb - frees the memory used by a urb when all users of it are finished
  85 * @urb: pointer to the urb to free, may be NULL
  86 *
  87 * Must be called when a user of a urb is finished with it.  When the last user
  88 * of the urb calls this function, the memory of the urb is freed.
  89 *
  90 * Note: The transfer buffer associated with the urb is not freed unless the
  91 * URB_FREE_BUFFER transfer flag is set.
  92 */
  93void usb_free_urb(struct urb *urb)
  94{
  95        if (urb)
  96                kref_put(&urb->kref, urb_destroy);
  97}
  98EXPORT_SYMBOL_GPL(usb_free_urb);
  99
 100/**
 101 * usb_get_urb - increments the reference count of the urb
 102 * @urb: pointer to the urb to modify, may be NULL
 103 *
 104 * This must be  called whenever a urb is transferred from a device driver to a
 105 * host controller driver.  This allows proper reference counting to happen
 106 * for urbs.
 107 *
 108 * Return: A pointer to the urb with the incremented reference counter.
 109 */
 110struct urb *usb_get_urb(struct urb *urb)
 111{
 112        if (urb)
 113                kref_get(&urb->kref);
 114        return urb;
 115}
 116EXPORT_SYMBOL_GPL(usb_get_urb);
 117
 118/**
 119 * usb_anchor_urb - anchors an URB while it is processed
 120 * @urb: pointer to the urb to anchor
 121 * @anchor: pointer to the anchor
 122 *
 123 * This can be called to have access to URBs which are to be executed
 124 * without bothering to track them
 125 */
 126void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
 127{
 128        unsigned long flags;
 129
 130        spin_lock_irqsave(&anchor->lock, flags);
 131        usb_get_urb(urb);
 132        list_add_tail(&urb->anchor_list, &anchor->urb_list);
 133        urb->anchor = anchor;
 134
 135        if (unlikely(anchor->poisoned))
 136                atomic_inc(&urb->reject);
 137
 138        spin_unlock_irqrestore(&anchor->lock, flags);
 139}
 140EXPORT_SYMBOL_GPL(usb_anchor_urb);
 141
 142static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
 143{
 144        return atomic_read(&anchor->suspend_wakeups) == 0 &&
 145                list_empty(&anchor->urb_list);
 146}
 147
 148/* Callers must hold anchor->lock */
 149static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
 150{
 151        urb->anchor = NULL;
 152        list_del(&urb->anchor_list);
 153        usb_put_urb(urb);
 154        if (usb_anchor_check_wakeup(anchor))
 155                wake_up(&anchor->wait);
 156}
 157
 158/**
 159 * usb_unanchor_urb - unanchors an URB
 160 * @urb: pointer to the urb to anchor
 161 *
 162 * Call this to stop the system keeping track of this URB
 163 */
 164void usb_unanchor_urb(struct urb *urb)
 165{
 166        unsigned long flags;
 167        struct usb_anchor *anchor;
 168
 169        if (!urb)
 170                return;
 171
 172        anchor = urb->anchor;
 173        if (!anchor)
 174                return;
 175
 176        spin_lock_irqsave(&anchor->lock, flags);
 177        /*
 178         * At this point, we could be competing with another thread which
 179         * has the same intention. To protect the urb from being unanchored
 180         * twice, only the winner of the race gets the job.
 181         */
 182        if (likely(anchor == urb->anchor))
 183                __usb_unanchor_urb(urb, anchor);
 184        spin_unlock_irqrestore(&anchor->lock, flags);
 185}
 186EXPORT_SYMBOL_GPL(usb_unanchor_urb);
 187
 188/*-------------------------------------------------------------------*/
 189
 190static const int pipetypes[4] = {
 191        PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 192};
 193
 194/**
 195 * usb_pipe_type_check - sanity check of a specific pipe for a usb device
 196 * @dev: struct usb_device to be checked
 197 * @pipe: pipe to check
 198 *
 199 * This performs a light-weight sanity check for the endpoint in the
 200 * given usb device.  It returns 0 if the pipe is valid for the specific usb
 201 * device, otherwise a negative error code.
 202 */
 203int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
 204{
 205        const struct usb_host_endpoint *ep;
 206
 207        ep = usb_pipe_endpoint(dev, pipe);
 208        if (!ep)
 209                return -EINVAL;
 210        if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
 211                return -EINVAL;
 212        return 0;
 213}
 214EXPORT_SYMBOL_GPL(usb_pipe_type_check);
 215
 216/**
 217 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
 218 * @urb: urb to be checked
 219 *
 220 * This performs a light-weight sanity check for the endpoint in the
 221 * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
 222 * a negative error code.
 223 */
 224int usb_urb_ep_type_check(const struct urb *urb)
 225{
 226        return usb_pipe_type_check(urb->dev, urb->pipe);
 227}
 228EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
 229
 230/**
 231 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
 232 * @urb: pointer to the urb describing the request
 233 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
 234 *      of valid options for this.
 235 *
 236 * This submits a transfer request, and transfers control of the URB
 237 * describing that request to the USB subsystem.  Request completion will
 238 * be indicated later, asynchronously, by calling the completion handler.
 239 * The three types of completion are success, error, and unlink
 240 * (a software-induced fault, also called "request cancellation").
 241 *
 242 * URBs may be submitted in interrupt context.
 243 *
 244 * The caller must have correctly initialized the URB before submitting
 245 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
 246 * available to ensure that most fields are correctly initialized, for
 247 * the particular kind of transfer, although they will not initialize
 248 * any transfer flags.
 249 *
 250 * If the submission is successful, the complete() callback from the URB
 251 * will be called exactly once, when the USB core and Host Controller Driver
 252 * (HCD) are finished with the URB.  When the completion function is called,
 253 * control of the URB is returned to the device driver which issued the
 254 * request.  The completion handler may then immediately free or reuse that
 255 * URB.
 256 *
 257 * With few exceptions, USB device drivers should never access URB fields
 258 * provided by usbcore or the HCD until its complete() is called.
 259 * The exceptions relate to periodic transfer scheduling.  For both
 260 * interrupt and isochronous urbs, as part of successful URB submission
 261 * urb->interval is modified to reflect the actual transfer period used
 262 * (normally some power of two units).  And for isochronous urbs,
 263 * urb->start_frame is modified to reflect when the URB's transfers were
 264 * scheduled to start.
 265 *
 266 * Not all isochronous transfer scheduling policies will work, but most
 267 * host controller drivers should easily handle ISO queues going from now
 268 * until 10-200 msec into the future.  Drivers should try to keep at
 269 * least one or two msec of data in the queue; many controllers require
 270 * that new transfers start at least 1 msec in the future when they are
 271 * added.  If the driver is unable to keep up and the queue empties out,
 272 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
 273 * If the flag is set, or if the queue is idle, then the URB is always
 274 * assigned to the first available (and not yet expired) slot in the
 275 * endpoint's schedule.  If the flag is not set and the queue is active
 276 * then the URB is always assigned to the next slot in the schedule
 277 * following the end of the endpoint's previous URB, even if that slot is
 278 * in the past.  When a packet is assigned in this way to a slot that has
 279 * already expired, the packet is not transmitted and the corresponding
 280 * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
 281 * would happen to all the packets in the URB, submission fails with a
 282 * -EXDEV error code.
 283 *
 284 * For control endpoints, the synchronous usb_control_msg() call is
 285 * often used (in non-interrupt context) instead of this call.
 286 * That is often used through convenience wrappers, for the requests
 287 * that are standardized in the USB 2.0 specification.  For bulk
 288 * endpoints, a synchronous usb_bulk_msg() call is available.
 289 *
 290 * Return:
 291 * 0 on successful submissions. A negative error number otherwise.
 292 *
 293 * Request Queuing:
 294 *
 295 * URBs may be submitted to endpoints before previous ones complete, to
 296 * minimize the impact of interrupt latencies and system overhead on data
 297 * throughput.  With that queuing policy, an endpoint's queue would never
 298 * be empty.  This is required for continuous isochronous data streams,
 299 * and may also be required for some kinds of interrupt transfers. Such
 300 * queuing also maximizes bandwidth utilization by letting USB controllers
 301 * start work on later requests before driver software has finished the
 302 * completion processing for earlier (successful) requests.
 303 *
 304 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
 305 * than one.  This was previously a HCD-specific behavior, except for ISO
 306 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
 307 * after faults (transfer errors or cancellation).
 308 *
 309 * Reserved Bandwidth Transfers:
 310 *
 311 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
 312 * using the interval specified in the urb.  Submitting the first urb to
 313 * the endpoint reserves the bandwidth necessary to make those transfers.
 314 * If the USB subsystem can't allocate sufficient bandwidth to perform
 315 * the periodic request, submitting such a periodic request should fail.
 316 *
 317 * For devices under xHCI, the bandwidth is reserved at configuration time, or
 318 * when the alt setting is selected.  If there is not enough bus bandwidth, the
 319 * configuration/alt setting request will fail.  Therefore, submissions to
 320 * periodic endpoints on devices under xHCI should never fail due to bandwidth
 321 * constraints.
 322 *
 323 * Device drivers must explicitly request that repetition, by ensuring that
 324 * some URB is always on the endpoint's queue (except possibly for short
 325 * periods during completion callbacks).  When there is no longer an urb
 326 * queued, the endpoint's bandwidth reservation is canceled.  This means
 327 * drivers can use their completion handlers to ensure they keep bandwidth
 328 * they need, by reinitializing and resubmitting the just-completed urb
 329 * until the driver longer needs that periodic bandwidth.
 330 *
 331 * Memory Flags:
 332 *
 333 * The general rules for how to decide which mem_flags to use
 334 * are the same as for kmalloc.  There are four
 335 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
 336 * GFP_ATOMIC.
 337 *
 338 * GFP_NOFS is not ever used, as it has not been implemented yet.
 339 *
 340 * GFP_ATOMIC is used when
 341 *   (a) you are inside a completion handler, an interrupt, bottom half,
 342 *       tasklet or timer, or
 343 *   (b) you are holding a spinlock or rwlock (does not apply to
 344 *       semaphores), or
 345 *   (c) current->state != TASK_RUNNING, this is the case only after
 346 *       you've changed it.
 347 *
 348 * GFP_NOIO is used in the block io path and error handling of storage
 349 * devices.
 350 *
 351 * All other situations use GFP_KERNEL.
 352 *
 353 * Some more specific rules for mem_flags can be inferred, such as
 354 *  (1) start_xmit, timeout, and receive methods of network drivers must
 355 *      use GFP_ATOMIC (they are called with a spinlock held);
 356 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
 357 *      called with a spinlock held);
 358 *  (3) If you use a kernel thread with a network driver you must use
 359 *      GFP_NOIO, unless (b) or (c) apply;
 360 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
 361 *      apply or your are in a storage driver's block io path;
 362 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
 363 *  (6) changing firmware on a running storage or net device uses
 364 *      GFP_NOIO, unless b) or c) apply
 365 *
 366 */
 367int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
 368{
 369        int                             xfertype, max;
 370        struct usb_device               *dev;
 371        struct usb_host_endpoint        *ep;
 372        int                             is_out;
 373        unsigned int                    allowed;
 374
 375        if (!urb || !urb->complete)
 376                return -EINVAL;
 377        if (urb->hcpriv) {
 378                WARN_ONCE(1, "URB %pK submitted while active\n", urb);
 379                return -EBUSY;
 380        }
 381
 382        dev = urb->dev;
 383        if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
 384                return -ENODEV;
 385
 386        /* For now, get the endpoint from the pipe.  Eventually drivers
 387         * will be required to set urb->ep directly and we will eliminate
 388         * urb->pipe.
 389         */
 390        ep = usb_pipe_endpoint(dev, urb->pipe);
 391        if (!ep)
 392                return -ENOENT;
 393
 394        urb->ep = ep;
 395        urb->status = -EINPROGRESS;
 396        urb->actual_length = 0;
 397
 398        /* Lots of sanity checks, so HCDs can rely on clean data
 399         * and don't need to duplicate tests
 400         */
 401        xfertype = usb_endpoint_type(&ep->desc);
 402        if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
 403                struct usb_ctrlrequest *setup =
 404                                (struct usb_ctrlrequest *) urb->setup_packet;
 405
 406                if (!setup)
 407                        return -ENOEXEC;
 408                is_out = !(setup->bRequestType & USB_DIR_IN) ||
 409                                !setup->wLength;
 410        } else {
 411                is_out = usb_endpoint_dir_out(&ep->desc);
 412        }
 413
 414        /* Clear the internal flags and cache the direction for later use */
 415        urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
 416                        URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
 417                        URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
 418                        URB_DMA_SG_COMBINED);
 419        urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
 420
 421        if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
 422                        dev->state < USB_STATE_CONFIGURED)
 423                return -ENODEV;
 424
 425        max = usb_endpoint_maxp(&ep->desc);
 426        if (max <= 0) {
 427                dev_dbg(&dev->dev,
 428                        "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
 429                        usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
 430                        __func__, max);
 431                return -EMSGSIZE;
 432        }
 433
 434        /* periodic transfers limit size per frame/uframe,
 435         * but drivers only control those sizes for ISO.
 436         * while we're checking, initialize return status.
 437         */
 438        if (xfertype == USB_ENDPOINT_XFER_ISOC) {
 439                int     n, len;
 440
 441                /* SuperSpeed isoc endpoints have up to 16 bursts of up to
 442                 * 3 packets each
 443                 */
 444                if (dev->speed >= USB_SPEED_SUPER) {
 445                        int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
 446                        int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
 447                        max *= burst;
 448                        max *= mult;
 449                }
 450
 451                if (dev->speed == USB_SPEED_SUPER_PLUS &&
 452                    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
 453                        struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
 454
 455                        isoc_ep_comp = &ep->ssp_isoc_ep_comp;
 456                        max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
 457                }
 458
 459                /* "high bandwidth" mode, 1-3 packets/uframe? */
 460                if (dev->speed == USB_SPEED_HIGH)
 461                        max *= usb_endpoint_maxp_mult(&ep->desc);
 462
 463                if (urb->number_of_packets <= 0)
 464                        return -EINVAL;
 465                for (n = 0; n < urb->number_of_packets; n++) {
 466                        len = urb->iso_frame_desc[n].length;
 467                        if (len < 0 || len > max)
 468                                return -EMSGSIZE;
 469                        urb->iso_frame_desc[n].status = -EXDEV;
 470                        urb->iso_frame_desc[n].actual_length = 0;
 471                }
 472        } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
 473                        dev->speed != USB_SPEED_WIRELESS) {
 474                struct scatterlist *sg;
 475                int i;
 476
 477                for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
 478                        if (sg->length % max)
 479                                return -EINVAL;
 480        }
 481
 482        /* the I/O buffer must be mapped/unmapped, except when length=0 */
 483        if (urb->transfer_buffer_length > INT_MAX)
 484                return -EMSGSIZE;
 485
 486        /*
 487         * stuff that drivers shouldn't do, but which shouldn't
 488         * cause problems in HCDs if they get it wrong.
 489         */
 490
 491        /* Check that the pipe's type matches the endpoint's type */
 492        if (usb_pipe_type_check(urb->dev, urb->pipe))
 493                dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
 494                        usb_pipetype(urb->pipe), pipetypes[xfertype]);
 495
 496        /* Check against a simple/standard policy */
 497        allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
 498                        URB_FREE_BUFFER);
 499        switch (xfertype) {
 500        case USB_ENDPOINT_XFER_BULK:
 501        case USB_ENDPOINT_XFER_INT:
 502                if (is_out)
 503                        allowed |= URB_ZERO_PACKET;
 504                fallthrough;
 505        default:                        /* all non-iso endpoints */
 506                if (!is_out)
 507                        allowed |= URB_SHORT_NOT_OK;
 508                break;
 509        case USB_ENDPOINT_XFER_ISOC:
 510                allowed |= URB_ISO_ASAP;
 511                break;
 512        }
 513        allowed &= urb->transfer_flags;
 514
 515        /* warn if submitter gave bogus flags */
 516        if (allowed != urb->transfer_flags)
 517                dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
 518                        urb->transfer_flags, allowed);
 519
 520        /*
 521         * Force periodic transfer intervals to be legal values that are
 522         * a power of two (so HCDs don't need to).
 523         *
 524         * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
 525         * supports different values... this uses EHCI/UHCI defaults (and
 526         * EHCI can use smaller non-default values).
 527         */
 528        switch (xfertype) {
 529        case USB_ENDPOINT_XFER_ISOC:
 530        case USB_ENDPOINT_XFER_INT:
 531                /* too small? */
 532                switch (dev->speed) {
 533                case USB_SPEED_WIRELESS:
 534                        if ((urb->interval < 6)
 535                                && (xfertype == USB_ENDPOINT_XFER_INT))
 536                                return -EINVAL;
 537                        fallthrough;
 538                default:
 539                        if (urb->interval <= 0)
 540                                return -EINVAL;
 541                        break;
 542                }
 543                /* too big? */
 544                switch (dev->speed) {
 545                case USB_SPEED_SUPER_PLUS:
 546                case USB_SPEED_SUPER:   /* units are 125us */
 547                        /* Handle up to 2^(16-1) microframes */
 548                        if (urb->interval > (1 << 15))
 549                                return -EINVAL;
 550                        max = 1 << 15;
 551                        break;
 552                case USB_SPEED_WIRELESS:
 553                        if (urb->interval > 16)
 554                                return -EINVAL;
 555                        break;
 556                case USB_SPEED_HIGH:    /* units are microframes */
 557                        /* NOTE usb handles 2^15 */
 558                        if (urb->interval > (1024 * 8))
 559                                urb->interval = 1024 * 8;
 560                        max = 1024 * 8;
 561                        break;
 562                case USB_SPEED_FULL:    /* units are frames/msec */
 563                case USB_SPEED_LOW:
 564                        if (xfertype == USB_ENDPOINT_XFER_INT) {
 565                                if (urb->interval > 255)
 566                                        return -EINVAL;
 567                                /* NOTE ohci only handles up to 32 */
 568                                max = 128;
 569                        } else {
 570                                if (urb->interval > 1024)
 571                                        urb->interval = 1024;
 572                                /* NOTE usb and ohci handle up to 2^15 */
 573                                max = 1024;
 574                        }
 575                        break;
 576                default:
 577                        return -EINVAL;
 578                }
 579                if (dev->speed != USB_SPEED_WIRELESS) {
 580                        /* Round down to a power of 2, no more than max */
 581                        urb->interval = min(max, 1 << ilog2(urb->interval));
 582                }
 583        }
 584
 585        return usb_hcd_submit_urb(urb, mem_flags);
 586}
 587EXPORT_SYMBOL_GPL(usb_submit_urb);
 588
 589/*-------------------------------------------------------------------*/
 590
 591/**
 592 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
 593 * @urb: pointer to urb describing a previously submitted request,
 594 *      may be NULL
 595 *
 596 * This routine cancels an in-progress request.  URBs complete only once
 597 * per submission, and may be canceled only once per submission.
 598 * Successful cancellation means termination of @urb will be expedited
 599 * and the completion handler will be called with a status code
 600 * indicating that the request has been canceled (rather than any other
 601 * code).
 602 *
 603 * Drivers should not call this routine or related routines, such as
 604 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
 605 * method has returned.  The disconnect function should synchronize with
 606 * a driver's I/O routines to insure that all URB-related activity has
 607 * completed before it returns.
 608 *
 609 * This request is asynchronous, however the HCD might call the ->complete()
 610 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
 611 * must not hold any locks that may be taken by the completion function.
 612 * Success is indicated by returning -EINPROGRESS, at which time the URB will
 613 * probably not yet have been given back to the device driver. When it is
 614 * eventually called, the completion function will see @urb->status ==
 615 * -ECONNRESET.
 616 * Failure is indicated by usb_unlink_urb() returning any other value.
 617 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
 618 * never submitted, or it was unlinked before, or the hardware is already
 619 * finished with it), even if the completion handler has not yet run.
 620 *
 621 * The URB must not be deallocated while this routine is running.  In
 622 * particular, when a driver calls this routine, it must insure that the
 623 * completion handler cannot deallocate the URB.
 624 *
 625 * Return: -EINPROGRESS on success. See description for other values on
 626 * failure.
 627 *
 628 * Unlinking and Endpoint Queues:
 629 *
 630 * [The behaviors and guarantees described below do not apply to virtual
 631 * root hubs but only to endpoint queues for physical USB devices.]
 632 *
 633 * Host Controller Drivers (HCDs) place all the URBs for a particular
 634 * endpoint in a queue.  Normally the queue advances as the controller
 635 * hardware processes each request.  But when an URB terminates with an
 636 * error its queue generally stops (see below), at least until that URB's
 637 * completion routine returns.  It is guaranteed that a stopped queue
 638 * will not restart until all its unlinked URBs have been fully retired,
 639 * with their completion routines run, even if that's not until some time
 640 * after the original completion handler returns.  The same behavior and
 641 * guarantee apply when an URB terminates because it was unlinked.
 642 *
 643 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
 644 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
 645 * and -EREMOTEIO.  Control endpoint queues behave the same way except
 646 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
 647 * for isochronous endpoints are treated differently, because they must
 648 * advance at fixed rates.  Such queues do not stop when an URB
 649 * encounters an error or is unlinked.  An unlinked isochronous URB may
 650 * leave a gap in the stream of packets; it is undefined whether such
 651 * gaps can be filled in.
 652 *
 653 * Note that early termination of an URB because a short packet was
 654 * received will generate a -EREMOTEIO error if and only if the
 655 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
 656 * drivers can build deep queues for large or complex bulk transfers
 657 * and clean them up reliably after any sort of aborted transfer by
 658 * unlinking all pending URBs at the first fault.
 659 *
 660 * When a control URB terminates with an error other than -EREMOTEIO, it
 661 * is quite likely that the status stage of the transfer will not take
 662 * place.
 663 */
 664int usb_unlink_urb(struct urb *urb)
 665{
 666        if (!urb)
 667                return -EINVAL;
 668        if (!urb->dev)
 669                return -ENODEV;
 670        if (!urb->ep)
 671                return -EIDRM;
 672        return usb_hcd_unlink_urb(urb, -ECONNRESET);
 673}
 674EXPORT_SYMBOL_GPL(usb_unlink_urb);
 675
 676/**
 677 * usb_kill_urb - cancel a transfer request and wait for it to finish
 678 * @urb: pointer to URB describing a previously submitted request,
 679 *      may be NULL
 680 *
 681 * This routine cancels an in-progress request.  It is guaranteed that
 682 * upon return all completion handlers will have finished and the URB
 683 * will be totally idle and available for reuse.  These features make
 684 * this an ideal way to stop I/O in a disconnect() callback or close()
 685 * function.  If the request has not already finished or been unlinked
 686 * the completion handler will see urb->status == -ENOENT.
 687 *
 688 * While the routine is running, attempts to resubmit the URB will fail
 689 * with error -EPERM.  Thus even if the URB's completion handler always
 690 * tries to resubmit, it will not succeed and the URB will become idle.
 691 *
 692 * The URB must not be deallocated while this routine is running.  In
 693 * particular, when a driver calls this routine, it must insure that the
 694 * completion handler cannot deallocate the URB.
 695 *
 696 * This routine may not be used in an interrupt context (such as a bottom
 697 * half or a completion handler), or when holding a spinlock, or in other
 698 * situations where the caller can't schedule().
 699 *
 700 * This routine should not be called by a driver after its disconnect
 701 * method has returned.
 702 */
 703void usb_kill_urb(struct urb *urb)
 704{
 705        might_sleep();
 706        if (!(urb && urb->dev && urb->ep))
 707                return;
 708        atomic_inc(&urb->reject);
 709
 710        usb_hcd_unlink_urb(urb, -ENOENT);
 711        wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
 712
 713        atomic_dec(&urb->reject);
 714}
 715EXPORT_SYMBOL_GPL(usb_kill_urb);
 716
 717/**
 718 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
 719 * @urb: pointer to URB describing a previously submitted request,
 720 *      may be NULL
 721 *
 722 * This routine cancels an in-progress request.  It is guaranteed that
 723 * upon return all completion handlers will have finished and the URB
 724 * will be totally idle and cannot be reused.  These features make
 725 * this an ideal way to stop I/O in a disconnect() callback.
 726 * If the request has not already finished or been unlinked
 727 * the completion handler will see urb->status == -ENOENT.
 728 *
 729 * After and while the routine runs, attempts to resubmit the URB will fail
 730 * with error -EPERM.  Thus even if the URB's completion handler always
 731 * tries to resubmit, it will not succeed and the URB will become idle.
 732 *
 733 * The URB must not be deallocated while this routine is running.  In
 734 * particular, when a driver calls this routine, it must insure that the
 735 * completion handler cannot deallocate the URB.
 736 *
 737 * This routine may not be used in an interrupt context (such as a bottom
 738 * half or a completion handler), or when holding a spinlock, or in other
 739 * situations where the caller can't schedule().
 740 *
 741 * This routine should not be called by a driver after its disconnect
 742 * method has returned.
 743 */
 744void usb_poison_urb(struct urb *urb)
 745{
 746        might_sleep();
 747        if (!urb)
 748                return;
 749        atomic_inc(&urb->reject);
 750
 751        if (!urb->dev || !urb->ep)
 752                return;
 753
 754        usb_hcd_unlink_urb(urb, -ENOENT);
 755        wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
 756}
 757EXPORT_SYMBOL_GPL(usb_poison_urb);
 758
 759void usb_unpoison_urb(struct urb *urb)
 760{
 761        if (!urb)
 762                return;
 763
 764        atomic_dec(&urb->reject);
 765}
 766EXPORT_SYMBOL_GPL(usb_unpoison_urb);
 767
 768/**
 769 * usb_block_urb - reliably prevent further use of an URB
 770 * @urb: pointer to URB to be blocked, may be NULL
 771 *
 772 * After the routine has run, attempts to resubmit the URB will fail
 773 * with error -EPERM.  Thus even if the URB's completion handler always
 774 * tries to resubmit, it will not succeed and the URB will become idle.
 775 *
 776 * The URB must not be deallocated while this routine is running.  In
 777 * particular, when a driver calls this routine, it must insure that the
 778 * completion handler cannot deallocate the URB.
 779 */
 780void usb_block_urb(struct urb *urb)
 781{
 782        if (!urb)
 783                return;
 784
 785        atomic_inc(&urb->reject);
 786}
 787EXPORT_SYMBOL_GPL(usb_block_urb);
 788
 789/**
 790 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
 791 * @anchor: anchor the requests are bound to
 792 *
 793 * This kills all outstanding URBs starting from the back of the queue,
 794 * with guarantee that no completer callbacks will take place from the
 795 * anchor after this function returns.
 796 *
 797 * This routine should not be called by a driver after its disconnect
 798 * method has returned.
 799 */
 800void usb_kill_anchored_urbs(struct usb_anchor *anchor)
 801{
 802        struct urb *victim;
 803        int surely_empty;
 804
 805        do {
 806                spin_lock_irq(&anchor->lock);
 807                while (!list_empty(&anchor->urb_list)) {
 808                        victim = list_entry(anchor->urb_list.prev,
 809                                            struct urb, anchor_list);
 810                        /* make sure the URB isn't freed before we kill it */
 811                        usb_get_urb(victim);
 812                        spin_unlock_irq(&anchor->lock);
 813                        /* this will unanchor the URB */
 814                        usb_kill_urb(victim);
 815                        usb_put_urb(victim);
 816                        spin_lock_irq(&anchor->lock);
 817                }
 818                surely_empty = usb_anchor_check_wakeup(anchor);
 819
 820                spin_unlock_irq(&anchor->lock);
 821                cpu_relax();
 822        } while (!surely_empty);
 823}
 824EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
 825
 826
 827/**
 828 * usb_poison_anchored_urbs - cease all traffic from an anchor
 829 * @anchor: anchor the requests are bound to
 830 *
 831 * this allows all outstanding URBs to be poisoned starting
 832 * from the back of the queue. Newly added URBs will also be
 833 * poisoned
 834 *
 835 * This routine should not be called by a driver after its disconnect
 836 * method has returned.
 837 */
 838void usb_poison_anchored_urbs(struct usb_anchor *anchor)
 839{
 840        struct urb *victim;
 841        int surely_empty;
 842
 843        do {
 844                spin_lock_irq(&anchor->lock);
 845                anchor->poisoned = 1;
 846                while (!list_empty(&anchor->urb_list)) {
 847                        victim = list_entry(anchor->urb_list.prev,
 848                                            struct urb, anchor_list);
 849                        /* make sure the URB isn't freed before we kill it */
 850                        usb_get_urb(victim);
 851                        spin_unlock_irq(&anchor->lock);
 852                        /* this will unanchor the URB */
 853                        usb_poison_urb(victim);
 854                        usb_put_urb(victim);
 855                        spin_lock_irq(&anchor->lock);
 856                }
 857                surely_empty = usb_anchor_check_wakeup(anchor);
 858
 859                spin_unlock_irq(&anchor->lock);
 860                cpu_relax();
 861        } while (!surely_empty);
 862}
 863EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
 864
 865/**
 866 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
 867 * @anchor: anchor the requests are bound to
 868 *
 869 * Reverses the effect of usb_poison_anchored_urbs
 870 * the anchor can be used normally after it returns
 871 */
 872void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
 873{
 874        unsigned long flags;
 875        struct urb *lazarus;
 876
 877        spin_lock_irqsave(&anchor->lock, flags);
 878        list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
 879                usb_unpoison_urb(lazarus);
 880        }
 881        anchor->poisoned = 0;
 882        spin_unlock_irqrestore(&anchor->lock, flags);
 883}
 884EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
 885/**
 886 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
 887 * @anchor: anchor the requests are bound to
 888 *
 889 * this allows all outstanding URBs to be unlinked starting
 890 * from the back of the queue. This function is asynchronous.
 891 * The unlinking is just triggered. It may happen after this
 892 * function has returned.
 893 *
 894 * This routine should not be called by a driver after its disconnect
 895 * method has returned.
 896 */
 897void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
 898{
 899        struct urb *victim;
 900
 901        while ((victim = usb_get_from_anchor(anchor)) != NULL) {
 902                usb_unlink_urb(victim);
 903                usb_put_urb(victim);
 904        }
 905}
 906EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
 907
 908/**
 909 * usb_anchor_suspend_wakeups
 910 * @anchor: the anchor you want to suspend wakeups on
 911 *
 912 * Call this to stop the last urb being unanchored from waking up any
 913 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
 914 * back path to delay waking up until after the completion handler has run.
 915 */
 916void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
 917{
 918        if (anchor)
 919                atomic_inc(&anchor->suspend_wakeups);
 920}
 921EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
 922
 923/**
 924 * usb_anchor_resume_wakeups
 925 * @anchor: the anchor you want to resume wakeups on
 926 *
 927 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
 928 * wake up any current waiters if the anchor is empty.
 929 */
 930void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
 931{
 932        if (!anchor)
 933                return;
 934
 935        atomic_dec(&anchor->suspend_wakeups);
 936        if (usb_anchor_check_wakeup(anchor))
 937                wake_up(&anchor->wait);
 938}
 939EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
 940
 941/**
 942 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
 943 * @anchor: the anchor you want to become unused
 944 * @timeout: how long you are willing to wait in milliseconds
 945 *
 946 * Call this is you want to be sure all an anchor's
 947 * URBs have finished
 948 *
 949 * Return: Non-zero if the anchor became unused. Zero on timeout.
 950 */
 951int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
 952                                  unsigned int timeout)
 953{
 954        return wait_event_timeout(anchor->wait,
 955                                  usb_anchor_check_wakeup(anchor),
 956                                  msecs_to_jiffies(timeout));
 957}
 958EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
 959
 960/**
 961 * usb_get_from_anchor - get an anchor's oldest urb
 962 * @anchor: the anchor whose urb you want
 963 *
 964 * This will take the oldest urb from an anchor,
 965 * unanchor and return it
 966 *
 967 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
 968 * urbs associated with it.
 969 */
 970struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
 971{
 972        struct urb *victim;
 973        unsigned long flags;
 974
 975        spin_lock_irqsave(&anchor->lock, flags);
 976        if (!list_empty(&anchor->urb_list)) {
 977                victim = list_entry(anchor->urb_list.next, struct urb,
 978                                    anchor_list);
 979                usb_get_urb(victim);
 980                __usb_unanchor_urb(victim, anchor);
 981        } else {
 982                victim = NULL;
 983        }
 984        spin_unlock_irqrestore(&anchor->lock, flags);
 985
 986        return victim;
 987}
 988
 989EXPORT_SYMBOL_GPL(usb_get_from_anchor);
 990
 991/**
 992 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
 993 * @anchor: the anchor whose urbs you want to unanchor
 994 *
 995 * use this to get rid of all an anchor's urbs
 996 */
 997void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
 998{
 999        struct urb *victim;
1000        unsigned long flags;
1001        int surely_empty;
1002
1003        do {
1004                spin_lock_irqsave(&anchor->lock, flags);
1005                while (!list_empty(&anchor->urb_list)) {
1006                        victim = list_entry(anchor->urb_list.prev,
1007                                            struct urb, anchor_list);
1008                        __usb_unanchor_urb(victim, anchor);
1009                }
1010                surely_empty = usb_anchor_check_wakeup(anchor);
1011
1012                spin_unlock_irqrestore(&anchor->lock, flags);
1013                cpu_relax();
1014        } while (!surely_empty);
1015}
1016
1017EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1018
1019/**
1020 * usb_anchor_empty - is an anchor empty
1021 * @anchor: the anchor you want to query
1022 *
1023 * Return: 1 if the anchor has no urbs associated with it.
1024 */
1025int usb_anchor_empty(struct usb_anchor *anchor)
1026{
1027        return list_empty(&anchor->urb_list);
1028}
1029
1030EXPORT_SYMBOL_GPL(usb_anchor_empty);
1031
1032