linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/list.h>
  16#include <linux/hashtable.h>
  17#include <linux/sched/signal.h>
  18#include <linux/sched/mm.h>
  19#include <linux/mm.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32
  33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  34
  35enum userfaultfd_state {
  36        UFFD_STATE_WAIT_API,
  37        UFFD_STATE_RUNNING,
  38};
  39
  40/*
  41 * Start with fault_pending_wqh and fault_wqh so they're more likely
  42 * to be in the same cacheline.
  43 */
  44struct userfaultfd_ctx {
  45        /* waitqueue head for the pending (i.e. not read) userfaults */
  46        wait_queue_head_t fault_pending_wqh;
  47        /* waitqueue head for the userfaults */
  48        wait_queue_head_t fault_wqh;
  49        /* waitqueue head for the pseudo fd to wakeup poll/read */
  50        wait_queue_head_t fd_wqh;
  51        /* waitqueue head for events */
  52        wait_queue_head_t event_wqh;
  53        /* a refile sequence protected by fault_pending_wqh lock */
  54        struct seqcount refile_seq;
  55        /* pseudo fd refcounting */
  56        atomic_t refcount;
  57        /* userfaultfd syscall flags */
  58        unsigned int flags;
  59        /* features requested from the userspace */
  60        unsigned int features;
  61        /* state machine */
  62        enum userfaultfd_state state;
  63        /* released */
  64        bool released;
  65        /* memory mappings are changing because of non-cooperative event */
  66        bool mmap_changing;
  67        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  68        struct mm_struct *mm;
  69};
  70
  71struct userfaultfd_fork_ctx {
  72        struct userfaultfd_ctx *orig;
  73        struct userfaultfd_ctx *new;
  74        struct list_head list;
  75};
  76
  77struct userfaultfd_unmap_ctx {
  78        struct userfaultfd_ctx *ctx;
  79        unsigned long start;
  80        unsigned long end;
  81        struct list_head list;
  82};
  83
  84struct userfaultfd_wait_queue {
  85        struct uffd_msg msg;
  86        wait_queue_entry_t wq;
  87        struct userfaultfd_ctx *ctx;
  88        bool waken;
  89};
  90
  91struct userfaultfd_wake_range {
  92        unsigned long start;
  93        unsigned long len;
  94};
  95
  96static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
  97                                     int wake_flags, void *key)
  98{
  99        struct userfaultfd_wake_range *range = key;
 100        int ret;
 101        struct userfaultfd_wait_queue *uwq;
 102        unsigned long start, len;
 103
 104        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 105        ret = 0;
 106        /* len == 0 means wake all */
 107        start = range->start;
 108        len = range->len;
 109        if (len && (start > uwq->msg.arg.pagefault.address ||
 110                    start + len <= uwq->msg.arg.pagefault.address))
 111                goto out;
 112        WRITE_ONCE(uwq->waken, true);
 113        /*
 114         * The Program-Order guarantees provided by the scheduler
 115         * ensure uwq->waken is visible before the task is woken.
 116         */
 117        ret = wake_up_state(wq->private, mode);
 118        if (ret) {
 119                /*
 120                 * Wake only once, autoremove behavior.
 121                 *
 122                 * After the effect of list_del_init is visible to the other
 123                 * CPUs, the waitqueue may disappear from under us, see the
 124                 * !list_empty_careful() in handle_userfault().
 125                 *
 126                 * try_to_wake_up() has an implicit smp_mb(), and the
 127                 * wq->private is read before calling the extern function
 128                 * "wake_up_state" (which in turns calls try_to_wake_up).
 129                 */
 130                list_del_init(&wq->entry);
 131        }
 132out:
 133        return ret;
 134}
 135
 136/**
 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 138 * context.
 139 * @ctx: [in] Pointer to the userfaultfd context.
 140 */
 141static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 142{
 143        if (!atomic_inc_not_zero(&ctx->refcount))
 144                BUG();
 145}
 146
 147/**
 148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 149 * context.
 150 * @ctx: [in] Pointer to userfaultfd context.
 151 *
 152 * The userfaultfd context reference must have been previously acquired either
 153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 154 */
 155static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 156{
 157        if (atomic_dec_and_test(&ctx->refcount)) {
 158                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 159                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 160                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 161                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 162                VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 163                VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 164                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 165                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 166                mmdrop(ctx->mm);
 167                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 168        }
 169}
 170
 171static inline void msg_init(struct uffd_msg *msg)
 172{
 173        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 174        /*
 175         * Must use memset to zero out the paddings or kernel data is
 176         * leaked to userland.
 177         */
 178        memset(msg, 0, sizeof(struct uffd_msg));
 179}
 180
 181static inline struct uffd_msg userfault_msg(unsigned long address,
 182                                            unsigned int flags,
 183                                            unsigned long reason,
 184                                            unsigned int features)
 185{
 186        struct uffd_msg msg;
 187        msg_init(&msg);
 188        msg.event = UFFD_EVENT_PAGEFAULT;
 189        msg.arg.pagefault.address = address;
 190        if (flags & FAULT_FLAG_WRITE)
 191                /*
 192                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 193                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 194                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 195                 * was a read fault, otherwise if set it means it's
 196                 * a write fault.
 197                 */
 198                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 199        if (reason & VM_UFFD_WP)
 200                /*
 201                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 202                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 203                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 204                 * a missing fault, otherwise if set it means it's a
 205                 * write protect fault.
 206                 */
 207                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 208        if (features & UFFD_FEATURE_THREAD_ID)
 209                msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 210        return msg;
 211}
 212
 213#ifdef CONFIG_HUGETLB_PAGE
 214/*
 215 * Same functionality as userfaultfd_must_wait below with modifications for
 216 * hugepmd ranges.
 217 */
 218static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 219                                         struct vm_area_struct *vma,
 220                                         unsigned long address,
 221                                         unsigned long flags,
 222                                         unsigned long reason)
 223{
 224        struct mm_struct *mm = ctx->mm;
 225        pte_t *ptep, pte;
 226        bool ret = true;
 227
 228        mmap_assert_locked(mm);
 229
 230        ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 231
 232        if (!ptep)
 233                goto out;
 234
 235        ret = false;
 236        pte = huge_ptep_get(ptep);
 237
 238        /*
 239         * Lockless access: we're in a wait_event so it's ok if it
 240         * changes under us.
 241         */
 242        if (huge_pte_none(pte))
 243                ret = true;
 244        if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 245                ret = true;
 246out:
 247        return ret;
 248}
 249#else
 250static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 251                                         struct vm_area_struct *vma,
 252                                         unsigned long address,
 253                                         unsigned long flags,
 254                                         unsigned long reason)
 255{
 256        return false;   /* should never get here */
 257}
 258#endif /* CONFIG_HUGETLB_PAGE */
 259
 260/*
 261 * Verify the pagetables are still not ok after having reigstered into
 262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 263 * userfault that has already been resolved, if userfaultfd_read and
 264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 265 * threads.
 266 */
 267static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 268                                         unsigned long address,
 269                                         unsigned long flags,
 270                                         unsigned long reason)
 271{
 272        struct mm_struct *mm = ctx->mm;
 273        pgd_t *pgd;
 274        p4d_t *p4d;
 275        pud_t *pud;
 276        pmd_t *pmd, _pmd;
 277        pte_t *pte;
 278        bool ret = true;
 279
 280        mmap_assert_locked(mm);
 281
 282        pgd = pgd_offset(mm, address);
 283        if (!pgd_present(*pgd))
 284                goto out;
 285        p4d = p4d_offset(pgd, address);
 286        if (!p4d_present(*p4d))
 287                goto out;
 288        pud = pud_offset(p4d, address);
 289        if (!pud_present(*pud))
 290                goto out;
 291        pmd = pmd_offset(pud, address);
 292        /*
 293         * READ_ONCE must function as a barrier with narrower scope
 294         * and it must be equivalent to:
 295         *      _pmd = *pmd; barrier();
 296         *
 297         * This is to deal with the instability (as in
 298         * pmd_trans_unstable) of the pmd.
 299         */
 300        _pmd = READ_ONCE(*pmd);
 301        if (pmd_none(_pmd))
 302                goto out;
 303
 304        ret = false;
 305        if (!pmd_present(_pmd))
 306                goto out;
 307
 308        if (pmd_trans_huge(_pmd)) {
 309                if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 310                        ret = true;
 311                goto out;
 312        }
 313
 314        /*
 315         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 316         * and use the standard pte_offset_map() instead of parsing _pmd.
 317         */
 318        pte = pte_offset_map(pmd, address);
 319        /*
 320         * Lockless access: we're in a wait_event so it's ok if it
 321         * changes under us.
 322         */
 323        if (pte_none(*pte))
 324                ret = true;
 325        if (!pte_write(*pte) && (reason & VM_UFFD_WP))
 326                ret = true;
 327        pte_unmap(pte);
 328
 329out:
 330        return ret;
 331}
 332
 333/* Should pair with userfaultfd_signal_pending() */
 334static inline long userfaultfd_get_blocking_state(unsigned int flags)
 335{
 336        if (flags & FAULT_FLAG_INTERRUPTIBLE)
 337                return TASK_INTERRUPTIBLE;
 338
 339        if (flags & FAULT_FLAG_KILLABLE)
 340                return TASK_KILLABLE;
 341
 342        return TASK_UNINTERRUPTIBLE;
 343}
 344
 345/* Should pair with userfaultfd_get_blocking_state() */
 346static inline bool userfaultfd_signal_pending(unsigned int flags)
 347{
 348        if (flags & FAULT_FLAG_INTERRUPTIBLE)
 349                return signal_pending(current);
 350
 351        if (flags & FAULT_FLAG_KILLABLE)
 352                return fatal_signal_pending(current);
 353
 354        return false;
 355}
 356
 357/*
 358 * The locking rules involved in returning VM_FAULT_RETRY depending on
 359 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 360 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 361 * recommendation in __lock_page_or_retry is not an understatement.
 362 *
 363 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 364 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 365 * not set.
 366 *
 367 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 368 * set, VM_FAULT_RETRY can still be returned if and only if there are
 369 * fatal_signal_pending()s, and the mmap_lock must be released before
 370 * returning it.
 371 */
 372vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 373{
 374        struct mm_struct *mm = vmf->vma->vm_mm;
 375        struct userfaultfd_ctx *ctx;
 376        struct userfaultfd_wait_queue uwq;
 377        vm_fault_t ret = VM_FAULT_SIGBUS;
 378        bool must_wait;
 379        long blocking_state;
 380
 381        /*
 382         * We don't do userfault handling for the final child pid update.
 383         *
 384         * We also don't do userfault handling during
 385         * coredumping. hugetlbfs has the special
 386         * follow_hugetlb_page() to skip missing pages in the
 387         * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 388         * the no_page_table() helper in follow_page_mask(), but the
 389         * shmem_vm_ops->fault method is invoked even during
 390         * coredumping without mmap_lock and it ends up here.
 391         */
 392        if (current->flags & (PF_EXITING|PF_DUMPCORE))
 393                goto out;
 394
 395        /*
 396         * Coredumping runs without mmap_lock so we can only check that
 397         * the mmap_lock is held, if PF_DUMPCORE was not set.
 398         */
 399        mmap_assert_locked(mm);
 400
 401        ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 402        if (!ctx)
 403                goto out;
 404
 405        BUG_ON(ctx->mm != mm);
 406
 407        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 408        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 409
 410        if (ctx->features & UFFD_FEATURE_SIGBUS)
 411                goto out;
 412
 413        /*
 414         * If it's already released don't get it. This avoids to loop
 415         * in __get_user_pages if userfaultfd_release waits on the
 416         * caller of handle_userfault to release the mmap_lock.
 417         */
 418        if (unlikely(READ_ONCE(ctx->released))) {
 419                /*
 420                 * Don't return VM_FAULT_SIGBUS in this case, so a non
 421                 * cooperative manager can close the uffd after the
 422                 * last UFFDIO_COPY, without risking to trigger an
 423                 * involuntary SIGBUS if the process was starting the
 424                 * userfaultfd while the userfaultfd was still armed
 425                 * (but after the last UFFDIO_COPY). If the uffd
 426                 * wasn't already closed when the userfault reached
 427                 * this point, that would normally be solved by
 428                 * userfaultfd_must_wait returning 'false'.
 429                 *
 430                 * If we were to return VM_FAULT_SIGBUS here, the non
 431                 * cooperative manager would be instead forced to
 432                 * always call UFFDIO_UNREGISTER before it can safely
 433                 * close the uffd.
 434                 */
 435                ret = VM_FAULT_NOPAGE;
 436                goto out;
 437        }
 438
 439        /*
 440         * Check that we can return VM_FAULT_RETRY.
 441         *
 442         * NOTE: it should become possible to return VM_FAULT_RETRY
 443         * even if FAULT_FLAG_TRIED is set without leading to gup()
 444         * -EBUSY failures, if the userfaultfd is to be extended for
 445         * VM_UFFD_WP tracking and we intend to arm the userfault
 446         * without first stopping userland access to the memory. For
 447         * VM_UFFD_MISSING userfaults this is enough for now.
 448         */
 449        if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 450                /*
 451                 * Validate the invariant that nowait must allow retry
 452                 * to be sure not to return SIGBUS erroneously on
 453                 * nowait invocations.
 454                 */
 455                BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 456#ifdef CONFIG_DEBUG_VM
 457                if (printk_ratelimit()) {
 458                        printk(KERN_WARNING
 459                               "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 460                               vmf->flags);
 461                        dump_stack();
 462                }
 463#endif
 464                goto out;
 465        }
 466
 467        /*
 468         * Handle nowait, not much to do other than tell it to retry
 469         * and wait.
 470         */
 471        ret = VM_FAULT_RETRY;
 472        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 473                goto out;
 474
 475        /* take the reference before dropping the mmap_lock */
 476        userfaultfd_ctx_get(ctx);
 477
 478        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 479        uwq.wq.private = current;
 480        uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
 481                        ctx->features);
 482        uwq.ctx = ctx;
 483        uwq.waken = false;
 484
 485        blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 486
 487        spin_lock(&ctx->fault_pending_wqh.lock);
 488        /*
 489         * After the __add_wait_queue the uwq is visible to userland
 490         * through poll/read().
 491         */
 492        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 493        /*
 494         * The smp_mb() after __set_current_state prevents the reads
 495         * following the spin_unlock to happen before the list_add in
 496         * __add_wait_queue.
 497         */
 498        set_current_state(blocking_state);
 499        spin_unlock(&ctx->fault_pending_wqh.lock);
 500
 501        if (!is_vm_hugetlb_page(vmf->vma))
 502                must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 503                                                  reason);
 504        else
 505                must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 506                                                       vmf->address,
 507                                                       vmf->flags, reason);
 508        mmap_read_unlock(mm);
 509
 510        if (likely(must_wait && !READ_ONCE(ctx->released) &&
 511                   !userfaultfd_signal_pending(vmf->flags))) {
 512                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 513                schedule();
 514                ret |= VM_FAULT_MAJOR;
 515
 516                /*
 517                 * False wakeups can orginate even from rwsem before
 518                 * up_read() however userfaults will wait either for a
 519                 * targeted wakeup on the specific uwq waitqueue from
 520                 * wake_userfault() or for signals or for uffd
 521                 * release.
 522                 */
 523                while (!READ_ONCE(uwq.waken)) {
 524                        /*
 525                         * This needs the full smp_store_mb()
 526                         * guarantee as the state write must be
 527                         * visible to other CPUs before reading
 528                         * uwq.waken from other CPUs.
 529                         */
 530                        set_current_state(blocking_state);
 531                        if (READ_ONCE(uwq.waken) ||
 532                            READ_ONCE(ctx->released) ||
 533                            userfaultfd_signal_pending(vmf->flags))
 534                                break;
 535                        schedule();
 536                }
 537        }
 538
 539        __set_current_state(TASK_RUNNING);
 540
 541        /*
 542         * Here we race with the list_del; list_add in
 543         * userfaultfd_ctx_read(), however because we don't ever run
 544         * list_del_init() to refile across the two lists, the prev
 545         * and next pointers will never point to self. list_add also
 546         * would never let any of the two pointers to point to
 547         * self. So list_empty_careful won't risk to see both pointers
 548         * pointing to self at any time during the list refile. The
 549         * only case where list_del_init() is called is the full
 550         * removal in the wake function and there we don't re-list_add
 551         * and it's fine not to block on the spinlock. The uwq on this
 552         * kernel stack can be released after the list_del_init.
 553         */
 554        if (!list_empty_careful(&uwq.wq.entry)) {
 555                spin_lock(&ctx->fault_pending_wqh.lock);
 556                /*
 557                 * No need of list_del_init(), the uwq on the stack
 558                 * will be freed shortly anyway.
 559                 */
 560                list_del(&uwq.wq.entry);
 561                spin_unlock(&ctx->fault_pending_wqh.lock);
 562        }
 563
 564        /*
 565         * ctx may go away after this if the userfault pseudo fd is
 566         * already released.
 567         */
 568        userfaultfd_ctx_put(ctx);
 569
 570out:
 571        return ret;
 572}
 573
 574static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 575                                              struct userfaultfd_wait_queue *ewq)
 576{
 577        struct userfaultfd_ctx *release_new_ctx;
 578
 579        if (WARN_ON_ONCE(current->flags & PF_EXITING))
 580                goto out;
 581
 582        ewq->ctx = ctx;
 583        init_waitqueue_entry(&ewq->wq, current);
 584        release_new_ctx = NULL;
 585
 586        spin_lock(&ctx->event_wqh.lock);
 587        /*
 588         * After the __add_wait_queue the uwq is visible to userland
 589         * through poll/read().
 590         */
 591        __add_wait_queue(&ctx->event_wqh, &ewq->wq);
 592        for (;;) {
 593                set_current_state(TASK_KILLABLE);
 594                if (ewq->msg.event == 0)
 595                        break;
 596                if (READ_ONCE(ctx->released) ||
 597                    fatal_signal_pending(current)) {
 598                        /*
 599                         * &ewq->wq may be queued in fork_event, but
 600                         * __remove_wait_queue ignores the head
 601                         * parameter. It would be a problem if it
 602                         * didn't.
 603                         */
 604                        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 605                        if (ewq->msg.event == UFFD_EVENT_FORK) {
 606                                struct userfaultfd_ctx *new;
 607
 608                                new = (struct userfaultfd_ctx *)
 609                                        (unsigned long)
 610                                        ewq->msg.arg.reserved.reserved1;
 611                                release_new_ctx = new;
 612                        }
 613                        break;
 614                }
 615
 616                spin_unlock(&ctx->event_wqh.lock);
 617
 618                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 619                schedule();
 620
 621                spin_lock(&ctx->event_wqh.lock);
 622        }
 623        __set_current_state(TASK_RUNNING);
 624        spin_unlock(&ctx->event_wqh.lock);
 625
 626        if (release_new_ctx) {
 627                struct vm_area_struct *vma;
 628                struct mm_struct *mm = release_new_ctx->mm;
 629
 630                /* the various vma->vm_userfaultfd_ctx still points to it */
 631                mmap_write_lock(mm);
 632                /* no task can run (and in turn coredump) yet */
 633                VM_WARN_ON(!mmget_still_valid(mm));
 634                for (vma = mm->mmap; vma; vma = vma->vm_next)
 635                        if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 636                                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 637                                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 638                        }
 639                mmap_write_unlock(mm);
 640
 641                userfaultfd_ctx_put(release_new_ctx);
 642        }
 643
 644        /*
 645         * ctx may go away after this if the userfault pseudo fd is
 646         * already released.
 647         */
 648out:
 649        WRITE_ONCE(ctx->mmap_changing, false);
 650        userfaultfd_ctx_put(ctx);
 651}
 652
 653static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 654                                       struct userfaultfd_wait_queue *ewq)
 655{
 656        ewq->msg.event = 0;
 657        wake_up_locked(&ctx->event_wqh);
 658        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 659}
 660
 661int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 662{
 663        struct userfaultfd_ctx *ctx = NULL, *octx;
 664        struct userfaultfd_fork_ctx *fctx;
 665
 666        octx = vma->vm_userfaultfd_ctx.ctx;
 667        if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 668                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 669                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 670                return 0;
 671        }
 672
 673        list_for_each_entry(fctx, fcs, list)
 674                if (fctx->orig == octx) {
 675                        ctx = fctx->new;
 676                        break;
 677                }
 678
 679        if (!ctx) {
 680                fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 681                if (!fctx)
 682                        return -ENOMEM;
 683
 684                ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 685                if (!ctx) {
 686                        kfree(fctx);
 687                        return -ENOMEM;
 688                }
 689
 690                atomic_set(&ctx->refcount, 1);
 691                ctx->flags = octx->flags;
 692                ctx->state = UFFD_STATE_RUNNING;
 693                ctx->features = octx->features;
 694                ctx->released = false;
 695                ctx->mmap_changing = false;
 696                ctx->mm = vma->vm_mm;
 697                mmgrab(ctx->mm);
 698
 699                userfaultfd_ctx_get(octx);
 700                WRITE_ONCE(octx->mmap_changing, true);
 701                fctx->orig = octx;
 702                fctx->new = ctx;
 703                list_add_tail(&fctx->list, fcs);
 704        }
 705
 706        vma->vm_userfaultfd_ctx.ctx = ctx;
 707        return 0;
 708}
 709
 710static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 711{
 712        struct userfaultfd_ctx *ctx = fctx->orig;
 713        struct userfaultfd_wait_queue ewq;
 714
 715        msg_init(&ewq.msg);
 716
 717        ewq.msg.event = UFFD_EVENT_FORK;
 718        ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 719
 720        userfaultfd_event_wait_completion(ctx, &ewq);
 721}
 722
 723void dup_userfaultfd_complete(struct list_head *fcs)
 724{
 725        struct userfaultfd_fork_ctx *fctx, *n;
 726
 727        list_for_each_entry_safe(fctx, n, fcs, list) {
 728                dup_fctx(fctx);
 729                list_del(&fctx->list);
 730                kfree(fctx);
 731        }
 732}
 733
 734void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 735                             struct vm_userfaultfd_ctx *vm_ctx)
 736{
 737        struct userfaultfd_ctx *ctx;
 738
 739        ctx = vma->vm_userfaultfd_ctx.ctx;
 740
 741        if (!ctx)
 742                return;
 743
 744        if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 745                vm_ctx->ctx = ctx;
 746                userfaultfd_ctx_get(ctx);
 747                WRITE_ONCE(ctx->mmap_changing, true);
 748        } else {
 749                /* Drop uffd context if remap feature not enabled */
 750                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 751                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 752        }
 753}
 754
 755void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 756                                 unsigned long from, unsigned long to,
 757                                 unsigned long len)
 758{
 759        struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 760        struct userfaultfd_wait_queue ewq;
 761
 762        if (!ctx)
 763                return;
 764
 765        if (to & ~PAGE_MASK) {
 766                userfaultfd_ctx_put(ctx);
 767                return;
 768        }
 769
 770        msg_init(&ewq.msg);
 771
 772        ewq.msg.event = UFFD_EVENT_REMAP;
 773        ewq.msg.arg.remap.from = from;
 774        ewq.msg.arg.remap.to = to;
 775        ewq.msg.arg.remap.len = len;
 776
 777        userfaultfd_event_wait_completion(ctx, &ewq);
 778}
 779
 780bool userfaultfd_remove(struct vm_area_struct *vma,
 781                        unsigned long start, unsigned long end)
 782{
 783        struct mm_struct *mm = vma->vm_mm;
 784        struct userfaultfd_ctx *ctx;
 785        struct userfaultfd_wait_queue ewq;
 786
 787        ctx = vma->vm_userfaultfd_ctx.ctx;
 788        if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 789                return true;
 790
 791        userfaultfd_ctx_get(ctx);
 792        WRITE_ONCE(ctx->mmap_changing, true);
 793        mmap_read_unlock(mm);
 794
 795        msg_init(&ewq.msg);
 796
 797        ewq.msg.event = UFFD_EVENT_REMOVE;
 798        ewq.msg.arg.remove.start = start;
 799        ewq.msg.arg.remove.end = end;
 800
 801        userfaultfd_event_wait_completion(ctx, &ewq);
 802
 803        return false;
 804}
 805
 806static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 807                          unsigned long start, unsigned long end)
 808{
 809        struct userfaultfd_unmap_ctx *unmap_ctx;
 810
 811        list_for_each_entry(unmap_ctx, unmaps, list)
 812                if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 813                    unmap_ctx->end == end)
 814                        return true;
 815
 816        return false;
 817}
 818
 819int userfaultfd_unmap_prep(struct vm_area_struct *vma,
 820                           unsigned long start, unsigned long end,
 821                           struct list_head *unmaps)
 822{
 823        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
 824                struct userfaultfd_unmap_ctx *unmap_ctx;
 825                struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 826
 827                if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 828                    has_unmap_ctx(ctx, unmaps, start, end))
 829                        continue;
 830
 831                unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 832                if (!unmap_ctx)
 833                        return -ENOMEM;
 834
 835                userfaultfd_ctx_get(ctx);
 836                WRITE_ONCE(ctx->mmap_changing, true);
 837                unmap_ctx->ctx = ctx;
 838                unmap_ctx->start = start;
 839                unmap_ctx->end = end;
 840                list_add_tail(&unmap_ctx->list, unmaps);
 841        }
 842
 843        return 0;
 844}
 845
 846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 847{
 848        struct userfaultfd_unmap_ctx *ctx, *n;
 849        struct userfaultfd_wait_queue ewq;
 850
 851        list_for_each_entry_safe(ctx, n, uf, list) {
 852                msg_init(&ewq.msg);
 853
 854                ewq.msg.event = UFFD_EVENT_UNMAP;
 855                ewq.msg.arg.remove.start = ctx->start;
 856                ewq.msg.arg.remove.end = ctx->end;
 857
 858                userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 859
 860                list_del(&ctx->list);
 861                kfree(ctx);
 862        }
 863}
 864
 865static int userfaultfd_release(struct inode *inode, struct file *file)
 866{
 867        struct userfaultfd_ctx *ctx = file->private_data;
 868        struct mm_struct *mm = ctx->mm;
 869        struct vm_area_struct *vma, *prev;
 870        /* len == 0 means wake all */
 871        struct userfaultfd_wake_range range = { .len = 0, };
 872        unsigned long new_flags;
 873        bool still_valid;
 874
 875        WRITE_ONCE(ctx->released, true);
 876
 877        if (!mmget_not_zero(mm))
 878                goto wakeup;
 879
 880        /*
 881         * Flush page faults out of all CPUs. NOTE: all page faults
 882         * must be retried without returning VM_FAULT_SIGBUS if
 883         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 884         * changes while handle_userfault released the mmap_lock. So
 885         * it's critical that released is set to true (above), before
 886         * taking the mmap_lock for writing.
 887         */
 888        mmap_write_lock(mm);
 889        still_valid = mmget_still_valid(mm);
 890        prev = NULL;
 891        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 892                cond_resched();
 893                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 894                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 895                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 896                        prev = vma;
 897                        continue;
 898                }
 899                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 900                if (still_valid) {
 901                        prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 902                                         new_flags, vma->anon_vma,
 903                                         vma->vm_file, vma->vm_pgoff,
 904                                         vma_policy(vma),
 905                                         NULL_VM_UFFD_CTX);
 906                        if (prev)
 907                                vma = prev;
 908                        else
 909                                prev = vma;
 910                }
 911                vma->vm_flags = new_flags;
 912                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 913        }
 914        mmap_write_unlock(mm);
 915        mmput(mm);
 916wakeup:
 917        /*
 918         * After no new page faults can wait on this fault_*wqh, flush
 919         * the last page faults that may have been already waiting on
 920         * the fault_*wqh.
 921         */
 922        spin_lock(&ctx->fault_pending_wqh.lock);
 923        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 924        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 925        spin_unlock(&ctx->fault_pending_wqh.lock);
 926
 927        /* Flush pending events that may still wait on event_wqh */
 928        wake_up_all(&ctx->event_wqh);
 929
 930        wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 931        userfaultfd_ctx_put(ctx);
 932        return 0;
 933}
 934
 935/* fault_pending_wqh.lock must be hold by the caller */
 936static inline struct userfaultfd_wait_queue *find_userfault_in(
 937                wait_queue_head_t *wqh)
 938{
 939        wait_queue_entry_t *wq;
 940        struct userfaultfd_wait_queue *uwq;
 941
 942        lockdep_assert_held(&wqh->lock);
 943
 944        uwq = NULL;
 945        if (!waitqueue_active(wqh))
 946                goto out;
 947        /* walk in reverse to provide FIFO behavior to read userfaults */
 948        wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 949        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 950out:
 951        return uwq;
 952}
 953
 954static inline struct userfaultfd_wait_queue *find_userfault(
 955                struct userfaultfd_ctx *ctx)
 956{
 957        return find_userfault_in(&ctx->fault_pending_wqh);
 958}
 959
 960static inline struct userfaultfd_wait_queue *find_userfault_evt(
 961                struct userfaultfd_ctx *ctx)
 962{
 963        return find_userfault_in(&ctx->event_wqh);
 964}
 965
 966static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 967{
 968        struct userfaultfd_ctx *ctx = file->private_data;
 969        __poll_t ret;
 970
 971        poll_wait(file, &ctx->fd_wqh, wait);
 972
 973        switch (ctx->state) {
 974        case UFFD_STATE_WAIT_API:
 975                return EPOLLERR;
 976        case UFFD_STATE_RUNNING:
 977                /*
 978                 * poll() never guarantees that read won't block.
 979                 * userfaults can be waken before they're read().
 980                 */
 981                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 982                        return EPOLLERR;
 983                /*
 984                 * lockless access to see if there are pending faults
 985                 * __pollwait last action is the add_wait_queue but
 986                 * the spin_unlock would allow the waitqueue_active to
 987                 * pass above the actual list_add inside
 988                 * add_wait_queue critical section. So use a full
 989                 * memory barrier to serialize the list_add write of
 990                 * add_wait_queue() with the waitqueue_active read
 991                 * below.
 992                 */
 993                ret = 0;
 994                smp_mb();
 995                if (waitqueue_active(&ctx->fault_pending_wqh))
 996                        ret = EPOLLIN;
 997                else if (waitqueue_active(&ctx->event_wqh))
 998                        ret = EPOLLIN;
 999
1000                return ret;
1001        default:
1002                WARN_ON_ONCE(1);
1003                return EPOLLERR;
1004        }
1005}
1006
1007static const struct file_operations userfaultfd_fops;
1008
1009static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1010                                  struct userfaultfd_ctx *new,
1011                                  struct uffd_msg *msg)
1012{
1013        int fd;
1014
1015        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1016                              O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1017        if (fd < 0)
1018                return fd;
1019
1020        msg->arg.reserved.reserved1 = 0;
1021        msg->arg.fork.ufd = fd;
1022        return 0;
1023}
1024
1025static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1026                                    struct uffd_msg *msg)
1027{
1028        ssize_t ret;
1029        DECLARE_WAITQUEUE(wait, current);
1030        struct userfaultfd_wait_queue *uwq;
1031        /*
1032         * Handling fork event requires sleeping operations, so
1033         * we drop the event_wqh lock, then do these ops, then
1034         * lock it back and wake up the waiter. While the lock is
1035         * dropped the ewq may go away so we keep track of it
1036         * carefully.
1037         */
1038        LIST_HEAD(fork_event);
1039        struct userfaultfd_ctx *fork_nctx = NULL;
1040
1041        /* always take the fd_wqh lock before the fault_pending_wqh lock */
1042        spin_lock_irq(&ctx->fd_wqh.lock);
1043        __add_wait_queue(&ctx->fd_wqh, &wait);
1044        for (;;) {
1045                set_current_state(TASK_INTERRUPTIBLE);
1046                spin_lock(&ctx->fault_pending_wqh.lock);
1047                uwq = find_userfault(ctx);
1048                if (uwq) {
1049                        /*
1050                         * Use a seqcount to repeat the lockless check
1051                         * in wake_userfault() to avoid missing
1052                         * wakeups because during the refile both
1053                         * waitqueue could become empty if this is the
1054                         * only userfault.
1055                         */
1056                        write_seqcount_begin(&ctx->refile_seq);
1057
1058                        /*
1059                         * The fault_pending_wqh.lock prevents the uwq
1060                         * to disappear from under us.
1061                         *
1062                         * Refile this userfault from
1063                         * fault_pending_wqh to fault_wqh, it's not
1064                         * pending anymore after we read it.
1065                         *
1066                         * Use list_del() by hand (as
1067                         * userfaultfd_wake_function also uses
1068                         * list_del_init() by hand) to be sure nobody
1069                         * changes __remove_wait_queue() to use
1070                         * list_del_init() in turn breaking the
1071                         * !list_empty_careful() check in
1072                         * handle_userfault(). The uwq->wq.head list
1073                         * must never be empty at any time during the
1074                         * refile, or the waitqueue could disappear
1075                         * from under us. The "wait_queue_head_t"
1076                         * parameter of __remove_wait_queue() is unused
1077                         * anyway.
1078                         */
1079                        list_del(&uwq->wq.entry);
1080                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1081
1082                        write_seqcount_end(&ctx->refile_seq);
1083
1084                        /* careful to always initialize msg if ret == 0 */
1085                        *msg = uwq->msg;
1086                        spin_unlock(&ctx->fault_pending_wqh.lock);
1087                        ret = 0;
1088                        break;
1089                }
1090                spin_unlock(&ctx->fault_pending_wqh.lock);
1091
1092                spin_lock(&ctx->event_wqh.lock);
1093                uwq = find_userfault_evt(ctx);
1094                if (uwq) {
1095                        *msg = uwq->msg;
1096
1097                        if (uwq->msg.event == UFFD_EVENT_FORK) {
1098                                fork_nctx = (struct userfaultfd_ctx *)
1099                                        (unsigned long)
1100                                        uwq->msg.arg.reserved.reserved1;
1101                                list_move(&uwq->wq.entry, &fork_event);
1102                                /*
1103                                 * fork_nctx can be freed as soon as
1104                                 * we drop the lock, unless we take a
1105                                 * reference on it.
1106                                 */
1107                                userfaultfd_ctx_get(fork_nctx);
1108                                spin_unlock(&ctx->event_wqh.lock);
1109                                ret = 0;
1110                                break;
1111                        }
1112
1113                        userfaultfd_event_complete(ctx, uwq);
1114                        spin_unlock(&ctx->event_wqh.lock);
1115                        ret = 0;
1116                        break;
1117                }
1118                spin_unlock(&ctx->event_wqh.lock);
1119
1120                if (signal_pending(current)) {
1121                        ret = -ERESTARTSYS;
1122                        break;
1123                }
1124                if (no_wait) {
1125                        ret = -EAGAIN;
1126                        break;
1127                }
1128                spin_unlock_irq(&ctx->fd_wqh.lock);
1129                schedule();
1130                spin_lock_irq(&ctx->fd_wqh.lock);
1131        }
1132        __remove_wait_queue(&ctx->fd_wqh, &wait);
1133        __set_current_state(TASK_RUNNING);
1134        spin_unlock_irq(&ctx->fd_wqh.lock);
1135
1136        if (!ret && msg->event == UFFD_EVENT_FORK) {
1137                ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1138                spin_lock(&ctx->event_wqh.lock);
1139                if (!list_empty(&fork_event)) {
1140                        /*
1141                         * The fork thread didn't abort, so we can
1142                         * drop the temporary refcount.
1143                         */
1144                        userfaultfd_ctx_put(fork_nctx);
1145
1146                        uwq = list_first_entry(&fork_event,
1147                                               typeof(*uwq),
1148                                               wq.entry);
1149                        /*
1150                         * If fork_event list wasn't empty and in turn
1151                         * the event wasn't already released by fork
1152                         * (the event is allocated on fork kernel
1153                         * stack), put the event back to its place in
1154                         * the event_wq. fork_event head will be freed
1155                         * as soon as we return so the event cannot
1156                         * stay queued there no matter the current
1157                         * "ret" value.
1158                         */
1159                        list_del(&uwq->wq.entry);
1160                        __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1161
1162                        /*
1163                         * Leave the event in the waitqueue and report
1164                         * error to userland if we failed to resolve
1165                         * the userfault fork.
1166                         */
1167                        if (likely(!ret))
1168                                userfaultfd_event_complete(ctx, uwq);
1169                } else {
1170                        /*
1171                         * Here the fork thread aborted and the
1172                         * refcount from the fork thread on fork_nctx
1173                         * has already been released. We still hold
1174                         * the reference we took before releasing the
1175                         * lock above. If resolve_userfault_fork
1176                         * failed we've to drop it because the
1177                         * fork_nctx has to be freed in such case. If
1178                         * it succeeded we'll hold it because the new
1179                         * uffd references it.
1180                         */
1181                        if (ret)
1182                                userfaultfd_ctx_put(fork_nctx);
1183                }
1184                spin_unlock(&ctx->event_wqh.lock);
1185        }
1186
1187        return ret;
1188}
1189
1190static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1191                                size_t count, loff_t *ppos)
1192{
1193        struct userfaultfd_ctx *ctx = file->private_data;
1194        ssize_t _ret, ret = 0;
1195        struct uffd_msg msg;
1196        int no_wait = file->f_flags & O_NONBLOCK;
1197
1198        if (ctx->state == UFFD_STATE_WAIT_API)
1199                return -EINVAL;
1200
1201        for (;;) {
1202                if (count < sizeof(msg))
1203                        return ret ? ret : -EINVAL;
1204                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1205                if (_ret < 0)
1206                        return ret ? ret : _ret;
1207                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1208                        return ret ? ret : -EFAULT;
1209                ret += sizeof(msg);
1210                buf += sizeof(msg);
1211                count -= sizeof(msg);
1212                /*
1213                 * Allow to read more than one fault at time but only
1214                 * block if waiting for the very first one.
1215                 */
1216                no_wait = O_NONBLOCK;
1217        }
1218}
1219
1220static void __wake_userfault(struct userfaultfd_ctx *ctx,
1221                             struct userfaultfd_wake_range *range)
1222{
1223        spin_lock(&ctx->fault_pending_wqh.lock);
1224        /* wake all in the range and autoremove */
1225        if (waitqueue_active(&ctx->fault_pending_wqh))
1226                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1227                                     range);
1228        if (waitqueue_active(&ctx->fault_wqh))
1229                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1230        spin_unlock(&ctx->fault_pending_wqh.lock);
1231}
1232
1233static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1234                                           struct userfaultfd_wake_range *range)
1235{
1236        unsigned seq;
1237        bool need_wakeup;
1238
1239        /*
1240         * To be sure waitqueue_active() is not reordered by the CPU
1241         * before the pagetable update, use an explicit SMP memory
1242         * barrier here. PT lock release or mmap_read_unlock(mm) still
1243         * have release semantics that can allow the
1244         * waitqueue_active() to be reordered before the pte update.
1245         */
1246        smp_mb();
1247
1248        /*
1249         * Use waitqueue_active because it's very frequent to
1250         * change the address space atomically even if there are no
1251         * userfaults yet. So we take the spinlock only when we're
1252         * sure we've userfaults to wake.
1253         */
1254        do {
1255                seq = read_seqcount_begin(&ctx->refile_seq);
1256                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1257                        waitqueue_active(&ctx->fault_wqh);
1258                cond_resched();
1259        } while (read_seqcount_retry(&ctx->refile_seq, seq));
1260        if (need_wakeup)
1261                __wake_userfault(ctx, range);
1262}
1263
1264static __always_inline int validate_range(struct mm_struct *mm,
1265                                          __u64 *start, __u64 len)
1266{
1267        __u64 task_size = mm->task_size;
1268
1269        *start = untagged_addr(*start);
1270
1271        if (*start & ~PAGE_MASK)
1272                return -EINVAL;
1273        if (len & ~PAGE_MASK)
1274                return -EINVAL;
1275        if (!len)
1276                return -EINVAL;
1277        if (*start < mmap_min_addr)
1278                return -EINVAL;
1279        if (*start >= task_size)
1280                return -EINVAL;
1281        if (len > task_size - *start)
1282                return -EINVAL;
1283        return 0;
1284}
1285
1286static inline bool vma_can_userfault(struct vm_area_struct *vma,
1287                                     unsigned long vm_flags)
1288{
1289        /* FIXME: add WP support to hugetlbfs and shmem */
1290        return vma_is_anonymous(vma) ||
1291                ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1292                 !(vm_flags & VM_UFFD_WP));
1293}
1294
1295static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1296                                unsigned long arg)
1297{
1298        struct mm_struct *mm = ctx->mm;
1299        struct vm_area_struct *vma, *prev, *cur;
1300        int ret;
1301        struct uffdio_register uffdio_register;
1302        struct uffdio_register __user *user_uffdio_register;
1303        unsigned long vm_flags, new_flags;
1304        bool found;
1305        bool basic_ioctls;
1306        unsigned long start, end, vma_end;
1307
1308        user_uffdio_register = (struct uffdio_register __user *) arg;
1309
1310        ret = -EFAULT;
1311        if (copy_from_user(&uffdio_register, user_uffdio_register,
1312                           sizeof(uffdio_register)-sizeof(__u64)))
1313                goto out;
1314
1315        ret = -EINVAL;
1316        if (!uffdio_register.mode)
1317                goto out;
1318        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1319                                     UFFDIO_REGISTER_MODE_WP))
1320                goto out;
1321        vm_flags = 0;
1322        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1323                vm_flags |= VM_UFFD_MISSING;
1324        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1325                vm_flags |= VM_UFFD_WP;
1326
1327        ret = validate_range(mm, &uffdio_register.range.start,
1328                             uffdio_register.range.len);
1329        if (ret)
1330                goto out;
1331
1332        start = uffdio_register.range.start;
1333        end = start + uffdio_register.range.len;
1334
1335        ret = -ENOMEM;
1336        if (!mmget_not_zero(mm))
1337                goto out;
1338
1339        mmap_write_lock(mm);
1340        if (!mmget_still_valid(mm))
1341                goto out_unlock;
1342        vma = find_vma_prev(mm, start, &prev);
1343        if (!vma)
1344                goto out_unlock;
1345
1346        /* check that there's at least one vma in the range */
1347        ret = -EINVAL;
1348        if (vma->vm_start >= end)
1349                goto out_unlock;
1350
1351        /*
1352         * If the first vma contains huge pages, make sure start address
1353         * is aligned to huge page size.
1354         */
1355        if (is_vm_hugetlb_page(vma)) {
1356                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1357
1358                if (start & (vma_hpagesize - 1))
1359                        goto out_unlock;
1360        }
1361
1362        /*
1363         * Search for not compatible vmas.
1364         */
1365        found = false;
1366        basic_ioctls = false;
1367        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1368                cond_resched();
1369
1370                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1372
1373                /* check not compatible vmas */
1374                ret = -EINVAL;
1375                if (!vma_can_userfault(cur, vm_flags))
1376                        goto out_unlock;
1377
1378                /*
1379                 * UFFDIO_COPY will fill file holes even without
1380                 * PROT_WRITE. This check enforces that if this is a
1381                 * MAP_SHARED, the process has write permission to the backing
1382                 * file. If VM_MAYWRITE is set it also enforces that on a
1383                 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384                 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385                 */
1386                ret = -EPERM;
1387                if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388                        goto out_unlock;
1389
1390                /*
1391                 * If this vma contains ending address, and huge pages
1392                 * check alignment.
1393                 */
1394                if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395                    end > cur->vm_start) {
1396                        unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398                        ret = -EINVAL;
1399
1400                        if (end & (vma_hpagesize - 1))
1401                                goto out_unlock;
1402                }
1403                if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404                        goto out_unlock;
1405
1406                /*
1407                 * Check that this vma isn't already owned by a
1408                 * different userfaultfd. We can't allow more than one
1409                 * userfaultfd to own a single vma simultaneously or we
1410                 * wouldn't know which one to deliver the userfaults to.
1411                 */
1412                ret = -EBUSY;
1413                if (cur->vm_userfaultfd_ctx.ctx &&
1414                    cur->vm_userfaultfd_ctx.ctx != ctx)
1415                        goto out_unlock;
1416
1417                /*
1418                 * Note vmas containing huge pages
1419                 */
1420                if (is_vm_hugetlb_page(cur))
1421                        basic_ioctls = true;
1422
1423                found = true;
1424        }
1425        BUG_ON(!found);
1426
1427        if (vma->vm_start < start)
1428                prev = vma;
1429
1430        ret = 0;
1431        do {
1432                cond_resched();
1433
1434                BUG_ON(!vma_can_userfault(vma, vm_flags));
1435                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1436                       vma->vm_userfaultfd_ctx.ctx != ctx);
1437                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1438
1439                /*
1440                 * Nothing to do: this vma is already registered into this
1441                 * userfaultfd and with the right tracking mode too.
1442                 */
1443                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1444                    (vma->vm_flags & vm_flags) == vm_flags)
1445                        goto skip;
1446
1447                if (vma->vm_start > start)
1448                        start = vma->vm_start;
1449                vma_end = min(end, vma->vm_end);
1450
1451                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1452                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1453                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1454                                 vma_policy(vma),
1455                                 ((struct vm_userfaultfd_ctx){ ctx }));
1456                if (prev) {
1457                        vma = prev;
1458                        goto next;
1459                }
1460                if (vma->vm_start < start) {
1461                        ret = split_vma(mm, vma, start, 1);
1462                        if (ret)
1463                                break;
1464                }
1465                if (vma->vm_end > end) {
1466                        ret = split_vma(mm, vma, end, 0);
1467                        if (ret)
1468                                break;
1469                }
1470        next:
1471                /*
1472                 * In the vma_merge() successful mprotect-like case 8:
1473                 * the next vma was merged into the current one and
1474                 * the current one has not been updated yet.
1475                 */
1476                vma->vm_flags = new_flags;
1477                vma->vm_userfaultfd_ctx.ctx = ctx;
1478
1479        skip:
1480                prev = vma;
1481                start = vma->vm_end;
1482                vma = vma->vm_next;
1483        } while (vma && vma->vm_start < end);
1484out_unlock:
1485        mmap_write_unlock(mm);
1486        mmput(mm);
1487        if (!ret) {
1488                __u64 ioctls_out;
1489
1490                ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1491                    UFFD_API_RANGE_IOCTLS;
1492
1493                /*
1494                 * Declare the WP ioctl only if the WP mode is
1495                 * specified and all checks passed with the range
1496                 */
1497                if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1498                        ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1499
1500                /*
1501                 * Now that we scanned all vmas we can already tell
1502                 * userland which ioctls methods are guaranteed to
1503                 * succeed on this range.
1504                 */
1505                if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1506                        ret = -EFAULT;
1507        }
1508out:
1509        return ret;
1510}
1511
1512static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1513                                  unsigned long arg)
1514{
1515        struct mm_struct *mm = ctx->mm;
1516        struct vm_area_struct *vma, *prev, *cur;
1517        int ret;
1518        struct uffdio_range uffdio_unregister;
1519        unsigned long new_flags;
1520        bool found;
1521        unsigned long start, end, vma_end;
1522        const void __user *buf = (void __user *)arg;
1523
1524        ret = -EFAULT;
1525        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1526                goto out;
1527
1528        ret = validate_range(mm, &uffdio_unregister.start,
1529                             uffdio_unregister.len);
1530        if (ret)
1531                goto out;
1532
1533        start = uffdio_unregister.start;
1534        end = start + uffdio_unregister.len;
1535
1536        ret = -ENOMEM;
1537        if (!mmget_not_zero(mm))
1538                goto out;
1539
1540        mmap_write_lock(mm);
1541        if (!mmget_still_valid(mm))
1542                goto out_unlock;
1543        vma = find_vma_prev(mm, start, &prev);
1544        if (!vma)
1545                goto out_unlock;
1546
1547        /* check that there's at least one vma in the range */
1548        ret = -EINVAL;
1549        if (vma->vm_start >= end)
1550                goto out_unlock;
1551
1552        /*
1553         * If the first vma contains huge pages, make sure start address
1554         * is aligned to huge page size.
1555         */
1556        if (is_vm_hugetlb_page(vma)) {
1557                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1558
1559                if (start & (vma_hpagesize - 1))
1560                        goto out_unlock;
1561        }
1562
1563        /*
1564         * Search for not compatible vmas.
1565         */
1566        found = false;
1567        ret = -EINVAL;
1568        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1569                cond_resched();
1570
1571                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1573
1574                /*
1575                 * Check not compatible vmas, not strictly required
1576                 * here as not compatible vmas cannot have an
1577                 * userfaultfd_ctx registered on them, but this
1578                 * provides for more strict behavior to notice
1579                 * unregistration errors.
1580                 */
1581                if (!vma_can_userfault(cur, cur->vm_flags))
1582                        goto out_unlock;
1583
1584                found = true;
1585        }
1586        BUG_ON(!found);
1587
1588        if (vma->vm_start < start)
1589                prev = vma;
1590
1591        ret = 0;
1592        do {
1593                cond_resched();
1594
1595                BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1596
1597                /*
1598                 * Nothing to do: this vma is already registered into this
1599                 * userfaultfd and with the right tracking mode too.
1600                 */
1601                if (!vma->vm_userfaultfd_ctx.ctx)
1602                        goto skip;
1603
1604                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1605
1606                if (vma->vm_start > start)
1607                        start = vma->vm_start;
1608                vma_end = min(end, vma->vm_end);
1609
1610                if (userfaultfd_missing(vma)) {
1611                        /*
1612                         * Wake any concurrent pending userfault while
1613                         * we unregister, so they will not hang
1614                         * permanently and it avoids userland to call
1615                         * UFFDIO_WAKE explicitly.
1616                         */
1617                        struct userfaultfd_wake_range range;
1618                        range.start = start;
1619                        range.len = vma_end - start;
1620                        wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1621                }
1622
1623                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1624                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1625                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1626                                 vma_policy(vma),
1627                                 NULL_VM_UFFD_CTX);
1628                if (prev) {
1629                        vma = prev;
1630                        goto next;
1631                }
1632                if (vma->vm_start < start) {
1633                        ret = split_vma(mm, vma, start, 1);
1634                        if (ret)
1635                                break;
1636                }
1637                if (vma->vm_end > end) {
1638                        ret = split_vma(mm, vma, end, 0);
1639                        if (ret)
1640                                break;
1641                }
1642        next:
1643                /*
1644                 * In the vma_merge() successful mprotect-like case 8:
1645                 * the next vma was merged into the current one and
1646                 * the current one has not been updated yet.
1647                 */
1648                vma->vm_flags = new_flags;
1649                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1650
1651        skip:
1652                prev = vma;
1653                start = vma->vm_end;
1654                vma = vma->vm_next;
1655        } while (vma && vma->vm_start < end);
1656out_unlock:
1657        mmap_write_unlock(mm);
1658        mmput(mm);
1659out:
1660        return ret;
1661}
1662
1663/*
1664 * userfaultfd_wake may be used in combination with the
1665 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1666 */
1667static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1668                            unsigned long arg)
1669{
1670        int ret;
1671        struct uffdio_range uffdio_wake;
1672        struct userfaultfd_wake_range range;
1673        const void __user *buf = (void __user *)arg;
1674
1675        ret = -EFAULT;
1676        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1677                goto out;
1678
1679        ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1680        if (ret)
1681                goto out;
1682
1683        range.start = uffdio_wake.start;
1684        range.len = uffdio_wake.len;
1685
1686        /*
1687         * len == 0 means wake all and we don't want to wake all here,
1688         * so check it again to be sure.
1689         */
1690        VM_BUG_ON(!range.len);
1691
1692        wake_userfault(ctx, &range);
1693        ret = 0;
1694
1695out:
1696        return ret;
1697}
1698
1699static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1700                            unsigned long arg)
1701{
1702        __s64 ret;
1703        struct uffdio_copy uffdio_copy;
1704        struct uffdio_copy __user *user_uffdio_copy;
1705        struct userfaultfd_wake_range range;
1706
1707        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1708
1709        ret = -EAGAIN;
1710        if (READ_ONCE(ctx->mmap_changing))
1711                goto out;
1712
1713        ret = -EFAULT;
1714        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1715                           /* don't copy "copy" last field */
1716                           sizeof(uffdio_copy)-sizeof(__s64)))
1717                goto out;
1718
1719        ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1720        if (ret)
1721                goto out;
1722        /*
1723         * double check for wraparound just in case. copy_from_user()
1724         * will later check uffdio_copy.src + uffdio_copy.len to fit
1725         * in the userland range.
1726         */
1727        ret = -EINVAL;
1728        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1729                goto out;
1730        if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1731                goto out;
1732        if (mmget_not_zero(ctx->mm)) {
1733                ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1734                                   uffdio_copy.len, &ctx->mmap_changing,
1735                                   uffdio_copy.mode);
1736                mmput(ctx->mm);
1737        } else {
1738                return -ESRCH;
1739        }
1740        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1741                return -EFAULT;
1742        if (ret < 0)
1743                goto out;
1744        BUG_ON(!ret);
1745        /* len == 0 would wake all */
1746        range.len = ret;
1747        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1748                range.start = uffdio_copy.dst;
1749                wake_userfault(ctx, &range);
1750        }
1751        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1752out:
1753        return ret;
1754}
1755
1756static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1757                                unsigned long arg)
1758{
1759        __s64 ret;
1760        struct uffdio_zeropage uffdio_zeropage;
1761        struct uffdio_zeropage __user *user_uffdio_zeropage;
1762        struct userfaultfd_wake_range range;
1763
1764        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1765
1766        ret = -EAGAIN;
1767        if (READ_ONCE(ctx->mmap_changing))
1768                goto out;
1769
1770        ret = -EFAULT;
1771        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1772                           /* don't copy "zeropage" last field */
1773                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1774                goto out;
1775
1776        ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1777                             uffdio_zeropage.range.len);
1778        if (ret)
1779                goto out;
1780        ret = -EINVAL;
1781        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1782                goto out;
1783
1784        if (mmget_not_zero(ctx->mm)) {
1785                ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1786                                     uffdio_zeropage.range.len,
1787                                     &ctx->mmap_changing);
1788                mmput(ctx->mm);
1789        } else {
1790                return -ESRCH;
1791        }
1792        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1793                return -EFAULT;
1794        if (ret < 0)
1795                goto out;
1796        /* len == 0 would wake all */
1797        BUG_ON(!ret);
1798        range.len = ret;
1799        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1800                range.start = uffdio_zeropage.range.start;
1801                wake_userfault(ctx, &range);
1802        }
1803        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1804out:
1805        return ret;
1806}
1807
1808static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1809                                    unsigned long arg)
1810{
1811        int ret;
1812        struct uffdio_writeprotect uffdio_wp;
1813        struct uffdio_writeprotect __user *user_uffdio_wp;
1814        struct userfaultfd_wake_range range;
1815        bool mode_wp, mode_dontwake;
1816
1817        if (READ_ONCE(ctx->mmap_changing))
1818                return -EAGAIN;
1819
1820        user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1821
1822        if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1823                           sizeof(struct uffdio_writeprotect)))
1824                return -EFAULT;
1825
1826        ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1827                             uffdio_wp.range.len);
1828        if (ret)
1829                return ret;
1830
1831        if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1832                               UFFDIO_WRITEPROTECT_MODE_WP))
1833                return -EINVAL;
1834
1835        mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1836        mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1837
1838        if (mode_wp && mode_dontwake)
1839                return -EINVAL;
1840
1841        ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1842                                  uffdio_wp.range.len, mode_wp,
1843                                  &ctx->mmap_changing);
1844        if (ret)
1845                return ret;
1846
1847        if (!mode_wp && !mode_dontwake) {
1848                range.start = uffdio_wp.range.start;
1849                range.len = uffdio_wp.range.len;
1850                wake_userfault(ctx, &range);
1851        }
1852        return ret;
1853}
1854
1855static inline unsigned int uffd_ctx_features(__u64 user_features)
1856{
1857        /*
1858         * For the current set of features the bits just coincide
1859         */
1860        return (unsigned int)user_features;
1861}
1862
1863/*
1864 * userland asks for a certain API version and we return which bits
1865 * and ioctl commands are implemented in this kernel for such API
1866 * version or -EINVAL if unknown.
1867 */
1868static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1869                           unsigned long arg)
1870{
1871        struct uffdio_api uffdio_api;
1872        void __user *buf = (void __user *)arg;
1873        int ret;
1874        __u64 features;
1875
1876        ret = -EINVAL;
1877        if (ctx->state != UFFD_STATE_WAIT_API)
1878                goto out;
1879        ret = -EFAULT;
1880        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1881                goto out;
1882        features = uffdio_api.features;
1883        if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1884                memset(&uffdio_api, 0, sizeof(uffdio_api));
1885                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1886                        goto out;
1887                ret = -EINVAL;
1888                goto out;
1889        }
1890        /* report all available features and ioctls to userland */
1891        uffdio_api.features = UFFD_API_FEATURES;
1892        uffdio_api.ioctls = UFFD_API_IOCTLS;
1893        ret = -EFAULT;
1894        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1895                goto out;
1896        ctx->state = UFFD_STATE_RUNNING;
1897        /* only enable the requested features for this uffd context */
1898        ctx->features = uffd_ctx_features(features);
1899        ret = 0;
1900out:
1901        return ret;
1902}
1903
1904static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1905                              unsigned long arg)
1906{
1907        int ret = -EINVAL;
1908        struct userfaultfd_ctx *ctx = file->private_data;
1909
1910        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1911                return -EINVAL;
1912
1913        switch(cmd) {
1914        case UFFDIO_API:
1915                ret = userfaultfd_api(ctx, arg);
1916                break;
1917        case UFFDIO_REGISTER:
1918                ret = userfaultfd_register(ctx, arg);
1919                break;
1920        case UFFDIO_UNREGISTER:
1921                ret = userfaultfd_unregister(ctx, arg);
1922                break;
1923        case UFFDIO_WAKE:
1924                ret = userfaultfd_wake(ctx, arg);
1925                break;
1926        case UFFDIO_COPY:
1927                ret = userfaultfd_copy(ctx, arg);
1928                break;
1929        case UFFDIO_ZEROPAGE:
1930                ret = userfaultfd_zeropage(ctx, arg);
1931                break;
1932        case UFFDIO_WRITEPROTECT:
1933                ret = userfaultfd_writeprotect(ctx, arg);
1934                break;
1935        }
1936        return ret;
1937}
1938
1939#ifdef CONFIG_PROC_FS
1940static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1941{
1942        struct userfaultfd_ctx *ctx = f->private_data;
1943        wait_queue_entry_t *wq;
1944        unsigned long pending = 0, total = 0;
1945
1946        spin_lock(&ctx->fault_pending_wqh.lock);
1947        list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1948                pending++;
1949                total++;
1950        }
1951        list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1952                total++;
1953        }
1954        spin_unlock(&ctx->fault_pending_wqh.lock);
1955
1956        /*
1957         * If more protocols will be added, there will be all shown
1958         * separated by a space. Like this:
1959         *      protocols: aa:... bb:...
1960         */
1961        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1962                   pending, total, UFFD_API, ctx->features,
1963                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1964}
1965#endif
1966
1967static const struct file_operations userfaultfd_fops = {
1968#ifdef CONFIG_PROC_FS
1969        .show_fdinfo    = userfaultfd_show_fdinfo,
1970#endif
1971        .release        = userfaultfd_release,
1972        .poll           = userfaultfd_poll,
1973        .read           = userfaultfd_read,
1974        .unlocked_ioctl = userfaultfd_ioctl,
1975        .compat_ioctl   = compat_ptr_ioctl,
1976        .llseek         = noop_llseek,
1977};
1978
1979static void init_once_userfaultfd_ctx(void *mem)
1980{
1981        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1982
1983        init_waitqueue_head(&ctx->fault_pending_wqh);
1984        init_waitqueue_head(&ctx->fault_wqh);
1985        init_waitqueue_head(&ctx->event_wqh);
1986        init_waitqueue_head(&ctx->fd_wqh);
1987        seqcount_init(&ctx->refile_seq);
1988}
1989
1990SYSCALL_DEFINE1(userfaultfd, int, flags)
1991{
1992        struct userfaultfd_ctx *ctx;
1993        int fd;
1994
1995        BUG_ON(!current->mm);
1996
1997        /* Check the UFFD_* constants for consistency.  */
1998        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1999        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2000
2001        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
2002                return -EINVAL;
2003
2004        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2005        if (!ctx)
2006                return -ENOMEM;
2007
2008        atomic_set(&ctx->refcount, 1);
2009        ctx->flags = flags;
2010        ctx->features = 0;
2011        ctx->state = UFFD_STATE_WAIT_API;
2012        ctx->released = false;
2013        ctx->mmap_changing = false;
2014        ctx->mm = current->mm;
2015        /* prevent the mm struct to be freed */
2016        mmgrab(ctx->mm);
2017
2018        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2019                              O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
2020        if (fd < 0) {
2021                mmdrop(ctx->mm);
2022                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2023        }
2024        return fd;
2025}
2026
2027static int __init userfaultfd_init(void)
2028{
2029        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2030                                                sizeof(struct userfaultfd_ctx),
2031                                                0,
2032                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2033                                                init_once_userfaultfd_ctx);
2034        return 0;
2035}
2036__initcall(userfaultfd_init);
2037