linux/include/linux/bpf_verifier.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#ifndef _LINUX_BPF_VERIFIER_H
   5#define _LINUX_BPF_VERIFIER_H 1
   6
   7#include <linux/bpf.h> /* for enum bpf_reg_type */
   8#include <linux/btf.h> /* for struct btf and btf_id() */
   9#include <linux/filter.h> /* for MAX_BPF_STACK */
  10#include <linux/tnum.h>
  11
  12/* Maximum variable offset umax_value permitted when resolving memory accesses.
  13 * In practice this is far bigger than any realistic pointer offset; this limit
  14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  15 */
  16#define BPF_MAX_VAR_OFF (1 << 29)
  17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  18 * that converting umax_value to int cannot overflow.
  19 */
  20#define BPF_MAX_VAR_SIZ (1 << 29)
  21
  22/* Liveness marks, used for registers and spilled-regs (in stack slots).
  23 * Read marks propagate upwards until they find a write mark; they record that
  24 * "one of this state's descendants read this reg" (and therefore the reg is
  25 * relevant for states_equal() checks).
  26 * Write marks collect downwards and do not propagate; they record that "the
  27 * straight-line code that reached this state (from its parent) wrote this reg"
  28 * (and therefore that reads propagated from this state or its descendants
  29 * should not propagate to its parent).
  30 * A state with a write mark can receive read marks; it just won't propagate
  31 * them to its parent, since the write mark is a property, not of the state,
  32 * but of the link between it and its parent.  See mark_reg_read() and
  33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
  34 */
  35enum bpf_reg_liveness {
  36        REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
  37        REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
  38        REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
  39        REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
  40        REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
  41        REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
  42};
  43
  44struct bpf_reg_state {
  45        /* Ordering of fields matters.  See states_equal() */
  46        enum bpf_reg_type type;
  47        /* Fixed part of pointer offset, pointer types only */
  48        s32 off;
  49        union {
  50                /* valid when type == PTR_TO_PACKET */
  51                int range;
  52
  53                /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  54                 *   PTR_TO_MAP_VALUE_OR_NULL
  55                 */
  56                struct bpf_map *map_ptr;
  57
  58                /* for PTR_TO_BTF_ID */
  59                struct {
  60                        struct btf *btf;
  61                        u32 btf_id;
  62                };
  63
  64                u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
  65
  66                /* Max size from any of the above. */
  67                struct {
  68                        unsigned long raw1;
  69                        unsigned long raw2;
  70                } raw;
  71        };
  72        /* For PTR_TO_PACKET, used to find other pointers with the same variable
  73         * offset, so they can share range knowledge.
  74         * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
  75         * came from, when one is tested for != NULL.
  76         * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
  77         * for the purpose of tracking that it's freed.
  78         * For PTR_TO_SOCKET this is used to share which pointers retain the
  79         * same reference to the socket, to determine proper reference freeing.
  80         */
  81        u32 id;
  82        /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
  83         * from a pointer-cast helper, bpf_sk_fullsock() and
  84         * bpf_tcp_sock().
  85         *
  86         * Consider the following where "sk" is a reference counted
  87         * pointer returned from "sk = bpf_sk_lookup_tcp();":
  88         *
  89         * 1: sk = bpf_sk_lookup_tcp();
  90         * 2: if (!sk) { return 0; }
  91         * 3: fullsock = bpf_sk_fullsock(sk);
  92         * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
  93         * 5: tp = bpf_tcp_sock(fullsock);
  94         * 6: if (!tp) { bpf_sk_release(sk); return 0; }
  95         * 7: bpf_sk_release(sk);
  96         * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
  97         *
  98         * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
  99         * "tp" ptr should be invalidated also.  In order to do that,
 100         * the reg holding "fullsock" and "sk" need to remember
 101         * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
 102         * such that the verifier can reset all regs which have
 103         * ref_obj_id matching the sk_reg->id.
 104         *
 105         * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
 106         * sk_reg->id will stay as NULL-marking purpose only.
 107         * After NULL-marking is done, sk_reg->id can be reset to 0.
 108         *
 109         * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
 110         * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
 111         *
 112         * After "tp = bpf_tcp_sock(fullsock);" at line 5,
 113         * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
 114         * which is the same as sk_reg->ref_obj_id.
 115         *
 116         * From the verifier perspective, if sk, fullsock and tp
 117         * are not NULL, they are the same ptr with different
 118         * reg->type.  In particular, bpf_sk_release(tp) is also
 119         * allowed and has the same effect as bpf_sk_release(sk).
 120         */
 121        u32 ref_obj_id;
 122        /* For scalar types (SCALAR_VALUE), this represents our knowledge of
 123         * the actual value.
 124         * For pointer types, this represents the variable part of the offset
 125         * from the pointed-to object, and is shared with all bpf_reg_states
 126         * with the same id as us.
 127         */
 128        struct tnum var_off;
 129        /* Used to determine if any memory access using this register will
 130         * result in a bad access.
 131         * These refer to the same value as var_off, not necessarily the actual
 132         * contents of the register.
 133         */
 134        s64 smin_value; /* minimum possible (s64)value */
 135        s64 smax_value; /* maximum possible (s64)value */
 136        u64 umin_value; /* minimum possible (u64)value */
 137        u64 umax_value; /* maximum possible (u64)value */
 138        s32 s32_min_value; /* minimum possible (s32)value */
 139        s32 s32_max_value; /* maximum possible (s32)value */
 140        u32 u32_min_value; /* minimum possible (u32)value */
 141        u32 u32_max_value; /* maximum possible (u32)value */
 142        /* parentage chain for liveness checking */
 143        struct bpf_reg_state *parent;
 144        /* Inside the callee two registers can be both PTR_TO_STACK like
 145         * R1=fp-8 and R2=fp-8, but one of them points to this function stack
 146         * while another to the caller's stack. To differentiate them 'frameno'
 147         * is used which is an index in bpf_verifier_state->frame[] array
 148         * pointing to bpf_func_state.
 149         */
 150        u32 frameno;
 151        /* Tracks subreg definition. The stored value is the insn_idx of the
 152         * writing insn. This is safe because subreg_def is used before any insn
 153         * patching which only happens after main verification finished.
 154         */
 155        s32 subreg_def;
 156        enum bpf_reg_liveness live;
 157        /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
 158        bool precise;
 159};
 160
 161enum bpf_stack_slot_type {
 162        STACK_INVALID,    /* nothing was stored in this stack slot */
 163        STACK_SPILL,      /* register spilled into stack */
 164        STACK_MISC,       /* BPF program wrote some data into this slot */
 165        STACK_ZERO,       /* BPF program wrote constant zero */
 166};
 167
 168#define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 169
 170struct bpf_stack_state {
 171        struct bpf_reg_state spilled_ptr;
 172        u8 slot_type[BPF_REG_SIZE];
 173};
 174
 175struct bpf_reference_state {
 176        /* Track each reference created with a unique id, even if the same
 177         * instruction creates the reference multiple times (eg, via CALL).
 178         */
 179        int id;
 180        /* Instruction where the allocation of this reference occurred. This
 181         * is used purely to inform the user of a reference leak.
 182         */
 183        int insn_idx;
 184};
 185
 186/* state of the program:
 187 * type of all registers and stack info
 188 */
 189struct bpf_func_state {
 190        struct bpf_reg_state regs[MAX_BPF_REG];
 191        /* index of call instruction that called into this func */
 192        int callsite;
 193        /* stack frame number of this function state from pov of
 194         * enclosing bpf_verifier_state.
 195         * 0 = main function, 1 = first callee.
 196         */
 197        u32 frameno;
 198        /* subprog number == index within subprog_info
 199         * zero == main subprog
 200         */
 201        u32 subprogno;
 202
 203        /* The following fields should be last. See copy_func_state() */
 204        int acquired_refs;
 205        struct bpf_reference_state *refs;
 206        int allocated_stack;
 207        struct bpf_stack_state *stack;
 208};
 209
 210struct bpf_idx_pair {
 211        u32 prev_idx;
 212        u32 idx;
 213};
 214
 215struct bpf_id_pair {
 216        u32 old;
 217        u32 cur;
 218};
 219
 220/* Maximum number of register states that can exist at once */
 221#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
 222#define MAX_CALL_FRAMES 8
 223struct bpf_verifier_state {
 224        /* call stack tracking */
 225        struct bpf_func_state *frame[MAX_CALL_FRAMES];
 226        struct bpf_verifier_state *parent;
 227        /*
 228         * 'branches' field is the number of branches left to explore:
 229         * 0 - all possible paths from this state reached bpf_exit or
 230         * were safely pruned
 231         * 1 - at least one path is being explored.
 232         * This state hasn't reached bpf_exit
 233         * 2 - at least two paths are being explored.
 234         * This state is an immediate parent of two children.
 235         * One is fallthrough branch with branches==1 and another
 236         * state is pushed into stack (to be explored later) also with
 237         * branches==1. The parent of this state has branches==1.
 238         * The verifier state tree connected via 'parent' pointer looks like:
 239         * 1
 240         * 1
 241         * 2 -> 1 (first 'if' pushed into stack)
 242         * 1
 243         * 2 -> 1 (second 'if' pushed into stack)
 244         * 1
 245         * 1
 246         * 1 bpf_exit.
 247         *
 248         * Once do_check() reaches bpf_exit, it calls update_branch_counts()
 249         * and the verifier state tree will look:
 250         * 1
 251         * 1
 252         * 2 -> 1 (first 'if' pushed into stack)
 253         * 1
 254         * 1 -> 1 (second 'if' pushed into stack)
 255         * 0
 256         * 0
 257         * 0 bpf_exit.
 258         * After pop_stack() the do_check() will resume at second 'if'.
 259         *
 260         * If is_state_visited() sees a state with branches > 0 it means
 261         * there is a loop. If such state is exactly equal to the current state
 262         * it's an infinite loop. Note states_equal() checks for states
 263         * equvalency, so two states being 'states_equal' does not mean
 264         * infinite loop. The exact comparison is provided by
 265         * states_maybe_looping() function. It's a stronger pre-check and
 266         * much faster than states_equal().
 267         *
 268         * This algorithm may not find all possible infinite loops or
 269         * loop iteration count may be too high.
 270         * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
 271         */
 272        u32 branches;
 273        u32 insn_idx;
 274        u32 curframe;
 275        u32 active_spin_lock;
 276        bool speculative;
 277
 278        /* first and last insn idx of this verifier state */
 279        u32 first_insn_idx;
 280        u32 last_insn_idx;
 281        /* jmp history recorded from first to last.
 282         * backtracking is using it to go from last to first.
 283         * For most states jmp_history_cnt is [0-3].
 284         * For loops can go up to ~40.
 285         */
 286        struct bpf_idx_pair *jmp_history;
 287        u32 jmp_history_cnt;
 288};
 289
 290#define bpf_get_spilled_reg(slot, frame)                                \
 291        (((slot < frame->allocated_stack / BPF_REG_SIZE) &&             \
 292          (frame->stack[slot].slot_type[0] == STACK_SPILL))             \
 293         ? &frame->stack[slot].spilled_ptr : NULL)
 294
 295/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
 296#define bpf_for_each_spilled_reg(iter, frame, reg)                      \
 297        for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);          \
 298             iter < frame->allocated_stack / BPF_REG_SIZE;              \
 299             iter++, reg = bpf_get_spilled_reg(iter, frame))
 300
 301/* linked list of verifier states used to prune search */
 302struct bpf_verifier_state_list {
 303        struct bpf_verifier_state state;
 304        struct bpf_verifier_state_list *next;
 305        int miss_cnt, hit_cnt;
 306};
 307
 308/* Possible states for alu_state member. */
 309#define BPF_ALU_SANITIZE_SRC            (1U << 0)
 310#define BPF_ALU_SANITIZE_DST            (1U << 1)
 311#define BPF_ALU_NEG_VALUE               (1U << 2)
 312#define BPF_ALU_NON_POINTER             (1U << 3)
 313#define BPF_ALU_IMMEDIATE               (1U << 4)
 314#define BPF_ALU_SANITIZE                (BPF_ALU_SANITIZE_SRC | \
 315                                         BPF_ALU_SANITIZE_DST)
 316
 317struct bpf_insn_aux_data {
 318        union {
 319                enum bpf_reg_type ptr_type;     /* pointer type for load/store insns */
 320                unsigned long map_ptr_state;    /* pointer/poison value for maps */
 321                s32 call_imm;                   /* saved imm field of call insn */
 322                u32 alu_limit;                  /* limit for add/sub register with pointer */
 323                struct {
 324                        u32 map_index;          /* index into used_maps[] */
 325                        u32 map_off;            /* offset from value base address */
 326                };
 327                struct {
 328                        enum bpf_reg_type reg_type;     /* type of pseudo_btf_id */
 329                        union {
 330                                struct {
 331                                        struct btf *btf;
 332                                        u32 btf_id;     /* btf_id for struct typed var */
 333                                };
 334                                u32 mem_size;   /* mem_size for non-struct typed var */
 335                        };
 336                } btf_var;
 337        };
 338        u64 map_key_state; /* constant (32 bit) key tracking for maps */
 339        int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
 340        u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
 341        bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
 342        bool zext_dst; /* this insn zero extends dst reg */
 343        u8 alu_state; /* used in combination with alu_limit */
 344
 345        /* below fields are initialized once */
 346        unsigned int orig_idx; /* original instruction index */
 347        bool prune_point;
 348};
 349
 350#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 351#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
 352
 353#define BPF_VERIFIER_TMP_LOG_SIZE       1024
 354
 355struct bpf_verifier_log {
 356        u32 level;
 357        char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
 358        char __user *ubuf;
 359        u32 len_used;
 360        u32 len_total;
 361};
 362
 363static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
 364{
 365        return log->len_used >= log->len_total - 1;
 366}
 367
 368#define BPF_LOG_LEVEL1  1
 369#define BPF_LOG_LEVEL2  2
 370#define BPF_LOG_STATS   4
 371#define BPF_LOG_LEVEL   (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
 372#define BPF_LOG_MASK    (BPF_LOG_LEVEL | BPF_LOG_STATS)
 373#define BPF_LOG_KERNEL  (BPF_LOG_MASK + 1) /* kernel internal flag */
 374
 375static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
 376{
 377        return log &&
 378                ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
 379                 log->level == BPF_LOG_KERNEL);
 380}
 381
 382#define BPF_MAX_SUBPROGS 256
 383
 384struct bpf_subprog_info {
 385        /* 'start' has to be the first field otherwise find_subprog() won't work */
 386        u32 start; /* insn idx of function entry point */
 387        u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
 388        u16 stack_depth; /* max. stack depth used by this function */
 389        bool has_tail_call;
 390        bool tail_call_reachable;
 391        bool has_ld_abs;
 392};
 393
 394/* single container for all structs
 395 * one verifier_env per bpf_check() call
 396 */
 397struct bpf_verifier_env {
 398        u32 insn_idx;
 399        u32 prev_insn_idx;
 400        struct bpf_prog *prog;          /* eBPF program being verified */
 401        const struct bpf_verifier_ops *ops;
 402        struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
 403        int stack_size;                 /* number of states to be processed */
 404        bool strict_alignment;          /* perform strict pointer alignment checks */
 405        bool test_state_freq;           /* test verifier with different pruning frequency */
 406        struct bpf_verifier_state *cur_state; /* current verifier state */
 407        struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
 408        struct bpf_verifier_state_list *free_list;
 409        struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 410        struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
 411        u32 used_map_cnt;               /* number of used maps */
 412        u32 used_btf_cnt;               /* number of used BTF objects */
 413        u32 id_gen;                     /* used to generate unique reg IDs */
 414        bool explore_alu_limits;
 415        bool allow_ptr_leaks;
 416        bool allow_uninit_stack;
 417        bool allow_ptr_to_map_access;
 418        bool bpf_capable;
 419        bool bypass_spec_v1;
 420        bool bypass_spec_v4;
 421        bool seen_direct_write;
 422        struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
 423        const struct bpf_line_info *prev_linfo;
 424        struct bpf_verifier_log log;
 425        struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
 426        struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
 427        struct {
 428                int *insn_state;
 429                int *insn_stack;
 430                int cur_stack;
 431        } cfg;
 432        u32 pass_cnt; /* number of times do_check() was called */
 433        u32 subprog_cnt;
 434        /* number of instructions analyzed by the verifier */
 435        u32 prev_insn_processed, insn_processed;
 436        /* number of jmps, calls, exits analyzed so far */
 437        u32 prev_jmps_processed, jmps_processed;
 438        /* total verification time */
 439        u64 verification_time;
 440        /* maximum number of verifier states kept in 'branching' instructions */
 441        u32 max_states_per_insn;
 442        /* total number of allocated verifier states */
 443        u32 total_states;
 444        /* some states are freed during program analysis.
 445         * this is peak number of states. this number dominates kernel
 446         * memory consumption during verification
 447         */
 448        u32 peak_states;
 449        /* longest register parentage chain walked for liveness marking */
 450        u32 longest_mark_read_walk;
 451};
 452
 453__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
 454                                      const char *fmt, va_list args);
 455__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 456                                           const char *fmt, ...);
 457__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 458                            const char *fmt, ...);
 459
 460static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
 461{
 462        struct bpf_verifier_state *cur = env->cur_state;
 463
 464        return cur->frame[cur->curframe];
 465}
 466
 467static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
 468{
 469        return cur_func(env)->regs;
 470}
 471
 472int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
 473int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
 474                                 int insn_idx, int prev_insn_idx);
 475int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
 476void
 477bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
 478                              struct bpf_insn *insn);
 479void
 480bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
 481
 482int check_ctx_reg(struct bpf_verifier_env *env,
 483                  const struct bpf_reg_state *reg, int regno);
 484
 485/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
 486static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
 487                                             struct btf *btf, u32 btf_id)
 488{
 489        if (tgt_prog)
 490                return ((u64)tgt_prog->aux->id << 32) | btf_id;
 491        else
 492                return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
 493}
 494
 495int bpf_check_attach_target(struct bpf_verifier_log *log,
 496                            const struct bpf_prog *prog,
 497                            const struct bpf_prog *tgt_prog,
 498                            u32 btf_id,
 499                            struct bpf_attach_target_info *tgt_info);
 500
 501#endif /* _LINUX_BPF_VERIFIER_H */
 502