linux/fs/btrfs/backref.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16
  17/* Just an arbitrary number so we can be sure this happened */
  18#define BACKREF_FOUND_SHARED 6
  19
  20struct extent_inode_elem {
  21        u64 inum;
  22        u64 offset;
  23        struct extent_inode_elem *next;
  24};
  25
  26static int check_extent_in_eb(const struct btrfs_key *key,
  27                              const struct extent_buffer *eb,
  28                              const struct btrfs_file_extent_item *fi,
  29                              u64 extent_item_pos,
  30                              struct extent_inode_elem **eie,
  31                              bool ignore_offset)
  32{
  33        u64 offset = 0;
  34        struct extent_inode_elem *e;
  35
  36        if (!ignore_offset &&
  37            !btrfs_file_extent_compression(eb, fi) &&
  38            !btrfs_file_extent_encryption(eb, fi) &&
  39            !btrfs_file_extent_other_encoding(eb, fi)) {
  40                u64 data_offset;
  41                u64 data_len;
  42
  43                data_offset = btrfs_file_extent_offset(eb, fi);
  44                data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46                if (extent_item_pos < data_offset ||
  47                    extent_item_pos >= data_offset + data_len)
  48                        return 1;
  49                offset = extent_item_pos - data_offset;
  50        }
  51
  52        e = kmalloc(sizeof(*e), GFP_NOFS);
  53        if (!e)
  54                return -ENOMEM;
  55
  56        e->next = *eie;
  57        e->inum = key->objectid;
  58        e->offset = key->offset + offset;
  59        *eie = e;
  60
  61        return 0;
  62}
  63
  64static void free_inode_elem_list(struct extent_inode_elem *eie)
  65{
  66        struct extent_inode_elem *eie_next;
  67
  68        for (; eie; eie = eie_next) {
  69                eie_next = eie->next;
  70                kfree(eie);
  71        }
  72}
  73
  74static int find_extent_in_eb(const struct extent_buffer *eb,
  75                             u64 wanted_disk_byte, u64 extent_item_pos,
  76                             struct extent_inode_elem **eie,
  77                             bool ignore_offset)
  78{
  79        u64 disk_byte;
  80        struct btrfs_key key;
  81        struct btrfs_file_extent_item *fi;
  82        int slot;
  83        int nritems;
  84        int extent_type;
  85        int ret;
  86
  87        /*
  88         * from the shared data ref, we only have the leaf but we need
  89         * the key. thus, we must look into all items and see that we
  90         * find one (some) with a reference to our extent item.
  91         */
  92        nritems = btrfs_header_nritems(eb);
  93        for (slot = 0; slot < nritems; ++slot) {
  94                btrfs_item_key_to_cpu(eb, &key, slot);
  95                if (key.type != BTRFS_EXTENT_DATA_KEY)
  96                        continue;
  97                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  98                extent_type = btrfs_file_extent_type(eb, fi);
  99                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 100                        continue;
 101                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 102                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 103                if (disk_byte != wanted_disk_byte)
 104                        continue;
 105
 106                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 107                if (ret < 0)
 108                        return ret;
 109        }
 110
 111        return 0;
 112}
 113
 114struct preftree {
 115        struct rb_root root;
 116        unsigned int count;
 117};
 118
 119#define PREFTREE_INIT   { .root = RB_ROOT, .count = 0 }
 120
 121struct preftrees {
 122        struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 123        struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 124        struct preftree indirect_missing_keys;
 125};
 126
 127/*
 128 * Checks for a shared extent during backref search.
 129 *
 130 * The share_count tracks prelim_refs (direct and indirect) having a
 131 * ref->count >0:
 132 *  - incremented when a ref->count transitions to >0
 133 *  - decremented when a ref->count transitions to <1
 134 */
 135struct share_check {
 136        u64 root_objectid;
 137        u64 inum;
 138        int share_count;
 139};
 140
 141static inline int extent_is_shared(struct share_check *sc)
 142{
 143        return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 144}
 145
 146static struct kmem_cache *btrfs_prelim_ref_cache;
 147
 148int __init btrfs_prelim_ref_init(void)
 149{
 150        btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 151                                        sizeof(struct prelim_ref),
 152                                        0,
 153                                        SLAB_MEM_SPREAD,
 154                                        NULL);
 155        if (!btrfs_prelim_ref_cache)
 156                return -ENOMEM;
 157        return 0;
 158}
 159
 160void __cold btrfs_prelim_ref_exit(void)
 161{
 162        kmem_cache_destroy(btrfs_prelim_ref_cache);
 163}
 164
 165static void free_pref(struct prelim_ref *ref)
 166{
 167        kmem_cache_free(btrfs_prelim_ref_cache, ref);
 168}
 169
 170/*
 171 * Return 0 when both refs are for the same block (and can be merged).
 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 173 * indicates a 'higher' block.
 174 */
 175static int prelim_ref_compare(struct prelim_ref *ref1,
 176                              struct prelim_ref *ref2)
 177{
 178        if (ref1->level < ref2->level)
 179                return -1;
 180        if (ref1->level > ref2->level)
 181                return 1;
 182        if (ref1->root_id < ref2->root_id)
 183                return -1;
 184        if (ref1->root_id > ref2->root_id)
 185                return 1;
 186        if (ref1->key_for_search.type < ref2->key_for_search.type)
 187                return -1;
 188        if (ref1->key_for_search.type > ref2->key_for_search.type)
 189                return 1;
 190        if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 191                return -1;
 192        if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 193                return 1;
 194        if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 195                return -1;
 196        if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 197                return 1;
 198        if (ref1->parent < ref2->parent)
 199                return -1;
 200        if (ref1->parent > ref2->parent)
 201                return 1;
 202
 203        return 0;
 204}
 205
 206static void update_share_count(struct share_check *sc, int oldcount,
 207                               int newcount)
 208{
 209        if ((!sc) || (oldcount == 0 && newcount < 1))
 210                return;
 211
 212        if (oldcount > 0 && newcount < 1)
 213                sc->share_count--;
 214        else if (oldcount < 1 && newcount > 0)
 215                sc->share_count++;
 216}
 217
 218/*
 219 * Add @newref to the @root rbtree, merging identical refs.
 220 *
 221 * Callers should assume that newref has been freed after calling.
 222 */
 223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 224                              struct preftree *preftree,
 225                              struct prelim_ref *newref,
 226                              struct share_check *sc)
 227{
 228        struct rb_root *root;
 229        struct rb_node **p;
 230        struct rb_node *parent = NULL;
 231        struct prelim_ref *ref;
 232        int result;
 233
 234        root = &preftree->root;
 235        p = &root->rb_node;
 236
 237        while (*p) {
 238                parent = *p;
 239                ref = rb_entry(parent, struct prelim_ref, rbnode);
 240                result = prelim_ref_compare(ref, newref);
 241                if (result < 0) {
 242                        p = &(*p)->rb_left;
 243                } else if (result > 0) {
 244                        p = &(*p)->rb_right;
 245                } else {
 246                        /* Identical refs, merge them and free @newref */
 247                        struct extent_inode_elem *eie = ref->inode_list;
 248
 249                        while (eie && eie->next)
 250                                eie = eie->next;
 251
 252                        if (!eie)
 253                                ref->inode_list = newref->inode_list;
 254                        else
 255                                eie->next = newref->inode_list;
 256                        trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 257                                                     preftree->count);
 258                        /*
 259                         * A delayed ref can have newref->count < 0.
 260                         * The ref->count is updated to follow any
 261                         * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 262                         */
 263                        update_share_count(sc, ref->count,
 264                                           ref->count + newref->count);
 265                        ref->count += newref->count;
 266                        free_pref(newref);
 267                        return;
 268                }
 269        }
 270
 271        update_share_count(sc, 0, newref->count);
 272        preftree->count++;
 273        trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 274        rb_link_node(&newref->rbnode, parent, p);
 275        rb_insert_color(&newref->rbnode, root);
 276}
 277
 278/*
 279 * Release the entire tree.  We don't care about internal consistency so
 280 * just free everything and then reset the tree root.
 281 */
 282static void prelim_release(struct preftree *preftree)
 283{
 284        struct prelim_ref *ref, *next_ref;
 285
 286        rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
 287                                             rbnode)
 288                free_pref(ref);
 289
 290        preftree->root = RB_ROOT;
 291        preftree->count = 0;
 292}
 293
 294/*
 295 * the rules for all callers of this function are:
 296 * - obtaining the parent is the goal
 297 * - if you add a key, you must know that it is a correct key
 298 * - if you cannot add the parent or a correct key, then we will look into the
 299 *   block later to set a correct key
 300 *
 301 * delayed refs
 302 * ============
 303 *        backref type | shared | indirect | shared | indirect
 304 * information         |   tree |     tree |   data |     data
 305 * --------------------+--------+----------+--------+----------
 306 *      parent logical |    y   |     -    |    -   |     -
 307 *      key to resolve |    -   |     y    |    y   |     y
 308 *  tree block logical |    -   |     -    |    -   |     -
 309 *  root for resolving |    y   |     y    |    y   |     y
 310 *
 311 * - column 1:       we've the parent -> done
 312 * - column 2, 3, 4: we use the key to find the parent
 313 *
 314 * on disk refs (inline or keyed)
 315 * ==============================
 316 *        backref type | shared | indirect | shared | indirect
 317 * information         |   tree |     tree |   data |     data
 318 * --------------------+--------+----------+--------+----------
 319 *      parent logical |    y   |     -    |    y   |     -
 320 *      key to resolve |    -   |     -    |    -   |     y
 321 *  tree block logical |    y   |     y    |    y   |     y
 322 *  root for resolving |    -   |     y    |    y   |     y
 323 *
 324 * - column 1, 3: we've the parent -> done
 325 * - column 2:    we take the first key from the block to find the parent
 326 *                (see add_missing_keys)
 327 * - column 4:    we use the key to find the parent
 328 *
 329 * additional information that's available but not required to find the parent
 330 * block might help in merging entries to gain some speed.
 331 */
 332static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 333                          struct preftree *preftree, u64 root_id,
 334                          const struct btrfs_key *key, int level, u64 parent,
 335                          u64 wanted_disk_byte, int count,
 336                          struct share_check *sc, gfp_t gfp_mask)
 337{
 338        struct prelim_ref *ref;
 339
 340        if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 341                return 0;
 342
 343        ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 344        if (!ref)
 345                return -ENOMEM;
 346
 347        ref->root_id = root_id;
 348        if (key) {
 349                ref->key_for_search = *key;
 350                /*
 351                 * We can often find data backrefs with an offset that is too
 352                 * large (>= LLONG_MAX, maximum allowed file offset) due to
 353                 * underflows when subtracting a file's offset with the data
 354                 * offset of its corresponding extent data item. This can
 355                 * happen for example in the clone ioctl.
 356                 * So if we detect such case we set the search key's offset to
 357                 * zero to make sure we will find the matching file extent item
 358                 * at add_all_parents(), otherwise we will miss it because the
 359                 * offset taken form the backref is much larger then the offset
 360                 * of the file extent item. This can make us scan a very large
 361                 * number of file extent items, but at least it will not make
 362                 * us miss any.
 363                 * This is an ugly workaround for a behaviour that should have
 364                 * never existed, but it does and a fix for the clone ioctl
 365                 * would touch a lot of places, cause backwards incompatibility
 366                 * and would not fix the problem for extents cloned with older
 367                 * kernels.
 368                 */
 369                if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 370                    ref->key_for_search.offset >= LLONG_MAX)
 371                        ref->key_for_search.offset = 0;
 372        } else {
 373                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 374        }
 375
 376        ref->inode_list = NULL;
 377        ref->level = level;
 378        ref->count = count;
 379        ref->parent = parent;
 380        ref->wanted_disk_byte = wanted_disk_byte;
 381        prelim_ref_insert(fs_info, preftree, ref, sc);
 382        return extent_is_shared(sc);
 383}
 384
 385/* direct refs use root == 0, key == NULL */
 386static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 387                          struct preftrees *preftrees, int level, u64 parent,
 388                          u64 wanted_disk_byte, int count,
 389                          struct share_check *sc, gfp_t gfp_mask)
 390{
 391        return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 392                              parent, wanted_disk_byte, count, sc, gfp_mask);
 393}
 394
 395/* indirect refs use parent == 0 */
 396static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 397                            struct preftrees *preftrees, u64 root_id,
 398                            const struct btrfs_key *key, int level,
 399                            u64 wanted_disk_byte, int count,
 400                            struct share_check *sc, gfp_t gfp_mask)
 401{
 402        struct preftree *tree = &preftrees->indirect;
 403
 404        if (!key)
 405                tree = &preftrees->indirect_missing_keys;
 406        return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 407                              wanted_disk_byte, count, sc, gfp_mask);
 408}
 409
 410static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 411                           struct ulist *parents, struct prelim_ref *ref,
 412                           int level, u64 time_seq, const u64 *extent_item_pos,
 413                           u64 total_refs, bool ignore_offset)
 414{
 415        int ret = 0;
 416        int slot;
 417        struct extent_buffer *eb;
 418        struct btrfs_key key;
 419        struct btrfs_key *key_for_search = &ref->key_for_search;
 420        struct btrfs_file_extent_item *fi;
 421        struct extent_inode_elem *eie = NULL, *old = NULL;
 422        u64 disk_byte;
 423        u64 wanted_disk_byte = ref->wanted_disk_byte;
 424        u64 count = 0;
 425
 426        if (level != 0) {
 427                eb = path->nodes[level];
 428                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 429                if (ret < 0)
 430                        return ret;
 431                return 0;
 432        }
 433
 434        /*
 435         * We normally enter this function with the path already pointing to
 436         * the first item to check. But sometimes, we may enter it with
 437         * slot==nritems. In that case, go to the next leaf before we continue.
 438         */
 439        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 440                if (time_seq == SEQ_LAST)
 441                        ret = btrfs_next_leaf(root, path);
 442                else
 443                        ret = btrfs_next_old_leaf(root, path, time_seq);
 444        }
 445
 446        while (!ret && count < total_refs) {
 447                eb = path->nodes[0];
 448                slot = path->slots[0];
 449
 450                btrfs_item_key_to_cpu(eb, &key, slot);
 451
 452                if (key.objectid != key_for_search->objectid ||
 453                    key.type != BTRFS_EXTENT_DATA_KEY)
 454                        break;
 455
 456                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 457                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 458
 459                if (disk_byte == wanted_disk_byte) {
 460                        eie = NULL;
 461                        old = NULL;
 462                        count++;
 463                        if (extent_item_pos) {
 464                                ret = check_extent_in_eb(&key, eb, fi,
 465                                                *extent_item_pos,
 466                                                &eie, ignore_offset);
 467                                if (ret < 0)
 468                                        break;
 469                        }
 470                        if (ret > 0)
 471                                goto next;
 472                        ret = ulist_add_merge_ptr(parents, eb->start,
 473                                                  eie, (void **)&old, GFP_NOFS);
 474                        if (ret < 0)
 475                                break;
 476                        if (!ret && extent_item_pos) {
 477                                while (old->next)
 478                                        old = old->next;
 479                                old->next = eie;
 480                        }
 481                        eie = NULL;
 482                }
 483next:
 484                if (time_seq == SEQ_LAST)
 485                        ret = btrfs_next_item(root, path);
 486                else
 487                        ret = btrfs_next_old_item(root, path, time_seq);
 488        }
 489
 490        if (ret > 0)
 491                ret = 0;
 492        else if (ret < 0)
 493                free_inode_elem_list(eie);
 494        return ret;
 495}
 496
 497/*
 498 * resolve an indirect backref in the form (root_id, key, level)
 499 * to a logical address
 500 */
 501static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 502                                struct btrfs_path *path, u64 time_seq,
 503                                struct prelim_ref *ref, struct ulist *parents,
 504                                const u64 *extent_item_pos, u64 total_refs,
 505                                bool ignore_offset)
 506{
 507        struct btrfs_root *root;
 508        struct btrfs_key root_key;
 509        struct extent_buffer *eb;
 510        int ret = 0;
 511        int root_level;
 512        int level = ref->level;
 513        int index;
 514
 515        root_key.objectid = ref->root_id;
 516        root_key.type = BTRFS_ROOT_ITEM_KEY;
 517        root_key.offset = (u64)-1;
 518
 519        index = srcu_read_lock(&fs_info->subvol_srcu);
 520
 521        root = btrfs_get_fs_root(fs_info, &root_key, false);
 522        if (IS_ERR(root)) {
 523                srcu_read_unlock(&fs_info->subvol_srcu, index);
 524                ret = PTR_ERR(root);
 525                goto out;
 526        }
 527
 528        if (btrfs_is_testing(fs_info)) {
 529                srcu_read_unlock(&fs_info->subvol_srcu, index);
 530                ret = -ENOENT;
 531                goto out;
 532        }
 533
 534        if (path->search_commit_root)
 535                root_level = btrfs_header_level(root->commit_root);
 536        else if (time_seq == SEQ_LAST)
 537                root_level = btrfs_header_level(root->node);
 538        else
 539                root_level = btrfs_old_root_level(root, time_seq);
 540
 541        if (root_level + 1 == level) {
 542                srcu_read_unlock(&fs_info->subvol_srcu, index);
 543                goto out;
 544        }
 545
 546        path->lowest_level = level;
 547        if (time_seq == SEQ_LAST)
 548                ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 549                                        0, 0);
 550        else
 551                ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 552                                            time_seq);
 553
 554        /* root node has been locked, we can release @subvol_srcu safely here */
 555        srcu_read_unlock(&fs_info->subvol_srcu, index);
 556
 557        btrfs_debug(fs_info,
 558                "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 559                 ref->root_id, level, ref->count, ret,
 560                 ref->key_for_search.objectid, ref->key_for_search.type,
 561                 ref->key_for_search.offset);
 562        if (ret < 0)
 563                goto out;
 564
 565        eb = path->nodes[level];
 566        while (!eb) {
 567                if (WARN_ON(!level)) {
 568                        ret = 1;
 569                        goto out;
 570                }
 571                level--;
 572                eb = path->nodes[level];
 573        }
 574
 575        ret = add_all_parents(root, path, parents, ref, level, time_seq,
 576                              extent_item_pos, total_refs, ignore_offset);
 577out:
 578        path->lowest_level = 0;
 579        btrfs_release_path(path);
 580        return ret;
 581}
 582
 583static struct extent_inode_elem *
 584unode_aux_to_inode_list(struct ulist_node *node)
 585{
 586        if (!node)
 587                return NULL;
 588        return (struct extent_inode_elem *)(uintptr_t)node->aux;
 589}
 590
 591/*
 592 * We maintain three seperate rbtrees: one for direct refs, one for
 593 * indirect refs which have a key, and one for indirect refs which do not
 594 * have a key. Each tree does merge on insertion.
 595 *
 596 * Once all of the references are located, we iterate over the tree of
 597 * indirect refs with missing keys. An appropriate key is located and
 598 * the ref is moved onto the tree for indirect refs. After all missing
 599 * keys are thus located, we iterate over the indirect ref tree, resolve
 600 * each reference, and then insert the resolved reference onto the
 601 * direct tree (merging there too).
 602 *
 603 * New backrefs (i.e., for parent nodes) are added to the appropriate
 604 * rbtree as they are encountered. The new backrefs are subsequently
 605 * resolved as above.
 606 */
 607static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 608                                 struct btrfs_path *path, u64 time_seq,
 609                                 struct preftrees *preftrees,
 610                                 const u64 *extent_item_pos, u64 total_refs,
 611                                 struct share_check *sc, bool ignore_offset)
 612{
 613        int err;
 614        int ret = 0;
 615        struct ulist *parents;
 616        struct ulist_node *node;
 617        struct ulist_iterator uiter;
 618        struct rb_node *rnode;
 619
 620        parents = ulist_alloc(GFP_NOFS);
 621        if (!parents)
 622                return -ENOMEM;
 623
 624        /*
 625         * We could trade memory usage for performance here by iterating
 626         * the tree, allocating new refs for each insertion, and then
 627         * freeing the entire indirect tree when we're done.  In some test
 628         * cases, the tree can grow quite large (~200k objects).
 629         */
 630        while ((rnode = rb_first(&preftrees->indirect.root))) {
 631                struct prelim_ref *ref;
 632
 633                ref = rb_entry(rnode, struct prelim_ref, rbnode);
 634                if (WARN(ref->parent,
 635                         "BUG: direct ref found in indirect tree")) {
 636                        ret = -EINVAL;
 637                        goto out;
 638                }
 639
 640                rb_erase(&ref->rbnode, &preftrees->indirect.root);
 641                preftrees->indirect.count--;
 642
 643                if (ref->count == 0) {
 644                        free_pref(ref);
 645                        continue;
 646                }
 647
 648                if (sc && sc->root_objectid &&
 649                    ref->root_id != sc->root_objectid) {
 650                        free_pref(ref);
 651                        ret = BACKREF_FOUND_SHARED;
 652                        goto out;
 653                }
 654                err = resolve_indirect_ref(fs_info, path, time_seq, ref,
 655                                           parents, extent_item_pos,
 656                                           total_refs, ignore_offset);
 657                /*
 658                 * we can only tolerate ENOENT,otherwise,we should catch error
 659                 * and return directly.
 660                 */
 661                if (err == -ENOENT) {
 662                        prelim_ref_insert(fs_info, &preftrees->direct, ref,
 663                                          NULL);
 664                        continue;
 665                } else if (err) {
 666                        free_pref(ref);
 667                        ret = err;
 668                        goto out;
 669                }
 670
 671                /* we put the first parent into the ref at hand */
 672                ULIST_ITER_INIT(&uiter);
 673                node = ulist_next(parents, &uiter);
 674                ref->parent = node ? node->val : 0;
 675                ref->inode_list = unode_aux_to_inode_list(node);
 676
 677                /* Add a prelim_ref(s) for any other parent(s). */
 678                while ((node = ulist_next(parents, &uiter))) {
 679                        struct prelim_ref *new_ref;
 680
 681                        new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 682                                                   GFP_NOFS);
 683                        if (!new_ref) {
 684                                free_pref(ref);
 685                                ret = -ENOMEM;
 686                                goto out;
 687                        }
 688                        memcpy(new_ref, ref, sizeof(*ref));
 689                        new_ref->parent = node->val;
 690                        new_ref->inode_list = unode_aux_to_inode_list(node);
 691                        prelim_ref_insert(fs_info, &preftrees->direct,
 692                                          new_ref, NULL);
 693                }
 694
 695                /*
 696                 * Now it's a direct ref, put it in the the direct tree. We must
 697                 * do this last because the ref could be merged/freed here.
 698                 */
 699                prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 700
 701                ulist_reinit(parents);
 702                cond_resched();
 703        }
 704out:
 705        ulist_free(parents);
 706        return ret;
 707}
 708
 709/*
 710 * read tree blocks and add keys where required.
 711 */
 712static int add_missing_keys(struct btrfs_fs_info *fs_info,
 713                            struct preftrees *preftrees)
 714{
 715        struct prelim_ref *ref;
 716        struct extent_buffer *eb;
 717        struct preftree *tree = &preftrees->indirect_missing_keys;
 718        struct rb_node *node;
 719
 720        while ((node = rb_first(&tree->root))) {
 721                ref = rb_entry(node, struct prelim_ref, rbnode);
 722                rb_erase(node, &tree->root);
 723
 724                BUG_ON(ref->parent);    /* should not be a direct ref */
 725                BUG_ON(ref->key_for_search.type);
 726                BUG_ON(!ref->wanted_disk_byte);
 727
 728                eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
 729                                     ref->level - 1, NULL);
 730                if (IS_ERR(eb)) {
 731                        free_pref(ref);
 732                        return PTR_ERR(eb);
 733                } else if (!extent_buffer_uptodate(eb)) {
 734                        free_pref(ref);
 735                        free_extent_buffer(eb);
 736                        return -EIO;
 737                }
 738                btrfs_tree_read_lock(eb);
 739                if (btrfs_header_level(eb) == 0)
 740                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 741                else
 742                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 743                btrfs_tree_read_unlock(eb);
 744                free_extent_buffer(eb);
 745                prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 746                cond_resched();
 747        }
 748        return 0;
 749}
 750
 751/*
 752 * add all currently queued delayed refs from this head whose seq nr is
 753 * smaller or equal that seq to the list
 754 */
 755static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 756                            struct btrfs_delayed_ref_head *head, u64 seq,
 757                            struct preftrees *preftrees, u64 *total_refs,
 758                            struct share_check *sc)
 759{
 760        struct btrfs_delayed_ref_node *node;
 761        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 762        struct btrfs_key key;
 763        struct btrfs_key tmp_op_key;
 764        struct rb_node *n;
 765        int count;
 766        int ret = 0;
 767
 768        if (extent_op && extent_op->update_key)
 769                btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 770
 771        spin_lock(&head->lock);
 772        for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
 773                node = rb_entry(n, struct btrfs_delayed_ref_node,
 774                                ref_node);
 775                if (node->seq > seq)
 776                        continue;
 777
 778                switch (node->action) {
 779                case BTRFS_ADD_DELAYED_EXTENT:
 780                case BTRFS_UPDATE_DELAYED_HEAD:
 781                        WARN_ON(1);
 782                        continue;
 783                case BTRFS_ADD_DELAYED_REF:
 784                        count = node->ref_mod;
 785                        break;
 786                case BTRFS_DROP_DELAYED_REF:
 787                        count = node->ref_mod * -1;
 788                        break;
 789                default:
 790                        BUG_ON(1);
 791                }
 792                *total_refs += count;
 793                switch (node->type) {
 794                case BTRFS_TREE_BLOCK_REF_KEY: {
 795                        /* NORMAL INDIRECT METADATA backref */
 796                        struct btrfs_delayed_tree_ref *ref;
 797
 798                        ref = btrfs_delayed_node_to_tree_ref(node);
 799                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 800                                               &tmp_op_key, ref->level + 1,
 801                                               node->bytenr, count, sc,
 802                                               GFP_ATOMIC);
 803                        break;
 804                }
 805                case BTRFS_SHARED_BLOCK_REF_KEY: {
 806                        /* SHARED DIRECT METADATA backref */
 807                        struct btrfs_delayed_tree_ref *ref;
 808
 809                        ref = btrfs_delayed_node_to_tree_ref(node);
 810
 811                        ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 812                                             ref->parent, node->bytenr, count,
 813                                             sc, GFP_ATOMIC);
 814                        break;
 815                }
 816                case BTRFS_EXTENT_DATA_REF_KEY: {
 817                        /* NORMAL INDIRECT DATA backref */
 818                        struct btrfs_delayed_data_ref *ref;
 819                        ref = btrfs_delayed_node_to_data_ref(node);
 820
 821                        key.objectid = ref->objectid;
 822                        key.type = BTRFS_EXTENT_DATA_KEY;
 823                        key.offset = ref->offset;
 824
 825                        /*
 826                         * Found a inum that doesn't match our known inum, we
 827                         * know it's shared.
 828                         */
 829                        if (sc && sc->inum && ref->objectid != sc->inum) {
 830                                ret = BACKREF_FOUND_SHARED;
 831                                goto out;
 832                        }
 833
 834                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 835                                               &key, 0, node->bytenr, count, sc,
 836                                               GFP_ATOMIC);
 837                        break;
 838                }
 839                case BTRFS_SHARED_DATA_REF_KEY: {
 840                        /* SHARED DIRECT FULL backref */
 841                        struct btrfs_delayed_data_ref *ref;
 842
 843                        ref = btrfs_delayed_node_to_data_ref(node);
 844
 845                        ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 846                                             node->bytenr, count, sc,
 847                                             GFP_ATOMIC);
 848                        break;
 849                }
 850                default:
 851                        WARN_ON(1);
 852                }
 853                /*
 854                 * We must ignore BACKREF_FOUND_SHARED until all delayed
 855                 * refs have been checked.
 856                 */
 857                if (ret && (ret != BACKREF_FOUND_SHARED))
 858                        break;
 859        }
 860        if (!ret)
 861                ret = extent_is_shared(sc);
 862out:
 863        spin_unlock(&head->lock);
 864        return ret;
 865}
 866
 867/*
 868 * add all inline backrefs for bytenr to the list
 869 *
 870 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 871 */
 872static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 873                           struct btrfs_path *path, u64 bytenr,
 874                           int *info_level, struct preftrees *preftrees,
 875                           u64 *total_refs, struct share_check *sc)
 876{
 877        int ret = 0;
 878        int slot;
 879        struct extent_buffer *leaf;
 880        struct btrfs_key key;
 881        struct btrfs_key found_key;
 882        unsigned long ptr;
 883        unsigned long end;
 884        struct btrfs_extent_item *ei;
 885        u64 flags;
 886        u64 item_size;
 887
 888        /*
 889         * enumerate all inline refs
 890         */
 891        leaf = path->nodes[0];
 892        slot = path->slots[0];
 893
 894        item_size = btrfs_item_size_nr(leaf, slot);
 895        BUG_ON(item_size < sizeof(*ei));
 896
 897        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 898        flags = btrfs_extent_flags(leaf, ei);
 899        *total_refs += btrfs_extent_refs(leaf, ei);
 900        btrfs_item_key_to_cpu(leaf, &found_key, slot);
 901
 902        ptr = (unsigned long)(ei + 1);
 903        end = (unsigned long)ei + item_size;
 904
 905        if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 906            flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 907                struct btrfs_tree_block_info *info;
 908
 909                info = (struct btrfs_tree_block_info *)ptr;
 910                *info_level = btrfs_tree_block_level(leaf, info);
 911                ptr += sizeof(struct btrfs_tree_block_info);
 912                BUG_ON(ptr > end);
 913        } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 914                *info_level = found_key.offset;
 915        } else {
 916                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 917        }
 918
 919        while (ptr < end) {
 920                struct btrfs_extent_inline_ref *iref;
 921                u64 offset;
 922                int type;
 923
 924                iref = (struct btrfs_extent_inline_ref *)ptr;
 925                type = btrfs_get_extent_inline_ref_type(leaf, iref,
 926                                                        BTRFS_REF_TYPE_ANY);
 927                if (type == BTRFS_REF_TYPE_INVALID)
 928                        return -EINVAL;
 929
 930                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 931
 932                switch (type) {
 933                case BTRFS_SHARED_BLOCK_REF_KEY:
 934                        ret = add_direct_ref(fs_info, preftrees,
 935                                             *info_level + 1, offset,
 936                                             bytenr, 1, NULL, GFP_NOFS);
 937                        break;
 938                case BTRFS_SHARED_DATA_REF_KEY: {
 939                        struct btrfs_shared_data_ref *sdref;
 940                        int count;
 941
 942                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 943                        count = btrfs_shared_data_ref_count(leaf, sdref);
 944
 945                        ret = add_direct_ref(fs_info, preftrees, 0, offset,
 946                                             bytenr, count, sc, GFP_NOFS);
 947                        break;
 948                }
 949                case BTRFS_TREE_BLOCK_REF_KEY:
 950                        ret = add_indirect_ref(fs_info, preftrees, offset,
 951                                               NULL, *info_level + 1,
 952                                               bytenr, 1, NULL, GFP_NOFS);
 953                        break;
 954                case BTRFS_EXTENT_DATA_REF_KEY: {
 955                        struct btrfs_extent_data_ref *dref;
 956                        int count;
 957                        u64 root;
 958
 959                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 960                        count = btrfs_extent_data_ref_count(leaf, dref);
 961                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 962                                                                      dref);
 963                        key.type = BTRFS_EXTENT_DATA_KEY;
 964                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 965
 966                        if (sc && sc->inum && key.objectid != sc->inum) {
 967                                ret = BACKREF_FOUND_SHARED;
 968                                break;
 969                        }
 970
 971                        root = btrfs_extent_data_ref_root(leaf, dref);
 972
 973                        ret = add_indirect_ref(fs_info, preftrees, root,
 974                                               &key, 0, bytenr, count,
 975                                               sc, GFP_NOFS);
 976                        break;
 977                }
 978                default:
 979                        WARN_ON(1);
 980                }
 981                if (ret)
 982                        return ret;
 983                ptr += btrfs_extent_inline_ref_size(type);
 984        }
 985
 986        return 0;
 987}
 988
 989/*
 990 * add all non-inline backrefs for bytenr to the list
 991 *
 992 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 993 */
 994static int add_keyed_refs(struct btrfs_fs_info *fs_info,
 995                          struct btrfs_path *path, u64 bytenr,
 996                          int info_level, struct preftrees *preftrees,
 997                          struct share_check *sc)
 998{
 999        struct btrfs_root *extent_root = fs_info->extent_root;
1000        int ret;
1001        int slot;
1002        struct extent_buffer *leaf;
1003        struct btrfs_key key;
1004
1005        while (1) {
1006                ret = btrfs_next_item(extent_root, path);
1007                if (ret < 0)
1008                        break;
1009                if (ret) {
1010                        ret = 0;
1011                        break;
1012                }
1013
1014                slot = path->slots[0];
1015                leaf = path->nodes[0];
1016                btrfs_item_key_to_cpu(leaf, &key, slot);
1017
1018                if (key.objectid != bytenr)
1019                        break;
1020                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1021                        continue;
1022                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1023                        break;
1024
1025                switch (key.type) {
1026                case BTRFS_SHARED_BLOCK_REF_KEY:
1027                        /* SHARED DIRECT METADATA backref */
1028                        ret = add_direct_ref(fs_info, preftrees,
1029                                             info_level + 1, key.offset,
1030                                             bytenr, 1, NULL, GFP_NOFS);
1031                        break;
1032                case BTRFS_SHARED_DATA_REF_KEY: {
1033                        /* SHARED DIRECT FULL backref */
1034                        struct btrfs_shared_data_ref *sdref;
1035                        int count;
1036
1037                        sdref = btrfs_item_ptr(leaf, slot,
1038                                              struct btrfs_shared_data_ref);
1039                        count = btrfs_shared_data_ref_count(leaf, sdref);
1040                        ret = add_direct_ref(fs_info, preftrees, 0,
1041                                             key.offset, bytenr, count,
1042                                             sc, GFP_NOFS);
1043                        break;
1044                }
1045                case BTRFS_TREE_BLOCK_REF_KEY:
1046                        /* NORMAL INDIRECT METADATA backref */
1047                        ret = add_indirect_ref(fs_info, preftrees, key.offset,
1048                                               NULL, info_level + 1, bytenr,
1049                                               1, NULL, GFP_NOFS);
1050                        break;
1051                case BTRFS_EXTENT_DATA_REF_KEY: {
1052                        /* NORMAL INDIRECT DATA backref */
1053                        struct btrfs_extent_data_ref *dref;
1054                        int count;
1055                        u64 root;
1056
1057                        dref = btrfs_item_ptr(leaf, slot,
1058                                              struct btrfs_extent_data_ref);
1059                        count = btrfs_extent_data_ref_count(leaf, dref);
1060                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
1061                                                                      dref);
1062                        key.type = BTRFS_EXTENT_DATA_KEY;
1063                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1064
1065                        if (sc && sc->inum && key.objectid != sc->inum) {
1066                                ret = BACKREF_FOUND_SHARED;
1067                                break;
1068                        }
1069
1070                        root = btrfs_extent_data_ref_root(leaf, dref);
1071                        ret = add_indirect_ref(fs_info, preftrees, root,
1072                                               &key, 0, bytenr, count,
1073                                               sc, GFP_NOFS);
1074                        break;
1075                }
1076                default:
1077                        WARN_ON(1);
1078                }
1079                if (ret)
1080                        return ret;
1081
1082        }
1083
1084        return ret;
1085}
1086
1087/*
1088 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1089 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1090 * indirect refs to their parent bytenr.
1091 * When roots are found, they're added to the roots list
1092 *
1093 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1094 * much like trans == NULL case, the difference only lies in it will not
1095 * commit root.
1096 * The special case is for qgroup to search roots in commit_transaction().
1097 *
1098 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1099 * shared extent is detected.
1100 *
1101 * Otherwise this returns 0 for success and <0 for an error.
1102 *
1103 * If ignore_offset is set to false, only extent refs whose offsets match
1104 * extent_item_pos are returned.  If true, every extent ref is returned
1105 * and extent_item_pos is ignored.
1106 *
1107 * FIXME some caching might speed things up
1108 */
1109static int find_parent_nodes(struct btrfs_trans_handle *trans,
1110                             struct btrfs_fs_info *fs_info, u64 bytenr,
1111                             u64 time_seq, struct ulist *refs,
1112                             struct ulist *roots, const u64 *extent_item_pos,
1113                             struct share_check *sc, bool ignore_offset)
1114{
1115        struct btrfs_key key;
1116        struct btrfs_path *path;
1117        struct btrfs_delayed_ref_root *delayed_refs = NULL;
1118        struct btrfs_delayed_ref_head *head;
1119        int info_level = 0;
1120        int ret;
1121        struct prelim_ref *ref;
1122        struct rb_node *node;
1123        struct extent_inode_elem *eie = NULL;
1124        /* total of both direct AND indirect refs! */
1125        u64 total_refs = 0;
1126        struct preftrees preftrees = {
1127                .direct = PREFTREE_INIT,
1128                .indirect = PREFTREE_INIT,
1129                .indirect_missing_keys = PREFTREE_INIT
1130        };
1131
1132        key.objectid = bytenr;
1133        key.offset = (u64)-1;
1134        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1135                key.type = BTRFS_METADATA_ITEM_KEY;
1136        else
1137                key.type = BTRFS_EXTENT_ITEM_KEY;
1138
1139        path = btrfs_alloc_path();
1140        if (!path)
1141                return -ENOMEM;
1142        if (!trans) {
1143                path->search_commit_root = 1;
1144                path->skip_locking = 1;
1145        }
1146
1147        if (time_seq == SEQ_LAST)
1148                path->skip_locking = 1;
1149
1150        /*
1151         * grab both a lock on the path and a lock on the delayed ref head.
1152         * We need both to get a consistent picture of how the refs look
1153         * at a specified point in time
1154         */
1155again:
1156        head = NULL;
1157
1158        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1159        if (ret < 0)
1160                goto out;
1161        BUG_ON(ret == 0);
1162
1163#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1164        if (trans && likely(trans->type != __TRANS_DUMMY) &&
1165            time_seq != SEQ_LAST) {
1166#else
1167        if (trans && time_seq != SEQ_LAST) {
1168#endif
1169                /*
1170                 * look if there are updates for this ref queued and lock the
1171                 * head
1172                 */
1173                delayed_refs = &trans->transaction->delayed_refs;
1174                spin_lock(&delayed_refs->lock);
1175                head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1176                if (head) {
1177                        if (!mutex_trylock(&head->mutex)) {
1178                                refcount_inc(&head->refs);
1179                                spin_unlock(&delayed_refs->lock);
1180
1181                                btrfs_release_path(path);
1182
1183                                /*
1184                                 * Mutex was contended, block until it's
1185                                 * released and try again
1186                                 */
1187                                mutex_lock(&head->mutex);
1188                                mutex_unlock(&head->mutex);
1189                                btrfs_put_delayed_ref_head(head);
1190                                goto again;
1191                        }
1192                        spin_unlock(&delayed_refs->lock);
1193                        ret = add_delayed_refs(fs_info, head, time_seq,
1194                                               &preftrees, &total_refs, sc);
1195                        mutex_unlock(&head->mutex);
1196                        if (ret)
1197                                goto out;
1198                } else {
1199                        spin_unlock(&delayed_refs->lock);
1200                }
1201        }
1202
1203        if (path->slots[0]) {
1204                struct extent_buffer *leaf;
1205                int slot;
1206
1207                path->slots[0]--;
1208                leaf = path->nodes[0];
1209                slot = path->slots[0];
1210                btrfs_item_key_to_cpu(leaf, &key, slot);
1211                if (key.objectid == bytenr &&
1212                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1213                     key.type == BTRFS_METADATA_ITEM_KEY)) {
1214                        ret = add_inline_refs(fs_info, path, bytenr,
1215                                              &info_level, &preftrees,
1216                                              &total_refs, sc);
1217                        if (ret)
1218                                goto out;
1219                        ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1220                                             &preftrees, sc);
1221                        if (ret)
1222                                goto out;
1223                }
1224        }
1225
1226        btrfs_release_path(path);
1227
1228        ret = add_missing_keys(fs_info, &preftrees);
1229        if (ret)
1230                goto out;
1231
1232        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1233
1234        ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1235                                    extent_item_pos, total_refs, sc, ignore_offset);
1236        if (ret)
1237                goto out;
1238
1239        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1240
1241        /*
1242         * This walks the tree of merged and resolved refs. Tree blocks are
1243         * read in as needed. Unique entries are added to the ulist, and
1244         * the list of found roots is updated.
1245         *
1246         * We release the entire tree in one go before returning.
1247         */
1248        node = rb_first(&preftrees.direct.root);
1249        while (node) {
1250                ref = rb_entry(node, struct prelim_ref, rbnode);
1251                node = rb_next(&ref->rbnode);
1252                /*
1253                 * ref->count < 0 can happen here if there are delayed
1254                 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1255                 * prelim_ref_insert() relies on this when merging
1256                 * identical refs to keep the overall count correct.
1257                 * prelim_ref_insert() will merge only those refs
1258                 * which compare identically.  Any refs having
1259                 * e.g. different offsets would not be merged,
1260                 * and would retain their original ref->count < 0.
1261                 */
1262                if (roots && ref->count && ref->root_id && ref->parent == 0) {
1263                        if (sc && sc->root_objectid &&
1264                            ref->root_id != sc->root_objectid) {
1265                                ret = BACKREF_FOUND_SHARED;
1266                                goto out;
1267                        }
1268
1269                        /* no parent == root of tree */
1270                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1271                        if (ret < 0)
1272                                goto out;
1273                }
1274                if (ref->count && ref->parent) {
1275                        if (extent_item_pos && !ref->inode_list &&
1276                            ref->level == 0) {
1277                                struct extent_buffer *eb;
1278
1279                                eb = read_tree_block(fs_info, ref->parent, 0,
1280                                                     ref->level, NULL);
1281                                if (IS_ERR(eb)) {
1282                                        ret = PTR_ERR(eb);
1283                                        goto out;
1284                                } else if (!extent_buffer_uptodate(eb)) {
1285                                        free_extent_buffer(eb);
1286                                        ret = -EIO;
1287                                        goto out;
1288                                }
1289                                btrfs_tree_read_lock(eb);
1290                                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1291                                ret = find_extent_in_eb(eb, bytenr,
1292                                                        *extent_item_pos, &eie, ignore_offset);
1293                                btrfs_tree_read_unlock_blocking(eb);
1294                                free_extent_buffer(eb);
1295                                if (ret < 0)
1296                                        goto out;
1297                                ref->inode_list = eie;
1298                        }
1299                        ret = ulist_add_merge_ptr(refs, ref->parent,
1300                                                  ref->inode_list,
1301                                                  (void **)&eie, GFP_NOFS);
1302                        if (ret < 0)
1303                                goto out;
1304                        if (!ret && extent_item_pos) {
1305                                /*
1306                                 * we've recorded that parent, so we must extend
1307                                 * its inode list here
1308                                 */
1309                                BUG_ON(!eie);
1310                                while (eie->next)
1311                                        eie = eie->next;
1312                                eie->next = ref->inode_list;
1313                        }
1314                        eie = NULL;
1315                }
1316                cond_resched();
1317        }
1318
1319out:
1320        btrfs_free_path(path);
1321
1322        prelim_release(&preftrees.direct);
1323        prelim_release(&preftrees.indirect);
1324        prelim_release(&preftrees.indirect_missing_keys);
1325
1326        if (ret < 0)
1327                free_inode_elem_list(eie);
1328        return ret;
1329}
1330
1331static void free_leaf_list(struct ulist *blocks)
1332{
1333        struct ulist_node *node = NULL;
1334        struct extent_inode_elem *eie;
1335        struct ulist_iterator uiter;
1336
1337        ULIST_ITER_INIT(&uiter);
1338        while ((node = ulist_next(blocks, &uiter))) {
1339                if (!node->aux)
1340                        continue;
1341                eie = unode_aux_to_inode_list(node);
1342                free_inode_elem_list(eie);
1343                node->aux = 0;
1344        }
1345
1346        ulist_free(blocks);
1347}
1348
1349/*
1350 * Finds all leafs with a reference to the specified combination of bytenr and
1351 * offset. key_list_head will point to a list of corresponding keys (caller must
1352 * free each list element). The leafs will be stored in the leafs ulist, which
1353 * must be freed with ulist_free.
1354 *
1355 * returns 0 on success, <0 on error
1356 */
1357static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1358                                struct btrfs_fs_info *fs_info, u64 bytenr,
1359                                u64 time_seq, struct ulist **leafs,
1360                                const u64 *extent_item_pos, bool ignore_offset)
1361{
1362        int ret;
1363
1364        *leafs = ulist_alloc(GFP_NOFS);
1365        if (!*leafs)
1366                return -ENOMEM;
1367
1368        ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1369                                *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1370        if (ret < 0 && ret != -ENOENT) {
1371                free_leaf_list(*leafs);
1372                return ret;
1373        }
1374
1375        return 0;
1376}
1377
1378/*
1379 * walk all backrefs for a given extent to find all roots that reference this
1380 * extent. Walking a backref means finding all extents that reference this
1381 * extent and in turn walk the backrefs of those, too. Naturally this is a
1382 * recursive process, but here it is implemented in an iterative fashion: We
1383 * find all referencing extents for the extent in question and put them on a
1384 * list. In turn, we find all referencing extents for those, further appending
1385 * to the list. The way we iterate the list allows adding more elements after
1386 * the current while iterating. The process stops when we reach the end of the
1387 * list. Found roots are added to the roots list.
1388 *
1389 * returns 0 on success, < 0 on error.
1390 */
1391static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1392                                     struct btrfs_fs_info *fs_info, u64 bytenr,
1393                                     u64 time_seq, struct ulist **roots,
1394                                     bool ignore_offset)
1395{
1396        struct ulist *tmp;
1397        struct ulist_node *node = NULL;
1398        struct ulist_iterator uiter;
1399        int ret;
1400
1401        tmp = ulist_alloc(GFP_NOFS);
1402        if (!tmp)
1403                return -ENOMEM;
1404        *roots = ulist_alloc(GFP_NOFS);
1405        if (!*roots) {
1406                ulist_free(tmp);
1407                return -ENOMEM;
1408        }
1409
1410        ULIST_ITER_INIT(&uiter);
1411        while (1) {
1412                ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1413                                        tmp, *roots, NULL, NULL, ignore_offset);
1414                if (ret < 0 && ret != -ENOENT) {
1415                        ulist_free(tmp);
1416                        ulist_free(*roots);
1417                        return ret;
1418                }
1419                node = ulist_next(tmp, &uiter);
1420                if (!node)
1421                        break;
1422                bytenr = node->val;
1423                cond_resched();
1424        }
1425
1426        ulist_free(tmp);
1427        return 0;
1428}
1429
1430int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1431                         struct btrfs_fs_info *fs_info, u64 bytenr,
1432                         u64 time_seq, struct ulist **roots,
1433                         bool ignore_offset)
1434{
1435        int ret;
1436
1437        if (!trans)
1438                down_read(&fs_info->commit_root_sem);
1439        ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1440                                        time_seq, roots, ignore_offset);
1441        if (!trans)
1442                up_read(&fs_info->commit_root_sem);
1443        return ret;
1444}
1445
1446/**
1447 * btrfs_check_shared - tell us whether an extent is shared
1448 *
1449 * btrfs_check_shared uses the backref walking code but will short
1450 * circuit as soon as it finds a root or inode that doesn't match the
1451 * one passed in. This provides a significant performance benefit for
1452 * callers (such as fiemap) which want to know whether the extent is
1453 * shared but do not need a ref count.
1454 *
1455 * This attempts to allocate a transaction in order to account for
1456 * delayed refs, but continues on even when the alloc fails.
1457 *
1458 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1459 */
1460int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1461{
1462        struct btrfs_fs_info *fs_info = root->fs_info;
1463        struct btrfs_trans_handle *trans;
1464        struct ulist *tmp = NULL;
1465        struct ulist *roots = NULL;
1466        struct ulist_iterator uiter;
1467        struct ulist_node *node;
1468        struct seq_list elem = SEQ_LIST_INIT(elem);
1469        int ret = 0;
1470        struct share_check shared = {
1471                .root_objectid = root->objectid,
1472                .inum = inum,
1473                .share_count = 0,
1474        };
1475
1476        tmp = ulist_alloc(GFP_NOFS);
1477        roots = ulist_alloc(GFP_NOFS);
1478        if (!tmp || !roots) {
1479                ulist_free(tmp);
1480                ulist_free(roots);
1481                return -ENOMEM;
1482        }
1483
1484        trans = btrfs_join_transaction(root);
1485        if (IS_ERR(trans)) {
1486                trans = NULL;
1487                down_read(&fs_info->commit_root_sem);
1488        } else {
1489                btrfs_get_tree_mod_seq(fs_info, &elem);
1490        }
1491
1492        ULIST_ITER_INIT(&uiter);
1493        while (1) {
1494                ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1495                                        roots, NULL, &shared, false);
1496                if (ret == BACKREF_FOUND_SHARED) {
1497                        /* this is the only condition under which we return 1 */
1498                        ret = 1;
1499                        break;
1500                }
1501                if (ret < 0 && ret != -ENOENT)
1502                        break;
1503                ret = 0;
1504                node = ulist_next(tmp, &uiter);
1505                if (!node)
1506                        break;
1507                bytenr = node->val;
1508                shared.share_count = 0;
1509                cond_resched();
1510        }
1511
1512        if (trans) {
1513                btrfs_put_tree_mod_seq(fs_info, &elem);
1514                btrfs_end_transaction(trans);
1515        } else {
1516                up_read(&fs_info->commit_root_sem);
1517        }
1518        ulist_free(tmp);
1519        ulist_free(roots);
1520        return ret;
1521}
1522
1523int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1524                          u64 start_off, struct btrfs_path *path,
1525                          struct btrfs_inode_extref **ret_extref,
1526                          u64 *found_off)
1527{
1528        int ret, slot;
1529        struct btrfs_key key;
1530        struct btrfs_key found_key;
1531        struct btrfs_inode_extref *extref;
1532        const struct extent_buffer *leaf;
1533        unsigned long ptr;
1534
1535        key.objectid = inode_objectid;
1536        key.type = BTRFS_INODE_EXTREF_KEY;
1537        key.offset = start_off;
1538
1539        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1540        if (ret < 0)
1541                return ret;
1542
1543        while (1) {
1544                leaf = path->nodes[0];
1545                slot = path->slots[0];
1546                if (slot >= btrfs_header_nritems(leaf)) {
1547                        /*
1548                         * If the item at offset is not found,
1549                         * btrfs_search_slot will point us to the slot
1550                         * where it should be inserted. In our case
1551                         * that will be the slot directly before the
1552                         * next INODE_REF_KEY_V2 item. In the case
1553                         * that we're pointing to the last slot in a
1554                         * leaf, we must move one leaf over.
1555                         */
1556                        ret = btrfs_next_leaf(root, path);
1557                        if (ret) {
1558                                if (ret >= 1)
1559                                        ret = -ENOENT;
1560                                break;
1561                        }
1562                        continue;
1563                }
1564
1565                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1566
1567                /*
1568                 * Check that we're still looking at an extended ref key for
1569                 * this particular objectid. If we have different
1570                 * objectid or type then there are no more to be found
1571                 * in the tree and we can exit.
1572                 */
1573                ret = -ENOENT;
1574                if (found_key.objectid != inode_objectid)
1575                        break;
1576                if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1577                        break;
1578
1579                ret = 0;
1580                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1581                extref = (struct btrfs_inode_extref *)ptr;
1582                *ret_extref = extref;
1583                if (found_off)
1584                        *found_off = found_key.offset;
1585                break;
1586        }
1587
1588        return ret;
1589}
1590
1591/*
1592 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1593 * Elements of the path are separated by '/' and the path is guaranteed to be
1594 * 0-terminated. the path is only given within the current file system.
1595 * Therefore, it never starts with a '/'. the caller is responsible to provide
1596 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1597 * the start point of the resulting string is returned. this pointer is within
1598 * dest, normally.
1599 * in case the path buffer would overflow, the pointer is decremented further
1600 * as if output was written to the buffer, though no more output is actually
1601 * generated. that way, the caller can determine how much space would be
1602 * required for the path to fit into the buffer. in that case, the returned
1603 * value will be smaller than dest. callers must check this!
1604 */
1605char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1606                        u32 name_len, unsigned long name_off,
1607                        struct extent_buffer *eb_in, u64 parent,
1608                        char *dest, u32 size)
1609{
1610        int slot;
1611        u64 next_inum;
1612        int ret;
1613        s64 bytes_left = ((s64)size) - 1;
1614        struct extent_buffer *eb = eb_in;
1615        struct btrfs_key found_key;
1616        int leave_spinning = path->leave_spinning;
1617        struct btrfs_inode_ref *iref;
1618
1619        if (bytes_left >= 0)
1620                dest[bytes_left] = '\0';
1621
1622        path->leave_spinning = 1;
1623        while (1) {
1624                bytes_left -= name_len;
1625                if (bytes_left >= 0)
1626                        read_extent_buffer(eb, dest + bytes_left,
1627                                           name_off, name_len);
1628                if (eb != eb_in) {
1629                        if (!path->skip_locking)
1630                                btrfs_tree_read_unlock_blocking(eb);
1631                        free_extent_buffer(eb);
1632                }
1633                ret = btrfs_find_item(fs_root, path, parent, 0,
1634                                BTRFS_INODE_REF_KEY, &found_key);
1635                if (ret > 0)
1636                        ret = -ENOENT;
1637                if (ret)
1638                        break;
1639
1640                next_inum = found_key.offset;
1641
1642                /* regular exit ahead */
1643                if (parent == next_inum)
1644                        break;
1645
1646                slot = path->slots[0];
1647                eb = path->nodes[0];
1648                /* make sure we can use eb after releasing the path */
1649                if (eb != eb_in) {
1650                        if (!path->skip_locking)
1651                                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1652                        path->nodes[0] = NULL;
1653                        path->locks[0] = 0;
1654                }
1655                btrfs_release_path(path);
1656                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1657
1658                name_len = btrfs_inode_ref_name_len(eb, iref);
1659                name_off = (unsigned long)(iref + 1);
1660
1661                parent = next_inum;
1662                --bytes_left;
1663                if (bytes_left >= 0)
1664                        dest[bytes_left] = '/';
1665        }
1666
1667        btrfs_release_path(path);
1668        path->leave_spinning = leave_spinning;
1669
1670        if (ret)
1671                return ERR_PTR(ret);
1672
1673        return dest + bytes_left;
1674}
1675
1676/*
1677 * this makes the path point to (logical EXTENT_ITEM *)
1678 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1679 * tree blocks and <0 on error.
1680 */
1681int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1682                        struct btrfs_path *path, struct btrfs_key *found_key,
1683                        u64 *flags_ret)
1684{
1685        int ret;
1686        u64 flags;
1687        u64 size = 0;
1688        u32 item_size;
1689        const struct extent_buffer *eb;
1690        struct btrfs_extent_item *ei;
1691        struct btrfs_key key;
1692
1693        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1694                key.type = BTRFS_METADATA_ITEM_KEY;
1695        else
1696                key.type = BTRFS_EXTENT_ITEM_KEY;
1697        key.objectid = logical;
1698        key.offset = (u64)-1;
1699
1700        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1701        if (ret < 0)
1702                return ret;
1703
1704        ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1705        if (ret) {
1706                if (ret > 0)
1707                        ret = -ENOENT;
1708                return ret;
1709        }
1710        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1711        if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1712                size = fs_info->nodesize;
1713        else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1714                size = found_key->offset;
1715
1716        if (found_key->objectid > logical ||
1717            found_key->objectid + size <= logical) {
1718                btrfs_debug(fs_info,
1719                        "logical %llu is not within any extent", logical);
1720                return -ENOENT;
1721        }
1722
1723        eb = path->nodes[0];
1724        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1725        BUG_ON(item_size < sizeof(*ei));
1726
1727        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1728        flags = btrfs_extent_flags(eb, ei);
1729
1730        btrfs_debug(fs_info,
1731                "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1732                 logical, logical - found_key->objectid, found_key->objectid,
1733                 found_key->offset, flags, item_size);
1734
1735        WARN_ON(!flags_ret);
1736        if (flags_ret) {
1737                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1738                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1739                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1740                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1741                else
1742                        BUG_ON(1);
1743                return 0;
1744        }
1745
1746        return -EIO;
1747}
1748
1749/*
1750 * helper function to iterate extent inline refs. ptr must point to a 0 value
1751 * for the first call and may be modified. it is used to track state.
1752 * if more refs exist, 0 is returned and the next call to
1753 * get_extent_inline_ref must pass the modified ptr parameter to get the
1754 * next ref. after the last ref was processed, 1 is returned.
1755 * returns <0 on error
1756 */
1757static int get_extent_inline_ref(unsigned long *ptr,
1758                                 const struct extent_buffer *eb,
1759                                 const struct btrfs_key *key,
1760                                 const struct btrfs_extent_item *ei,
1761                                 u32 item_size,
1762                                 struct btrfs_extent_inline_ref **out_eiref,
1763                                 int *out_type)
1764{
1765        unsigned long end;
1766        u64 flags;
1767        struct btrfs_tree_block_info *info;
1768
1769        if (!*ptr) {
1770                /* first call */
1771                flags = btrfs_extent_flags(eb, ei);
1772                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1773                        if (key->type == BTRFS_METADATA_ITEM_KEY) {
1774                                /* a skinny metadata extent */
1775                                *out_eiref =
1776                                     (struct btrfs_extent_inline_ref *)(ei + 1);
1777                        } else {
1778                                WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1779                                info = (struct btrfs_tree_block_info *)(ei + 1);
1780                                *out_eiref =
1781                                   (struct btrfs_extent_inline_ref *)(info + 1);
1782                        }
1783                } else {
1784                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1785                }
1786                *ptr = (unsigned long)*out_eiref;
1787                if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1788                        return -ENOENT;
1789        }
1790
1791        end = (unsigned long)ei + item_size;
1792        *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1793        *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1794                                                     BTRFS_REF_TYPE_ANY);
1795        if (*out_type == BTRFS_REF_TYPE_INVALID)
1796                return -EINVAL;
1797
1798        *ptr += btrfs_extent_inline_ref_size(*out_type);
1799        WARN_ON(*ptr > end);
1800        if (*ptr == end)
1801                return 1; /* last */
1802
1803        return 0;
1804}
1805
1806/*
1807 * reads the tree block backref for an extent. tree level and root are returned
1808 * through out_level and out_root. ptr must point to a 0 value for the first
1809 * call and may be modified (see get_extent_inline_ref comment).
1810 * returns 0 if data was provided, 1 if there was no more data to provide or
1811 * <0 on error.
1812 */
1813int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1814                            struct btrfs_key *key, struct btrfs_extent_item *ei,
1815                            u32 item_size, u64 *out_root, u8 *out_level)
1816{
1817        int ret;
1818        int type;
1819        struct btrfs_extent_inline_ref *eiref;
1820
1821        if (*ptr == (unsigned long)-1)
1822                return 1;
1823
1824        while (1) {
1825                ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1826                                              &eiref, &type);
1827                if (ret < 0)
1828                        return ret;
1829
1830                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1831                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1832                        break;
1833
1834                if (ret == 1)
1835                        return 1;
1836        }
1837
1838        /* we can treat both ref types equally here */
1839        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1840
1841        if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1842                struct btrfs_tree_block_info *info;
1843
1844                info = (struct btrfs_tree_block_info *)(ei + 1);
1845                *out_level = btrfs_tree_block_level(eb, info);
1846        } else {
1847                ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1848                *out_level = (u8)key->offset;
1849        }
1850
1851        if (ret == 1)
1852                *ptr = (unsigned long)-1;
1853
1854        return 0;
1855}
1856
1857static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1858                             struct extent_inode_elem *inode_list,
1859                             u64 root, u64 extent_item_objectid,
1860                             iterate_extent_inodes_t *iterate, void *ctx)
1861{
1862        struct extent_inode_elem *eie;
1863        int ret = 0;
1864
1865        for (eie = inode_list; eie; eie = eie->next) {
1866                btrfs_debug(fs_info,
1867                            "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1868                            extent_item_objectid, eie->inum,
1869                            eie->offset, root);
1870                ret = iterate(eie->inum, eie->offset, root, ctx);
1871                if (ret) {
1872                        btrfs_debug(fs_info,
1873                                    "stopping iteration for %llu due to ret=%d",
1874                                    extent_item_objectid, ret);
1875                        break;
1876                }
1877        }
1878
1879        return ret;
1880}
1881
1882/*
1883 * calls iterate() for every inode that references the extent identified by
1884 * the given parameters.
1885 * when the iterator function returns a non-zero value, iteration stops.
1886 */
1887int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1888                                u64 extent_item_objectid, u64 extent_item_pos,
1889                                int search_commit_root,
1890                                iterate_extent_inodes_t *iterate, void *ctx,
1891                                bool ignore_offset)
1892{
1893        int ret;
1894        struct btrfs_trans_handle *trans = NULL;
1895        struct ulist *refs = NULL;
1896        struct ulist *roots = NULL;
1897        struct ulist_node *ref_node = NULL;
1898        struct ulist_node *root_node = NULL;
1899        struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1900        struct ulist_iterator ref_uiter;
1901        struct ulist_iterator root_uiter;
1902
1903        btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1904                        extent_item_objectid);
1905
1906        if (!search_commit_root) {
1907                trans = btrfs_join_transaction(fs_info->extent_root);
1908                if (IS_ERR(trans))
1909                        return PTR_ERR(trans);
1910                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1911        } else {
1912                down_read(&fs_info->commit_root_sem);
1913        }
1914
1915        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1916                                   tree_mod_seq_elem.seq, &refs,
1917                                   &extent_item_pos, ignore_offset);
1918        if (ret)
1919                goto out;
1920
1921        ULIST_ITER_INIT(&ref_uiter);
1922        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1923                ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1924                                                tree_mod_seq_elem.seq, &roots,
1925                                                ignore_offset);
1926                if (ret)
1927                        break;
1928                ULIST_ITER_INIT(&root_uiter);
1929                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1930                        btrfs_debug(fs_info,
1931                                    "root %llu references leaf %llu, data list %#llx",
1932                                    root_node->val, ref_node->val,
1933                                    ref_node->aux);
1934                        ret = iterate_leaf_refs(fs_info,
1935                                                (struct extent_inode_elem *)
1936                                                (uintptr_t)ref_node->aux,
1937                                                root_node->val,
1938                                                extent_item_objectid,
1939                                                iterate, ctx);
1940                }
1941                ulist_free(roots);
1942        }
1943
1944        free_leaf_list(refs);
1945out:
1946        if (!search_commit_root) {
1947                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1948                btrfs_end_transaction(trans);
1949        } else {
1950                up_read(&fs_info->commit_root_sem);
1951        }
1952
1953        return ret;
1954}
1955
1956int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1957                                struct btrfs_path *path,
1958                                iterate_extent_inodes_t *iterate, void *ctx,
1959                                bool ignore_offset)
1960{
1961        int ret;
1962        u64 extent_item_pos;
1963        u64 flags = 0;
1964        struct btrfs_key found_key;
1965        int search_commit_root = path->search_commit_root;
1966
1967        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1968        btrfs_release_path(path);
1969        if (ret < 0)
1970                return ret;
1971        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1972                return -EINVAL;
1973
1974        extent_item_pos = logical - found_key.objectid;
1975        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1976                                        extent_item_pos, search_commit_root,
1977                                        iterate, ctx, ignore_offset);
1978
1979        return ret;
1980}
1981
1982typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1983                              struct extent_buffer *eb, void *ctx);
1984
1985static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1986                              struct btrfs_path *path,
1987                              iterate_irefs_t *iterate, void *ctx)
1988{
1989        int ret = 0;
1990        int slot;
1991        u32 cur;
1992        u32 len;
1993        u32 name_len;
1994        u64 parent = 0;
1995        int found = 0;
1996        struct extent_buffer *eb;
1997        struct btrfs_item *item;
1998        struct btrfs_inode_ref *iref;
1999        struct btrfs_key found_key;
2000
2001        while (!ret) {
2002                ret = btrfs_find_item(fs_root, path, inum,
2003                                parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2004                                &found_key);
2005
2006                if (ret < 0)
2007                        break;
2008                if (ret) {
2009                        ret = found ? 0 : -ENOENT;
2010                        break;
2011                }
2012                ++found;
2013
2014                parent = found_key.offset;
2015                slot = path->slots[0];
2016                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2017                if (!eb) {
2018                        ret = -ENOMEM;
2019                        break;
2020                }
2021                extent_buffer_get(eb);
2022                btrfs_tree_read_lock(eb);
2023                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2024                btrfs_release_path(path);
2025
2026                item = btrfs_item_nr(slot);
2027                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2028
2029                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2030                        name_len = btrfs_inode_ref_name_len(eb, iref);
2031                        /* path must be released before calling iterate()! */
2032                        btrfs_debug(fs_root->fs_info,
2033                                "following ref at offset %u for inode %llu in tree %llu",
2034                                cur, found_key.objectid, fs_root->objectid);
2035                        ret = iterate(parent, name_len,
2036                                      (unsigned long)(iref + 1), eb, ctx);
2037                        if (ret)
2038                                break;
2039                        len = sizeof(*iref) + name_len;
2040                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
2041                }
2042                btrfs_tree_read_unlock_blocking(eb);
2043                free_extent_buffer(eb);
2044        }
2045
2046        btrfs_release_path(path);
2047
2048        return ret;
2049}
2050
2051static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2052                                 struct btrfs_path *path,
2053                                 iterate_irefs_t *iterate, void *ctx)
2054{
2055        int ret;
2056        int slot;
2057        u64 offset = 0;
2058        u64 parent;
2059        int found = 0;
2060        struct extent_buffer *eb;
2061        struct btrfs_inode_extref *extref;
2062        u32 item_size;
2063        u32 cur_offset;
2064        unsigned long ptr;
2065
2066        while (1) {
2067                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2068                                            &offset);
2069                if (ret < 0)
2070                        break;
2071                if (ret) {
2072                        ret = found ? 0 : -ENOENT;
2073                        break;
2074                }
2075                ++found;
2076
2077                slot = path->slots[0];
2078                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2079                if (!eb) {
2080                        ret = -ENOMEM;
2081                        break;
2082                }
2083                extent_buffer_get(eb);
2084
2085                btrfs_tree_read_lock(eb);
2086                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2087                btrfs_release_path(path);
2088
2089                item_size = btrfs_item_size_nr(eb, slot);
2090                ptr = btrfs_item_ptr_offset(eb, slot);
2091                cur_offset = 0;
2092
2093                while (cur_offset < item_size) {
2094                        u32 name_len;
2095
2096                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2097                        parent = btrfs_inode_extref_parent(eb, extref);
2098                        name_len = btrfs_inode_extref_name_len(eb, extref);
2099                        ret = iterate(parent, name_len,
2100                                      (unsigned long)&extref->name, eb, ctx);
2101                        if (ret)
2102                                break;
2103
2104                        cur_offset += btrfs_inode_extref_name_len(eb, extref);
2105                        cur_offset += sizeof(*extref);
2106                }
2107                btrfs_tree_read_unlock_blocking(eb);
2108                free_extent_buffer(eb);
2109
2110                offset++;
2111        }
2112
2113        btrfs_release_path(path);
2114
2115        return ret;
2116}
2117
2118static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2119                         struct btrfs_path *path, iterate_irefs_t *iterate,
2120                         void *ctx)
2121{
2122        int ret;
2123        int found_refs = 0;
2124
2125        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2126        if (!ret)
2127                ++found_refs;
2128        else if (ret != -ENOENT)
2129                return ret;
2130
2131        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2132        if (ret == -ENOENT && found_refs)
2133                return 0;
2134
2135        return ret;
2136}
2137
2138/*
2139 * returns 0 if the path could be dumped (probably truncated)
2140 * returns <0 in case of an error
2141 */
2142static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2143                         struct extent_buffer *eb, void *ctx)
2144{
2145        struct inode_fs_paths *ipath = ctx;
2146        char *fspath;
2147        char *fspath_min;
2148        int i = ipath->fspath->elem_cnt;
2149        const int s_ptr = sizeof(char *);
2150        u32 bytes_left;
2151
2152        bytes_left = ipath->fspath->bytes_left > s_ptr ?
2153                                        ipath->fspath->bytes_left - s_ptr : 0;
2154
2155        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2156        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2157                                   name_off, eb, inum, fspath_min, bytes_left);
2158        if (IS_ERR(fspath))
2159                return PTR_ERR(fspath);
2160
2161        if (fspath > fspath_min) {
2162                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2163                ++ipath->fspath->elem_cnt;
2164                ipath->fspath->bytes_left = fspath - fspath_min;
2165        } else {
2166                ++ipath->fspath->elem_missed;
2167                ipath->fspath->bytes_missing += fspath_min - fspath;
2168                ipath->fspath->bytes_left = 0;
2169        }
2170
2171        return 0;
2172}
2173
2174/*
2175 * this dumps all file system paths to the inode into the ipath struct, provided
2176 * is has been created large enough. each path is zero-terminated and accessed
2177 * from ipath->fspath->val[i].
2178 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2179 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2180 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2181 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2182 * have been needed to return all paths.
2183 */
2184int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2185{
2186        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2187                             inode_to_path, ipath);
2188}
2189
2190struct btrfs_data_container *init_data_container(u32 total_bytes)
2191{
2192        struct btrfs_data_container *data;
2193        size_t alloc_bytes;
2194
2195        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2196        data = kvmalloc(alloc_bytes, GFP_KERNEL);
2197        if (!data)
2198                return ERR_PTR(-ENOMEM);
2199
2200        if (total_bytes >= sizeof(*data)) {
2201                data->bytes_left = total_bytes - sizeof(*data);
2202                data->bytes_missing = 0;
2203        } else {
2204                data->bytes_missing = sizeof(*data) - total_bytes;
2205                data->bytes_left = 0;
2206        }
2207
2208        data->elem_cnt = 0;
2209        data->elem_missed = 0;
2210
2211        return data;
2212}
2213
2214/*
2215 * allocates space to return multiple file system paths for an inode.
2216 * total_bytes to allocate are passed, note that space usable for actual path
2217 * information will be total_bytes - sizeof(struct inode_fs_paths).
2218 * the returned pointer must be freed with free_ipath() in the end.
2219 */
2220struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2221                                        struct btrfs_path *path)
2222{
2223        struct inode_fs_paths *ifp;
2224        struct btrfs_data_container *fspath;
2225
2226        fspath = init_data_container(total_bytes);
2227        if (IS_ERR(fspath))
2228                return (void *)fspath;
2229
2230        ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2231        if (!ifp) {
2232                kvfree(fspath);
2233                return ERR_PTR(-ENOMEM);
2234        }
2235
2236        ifp->btrfs_path = path;
2237        ifp->fspath = fspath;
2238        ifp->fs_root = fs_root;
2239
2240        return ifp;
2241}
2242
2243void free_ipath(struct inode_fs_paths *ipath)
2244{
2245        if (!ipath)
2246                return;
2247        kvfree(ipath->fspath);
2248        kfree(ipath);
2249}
2250