1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21 22/* Liveness marks, used for registers and spilled-regs (in stack slots). 23 * Read marks propagate upwards until they find a write mark; they record that 24 * "one of this state's descendants read this reg" (and therefore the reg is 25 * relevant for states_equal() checks). 26 * Write marks collect downwards and do not propagate; they record that "the 27 * straight-line code that reached this state (from its parent) wrote this reg" 28 * (and therefore that reads propagated from this state or its descendants 29 * should not propagate to its parent). 30 * A state with a write mark can receive read marks; it just won't propagate 31 * them to its parent, since the write mark is a property, not of the state, 32 * but of the link between it and its parent. See mark_reg_read() and 33 * mark_stack_slot_read() in kernel/bpf/verifier.c. 34 */ 35enum bpf_reg_liveness { 36 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 37 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 38 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 39 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 40 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 41 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 42}; 43 44struct bpf_reg_state { 45 /* Ordering of fields matters. See states_equal() */ 46 enum bpf_reg_type type; 47 /* Fixed part of pointer offset, pointer types only */ 48 s32 off; 49 union { 50 /* valid when type == PTR_TO_PACKET */ 51 int range; 52 53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 54 * PTR_TO_MAP_VALUE_OR_NULL 55 */ 56 struct bpf_map *map_ptr; 57 58 /* for PTR_TO_BTF_ID */ 59 struct { 60 struct btf *btf; 61 u32 btf_id; 62 }; 63 64 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 65 66 /* Max size from any of the above. */ 67 struct { 68 unsigned long raw1; 69 unsigned long raw2; 70 } raw; 71 }; 72 /* For PTR_TO_PACKET, used to find other pointers with the same variable 73 * offset, so they can share range knowledge. 74 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 75 * came from, when one is tested for != NULL. 76 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 77 * for the purpose of tracking that it's freed. 78 * For PTR_TO_SOCKET this is used to share which pointers retain the 79 * same reference to the socket, to determine proper reference freeing. 80 */ 81 u32 id; 82 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 83 * from a pointer-cast helper, bpf_sk_fullsock() and 84 * bpf_tcp_sock(). 85 * 86 * Consider the following where "sk" is a reference counted 87 * pointer returned from "sk = bpf_sk_lookup_tcp();": 88 * 89 * 1: sk = bpf_sk_lookup_tcp(); 90 * 2: if (!sk) { return 0; } 91 * 3: fullsock = bpf_sk_fullsock(sk); 92 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 93 * 5: tp = bpf_tcp_sock(fullsock); 94 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 95 * 7: bpf_sk_release(sk); 96 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 97 * 98 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 99 * "tp" ptr should be invalidated also. In order to do that, 100 * the reg holding "fullsock" and "sk" need to remember 101 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 102 * such that the verifier can reset all regs which have 103 * ref_obj_id matching the sk_reg->id. 104 * 105 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 106 * sk_reg->id will stay as NULL-marking purpose only. 107 * After NULL-marking is done, sk_reg->id can be reset to 0. 108 * 109 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 110 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 111 * 112 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 113 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 114 * which is the same as sk_reg->ref_obj_id. 115 * 116 * From the verifier perspective, if sk, fullsock and tp 117 * are not NULL, they are the same ptr with different 118 * reg->type. In particular, bpf_sk_release(tp) is also 119 * allowed and has the same effect as bpf_sk_release(sk). 120 */ 121 u32 ref_obj_id; 122 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 123 * the actual value. 124 * For pointer types, this represents the variable part of the offset 125 * from the pointed-to object, and is shared with all bpf_reg_states 126 * with the same id as us. 127 */ 128 struct tnum var_off; 129 /* Used to determine if any memory access using this register will 130 * result in a bad access. 131 * These refer to the same value as var_off, not necessarily the actual 132 * contents of the register. 133 */ 134 s64 smin_value; /* minimum possible (s64)value */ 135 s64 smax_value; /* maximum possible (s64)value */ 136 u64 umin_value; /* minimum possible (u64)value */ 137 u64 umax_value; /* maximum possible (u64)value */ 138 s32 s32_min_value; /* minimum possible (s32)value */ 139 s32 s32_max_value; /* maximum possible (s32)value */ 140 u32 u32_min_value; /* minimum possible (u32)value */ 141 u32 u32_max_value; /* maximum possible (u32)value */ 142 /* parentage chain for liveness checking */ 143 struct bpf_reg_state *parent; 144 /* Inside the callee two registers can be both PTR_TO_STACK like 145 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 146 * while another to the caller's stack. To differentiate them 'frameno' 147 * is used which is an index in bpf_verifier_state->frame[] array 148 * pointing to bpf_func_state. 149 */ 150 u32 frameno; 151 /* Tracks subreg definition. The stored value is the insn_idx of the 152 * writing insn. This is safe because subreg_def is used before any insn 153 * patching which only happens after main verification finished. 154 */ 155 s32 subreg_def; 156 enum bpf_reg_liveness live; 157 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 158 bool precise; 159}; 160 161enum bpf_stack_slot_type { 162 STACK_INVALID, /* nothing was stored in this stack slot */ 163 STACK_SPILL, /* register spilled into stack */ 164 STACK_MISC, /* BPF program wrote some data into this slot */ 165 STACK_ZERO, /* BPF program wrote constant zero */ 166}; 167 168#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 169 170struct bpf_stack_state { 171 struct bpf_reg_state spilled_ptr; 172 u8 slot_type[BPF_REG_SIZE]; 173}; 174 175struct bpf_reference_state { 176 /* Track each reference created with a unique id, even if the same 177 * instruction creates the reference multiple times (eg, via CALL). 178 */ 179 int id; 180 /* Instruction where the allocation of this reference occurred. This 181 * is used purely to inform the user of a reference leak. 182 */ 183 int insn_idx; 184}; 185 186/* state of the program: 187 * type of all registers and stack info 188 */ 189struct bpf_func_state { 190 struct bpf_reg_state regs[MAX_BPF_REG]; 191 /* index of call instruction that called into this func */ 192 int callsite; 193 /* stack frame number of this function state from pov of 194 * enclosing bpf_verifier_state. 195 * 0 = main function, 1 = first callee. 196 */ 197 u32 frameno; 198 /* subprog number == index within subprog_info 199 * zero == main subprog 200 */ 201 u32 subprogno; 202 203 /* The following fields should be last. See copy_func_state() */ 204 int acquired_refs; 205 struct bpf_reference_state *refs; 206 int allocated_stack; 207 struct bpf_stack_state *stack; 208}; 209 210struct bpf_idx_pair { 211 u32 prev_idx; 212 u32 idx; 213}; 214 215struct bpf_id_pair { 216 u32 old; 217 u32 cur; 218}; 219 220/* Maximum number of register states that can exist at once */ 221#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 222#define MAX_CALL_FRAMES 8 223struct bpf_verifier_state { 224 /* call stack tracking */ 225 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 226 struct bpf_verifier_state *parent; 227 /* 228 * 'branches' field is the number of branches left to explore: 229 * 0 - all possible paths from this state reached bpf_exit or 230 * were safely pruned 231 * 1 - at least one path is being explored. 232 * This state hasn't reached bpf_exit 233 * 2 - at least two paths are being explored. 234 * This state is an immediate parent of two children. 235 * One is fallthrough branch with branches==1 and another 236 * state is pushed into stack (to be explored later) also with 237 * branches==1. The parent of this state has branches==1. 238 * The verifier state tree connected via 'parent' pointer looks like: 239 * 1 240 * 1 241 * 2 -> 1 (first 'if' pushed into stack) 242 * 1 243 * 2 -> 1 (second 'if' pushed into stack) 244 * 1 245 * 1 246 * 1 bpf_exit. 247 * 248 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 249 * and the verifier state tree will look: 250 * 1 251 * 1 252 * 2 -> 1 (first 'if' pushed into stack) 253 * 1 254 * 1 -> 1 (second 'if' pushed into stack) 255 * 0 256 * 0 257 * 0 bpf_exit. 258 * After pop_stack() the do_check() will resume at second 'if'. 259 * 260 * If is_state_visited() sees a state with branches > 0 it means 261 * there is a loop. If such state is exactly equal to the current state 262 * it's an infinite loop. Note states_equal() checks for states 263 * equvalency, so two states being 'states_equal' does not mean 264 * infinite loop. The exact comparison is provided by 265 * states_maybe_looping() function. It's a stronger pre-check and 266 * much faster than states_equal(). 267 * 268 * This algorithm may not find all possible infinite loops or 269 * loop iteration count may be too high. 270 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 271 */ 272 u32 branches; 273 u32 insn_idx; 274 u32 curframe; 275 u32 active_spin_lock; 276 bool speculative; 277 278 /* first and last insn idx of this verifier state */ 279 u32 first_insn_idx; 280 u32 last_insn_idx; 281 /* jmp history recorded from first to last. 282 * backtracking is using it to go from last to first. 283 * For most states jmp_history_cnt is [0-3]. 284 * For loops can go up to ~40. 285 */ 286 struct bpf_idx_pair *jmp_history; 287 u32 jmp_history_cnt; 288}; 289 290#define bpf_get_spilled_reg(slot, frame) \ 291 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 292 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 293 ? &frame->stack[slot].spilled_ptr : NULL) 294 295/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 296#define bpf_for_each_spilled_reg(iter, frame, reg) \ 297 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 298 iter < frame->allocated_stack / BPF_REG_SIZE; \ 299 iter++, reg = bpf_get_spilled_reg(iter, frame)) 300 301/* linked list of verifier states used to prune search */ 302struct bpf_verifier_state_list { 303 struct bpf_verifier_state state; 304 struct bpf_verifier_state_list *next; 305 int miss_cnt, hit_cnt; 306}; 307 308/* Possible states for alu_state member. */ 309#define BPF_ALU_SANITIZE_SRC (1U << 0) 310#define BPF_ALU_SANITIZE_DST (1U << 1) 311#define BPF_ALU_NEG_VALUE (1U << 2) 312#define BPF_ALU_NON_POINTER (1U << 3) 313#define BPF_ALU_IMMEDIATE (1U << 4) 314#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 315 BPF_ALU_SANITIZE_DST) 316 317struct bpf_insn_aux_data { 318 union { 319 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 320 unsigned long map_ptr_state; /* pointer/poison value for maps */ 321 s32 call_imm; /* saved imm field of call insn */ 322 u32 alu_limit; /* limit for add/sub register with pointer */ 323 struct { 324 u32 map_index; /* index into used_maps[] */ 325 u32 map_off; /* offset from value base address */ 326 }; 327 struct { 328 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 329 union { 330 struct { 331 struct btf *btf; 332 u32 btf_id; /* btf_id for struct typed var */ 333 }; 334 u32 mem_size; /* mem_size for non-struct typed var */ 335 }; 336 } btf_var; 337 }; 338 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 339 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 340 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 341 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 342 bool zext_dst; /* this insn zero extends dst reg */ 343 u8 alu_state; /* used in combination with alu_limit */ 344 345 /* below fields are initialized once */ 346 unsigned int orig_idx; /* original instruction index */ 347 bool prune_point; 348}; 349 350#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 351#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 352 353#define BPF_VERIFIER_TMP_LOG_SIZE 1024 354 355struct bpf_verifier_log { 356 u32 level; 357 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 358 char __user *ubuf; 359 u32 len_used; 360 u32 len_total; 361}; 362 363static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 364{ 365 return log->len_used >= log->len_total - 1; 366} 367 368#define BPF_LOG_LEVEL1 1 369#define BPF_LOG_LEVEL2 2 370#define BPF_LOG_STATS 4 371#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 372#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 373#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 374 375static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 376{ 377 return log && 378 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || 379 log->level == BPF_LOG_KERNEL); 380} 381 382#define BPF_MAX_SUBPROGS 256 383 384struct bpf_subprog_info { 385 /* 'start' has to be the first field otherwise find_subprog() won't work */ 386 u32 start; /* insn idx of function entry point */ 387 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 388 u16 stack_depth; /* max. stack depth used by this function */ 389 bool has_tail_call; 390 bool tail_call_reachable; 391 bool has_ld_abs; 392}; 393 394/* single container for all structs 395 * one verifier_env per bpf_check() call 396 */ 397struct bpf_verifier_env { 398 u32 insn_idx; 399 u32 prev_insn_idx; 400 struct bpf_prog *prog; /* eBPF program being verified */ 401 const struct bpf_verifier_ops *ops; 402 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 403 int stack_size; /* number of states to be processed */ 404 bool strict_alignment; /* perform strict pointer alignment checks */ 405 bool test_state_freq; /* test verifier with different pruning frequency */ 406 struct bpf_verifier_state *cur_state; /* current verifier state */ 407 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 408 struct bpf_verifier_state_list *free_list; 409 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 410 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 411 u32 used_map_cnt; /* number of used maps */ 412 u32 used_btf_cnt; /* number of used BTF objects */ 413 u32 id_gen; /* used to generate unique reg IDs */ 414 bool explore_alu_limits; 415 bool allow_ptr_leaks; 416 bool allow_uninit_stack; 417 bool allow_ptr_to_map_access; 418 bool bpf_capable; 419 bool bypass_spec_v1; 420 bool bypass_spec_v4; 421 bool seen_direct_write; 422 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 423 const struct bpf_line_info *prev_linfo; 424 struct bpf_verifier_log log; 425 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 426 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; 427 struct { 428 int *insn_state; 429 int *insn_stack; 430 int cur_stack; 431 } cfg; 432 u32 pass_cnt; /* number of times do_check() was called */ 433 u32 subprog_cnt; 434 /* number of instructions analyzed by the verifier */ 435 u32 prev_insn_processed, insn_processed; 436 /* number of jmps, calls, exits analyzed so far */ 437 u32 prev_jmps_processed, jmps_processed; 438 /* total verification time */ 439 u64 verification_time; 440 /* maximum number of verifier states kept in 'branching' instructions */ 441 u32 max_states_per_insn; 442 /* total number of allocated verifier states */ 443 u32 total_states; 444 /* some states are freed during program analysis. 445 * this is peak number of states. this number dominates kernel 446 * memory consumption during verification 447 */ 448 u32 peak_states; 449 /* longest register parentage chain walked for liveness marking */ 450 u32 longest_mark_read_walk; 451}; 452 453__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 454 const char *fmt, va_list args); 455__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 456 const char *fmt, ...); 457__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 458 const char *fmt, ...); 459 460static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 461{ 462 struct bpf_verifier_state *cur = env->cur_state; 463 464 return cur->frame[cur->curframe]; 465} 466 467static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 468{ 469 return cur_func(env)->regs; 470} 471 472int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 473int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 474 int insn_idx, int prev_insn_idx); 475int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 476void 477bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 478 struct bpf_insn *insn); 479void 480bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 481 482int check_ctx_reg(struct bpf_verifier_env *env, 483 const struct bpf_reg_state *reg, int regno); 484 485/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 486static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 487 struct btf *btf, u32 btf_id) 488{ 489 if (tgt_prog) 490 return ((u64)tgt_prog->aux->id << 32) | btf_id; 491 else 492 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 493} 494 495int bpf_check_attach_target(struct bpf_verifier_log *log, 496 const struct bpf_prog *prog, 497 const struct bpf_prog *tgt_prog, 498 u32 btf_id, 499 struct bpf_attach_target_info *tgt_info); 500 501#endif /* _LINUX_BPF_VERIFIER_H */ 502