linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48static struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .scan_objects = ubifs_shrink_scan,
  53        .count_objects = ubifs_shrink_count,
  54        .seeks = DEFAULT_SEEKS,
  55};
  56
  57/**
  58 * validate_inode - validate inode.
  59 * @c: UBIFS file-system description object
  60 * @inode: the inode to validate
  61 *
  62 * This is a helper function for 'ubifs_iget()' which validates various fields
  63 * of a newly built inode to make sure they contain sane values and prevent
  64 * possible vulnerabilities. Returns zero if the inode is all right and
  65 * a non-zero error code if not.
  66 */
  67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  68{
  69        int err;
  70        const struct ubifs_inode *ui = ubifs_inode(inode);
  71
  72        if (inode->i_size > c->max_inode_sz) {
  73                ubifs_err(c, "inode is too large (%lld)",
  74                          (long long)inode->i_size);
  75                return 1;
  76        }
  77
  78        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  79                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  80                return 2;
  81        }
  82
  83        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  84                return 3;
  85
  86        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  87                return 4;
  88
  89        if (ui->xattr && !S_ISREG(inode->i_mode))
  90                return 5;
  91
  92        if (!ubifs_compr_present(ui->compr_type)) {
  93                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  94                           inode->i_ino, ubifs_compr_name(ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= S_NOCMTIME;
 132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
 133        inode->i_flags |= S_NOATIME;
 134#endif
 135        set_nlink(inode, le32_to_cpu(ino->nlink));
 136        i_uid_write(inode, le32_to_cpu(ino->uid));
 137        i_gid_write(inode, le32_to_cpu(ino->gid));
 138        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 139        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 140        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 141        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 142        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 143        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 144        inode->i_mode = le32_to_cpu(ino->mode);
 145        inode->i_size = le64_to_cpu(ino->size);
 146
 147        ui->data_len    = le32_to_cpu(ino->data_len);
 148        ui->flags       = le32_to_cpu(ino->flags);
 149        ui->compr_type  = le16_to_cpu(ino->compr_type);
 150        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 151        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 152        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 153        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 154        ui->synced_i_size = ui->ui_size = inode->i_size;
 155
 156        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 157
 158        err = validate_inode(c, inode);
 159        if (err)
 160                goto out_invalid;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                break;
 202        case S_IFBLK:
 203        case S_IFCHR:
 204        {
 205                dev_t rdev;
 206                union ubifs_dev_desc *dev;
 207
 208                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 209                if (!ui->data) {
 210                        err = -ENOMEM;
 211                        goto out_ino;
 212                }
 213
 214                dev = (union ubifs_dev_desc *)ino->data;
 215                if (ui->data_len == sizeof(dev->new))
 216                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 217                else if (ui->data_len == sizeof(dev->huge))
 218                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 219                else {
 220                        err = 13;
 221                        goto out_invalid;
 222                }
 223                memcpy(ui->data, ino->data, ui->data_len);
 224                inode->i_op = &ubifs_file_inode_operations;
 225                init_special_inode(inode, inode->i_mode, rdev);
 226                break;
 227        }
 228        case S_IFSOCK:
 229        case S_IFIFO:
 230                inode->i_op = &ubifs_file_inode_operations;
 231                init_special_inode(inode, inode->i_mode, 0);
 232                if (ui->data_len != 0) {
 233                        err = 14;
 234                        goto out_invalid;
 235                }
 236                break;
 237        default:
 238                err = 15;
 239                goto out_invalid;
 240        }
 241
 242        kfree(ino);
 243        ubifs_set_inode_flags(inode);
 244        unlock_new_inode(inode);
 245        return inode;
 246
 247out_invalid:
 248        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 249        ubifs_dump_node(c, ino);
 250        ubifs_dump_inode(c, inode);
 251        err = -EINVAL;
 252out_ino:
 253        kfree(ino);
 254out:
 255        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 256        iget_failed(inode);
 257        return ERR_PTR(err);
 258}
 259
 260static struct inode *ubifs_alloc_inode(struct super_block *sb)
 261{
 262        struct ubifs_inode *ui;
 263
 264        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 265        if (!ui)
 266                return NULL;
 267
 268        memset((void *)ui + sizeof(struct inode), 0,
 269               sizeof(struct ubifs_inode) - sizeof(struct inode));
 270        mutex_init(&ui->ui_mutex);
 271        spin_lock_init(&ui->ui_lock);
 272        return &ui->vfs_inode;
 273};
 274
 275static void ubifs_i_callback(struct rcu_head *head)
 276{
 277        struct inode *inode = container_of(head, struct inode, i_rcu);
 278        struct ubifs_inode *ui = ubifs_inode(inode);
 279        kmem_cache_free(ubifs_inode_slab, ui);
 280}
 281
 282static void ubifs_destroy_inode(struct inode *inode)
 283{
 284        struct ubifs_inode *ui = ubifs_inode(inode);
 285
 286        kfree(ui->data);
 287        call_rcu(&inode->i_rcu, ubifs_i_callback);
 288}
 289
 290/*
 291 * Note, Linux write-back code calls this without 'i_mutex'.
 292 */
 293static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 294{
 295        int err = 0;
 296        struct ubifs_info *c = inode->i_sb->s_fs_info;
 297        struct ubifs_inode *ui = ubifs_inode(inode);
 298
 299        ubifs_assert(!ui->xattr);
 300        if (is_bad_inode(inode))
 301                return 0;
 302
 303        mutex_lock(&ui->ui_mutex);
 304        /*
 305         * Due to races between write-back forced by budgeting
 306         * (see 'sync_some_inodes()') and background write-back, the inode may
 307         * have already been synchronized, do not do this again. This might
 308         * also happen if it was synchronized in an VFS operation, e.g.
 309         * 'ubifs_link()'.
 310         */
 311        if (!ui->dirty) {
 312                mutex_unlock(&ui->ui_mutex);
 313                return 0;
 314        }
 315
 316        /*
 317         * As an optimization, do not write orphan inodes to the media just
 318         * because this is not needed.
 319         */
 320        dbg_gen("inode %lu, mode %#x, nlink %u",
 321                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 322        if (inode->i_nlink) {
 323                err = ubifs_jnl_write_inode(c, inode);
 324                if (err)
 325                        ubifs_err(c, "can't write inode %lu, error %d",
 326                                  inode->i_ino, err);
 327                else
 328                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 329        }
 330
 331        ui->dirty = 0;
 332        mutex_unlock(&ui->ui_mutex);
 333        ubifs_release_dirty_inode_budget(c, ui);
 334        return err;
 335}
 336
 337static void ubifs_evict_inode(struct inode *inode)
 338{
 339        int err;
 340        struct ubifs_info *c = inode->i_sb->s_fs_info;
 341        struct ubifs_inode *ui = ubifs_inode(inode);
 342
 343        if (ui->xattr)
 344                /*
 345                 * Extended attribute inode deletions are fully handled in
 346                 * 'ubifs_removexattr()'. These inodes are special and have
 347                 * limited usage, so there is nothing to do here.
 348                 */
 349                goto out;
 350
 351        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 352        ubifs_assert(!atomic_read(&inode->i_count));
 353
 354        truncate_inode_pages_final(&inode->i_data);
 355
 356        if (inode->i_nlink)
 357                goto done;
 358
 359        if (is_bad_inode(inode))
 360                goto out;
 361
 362        ui->ui_size = inode->i_size = 0;
 363        err = ubifs_jnl_delete_inode(c, inode);
 364        if (err)
 365                /*
 366                 * Worst case we have a lost orphan inode wasting space, so a
 367                 * simple error message is OK here.
 368                 */
 369                ubifs_err(c, "can't delete inode %lu, error %d",
 370                          inode->i_ino, err);
 371
 372out:
 373        if (ui->dirty)
 374                ubifs_release_dirty_inode_budget(c, ui);
 375        else {
 376                /* We've deleted something - clean the "no space" flags */
 377                c->bi.nospace = c->bi.nospace_rp = 0;
 378                smp_wmb();
 379        }
 380done:
 381        clear_inode(inode);
 382        fscrypt_put_encryption_info(inode);
 383}
 384
 385static void ubifs_dirty_inode(struct inode *inode, int flags)
 386{
 387        struct ubifs_inode *ui = ubifs_inode(inode);
 388
 389        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 390        if (!ui->dirty) {
 391                ui->dirty = 1;
 392                dbg_gen("inode %lu",  inode->i_ino);
 393        }
 394}
 395
 396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 397{
 398        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 399        unsigned long long free;
 400        __le32 *uuid = (__le32 *)c->uuid;
 401
 402        free = ubifs_get_free_space(c);
 403        dbg_gen("free space %lld bytes (%lld blocks)",
 404                free, free >> UBIFS_BLOCK_SHIFT);
 405
 406        buf->f_type = UBIFS_SUPER_MAGIC;
 407        buf->f_bsize = UBIFS_BLOCK_SIZE;
 408        buf->f_blocks = c->block_cnt;
 409        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 410        if (free > c->report_rp_size)
 411                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 412        else
 413                buf->f_bavail = 0;
 414        buf->f_files = 0;
 415        buf->f_ffree = 0;
 416        buf->f_namelen = UBIFS_MAX_NLEN;
 417        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 418        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 419        ubifs_assert(buf->f_bfree <= c->block_cnt);
 420        return 0;
 421}
 422
 423static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 424{
 425        struct ubifs_info *c = root->d_sb->s_fs_info;
 426
 427        if (c->mount_opts.unmount_mode == 2)
 428                seq_puts(s, ",fast_unmount");
 429        else if (c->mount_opts.unmount_mode == 1)
 430                seq_puts(s, ",norm_unmount");
 431
 432        if (c->mount_opts.bulk_read == 2)
 433                seq_puts(s, ",bulk_read");
 434        else if (c->mount_opts.bulk_read == 1)
 435                seq_puts(s, ",no_bulk_read");
 436
 437        if (c->mount_opts.chk_data_crc == 2)
 438                seq_puts(s, ",chk_data_crc");
 439        else if (c->mount_opts.chk_data_crc == 1)
 440                seq_puts(s, ",no_chk_data_crc");
 441
 442        if (c->mount_opts.override_compr) {
 443                seq_printf(s, ",compr=%s",
 444                           ubifs_compr_name(c->mount_opts.compr_type));
 445        }
 446
 447        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 448
 449        return 0;
 450}
 451
 452static int ubifs_sync_fs(struct super_block *sb, int wait)
 453{
 454        int i, err;
 455        struct ubifs_info *c = sb->s_fs_info;
 456
 457        /*
 458         * Zero @wait is just an advisory thing to help the file system shove
 459         * lots of data into the queues, and there will be the second
 460         * '->sync_fs()' call, with non-zero @wait.
 461         */
 462        if (!wait)
 463                return 0;
 464
 465        /*
 466         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 467         * do this if it waits for an already running commit.
 468         */
 469        for (i = 0; i < c->jhead_cnt; i++) {
 470                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 471                if (err)
 472                        return err;
 473        }
 474
 475        /*
 476         * Strictly speaking, it is not necessary to commit the journal here,
 477         * synchronizing write-buffers would be enough. But committing makes
 478         * UBIFS free space predictions much more accurate, so we want to let
 479         * the user be able to get more accurate results of 'statfs()' after
 480         * they synchronize the file system.
 481         */
 482        err = ubifs_run_commit(c);
 483        if (err)
 484                return err;
 485
 486        return ubi_sync(c->vi.ubi_num);
 487}
 488
 489/**
 490 * init_constants_early - initialize UBIFS constants.
 491 * @c: UBIFS file-system description object
 492 *
 493 * This function initialize UBIFS constants which do not need the superblock to
 494 * be read. It also checks that the UBI volume satisfies basic UBIFS
 495 * requirements. Returns zero in case of success and a negative error code in
 496 * case of failure.
 497 */
 498static int init_constants_early(struct ubifs_info *c)
 499{
 500        if (c->vi.corrupted) {
 501                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 502                c->ro_media = 1;
 503        }
 504
 505        if (c->di.ro_mode) {
 506                ubifs_msg(c, "read-only UBI device");
 507                c->ro_media = 1;
 508        }
 509
 510        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 511                ubifs_msg(c, "static UBI volume - read-only mode");
 512                c->ro_media = 1;
 513        }
 514
 515        c->leb_cnt = c->vi.size;
 516        c->leb_size = c->vi.usable_leb_size;
 517        c->leb_start = c->di.leb_start;
 518        c->half_leb_size = c->leb_size / 2;
 519        c->min_io_size = c->di.min_io_size;
 520        c->min_io_shift = fls(c->min_io_size) - 1;
 521        c->max_write_size = c->di.max_write_size;
 522        c->max_write_shift = fls(c->max_write_size) - 1;
 523
 524        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 525                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 526                           c->leb_size, UBIFS_MIN_LEB_SZ);
 527                return -EINVAL;
 528        }
 529
 530        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 531                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 532                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 533                return -EINVAL;
 534        }
 535
 536        if (!is_power_of_2(c->min_io_size)) {
 537                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 538                return -EINVAL;
 539        }
 540
 541        /*
 542         * Maximum write size has to be greater or equivalent to min. I/O
 543         * size, and be multiple of min. I/O size.
 544         */
 545        if (c->max_write_size < c->min_io_size ||
 546            c->max_write_size % c->min_io_size ||
 547            !is_power_of_2(c->max_write_size)) {
 548                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 549                           c->max_write_size, c->min_io_size);
 550                return -EINVAL;
 551        }
 552
 553        /*
 554         * UBIFS aligns all node to 8-byte boundary, so to make function in
 555         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 556         * less than 8.
 557         */
 558        if (c->min_io_size < 8) {
 559                c->min_io_size = 8;
 560                c->min_io_shift = 3;
 561                if (c->max_write_size < c->min_io_size) {
 562                        c->max_write_size = c->min_io_size;
 563                        c->max_write_shift = c->min_io_shift;
 564                }
 565        }
 566
 567        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 568        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 569
 570        /*
 571         * Initialize node length ranges which are mostly needed for node
 572         * length validation.
 573         */
 574        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 575        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 576        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 577        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 578        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 579        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 580
 581        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 582        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 583        c->ranges[UBIFS_ORPH_NODE].min_len =
 584                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 585        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 586        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 587        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 588        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 589        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 590        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 591        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 592        /*
 593         * Minimum indexing node size is amended later when superblock is
 594         * read and the key length is known.
 595         */
 596        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 597        /*
 598         * Maximum indexing node size is amended later when superblock is
 599         * read and the fanout is known.
 600         */
 601        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 602
 603        /*
 604         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 605         * about these values.
 606         */
 607        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 608        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 609
 610        /*
 611         * Calculate how many bytes would be wasted at the end of LEB if it was
 612         * fully filled with data nodes of maximum size. This is used in
 613         * calculations when reporting free space.
 614         */
 615        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 616
 617        /* Buffer size for bulk-reads */
 618        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 619        if (c->max_bu_buf_len > c->leb_size)
 620                c->max_bu_buf_len = c->leb_size;
 621        return 0;
 622}
 623
 624/**
 625 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 626 * @c: UBIFS file-system description object
 627 * @lnum: LEB the write-buffer was synchronized to
 628 * @free: how many free bytes left in this LEB
 629 * @pad: how many bytes were padded
 630 *
 631 * This is a callback function which is called by the I/O unit when the
 632 * write-buffer is synchronized. We need this to correctly maintain space
 633 * accounting in bud logical eraseblocks. This function returns zero in case of
 634 * success and a negative error code in case of failure.
 635 *
 636 * This function actually belongs to the journal, but we keep it here because
 637 * we want to keep it static.
 638 */
 639static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 640{
 641        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 642}
 643
 644/*
 645 * init_constants_sb - initialize UBIFS constants.
 646 * @c: UBIFS file-system description object
 647 *
 648 * This is a helper function which initializes various UBIFS constants after
 649 * the superblock has been read. It also checks various UBIFS parameters and
 650 * makes sure they are all right. Returns zero in case of success and a
 651 * negative error code in case of failure.
 652 */
 653static int init_constants_sb(struct ubifs_info *c)
 654{
 655        int tmp, err;
 656        long long tmp64;
 657
 658        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 659        c->max_znode_sz = sizeof(struct ubifs_znode) +
 660                                c->fanout * sizeof(struct ubifs_zbranch);
 661
 662        tmp = ubifs_idx_node_sz(c, 1);
 663        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 664        c->min_idx_node_sz = ALIGN(tmp, 8);
 665
 666        tmp = ubifs_idx_node_sz(c, c->fanout);
 667        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 668        c->max_idx_node_sz = ALIGN(tmp, 8);
 669
 670        /* Make sure LEB size is large enough to fit full commit */
 671        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 672        tmp = ALIGN(tmp, c->min_io_size);
 673        if (tmp > c->leb_size) {
 674                ubifs_err(c, "too small LEB size %d, at least %d needed",
 675                          c->leb_size, tmp);
 676                return -EINVAL;
 677        }
 678
 679        /*
 680         * Make sure that the log is large enough to fit reference nodes for
 681         * all buds plus one reserved LEB.
 682         */
 683        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 684        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 685        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 686        tmp /= c->leb_size;
 687        tmp += 1;
 688        if (c->log_lebs < tmp) {
 689                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 690                          c->log_lebs, tmp);
 691                return -EINVAL;
 692        }
 693
 694        /*
 695         * When budgeting we assume worst-case scenarios when the pages are not
 696         * be compressed and direntries are of the maximum size.
 697         *
 698         * Note, data, which may be stored in inodes is budgeted separately, so
 699         * it is not included into 'c->bi.inode_budget'.
 700         */
 701        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 702        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 703        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 704
 705        /*
 706         * When the amount of flash space used by buds becomes
 707         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 708         * The writers are unblocked when the commit is finished. To avoid
 709         * writers to be blocked UBIFS initiates background commit in advance,
 710         * when number of bud bytes becomes above the limit defined below.
 711         */
 712        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 713
 714        /*
 715         * Ensure minimum journal size. All the bytes in the journal heads are
 716         * considered to be used, when calculating the current journal usage.
 717         * Consequently, if the journal is too small, UBIFS will treat it as
 718         * always full.
 719         */
 720        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 721        if (c->bg_bud_bytes < tmp64)
 722                c->bg_bud_bytes = tmp64;
 723        if (c->max_bud_bytes < tmp64 + c->leb_size)
 724                c->max_bud_bytes = tmp64 + c->leb_size;
 725
 726        err = ubifs_calc_lpt_geom(c);
 727        if (err)
 728                return err;
 729
 730        /* Initialize effective LEB size used in budgeting calculations */
 731        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 732        return 0;
 733}
 734
 735/*
 736 * init_constants_master - initialize UBIFS constants.
 737 * @c: UBIFS file-system description object
 738 *
 739 * This is a helper function which initializes various UBIFS constants after
 740 * the master node has been read. It also checks various UBIFS parameters and
 741 * makes sure they are all right.
 742 */
 743static void init_constants_master(struct ubifs_info *c)
 744{
 745        long long tmp64;
 746
 747        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 748        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 749
 750        /*
 751         * Calculate total amount of FS blocks. This number is not used
 752         * internally because it does not make much sense for UBIFS, but it is
 753         * necessary to report something for the 'statfs()' call.
 754         *
 755         * Subtract the LEB reserved for GC, the LEB which is reserved for
 756         * deletions, minimum LEBs for the index, and assume only one journal
 757         * head is available.
 758         */
 759        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 760        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 761        tmp64 = ubifs_reported_space(c, tmp64);
 762        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 763}
 764
 765/**
 766 * take_gc_lnum - reserve GC LEB.
 767 * @c: UBIFS file-system description object
 768 *
 769 * This function ensures that the LEB reserved for garbage collection is marked
 770 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 771 * space to zero, because lprops may contain out-of-date information if the
 772 * file-system was un-mounted before it has been committed. This function
 773 * returns zero in case of success and a negative error code in case of
 774 * failure.
 775 */
 776static int take_gc_lnum(struct ubifs_info *c)
 777{
 778        int err;
 779
 780        if (c->gc_lnum == -1) {
 781                ubifs_err(c, "no LEB for GC");
 782                return -EINVAL;
 783        }
 784
 785        /* And we have to tell lprops that this LEB is taken */
 786        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 787                                  LPROPS_TAKEN, 0, 0);
 788        return err;
 789}
 790
 791/**
 792 * alloc_wbufs - allocate write-buffers.
 793 * @c: UBIFS file-system description object
 794 *
 795 * This helper function allocates and initializes UBIFS write-buffers. Returns
 796 * zero in case of success and %-ENOMEM in case of failure.
 797 */
 798static int alloc_wbufs(struct ubifs_info *c)
 799{
 800        int i, err;
 801
 802        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 803                            GFP_KERNEL);
 804        if (!c->jheads)
 805                return -ENOMEM;
 806
 807        /* Initialize journal heads */
 808        for (i = 0; i < c->jhead_cnt; i++) {
 809                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 810                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 811                if (err)
 812                        return err;
 813
 814                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 815                c->jheads[i].wbuf.jhead = i;
 816                c->jheads[i].grouped = 1;
 817        }
 818
 819        /*
 820         * Garbage Collector head does not need to be synchronized by timer.
 821         * Also GC head nodes are not grouped.
 822         */
 823        c->jheads[GCHD].wbuf.no_timer = 1;
 824        c->jheads[GCHD].grouped = 0;
 825
 826        return 0;
 827}
 828
 829/**
 830 * free_wbufs - free write-buffers.
 831 * @c: UBIFS file-system description object
 832 */
 833static void free_wbufs(struct ubifs_info *c)
 834{
 835        int i;
 836
 837        if (c->jheads) {
 838                for (i = 0; i < c->jhead_cnt; i++) {
 839                        kfree(c->jheads[i].wbuf.buf);
 840                        kfree(c->jheads[i].wbuf.inodes);
 841                }
 842                kfree(c->jheads);
 843                c->jheads = NULL;
 844        }
 845}
 846
 847/**
 848 * free_orphans - free orphans.
 849 * @c: UBIFS file-system description object
 850 */
 851static void free_orphans(struct ubifs_info *c)
 852{
 853        struct ubifs_orphan *orph;
 854
 855        while (c->orph_dnext) {
 856                orph = c->orph_dnext;
 857                c->orph_dnext = orph->dnext;
 858                list_del(&orph->list);
 859                kfree(orph);
 860        }
 861
 862        while (!list_empty(&c->orph_list)) {
 863                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 864                list_del(&orph->list);
 865                kfree(orph);
 866                ubifs_err(c, "orphan list not empty at unmount");
 867        }
 868
 869        vfree(c->orph_buf);
 870        c->orph_buf = NULL;
 871}
 872
 873/**
 874 * free_buds - free per-bud objects.
 875 * @c: UBIFS file-system description object
 876 */
 877static void free_buds(struct ubifs_info *c)
 878{
 879        struct ubifs_bud *bud, *n;
 880
 881        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 882                kfree(bud);
 883}
 884
 885/**
 886 * check_volume_empty - check if the UBI volume is empty.
 887 * @c: UBIFS file-system description object
 888 *
 889 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 890 * mapped or not. The result of checking is stored in the @c->empty variable.
 891 * Returns zero in case of success and a negative error code in case of
 892 * failure.
 893 */
 894static int check_volume_empty(struct ubifs_info *c)
 895{
 896        int lnum, err;
 897
 898        c->empty = 1;
 899        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 900                err = ubifs_is_mapped(c, lnum);
 901                if (unlikely(err < 0))
 902                        return err;
 903                if (err == 1) {
 904                        c->empty = 0;
 905                        break;
 906                }
 907
 908                cond_resched();
 909        }
 910
 911        return 0;
 912}
 913
 914/*
 915 * UBIFS mount options.
 916 *
 917 * Opt_fast_unmount: do not run a journal commit before un-mounting
 918 * Opt_norm_unmount: run a journal commit before un-mounting
 919 * Opt_bulk_read: enable bulk-reads
 920 * Opt_no_bulk_read: disable bulk-reads
 921 * Opt_chk_data_crc: check CRCs when reading data nodes
 922 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 923 * Opt_override_compr: override default compressor
 924 * Opt_err: just end of array marker
 925 */
 926enum {
 927        Opt_fast_unmount,
 928        Opt_norm_unmount,
 929        Opt_bulk_read,
 930        Opt_no_bulk_read,
 931        Opt_chk_data_crc,
 932        Opt_no_chk_data_crc,
 933        Opt_override_compr,
 934        Opt_ignore,
 935        Opt_err,
 936};
 937
 938static const match_table_t tokens = {
 939        {Opt_fast_unmount, "fast_unmount"},
 940        {Opt_norm_unmount, "norm_unmount"},
 941        {Opt_bulk_read, "bulk_read"},
 942        {Opt_no_bulk_read, "no_bulk_read"},
 943        {Opt_chk_data_crc, "chk_data_crc"},
 944        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 945        {Opt_override_compr, "compr=%s"},
 946        {Opt_ignore, "ubi=%s"},
 947        {Opt_ignore, "vol=%s"},
 948        {Opt_err, NULL},
 949};
 950
 951/**
 952 * parse_standard_option - parse a standard mount option.
 953 * @option: the option to parse
 954 *
 955 * Normally, standard mount options like "sync" are passed to file-systems as
 956 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 957 * be present in the options string. This function tries to deal with this
 958 * situation and parse standard options. Returns 0 if the option was not
 959 * recognized, and the corresponding integer flag if it was.
 960 *
 961 * UBIFS is only interested in the "sync" option, so do not check for anything
 962 * else.
 963 */
 964static int parse_standard_option(const char *option)
 965{
 966
 967        pr_notice("UBIFS: parse %s\n", option);
 968        if (!strcmp(option, "sync"))
 969                return SB_SYNCHRONOUS;
 970        return 0;
 971}
 972
 973/**
 974 * ubifs_parse_options - parse mount parameters.
 975 * @c: UBIFS file-system description object
 976 * @options: parameters to parse
 977 * @is_remount: non-zero if this is FS re-mount
 978 *
 979 * This function parses UBIFS mount options and returns zero in case success
 980 * and a negative error code in case of failure.
 981 */
 982static int ubifs_parse_options(struct ubifs_info *c, char *options,
 983                               int is_remount)
 984{
 985        char *p;
 986        substring_t args[MAX_OPT_ARGS];
 987
 988        if (!options)
 989                return 0;
 990
 991        while ((p = strsep(&options, ","))) {
 992                int token;
 993
 994                if (!*p)
 995                        continue;
 996
 997                token = match_token(p, tokens, args);
 998                switch (token) {
 999                /*
1000                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1001                 * We accept them in order to be backward-compatible. But this
1002                 * should be removed at some point.
1003                 */
1004                case Opt_fast_unmount:
1005                        c->mount_opts.unmount_mode = 2;
1006                        break;
1007                case Opt_norm_unmount:
1008                        c->mount_opts.unmount_mode = 1;
1009                        break;
1010                case Opt_bulk_read:
1011                        c->mount_opts.bulk_read = 2;
1012                        c->bulk_read = 1;
1013                        break;
1014                case Opt_no_bulk_read:
1015                        c->mount_opts.bulk_read = 1;
1016                        c->bulk_read = 0;
1017                        break;
1018                case Opt_chk_data_crc:
1019                        c->mount_opts.chk_data_crc = 2;
1020                        c->no_chk_data_crc = 0;
1021                        break;
1022                case Opt_no_chk_data_crc:
1023                        c->mount_opts.chk_data_crc = 1;
1024                        c->no_chk_data_crc = 1;
1025                        break;
1026                case Opt_override_compr:
1027                {
1028                        char *name = match_strdup(&args[0]);
1029
1030                        if (!name)
1031                                return -ENOMEM;
1032                        if (!strcmp(name, "none"))
1033                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1034                        else if (!strcmp(name, "lzo"))
1035                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1036                        else if (!strcmp(name, "zlib"))
1037                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1038                        else {
1039                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1040                                kfree(name);
1041                                return -EINVAL;
1042                        }
1043                        kfree(name);
1044                        c->mount_opts.override_compr = 1;
1045                        c->default_compr = c->mount_opts.compr_type;
1046                        break;
1047                }
1048                case Opt_ignore:
1049                        break;
1050                default:
1051                {
1052                        unsigned long flag;
1053                        struct super_block *sb = c->vfs_sb;
1054
1055                        flag = parse_standard_option(p);
1056                        if (!flag) {
1057                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1058                                          p);
1059                                return -EINVAL;
1060                        }
1061                        sb->s_flags |= flag;
1062                        break;
1063                }
1064                }
1065        }
1066
1067        return 0;
1068}
1069
1070/**
1071 * destroy_journal - destroy journal data structures.
1072 * @c: UBIFS file-system description object
1073 *
1074 * This function destroys journal data structures including those that may have
1075 * been created by recovery functions.
1076 */
1077static void destroy_journal(struct ubifs_info *c)
1078{
1079        while (!list_empty(&c->unclean_leb_list)) {
1080                struct ubifs_unclean_leb *ucleb;
1081
1082                ucleb = list_entry(c->unclean_leb_list.next,
1083                                   struct ubifs_unclean_leb, list);
1084                list_del(&ucleb->list);
1085                kfree(ucleb);
1086        }
1087        while (!list_empty(&c->old_buds)) {
1088                struct ubifs_bud *bud;
1089
1090                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1091                list_del(&bud->list);
1092                kfree(bud);
1093        }
1094        ubifs_destroy_idx_gc(c);
1095        ubifs_destroy_size_tree(c);
1096        ubifs_tnc_close(c);
1097        free_buds(c);
1098}
1099
1100/**
1101 * bu_init - initialize bulk-read information.
1102 * @c: UBIFS file-system description object
1103 */
1104static void bu_init(struct ubifs_info *c)
1105{
1106        ubifs_assert(c->bulk_read == 1);
1107
1108        if (c->bu.buf)
1109                return; /* Already initialized */
1110
1111again:
1112        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1113        if (!c->bu.buf) {
1114                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1115                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1116                        goto again;
1117                }
1118
1119                /* Just disable bulk-read */
1120                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1121                           c->max_bu_buf_len);
1122                c->mount_opts.bulk_read = 1;
1123                c->bulk_read = 0;
1124                return;
1125        }
1126}
1127
1128/**
1129 * check_free_space - check if there is enough free space to mount.
1130 * @c: UBIFS file-system description object
1131 *
1132 * This function makes sure UBIFS has enough free space to be mounted in
1133 * read/write mode. UBIFS must always have some free space to allow deletions.
1134 */
1135static int check_free_space(struct ubifs_info *c)
1136{
1137        ubifs_assert(c->dark_wm > 0);
1138        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1139                ubifs_err(c, "insufficient free space to mount in R/W mode");
1140                ubifs_dump_budg(c, &c->bi);
1141                ubifs_dump_lprops(c);
1142                return -ENOSPC;
1143        }
1144        return 0;
1145}
1146
1147/**
1148 * mount_ubifs - mount UBIFS file-system.
1149 * @c: UBIFS file-system description object
1150 *
1151 * This function mounts UBIFS file system. Returns zero in case of success and
1152 * a negative error code in case of failure.
1153 */
1154static int mount_ubifs(struct ubifs_info *c)
1155{
1156        int err;
1157        long long x, y;
1158        size_t sz;
1159
1160        c->ro_mount = !!sb_rdonly(c->vfs_sb);
1161        /* Suppress error messages while probing if SB_SILENT is set */
1162        c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1163
1164        err = init_constants_early(c);
1165        if (err)
1166                return err;
1167
1168        err = ubifs_debugging_init(c);
1169        if (err)
1170                return err;
1171
1172        err = check_volume_empty(c);
1173        if (err)
1174                goto out_free;
1175
1176        if (c->empty && (c->ro_mount || c->ro_media)) {
1177                /*
1178                 * This UBI volume is empty, and read-only, or the file system
1179                 * is mounted read-only - we cannot format it.
1180                 */
1181                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1182                          c->ro_media ? "UBI volume" : "mount");
1183                err = -EROFS;
1184                goto out_free;
1185        }
1186
1187        if (c->ro_media && !c->ro_mount) {
1188                ubifs_err(c, "cannot mount read-write - read-only media");
1189                err = -EROFS;
1190                goto out_free;
1191        }
1192
1193        /*
1194         * The requirement for the buffer is that it should fit indexing B-tree
1195         * height amount of integers. We assume the height if the TNC tree will
1196         * never exceed 64.
1197         */
1198        err = -ENOMEM;
1199        c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1200                                         GFP_KERNEL);
1201        if (!c->bottom_up_buf)
1202                goto out_free;
1203
1204        c->sbuf = vmalloc(c->leb_size);
1205        if (!c->sbuf)
1206                goto out_free;
1207
1208        if (!c->ro_mount) {
1209                c->ileb_buf = vmalloc(c->leb_size);
1210                if (!c->ileb_buf)
1211                        goto out_free;
1212        }
1213
1214        if (c->bulk_read == 1)
1215                bu_init(c);
1216
1217        if (!c->ro_mount) {
1218                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1219                                               UBIFS_CIPHER_BLOCK_SIZE,
1220                                               GFP_KERNEL);
1221                if (!c->write_reserve_buf)
1222                        goto out_free;
1223        }
1224
1225        c->mounting = 1;
1226
1227        err = ubifs_read_superblock(c);
1228        if (err)
1229                goto out_free;
1230
1231        c->probing = 0;
1232
1233        /*
1234         * Make sure the compressor which is set as default in the superblock
1235         * or overridden by mount options is actually compiled in.
1236         */
1237        if (!ubifs_compr_present(c->default_compr)) {
1238                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1239                          ubifs_compr_name(c->default_compr));
1240                err = -ENOTSUPP;
1241                goto out_free;
1242        }
1243
1244        err = init_constants_sb(c);
1245        if (err)
1246                goto out_free;
1247
1248        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1249        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1250        c->cbuf = kmalloc(sz, GFP_NOFS);
1251        if (!c->cbuf) {
1252                err = -ENOMEM;
1253                goto out_free;
1254        }
1255
1256        err = alloc_wbufs(c);
1257        if (err)
1258                goto out_cbuf;
1259
1260        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1261        if (!c->ro_mount) {
1262                /* Create background thread */
1263                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1264                if (IS_ERR(c->bgt)) {
1265                        err = PTR_ERR(c->bgt);
1266                        c->bgt = NULL;
1267                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1268                                  c->bgt_name, err);
1269                        goto out_wbufs;
1270                }
1271                wake_up_process(c->bgt);
1272        }
1273
1274        err = ubifs_read_master(c);
1275        if (err)
1276                goto out_master;
1277
1278        init_constants_master(c);
1279
1280        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1281                ubifs_msg(c, "recovery needed");
1282                c->need_recovery = 1;
1283        }
1284
1285        if (c->need_recovery && !c->ro_mount) {
1286                err = ubifs_recover_inl_heads(c, c->sbuf);
1287                if (err)
1288                        goto out_master;
1289        }
1290
1291        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1292        if (err)
1293                goto out_master;
1294
1295        if (!c->ro_mount && c->space_fixup) {
1296                err = ubifs_fixup_free_space(c);
1297                if (err)
1298                        goto out_lpt;
1299        }
1300
1301        if (!c->ro_mount && !c->need_recovery) {
1302                /*
1303                 * Set the "dirty" flag so that if we reboot uncleanly we
1304                 * will notice this immediately on the next mount.
1305                 */
1306                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1307                err = ubifs_write_master(c);
1308                if (err)
1309                        goto out_lpt;
1310        }
1311
1312        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1313        if (err)
1314                goto out_lpt;
1315
1316        err = ubifs_replay_journal(c);
1317        if (err)
1318                goto out_journal;
1319
1320        /* Calculate 'min_idx_lebs' after journal replay */
1321        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1322
1323        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1324        if (err)
1325                goto out_orphans;
1326
1327        if (!c->ro_mount) {
1328                int lnum;
1329
1330                err = check_free_space(c);
1331                if (err)
1332                        goto out_orphans;
1333
1334                /* Check for enough log space */
1335                lnum = c->lhead_lnum + 1;
1336                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1337                        lnum = UBIFS_LOG_LNUM;
1338                if (lnum == c->ltail_lnum) {
1339                        err = ubifs_consolidate_log(c);
1340                        if (err)
1341                                goto out_orphans;
1342                }
1343
1344                if (c->need_recovery) {
1345                        err = ubifs_recover_size(c);
1346                        if (err)
1347                                goto out_orphans;
1348                        err = ubifs_rcvry_gc_commit(c);
1349                        if (err)
1350                                goto out_orphans;
1351                } else {
1352                        err = take_gc_lnum(c);
1353                        if (err)
1354                                goto out_orphans;
1355
1356                        /*
1357                         * GC LEB may contain garbage if there was an unclean
1358                         * reboot, and it should be un-mapped.
1359                         */
1360                        err = ubifs_leb_unmap(c, c->gc_lnum);
1361                        if (err)
1362                                goto out_orphans;
1363                }
1364
1365                err = dbg_check_lprops(c);
1366                if (err)
1367                        goto out_orphans;
1368        } else if (c->need_recovery) {
1369                err = ubifs_recover_size(c);
1370                if (err)
1371                        goto out_orphans;
1372        } else {
1373                /*
1374                 * Even if we mount read-only, we have to set space in GC LEB
1375                 * to proper value because this affects UBIFS free space
1376                 * reporting. We do not want to have a situation when
1377                 * re-mounting from R/O to R/W changes amount of free space.
1378                 */
1379                err = take_gc_lnum(c);
1380                if (err)
1381                        goto out_orphans;
1382        }
1383
1384        spin_lock(&ubifs_infos_lock);
1385        list_add_tail(&c->infos_list, &ubifs_infos);
1386        spin_unlock(&ubifs_infos_lock);
1387
1388        if (c->need_recovery) {
1389                if (c->ro_mount)
1390                        ubifs_msg(c, "recovery deferred");
1391                else {
1392                        c->need_recovery = 0;
1393                        ubifs_msg(c, "recovery completed");
1394                        /*
1395                         * GC LEB has to be empty and taken at this point. But
1396                         * the journal head LEBs may also be accounted as
1397                         * "empty taken" if they are empty.
1398                         */
1399                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1400                }
1401        } else
1402                ubifs_assert(c->lst.taken_empty_lebs > 0);
1403
1404        err = dbg_check_filesystem(c);
1405        if (err)
1406                goto out_infos;
1407
1408        err = dbg_debugfs_init_fs(c);
1409        if (err)
1410                goto out_infos;
1411
1412        c->mounting = 0;
1413
1414        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1415                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1416                  c->ro_mount ? ", R/O mode" : "");
1417        x = (long long)c->main_lebs * c->leb_size;
1418        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1419        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1420                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1421                  c->max_write_size);
1422        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1423                  x, x >> 20, c->main_lebs,
1424                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1425        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1426                  c->report_rp_size, c->report_rp_size >> 10);
1427        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1428                  c->fmt_version, c->ro_compat_version,
1429                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1430                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1431
1432        dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1433        dbg_gen("data journal heads:  %d",
1434                c->jhead_cnt - NONDATA_JHEADS_CNT);
1435        dbg_gen("log LEBs:            %d (%d - %d)",
1436                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1437        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1438                c->lpt_lebs, c->lpt_first, c->lpt_last);
1439        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1440                c->orph_lebs, c->orph_first, c->orph_last);
1441        dbg_gen("main area LEBs:      %d (%d - %d)",
1442                c->main_lebs, c->main_first, c->leb_cnt - 1);
1443        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1444        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1445                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1446                c->bi.old_idx_sz >> 20);
1447        dbg_gen("key hash type:       %d", c->key_hash_type);
1448        dbg_gen("tree fanout:         %d", c->fanout);
1449        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1450        dbg_gen("max. znode size      %d", c->max_znode_sz);
1451        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1452        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1453                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1454        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1455                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1456        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1457                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1458        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1459                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1460                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1461        dbg_gen("dead watermark:      %d", c->dead_wm);
1462        dbg_gen("dark watermark:      %d", c->dark_wm);
1463        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1464        x = (long long)c->main_lebs * c->dark_wm;
1465        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1466                x, x >> 10, x >> 20);
1467        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1468                c->max_bud_bytes, c->max_bud_bytes >> 10,
1469                c->max_bud_bytes >> 20);
1470        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1471                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1472                c->bg_bud_bytes >> 20);
1473        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1474                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1475        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1476        dbg_gen("commit number:       %llu", c->cmt_no);
1477
1478        return 0;
1479
1480out_infos:
1481        spin_lock(&ubifs_infos_lock);
1482        list_del(&c->infos_list);
1483        spin_unlock(&ubifs_infos_lock);
1484out_orphans:
1485        free_orphans(c);
1486out_journal:
1487        destroy_journal(c);
1488out_lpt:
1489        ubifs_lpt_free(c, 0);
1490out_master:
1491        kfree(c->mst_node);
1492        kfree(c->rcvrd_mst_node);
1493        if (c->bgt)
1494                kthread_stop(c->bgt);
1495out_wbufs:
1496        free_wbufs(c);
1497out_cbuf:
1498        kfree(c->cbuf);
1499out_free:
1500        kfree(c->write_reserve_buf);
1501        kfree(c->bu.buf);
1502        vfree(c->ileb_buf);
1503        vfree(c->sbuf);
1504        kfree(c->bottom_up_buf);
1505        ubifs_debugging_exit(c);
1506        return err;
1507}
1508
1509/**
1510 * ubifs_umount - un-mount UBIFS file-system.
1511 * @c: UBIFS file-system description object
1512 *
1513 * Note, this function is called to free allocated resourced when un-mounting,
1514 * as well as free resources when an error occurred while we were half way
1515 * through mounting (error path cleanup function). So it has to make sure the
1516 * resource was actually allocated before freeing it.
1517 */
1518static void ubifs_umount(struct ubifs_info *c)
1519{
1520        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1521                c->vi.vol_id);
1522
1523        dbg_debugfs_exit_fs(c);
1524        spin_lock(&ubifs_infos_lock);
1525        list_del(&c->infos_list);
1526        spin_unlock(&ubifs_infos_lock);
1527
1528        if (c->bgt)
1529                kthread_stop(c->bgt);
1530
1531        destroy_journal(c);
1532        free_wbufs(c);
1533        free_orphans(c);
1534        ubifs_lpt_free(c, 0);
1535
1536        kfree(c->cbuf);
1537        kfree(c->rcvrd_mst_node);
1538        kfree(c->mst_node);
1539        kfree(c->write_reserve_buf);
1540        kfree(c->bu.buf);
1541        vfree(c->ileb_buf);
1542        vfree(c->sbuf);
1543        kfree(c->bottom_up_buf);
1544        ubifs_debugging_exit(c);
1545}
1546
1547/**
1548 * ubifs_remount_rw - re-mount in read-write mode.
1549 * @c: UBIFS file-system description object
1550 *
1551 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1552 * mode. This function allocates the needed resources and re-mounts UBIFS in
1553 * read-write mode.
1554 */
1555static int ubifs_remount_rw(struct ubifs_info *c)
1556{
1557        int err, lnum;
1558
1559        if (c->rw_incompat) {
1560                ubifs_err(c, "the file-system is not R/W-compatible");
1561                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1562                          c->fmt_version, c->ro_compat_version,
1563                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1564                return -EROFS;
1565        }
1566
1567        mutex_lock(&c->umount_mutex);
1568        dbg_save_space_info(c);
1569        c->remounting_rw = 1;
1570        c->ro_mount = 0;
1571
1572        if (c->space_fixup) {
1573                err = ubifs_fixup_free_space(c);
1574                if (err)
1575                        goto out;
1576        }
1577
1578        err = check_free_space(c);
1579        if (err)
1580                goto out;
1581
1582        if (c->old_leb_cnt != c->leb_cnt) {
1583                struct ubifs_sb_node *sup;
1584
1585                sup = ubifs_read_sb_node(c);
1586                if (IS_ERR(sup)) {
1587                        err = PTR_ERR(sup);
1588                        goto out;
1589                }
1590                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1591                err = ubifs_write_sb_node(c, sup);
1592                kfree(sup);
1593                if (err)
1594                        goto out;
1595        }
1596
1597        if (c->need_recovery) {
1598                ubifs_msg(c, "completing deferred recovery");
1599                err = ubifs_write_rcvrd_mst_node(c);
1600                if (err)
1601                        goto out;
1602                err = ubifs_recover_size(c);
1603                if (err)
1604                        goto out;
1605                err = ubifs_clean_lebs(c, c->sbuf);
1606                if (err)
1607                        goto out;
1608                err = ubifs_recover_inl_heads(c, c->sbuf);
1609                if (err)
1610                        goto out;
1611        } else {
1612                /* A readonly mount is not allowed to have orphans */
1613                ubifs_assert(c->tot_orphans == 0);
1614                err = ubifs_clear_orphans(c);
1615                if (err)
1616                        goto out;
1617        }
1618
1619        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1620                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1621                err = ubifs_write_master(c);
1622                if (err)
1623                        goto out;
1624        }
1625
1626        c->ileb_buf = vmalloc(c->leb_size);
1627        if (!c->ileb_buf) {
1628                err = -ENOMEM;
1629                goto out;
1630        }
1631
1632        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1633                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1634        if (!c->write_reserve_buf) {
1635                err = -ENOMEM;
1636                goto out;
1637        }
1638
1639        err = ubifs_lpt_init(c, 0, 1);
1640        if (err)
1641                goto out;
1642
1643        /* Create background thread */
1644        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1645        if (IS_ERR(c->bgt)) {
1646                err = PTR_ERR(c->bgt);
1647                c->bgt = NULL;
1648                ubifs_err(c, "cannot spawn \"%s\", error %d",
1649                          c->bgt_name, err);
1650                goto out;
1651        }
1652        wake_up_process(c->bgt);
1653
1654        c->orph_buf = vmalloc(c->leb_size);
1655        if (!c->orph_buf) {
1656                err = -ENOMEM;
1657                goto out;
1658        }
1659
1660        /* Check for enough log space */
1661        lnum = c->lhead_lnum + 1;
1662        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1663                lnum = UBIFS_LOG_LNUM;
1664        if (lnum == c->ltail_lnum) {
1665                err = ubifs_consolidate_log(c);
1666                if (err)
1667                        goto out;
1668        }
1669
1670        if (c->need_recovery)
1671                err = ubifs_rcvry_gc_commit(c);
1672        else
1673                err = ubifs_leb_unmap(c, c->gc_lnum);
1674        if (err)
1675                goto out;
1676
1677        dbg_gen("re-mounted read-write");
1678        c->remounting_rw = 0;
1679
1680        if (c->need_recovery) {
1681                c->need_recovery = 0;
1682                ubifs_msg(c, "deferred recovery completed");
1683        } else {
1684                /*
1685                 * Do not run the debugging space check if the were doing
1686                 * recovery, because when we saved the information we had the
1687                 * file-system in a state where the TNC and lprops has been
1688                 * modified in memory, but all the I/O operations (including a
1689                 * commit) were deferred. So the file-system was in
1690                 * "non-committed" state. Now the file-system is in committed
1691                 * state, and of course the amount of free space will change
1692                 * because, for example, the old index size was imprecise.
1693                 */
1694                err = dbg_check_space_info(c);
1695        }
1696
1697        mutex_unlock(&c->umount_mutex);
1698        return err;
1699
1700out:
1701        c->ro_mount = 1;
1702        vfree(c->orph_buf);
1703        c->orph_buf = NULL;
1704        if (c->bgt) {
1705                kthread_stop(c->bgt);
1706                c->bgt = NULL;
1707        }
1708        free_wbufs(c);
1709        kfree(c->write_reserve_buf);
1710        c->write_reserve_buf = NULL;
1711        vfree(c->ileb_buf);
1712        c->ileb_buf = NULL;
1713        ubifs_lpt_free(c, 1);
1714        c->remounting_rw = 0;
1715        mutex_unlock(&c->umount_mutex);
1716        return err;
1717}
1718
1719/**
1720 * ubifs_remount_ro - re-mount in read-only mode.
1721 * @c: UBIFS file-system description object
1722 *
1723 * We assume VFS has stopped writing. Possibly the background thread could be
1724 * running a commit, however kthread_stop will wait in that case.
1725 */
1726static void ubifs_remount_ro(struct ubifs_info *c)
1727{
1728        int i, err;
1729
1730        ubifs_assert(!c->need_recovery);
1731        ubifs_assert(!c->ro_mount);
1732
1733        mutex_lock(&c->umount_mutex);
1734        if (c->bgt) {
1735                kthread_stop(c->bgt);
1736                c->bgt = NULL;
1737        }
1738
1739        dbg_save_space_info(c);
1740
1741        for (i = 0; i < c->jhead_cnt; i++) {
1742                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1743                if (err)
1744                        ubifs_ro_mode(c, err);
1745        }
1746
1747        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1748        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1749        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1750        err = ubifs_write_master(c);
1751        if (err)
1752                ubifs_ro_mode(c, err);
1753
1754        vfree(c->orph_buf);
1755        c->orph_buf = NULL;
1756        kfree(c->write_reserve_buf);
1757        c->write_reserve_buf = NULL;
1758        vfree(c->ileb_buf);
1759        c->ileb_buf = NULL;
1760        ubifs_lpt_free(c, 1);
1761        c->ro_mount = 1;
1762        err = dbg_check_space_info(c);
1763        if (err)
1764                ubifs_ro_mode(c, err);
1765        mutex_unlock(&c->umount_mutex);
1766}
1767
1768static void ubifs_put_super(struct super_block *sb)
1769{
1770        int i;
1771        struct ubifs_info *c = sb->s_fs_info;
1772
1773        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1774
1775        /*
1776         * The following asserts are only valid if there has not been a failure
1777         * of the media. For example, there will be dirty inodes if we failed
1778         * to write them back because of I/O errors.
1779         */
1780        if (!c->ro_error) {
1781                ubifs_assert(c->bi.idx_growth == 0);
1782                ubifs_assert(c->bi.dd_growth == 0);
1783                ubifs_assert(c->bi.data_growth == 0);
1784        }
1785
1786        /*
1787         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1788         * and file system un-mount. Namely, it prevents the shrinker from
1789         * picking this superblock for shrinking - it will be just skipped if
1790         * the mutex is locked.
1791         */
1792        mutex_lock(&c->umount_mutex);
1793        if (!c->ro_mount) {
1794                /*
1795                 * First of all kill the background thread to make sure it does
1796                 * not interfere with un-mounting and freeing resources.
1797                 */
1798                if (c->bgt) {
1799                        kthread_stop(c->bgt);
1800                        c->bgt = NULL;
1801                }
1802
1803                /*
1804                 * On fatal errors c->ro_error is set to 1, in which case we do
1805                 * not write the master node.
1806                 */
1807                if (!c->ro_error) {
1808                        int err;
1809
1810                        /* Synchronize write-buffers */
1811                        for (i = 0; i < c->jhead_cnt; i++) {
1812                                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1813                                if (err)
1814                                        ubifs_ro_mode(c, err);
1815                        }
1816
1817                        /*
1818                         * We are being cleanly unmounted which means the
1819                         * orphans were killed - indicate this in the master
1820                         * node. Also save the reserved GC LEB number.
1821                         */
1822                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1823                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1824                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1825                        err = ubifs_write_master(c);
1826                        if (err)
1827                                /*
1828                                 * Recovery will attempt to fix the master area
1829                                 * next mount, so we just print a message and
1830                                 * continue to unmount normally.
1831                                 */
1832                                ubifs_err(c, "failed to write master node, error %d",
1833                                          err);
1834                } else {
1835                        for (i = 0; i < c->jhead_cnt; i++)
1836                                /* Make sure write-buffer timers are canceled */
1837                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1838                }
1839        }
1840
1841        ubifs_umount(c);
1842        ubi_close_volume(c->ubi);
1843        mutex_unlock(&c->umount_mutex);
1844}
1845
1846static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1847{
1848        int err;
1849        struct ubifs_info *c = sb->s_fs_info;
1850
1851        sync_filesystem(sb);
1852        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1853
1854        err = ubifs_parse_options(c, data, 1);
1855        if (err) {
1856                ubifs_err(c, "invalid or unknown remount parameter");
1857                return err;
1858        }
1859
1860        if (c->ro_mount && !(*flags & SB_RDONLY)) {
1861                if (c->ro_error) {
1862                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1863                        return -EROFS;
1864                }
1865                if (c->ro_media) {
1866                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1867                        return -EROFS;
1868                }
1869                err = ubifs_remount_rw(c);
1870                if (err)
1871                        return err;
1872        } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1873                if (c->ro_error) {
1874                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1875                        return -EROFS;
1876                }
1877                ubifs_remount_ro(c);
1878        }
1879
1880        if (c->bulk_read == 1)
1881                bu_init(c);
1882        else {
1883                dbg_gen("disable bulk-read");
1884                mutex_lock(&c->bu_mutex);
1885                kfree(c->bu.buf);
1886                c->bu.buf = NULL;
1887                mutex_unlock(&c->bu_mutex);
1888        }
1889
1890        ubifs_assert(c->lst.taken_empty_lebs > 0);
1891        return 0;
1892}
1893
1894const struct super_operations ubifs_super_operations = {
1895        .alloc_inode   = ubifs_alloc_inode,
1896        .destroy_inode = ubifs_destroy_inode,
1897        .put_super     = ubifs_put_super,
1898        .write_inode   = ubifs_write_inode,
1899        .evict_inode   = ubifs_evict_inode,
1900        .statfs        = ubifs_statfs,
1901        .dirty_inode   = ubifs_dirty_inode,
1902        .remount_fs    = ubifs_remount_fs,
1903        .show_options  = ubifs_show_options,
1904        .sync_fs       = ubifs_sync_fs,
1905};
1906
1907/**
1908 * open_ubi - parse UBI device name string and open the UBI device.
1909 * @name: UBI volume name
1910 * @mode: UBI volume open mode
1911 *
1912 * The primary method of mounting UBIFS is by specifying the UBI volume
1913 * character device node path. However, UBIFS may also be mounted withoug any
1914 * character device node using one of the following methods:
1915 *
1916 * o ubiX_Y    - mount UBI device number X, volume Y;
1917 * o ubiY      - mount UBI device number 0, volume Y;
1918 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1919 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1920 *
1921 * Alternative '!' separator may be used instead of ':' (because some shells
1922 * like busybox may interpret ':' as an NFS host name separator). This function
1923 * returns UBI volume description object in case of success and a negative
1924 * error code in case of failure.
1925 */
1926static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1927{
1928        struct ubi_volume_desc *ubi;
1929        int dev, vol;
1930        char *endptr;
1931
1932        /* First, try to open using the device node path method */
1933        ubi = ubi_open_volume_path(name, mode);
1934        if (!IS_ERR(ubi))
1935                return ubi;
1936
1937        /* Try the "nodev" method */
1938        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1939                return ERR_PTR(-EINVAL);
1940
1941        /* ubi:NAME method */
1942        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1943                return ubi_open_volume_nm(0, name + 4, mode);
1944
1945        if (!isdigit(name[3]))
1946                return ERR_PTR(-EINVAL);
1947
1948        dev = simple_strtoul(name + 3, &endptr, 0);
1949
1950        /* ubiY method */
1951        if (*endptr == '\0')
1952                return ubi_open_volume(0, dev, mode);
1953
1954        /* ubiX_Y method */
1955        if (*endptr == '_' && isdigit(endptr[1])) {
1956                vol = simple_strtoul(endptr + 1, &endptr, 0);
1957                if (*endptr != '\0')
1958                        return ERR_PTR(-EINVAL);
1959                return ubi_open_volume(dev, vol, mode);
1960        }
1961
1962        /* ubiX:NAME method */
1963        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1964                return ubi_open_volume_nm(dev, ++endptr, mode);
1965
1966        return ERR_PTR(-EINVAL);
1967}
1968
1969static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1970{
1971        struct ubifs_info *c;
1972
1973        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1974        if (c) {
1975                spin_lock_init(&c->cnt_lock);
1976                spin_lock_init(&c->cs_lock);
1977                spin_lock_init(&c->buds_lock);
1978                spin_lock_init(&c->space_lock);
1979                spin_lock_init(&c->orphan_lock);
1980                init_rwsem(&c->commit_sem);
1981                mutex_init(&c->lp_mutex);
1982                mutex_init(&c->tnc_mutex);
1983                mutex_init(&c->log_mutex);
1984                mutex_init(&c->umount_mutex);
1985                mutex_init(&c->bu_mutex);
1986                mutex_init(&c->write_reserve_mutex);
1987                init_waitqueue_head(&c->cmt_wq);
1988                c->buds = RB_ROOT;
1989                c->old_idx = RB_ROOT;
1990                c->size_tree = RB_ROOT;
1991                c->orph_tree = RB_ROOT;
1992                INIT_LIST_HEAD(&c->infos_list);
1993                INIT_LIST_HEAD(&c->idx_gc);
1994                INIT_LIST_HEAD(&c->replay_list);
1995                INIT_LIST_HEAD(&c->replay_buds);
1996                INIT_LIST_HEAD(&c->uncat_list);
1997                INIT_LIST_HEAD(&c->empty_list);
1998                INIT_LIST_HEAD(&c->freeable_list);
1999                INIT_LIST_HEAD(&c->frdi_idx_list);
2000                INIT_LIST_HEAD(&c->unclean_leb_list);
2001                INIT_LIST_HEAD(&c->old_buds);
2002                INIT_LIST_HEAD(&c->orph_list);
2003                INIT_LIST_HEAD(&c->orph_new);
2004                c->no_chk_data_crc = 1;
2005
2006                c->highest_inum = UBIFS_FIRST_INO;
2007                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2008
2009                ubi_get_volume_info(ubi, &c->vi);
2010                ubi_get_device_info(c->vi.ubi_num, &c->di);
2011        }
2012        return c;
2013}
2014
2015static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2016{
2017        struct ubifs_info *c = sb->s_fs_info;
2018        struct inode *root;
2019        int err;
2020
2021        c->vfs_sb = sb;
2022        /* Re-open the UBI device in read-write mode */
2023        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2024        if (IS_ERR(c->ubi)) {
2025                err = PTR_ERR(c->ubi);
2026                goto out;
2027        }
2028
2029        err = ubifs_parse_options(c, data, 0);
2030        if (err)
2031                goto out_close;
2032
2033        /*
2034         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2035         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2036         * which means the user would have to wait not just for their own I/O
2037         * but the read-ahead I/O as well i.e. completely pointless.
2038         *
2039         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2040         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2041         * writeback happening.
2042         */
2043        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2044                                   c->vi.vol_id);
2045        if (err)
2046                goto out_close;
2047        sb->s_bdi->ra_pages = 0;
2048        sb->s_bdi->io_pages = 0;
2049
2050        sb->s_fs_info = c;
2051        sb->s_magic = UBIFS_SUPER_MAGIC;
2052        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2053        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2054        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2055        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2056                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2057        sb->s_op = &ubifs_super_operations;
2058        sb->s_xattr = ubifs_xattr_handlers;
2059#ifdef CONFIG_UBIFS_FS_ENCRYPTION
2060        sb->s_cop = &ubifs_crypt_operations;
2061#endif
2062
2063        mutex_lock(&c->umount_mutex);
2064        err = mount_ubifs(c);
2065        if (err) {
2066                ubifs_assert(err < 0);
2067                goto out_unlock;
2068        }
2069
2070        /* Read the root inode */
2071        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2072        if (IS_ERR(root)) {
2073                err = PTR_ERR(root);
2074                goto out_umount;
2075        }
2076
2077        sb->s_root = d_make_root(root);
2078        if (!sb->s_root) {
2079                err = -ENOMEM;
2080                goto out_umount;
2081        }
2082
2083        mutex_unlock(&c->umount_mutex);
2084        return 0;
2085
2086out_umount:
2087        ubifs_umount(c);
2088out_unlock:
2089        mutex_unlock(&c->umount_mutex);
2090out_close:
2091        ubi_close_volume(c->ubi);
2092out:
2093        return err;
2094}
2095
2096static int sb_test(struct super_block *sb, void *data)
2097{
2098        struct ubifs_info *c1 = data;
2099        struct ubifs_info *c = sb->s_fs_info;
2100
2101        return c->vi.cdev == c1->vi.cdev;
2102}
2103
2104static int sb_set(struct super_block *sb, void *data)
2105{
2106        sb->s_fs_info = data;
2107        return set_anon_super(sb, NULL);
2108}
2109
2110static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2111                        const char *name, void *data)
2112{
2113        struct ubi_volume_desc *ubi;
2114        struct ubifs_info *c;
2115        struct super_block *sb;
2116        int err;
2117
2118        dbg_gen("name %s, flags %#x", name, flags);
2119
2120        /*
2121         * Get UBI device number and volume ID. Mount it read-only so far
2122         * because this might be a new mount point, and UBI allows only one
2123         * read-write user at a time.
2124         */
2125        ubi = open_ubi(name, UBI_READONLY);
2126        if (IS_ERR(ubi)) {
2127                if (!(flags & SB_SILENT))
2128                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2129                               current->pid, name, (int)PTR_ERR(ubi));
2130                return ERR_CAST(ubi);
2131        }
2132
2133        c = alloc_ubifs_info(ubi);
2134        if (!c) {
2135                err = -ENOMEM;
2136                goto out_close;
2137        }
2138
2139        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2140
2141        sb = sget(fs_type, sb_test, sb_set, flags, c);
2142        if (IS_ERR(sb)) {
2143                err = PTR_ERR(sb);
2144                kfree(c);
2145                goto out_close;
2146        }
2147
2148        if (sb->s_root) {
2149                struct ubifs_info *c1 = sb->s_fs_info;
2150                kfree(c);
2151                /* A new mount point for already mounted UBIFS */
2152                dbg_gen("this ubi volume is already mounted");
2153                if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2154                        err = -EBUSY;
2155                        goto out_deact;
2156                }
2157        } else {
2158                err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2159                if (err)
2160                        goto out_deact;
2161                /* We do not support atime */
2162                sb->s_flags |= SB_ACTIVE;
2163#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2164                sb->s_flags |= SB_NOATIME;
2165#else
2166                ubifs_msg(c, "full atime support is enabled.");
2167#endif
2168        }
2169
2170        /* 'fill_super()' opens ubi again so we must close it here */
2171        ubi_close_volume(ubi);
2172
2173        return dget(sb->s_root);
2174
2175out_deact:
2176        deactivate_locked_super(sb);
2177out_close:
2178        ubi_close_volume(ubi);
2179        return ERR_PTR(err);
2180}
2181
2182static void kill_ubifs_super(struct super_block *s)
2183{
2184        struct ubifs_info *c = s->s_fs_info;
2185        kill_anon_super(s);
2186        kfree(c);
2187}
2188
2189static struct file_system_type ubifs_fs_type = {
2190        .name    = "ubifs",
2191        .owner   = THIS_MODULE,
2192        .mount   = ubifs_mount,
2193        .kill_sb = kill_ubifs_super,
2194};
2195MODULE_ALIAS_FS("ubifs");
2196
2197/*
2198 * Inode slab cache constructor.
2199 */
2200static void inode_slab_ctor(void *obj)
2201{
2202        struct ubifs_inode *ui = obj;
2203        inode_init_once(&ui->vfs_inode);
2204}
2205
2206static int __init ubifs_init(void)
2207{
2208        int err;
2209
2210        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2211
2212        /* Make sure node sizes are 8-byte aligned */
2213        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2214        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2215        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2216        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2217        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2218        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2219        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2220        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2221        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2222        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2223        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2224
2225        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2226        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2227        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2228        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2229        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2230        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2231
2232        /* Check min. node size */
2233        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2234        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2235        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2236        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2237
2238        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2239        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2240        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2241        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2242
2243        /* Defined node sizes */
2244        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2245        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2246        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2247        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2248
2249        /*
2250         * We use 2 bit wide bit-fields to store compression type, which should
2251         * be amended if more compressors are added. The bit-fields are:
2252         * @compr_type in 'struct ubifs_inode', @default_compr in
2253         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2254         */
2255        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2256
2257        /*
2258         * We require that PAGE_SIZE is greater-than-or-equal-to
2259         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2260         */
2261        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2262                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2263                       current->pid, (unsigned int)PAGE_SIZE);
2264                return -EINVAL;
2265        }
2266
2267        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2268                                sizeof(struct ubifs_inode), 0,
2269                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2270                                SLAB_ACCOUNT, &inode_slab_ctor);
2271        if (!ubifs_inode_slab)
2272                return -ENOMEM;
2273
2274        err = register_shrinker(&ubifs_shrinker_info);
2275        if (err)
2276                goto out_slab;
2277
2278        err = ubifs_compressors_init();
2279        if (err)
2280                goto out_shrinker;
2281
2282        err = dbg_debugfs_init();
2283        if (err)
2284                goto out_compr;
2285
2286        err = register_filesystem(&ubifs_fs_type);
2287        if (err) {
2288                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2289                       current->pid, err);
2290                goto out_dbg;
2291        }
2292        return 0;
2293
2294out_dbg:
2295        dbg_debugfs_exit();
2296out_compr:
2297        ubifs_compressors_exit();
2298out_shrinker:
2299        unregister_shrinker(&ubifs_shrinker_info);
2300out_slab:
2301        kmem_cache_destroy(ubifs_inode_slab);
2302        return err;
2303}
2304/* late_initcall to let compressors initialize first */
2305late_initcall(ubifs_init);
2306
2307static void __exit ubifs_exit(void)
2308{
2309        ubifs_assert(list_empty(&ubifs_infos));
2310        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2311
2312        dbg_debugfs_exit();
2313        ubifs_compressors_exit();
2314        unregister_shrinker(&ubifs_shrinker_info);
2315
2316        /*
2317         * Make sure all delayed rcu free inodes are flushed before we
2318         * destroy cache.
2319         */
2320        rcu_barrier();
2321        kmem_cache_destroy(ubifs_inode_slab);
2322        unregister_filesystem(&ubifs_fs_type);
2323}
2324module_exit(ubifs_exit);
2325
2326MODULE_LICENSE("GPL");
2327MODULE_VERSION(__stringify(UBIFS_VERSION));
2328MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2329MODULE_DESCRIPTION("UBIFS - UBI File System");
2330