linux/include/uapi/linux/vfio.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2/*
   3 * VFIO API definition
   4 *
   5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   6 *     Author: Alex Williamson <alex.williamson@redhat.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#ifndef _UAPIVFIO_H
  13#define _UAPIVFIO_H
  14
  15#include <linux/types.h>
  16#include <linux/ioctl.h>
  17
  18#define VFIO_API_VERSION        0
  19
  20
  21/* Kernel & User level defines for VFIO IOCTLs. */
  22
  23/* Extensions */
  24
  25#define VFIO_TYPE1_IOMMU                1
  26#define VFIO_SPAPR_TCE_IOMMU            2
  27#define VFIO_TYPE1v2_IOMMU              3
  28/*
  29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
  30 * capability is subject to change as groups are added or removed.
  31 */
  32#define VFIO_DMA_CC_IOMMU               4
  33
  34/* Check if EEH is supported */
  35#define VFIO_EEH                        5
  36
  37/* Two-stage IOMMU */
  38#define VFIO_TYPE1_NESTING_IOMMU        6       /* Implies v2 */
  39
  40#define VFIO_SPAPR_TCE_v2_IOMMU         7
  41
  42/*
  43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
  44 * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
  45 * code will taint the host kernel and should be used with extreme caution.
  46 */
  47#define VFIO_NOIOMMU_IOMMU              8
  48
  49/*
  50 * The IOCTL interface is designed for extensibility by embedding the
  51 * structure length (argsz) and flags into structures passed between
  52 * kernel and userspace.  We therefore use the _IO() macro for these
  53 * defines to avoid implicitly embedding a size into the ioctl request.
  54 * As structure fields are added, argsz will increase to match and flag
  55 * bits will be defined to indicate additional fields with valid data.
  56 * It's *always* the caller's responsibility to indicate the size of
  57 * the structure passed by setting argsz appropriately.
  58 */
  59
  60#define VFIO_TYPE       (';')
  61#define VFIO_BASE       100
  62
  63/*
  64 * For extension of INFO ioctls, VFIO makes use of a capability chain
  65 * designed after PCI/e capabilities.  A flag bit indicates whether
  66 * this capability chain is supported and a field defined in the fixed
  67 * structure defines the offset of the first capability in the chain.
  68 * This field is only valid when the corresponding bit in the flags
  69 * bitmap is set.  This offset field is relative to the start of the
  70 * INFO buffer, as is the next field within each capability header.
  71 * The id within the header is a shared address space per INFO ioctl,
  72 * while the version field is specific to the capability id.  The
  73 * contents following the header are specific to the capability id.
  74 */
  75struct vfio_info_cap_header {
  76        __u16   id;             /* Identifies capability */
  77        __u16   version;        /* Version specific to the capability ID */
  78        __u32   next;           /* Offset of next capability */
  79};
  80
  81/*
  82 * Callers of INFO ioctls passing insufficiently sized buffers will see
  83 * the capability chain flag bit set, a zero value for the first capability
  84 * offset (if available within the provided argsz), and argsz will be
  85 * updated to report the necessary buffer size.  For compatibility, the
  86 * INFO ioctl will not report error in this case, but the capability chain
  87 * will not be available.
  88 */
  89
  90/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
  91
  92/**
  93 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
  94 *
  95 * Report the version of the VFIO API.  This allows us to bump the entire
  96 * API version should we later need to add or change features in incompatible
  97 * ways.
  98 * Return: VFIO_API_VERSION
  99 * Availability: Always
 100 */
 101#define VFIO_GET_API_VERSION            _IO(VFIO_TYPE, VFIO_BASE + 0)
 102
 103/**
 104 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
 105 *
 106 * Check whether an extension is supported.
 107 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
 108 * Availability: Always
 109 */
 110#define VFIO_CHECK_EXTENSION            _IO(VFIO_TYPE, VFIO_BASE + 1)
 111
 112/**
 113 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
 114 *
 115 * Set the iommu to the given type.  The type must be supported by an
 116 * iommu driver as verified by calling CHECK_EXTENSION using the same
 117 * type.  A group must be set to this file descriptor before this
 118 * ioctl is available.  The IOMMU interfaces enabled by this call are
 119 * specific to the value set.
 120 * Return: 0 on success, -errno on failure
 121 * Availability: When VFIO group attached
 122 */
 123#define VFIO_SET_IOMMU                  _IO(VFIO_TYPE, VFIO_BASE + 2)
 124
 125/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
 126
 127/**
 128 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
 129 *                                              struct vfio_group_status)
 130 *
 131 * Retrieve information about the group.  Fills in provided
 132 * struct vfio_group_info.  Caller sets argsz.
 133 * Return: 0 on succes, -errno on failure.
 134 * Availability: Always
 135 */
 136struct vfio_group_status {
 137        __u32   argsz;
 138        __u32   flags;
 139#define VFIO_GROUP_FLAGS_VIABLE         (1 << 0)
 140#define VFIO_GROUP_FLAGS_CONTAINER_SET  (1 << 1)
 141};
 142#define VFIO_GROUP_GET_STATUS           _IO(VFIO_TYPE, VFIO_BASE + 3)
 143
 144/**
 145 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
 146 *
 147 * Set the container for the VFIO group to the open VFIO file
 148 * descriptor provided.  Groups may only belong to a single
 149 * container.  Containers may, at their discretion, support multiple
 150 * groups.  Only when a container is set are all of the interfaces
 151 * of the VFIO file descriptor and the VFIO group file descriptor
 152 * available to the user.
 153 * Return: 0 on success, -errno on failure.
 154 * Availability: Always
 155 */
 156#define VFIO_GROUP_SET_CONTAINER        _IO(VFIO_TYPE, VFIO_BASE + 4)
 157
 158/**
 159 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
 160 *
 161 * Remove the group from the attached container.  This is the
 162 * opposite of the SET_CONTAINER call and returns the group to
 163 * an initial state.  All device file descriptors must be released
 164 * prior to calling this interface.  When removing the last group
 165 * from a container, the IOMMU will be disabled and all state lost,
 166 * effectively also returning the VFIO file descriptor to an initial
 167 * state.
 168 * Return: 0 on success, -errno on failure.
 169 * Availability: When attached to container
 170 */
 171#define VFIO_GROUP_UNSET_CONTAINER      _IO(VFIO_TYPE, VFIO_BASE + 5)
 172
 173/**
 174 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
 175 *
 176 * Return a new file descriptor for the device object described by
 177 * the provided string.  The string should match a device listed in
 178 * the devices subdirectory of the IOMMU group sysfs entry.  The
 179 * group containing the device must already be added to this context.
 180 * Return: new file descriptor on success, -errno on failure.
 181 * Availability: When attached to container
 182 */
 183#define VFIO_GROUP_GET_DEVICE_FD        _IO(VFIO_TYPE, VFIO_BASE + 6)
 184
 185/* --------------- IOCTLs for DEVICE file descriptors --------------- */
 186
 187/**
 188 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
 189 *                                              struct vfio_device_info)
 190 *
 191 * Retrieve information about the device.  Fills in provided
 192 * struct vfio_device_info.  Caller sets argsz.
 193 * Return: 0 on success, -errno on failure.
 194 */
 195struct vfio_device_info {
 196        __u32   argsz;
 197        __u32   flags;
 198#define VFIO_DEVICE_FLAGS_RESET (1 << 0)        /* Device supports reset */
 199#define VFIO_DEVICE_FLAGS_PCI   (1 << 1)        /* vfio-pci device */
 200#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)     /* vfio-platform device */
 201#define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)        /* vfio-amba device */
 202#define VFIO_DEVICE_FLAGS_CCW   (1 << 4)        /* vfio-ccw device */
 203#define VFIO_DEVICE_FLAGS_AP    (1 << 5)        /* vfio-ap device */
 204#define VFIO_DEVICE_FLAGS_CAPS  (1 << 7)        /* Info supports caps */
 205        __u32   num_regions;    /* Max region index + 1 */
 206        __u32   num_irqs;       /* Max IRQ index + 1 */
 207        __u32   cap_offset;     /* Offset within info struct of first cap */
 208};
 209#define VFIO_DEVICE_GET_INFO            _IO(VFIO_TYPE, VFIO_BASE + 7)
 210
 211/*
 212 * Vendor driver using Mediated device framework should provide device_api
 213 * attribute in supported type attribute groups. Device API string should be one
 214 * of the following corresponding to device flags in vfio_device_info structure.
 215 */
 216
 217#define VFIO_DEVICE_API_PCI_STRING              "vfio-pci"
 218#define VFIO_DEVICE_API_PLATFORM_STRING         "vfio-platform"
 219#define VFIO_DEVICE_API_AMBA_STRING             "vfio-amba"
 220#define VFIO_DEVICE_API_CCW_STRING              "vfio-ccw"
 221#define VFIO_DEVICE_API_AP_STRING               "vfio-ap"
 222
 223/*
 224 * The following capabilities are unique to s390 zPCI devices.  Their contents
 225 * are further-defined in vfio_zdev.h
 226 */
 227#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE          1
 228#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP         2
 229#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL          3
 230#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP          4
 231
 232/**
 233 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
 234 *                                     struct vfio_region_info)
 235 *
 236 * Retrieve information about a device region.  Caller provides
 237 * struct vfio_region_info with index value set.  Caller sets argsz.
 238 * Implementation of region mapping is bus driver specific.  This is
 239 * intended to describe MMIO, I/O port, as well as bus specific
 240 * regions (ex. PCI config space).  Zero sized regions may be used
 241 * to describe unimplemented regions (ex. unimplemented PCI BARs).
 242 * Return: 0 on success, -errno on failure.
 243 */
 244struct vfio_region_info {
 245        __u32   argsz;
 246        __u32   flags;
 247#define VFIO_REGION_INFO_FLAG_READ      (1 << 0) /* Region supports read */
 248#define VFIO_REGION_INFO_FLAG_WRITE     (1 << 1) /* Region supports write */
 249#define VFIO_REGION_INFO_FLAG_MMAP      (1 << 2) /* Region supports mmap */
 250#define VFIO_REGION_INFO_FLAG_CAPS      (1 << 3) /* Info supports caps */
 251        __u32   index;          /* Region index */
 252        __u32   cap_offset;     /* Offset within info struct of first cap */
 253        __u64   size;           /* Region size (bytes) */
 254        __u64   offset;         /* Region offset from start of device fd */
 255};
 256#define VFIO_DEVICE_GET_REGION_INFO     _IO(VFIO_TYPE, VFIO_BASE + 8)
 257
 258/*
 259 * The sparse mmap capability allows finer granularity of specifying areas
 260 * within a region with mmap support.  When specified, the user should only
 261 * mmap the offset ranges specified by the areas array.  mmaps outside of the
 262 * areas specified may fail (such as the range covering a PCI MSI-X table) or
 263 * may result in improper device behavior.
 264 *
 265 * The structures below define version 1 of this capability.
 266 */
 267#define VFIO_REGION_INFO_CAP_SPARSE_MMAP        1
 268
 269struct vfio_region_sparse_mmap_area {
 270        __u64   offset; /* Offset of mmap'able area within region */
 271        __u64   size;   /* Size of mmap'able area */
 272};
 273
 274struct vfio_region_info_cap_sparse_mmap {
 275        struct vfio_info_cap_header header;
 276        __u32   nr_areas;
 277        __u32   reserved;
 278        struct vfio_region_sparse_mmap_area areas[];
 279};
 280
 281/*
 282 * The device specific type capability allows regions unique to a specific
 283 * device or class of devices to be exposed.  This helps solve the problem for
 284 * vfio bus drivers of defining which region indexes correspond to which region
 285 * on the device, without needing to resort to static indexes, as done by
 286 * vfio-pci.  For instance, if we were to go back in time, we might remove
 287 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
 288 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
 289 * make a "VGA" device specific type to describe the VGA access space.  This
 290 * means that non-VGA devices wouldn't need to waste this index, and thus the
 291 * address space associated with it due to implementation of device file
 292 * descriptor offsets in vfio-pci.
 293 *
 294 * The current implementation is now part of the user ABI, so we can't use this
 295 * for VGA, but there are other upcoming use cases, such as opregions for Intel
 296 * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
 297 * use this for future additions.
 298 *
 299 * The structure below defines version 1 of this capability.
 300 */
 301#define VFIO_REGION_INFO_CAP_TYPE       2
 302
 303struct vfio_region_info_cap_type {
 304        struct vfio_info_cap_header header;
 305        __u32 type;     /* global per bus driver */
 306        __u32 subtype;  /* type specific */
 307};
 308
 309/*
 310 * List of region types, global per bus driver.
 311 * If you introduce a new type, please add it here.
 312 */
 313
 314/* PCI region type containing a PCI vendor part */
 315#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE        (1 << 31)
 316#define VFIO_REGION_TYPE_PCI_VENDOR_MASK        (0xffff)
 317#define VFIO_REGION_TYPE_GFX                    (1)
 318#define VFIO_REGION_TYPE_CCW                    (2)
 319#define VFIO_REGION_TYPE_MIGRATION              (3)
 320
 321/* sub-types for VFIO_REGION_TYPE_PCI_* */
 322
 323/* 8086 vendor PCI sub-types */
 324#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION  (1)
 325#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG  (2)
 326#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG   (3)
 327
 328/* 10de vendor PCI sub-types */
 329/*
 330 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
 331 */
 332#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM  (1)
 333
 334/* 1014 vendor PCI sub-types */
 335/*
 336 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
 337 * to do TLB invalidation on a GPU.
 338 */
 339#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD    (1)
 340
 341/* sub-types for VFIO_REGION_TYPE_GFX */
 342#define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
 343
 344/**
 345 * struct vfio_region_gfx_edid - EDID region layout.
 346 *
 347 * Set display link state and EDID blob.
 348 *
 349 * The EDID blob has monitor information such as brand, name, serial
 350 * number, physical size, supported video modes and more.
 351 *
 352 * This special region allows userspace (typically qemu) set a virtual
 353 * EDID for the virtual monitor, which allows a flexible display
 354 * configuration.
 355 *
 356 * For the edid blob spec look here:
 357 *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
 358 *
 359 * On linux systems you can find the EDID blob in sysfs:
 360 *    /sys/class/drm/${card}/${connector}/edid
 361 *
 362 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
 363 * decode the EDID blob.
 364 *
 365 * @edid_offset: location of the edid blob, relative to the
 366 *               start of the region (readonly).
 367 * @edid_max_size: max size of the edid blob (readonly).
 368 * @edid_size: actual edid size (read/write).
 369 * @link_state: display link state (read/write).
 370 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
 371 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
 372 * @max_xres: max display width (0 == no limitation, readonly).
 373 * @max_yres: max display height (0 == no limitation, readonly).
 374 *
 375 * EDID update protocol:
 376 *   (1) set link-state to down.
 377 *   (2) update edid blob and size.
 378 *   (3) set link-state to up.
 379 */
 380struct vfio_region_gfx_edid {
 381        __u32 edid_offset;
 382        __u32 edid_max_size;
 383        __u32 edid_size;
 384        __u32 max_xres;
 385        __u32 max_yres;
 386        __u32 link_state;
 387#define VFIO_DEVICE_GFX_LINK_STATE_UP    1
 388#define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
 389};
 390
 391/* sub-types for VFIO_REGION_TYPE_CCW */
 392#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD       (1)
 393#define VFIO_REGION_SUBTYPE_CCW_SCHIB           (2)
 394#define VFIO_REGION_SUBTYPE_CCW_CRW             (3)
 395
 396/* sub-types for VFIO_REGION_TYPE_MIGRATION */
 397#define VFIO_REGION_SUBTYPE_MIGRATION           (1)
 398
 399/*
 400 * The structure vfio_device_migration_info is placed at the 0th offset of
 401 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
 402 * migration information. Field accesses from this structure are only supported
 403 * at their native width and alignment. Otherwise, the result is undefined and
 404 * vendor drivers should return an error.
 405 *
 406 * device_state: (read/write)
 407 *      - The user application writes to this field to inform the vendor driver
 408 *        about the device state to be transitioned to.
 409 *      - The vendor driver should take the necessary actions to change the
 410 *        device state. After successful transition to a given state, the
 411 *        vendor driver should return success on write(device_state, state)
 412 *        system call. If the device state transition fails, the vendor driver
 413 *        should return an appropriate -errno for the fault condition.
 414 *      - On the user application side, if the device state transition fails,
 415 *        that is, if write(device_state, state) returns an error, read
 416 *        device_state again to determine the current state of the device from
 417 *        the vendor driver.
 418 *      - The vendor driver should return previous state of the device unless
 419 *        the vendor driver has encountered an internal error, in which case
 420 *        the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
 421 *      - The user application must use the device reset ioctl to recover the
 422 *        device from VFIO_DEVICE_STATE_ERROR state. If the device is
 423 *        indicated to be in a valid device state by reading device_state, the
 424 *        user application may attempt to transition the device to any valid
 425 *        state reachable from the current state or terminate itself.
 426 *
 427 *      device_state consists of 3 bits:
 428 *      - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
 429 *        it indicates the _STOP state. When the device state is changed to
 430 *        _STOP, driver should stop the device before write() returns.
 431 *      - If bit 1 is set, it indicates the _SAVING state, which means that the
 432 *        driver should start gathering device state information that will be
 433 *        provided to the VFIO user application to save the device's state.
 434 *      - If bit 2 is set, it indicates the _RESUMING state, which means that
 435 *        the driver should prepare to resume the device. Data provided through
 436 *        the migration region should be used to resume the device.
 437 *      Bits 3 - 31 are reserved for future use. To preserve them, the user
 438 *      application should perform a read-modify-write operation on this
 439 *      field when modifying the specified bits.
 440 *
 441 *  +------- _RESUMING
 442 *  |+------ _SAVING
 443 *  ||+----- _RUNNING
 444 *  |||
 445 *  000b => Device Stopped, not saving or resuming
 446 *  001b => Device running, which is the default state
 447 *  010b => Stop the device & save the device state, stop-and-copy state
 448 *  011b => Device running and save the device state, pre-copy state
 449 *  100b => Device stopped and the device state is resuming
 450 *  101b => Invalid state
 451 *  110b => Error state
 452 *  111b => Invalid state
 453 *
 454 * State transitions:
 455 *
 456 *              _RESUMING  _RUNNING    Pre-copy    Stop-and-copy   _STOP
 457 *                (100b)     (001b)     (011b)        (010b)       (000b)
 458 * 0. Running or default state
 459 *                             |
 460 *
 461 * 1. Normal Shutdown (optional)
 462 *                             |------------------------------------->|
 463 *
 464 * 2. Save the state or suspend
 465 *                             |------------------------->|---------->|
 466 *
 467 * 3. Save the state during live migration
 468 *                             |----------->|------------>|---------->|
 469 *
 470 * 4. Resuming
 471 *                  |<---------|
 472 *
 473 * 5. Resumed
 474 *                  |--------->|
 475 *
 476 * 0. Default state of VFIO device is _RUNNING when the user application starts.
 477 * 1. During normal shutdown of the user application, the user application may
 478 *    optionally change the VFIO device state from _RUNNING to _STOP. This
 479 *    transition is optional. The vendor driver must support this transition but
 480 *    must not require it.
 481 * 2. When the user application saves state or suspends the application, the
 482 *    device state transitions from _RUNNING to stop-and-copy and then to _STOP.
 483 *    On state transition from _RUNNING to stop-and-copy, driver must stop the
 484 *    device, save the device state and send it to the application through the
 485 *    migration region. The sequence to be followed for such transition is given
 486 *    below.
 487 * 3. In live migration of user application, the state transitions from _RUNNING
 488 *    to pre-copy, to stop-and-copy, and to _STOP.
 489 *    On state transition from _RUNNING to pre-copy, the driver should start
 490 *    gathering the device state while the application is still running and send
 491 *    the device state data to application through the migration region.
 492 *    On state transition from pre-copy to stop-and-copy, the driver must stop
 493 *    the device, save the device state and send it to the user application
 494 *    through the migration region.
 495 *    Vendor drivers must support the pre-copy state even for implementations
 496 *    where no data is provided to the user before the stop-and-copy state. The
 497 *    user must not be required to consume all migration data before the device
 498 *    transitions to a new state, including the stop-and-copy state.
 499 *    The sequence to be followed for above two transitions is given below.
 500 * 4. To start the resuming phase, the device state should be transitioned from
 501 *    the _RUNNING to the _RESUMING state.
 502 *    In the _RESUMING state, the driver should use the device state data
 503 *    received through the migration region to resume the device.
 504 * 5. After providing saved device data to the driver, the application should
 505 *    change the state from _RESUMING to _RUNNING.
 506 *
 507 * reserved:
 508 *      Reads on this field return zero and writes are ignored.
 509 *
 510 * pending_bytes: (read only)
 511 *      The number of pending bytes still to be migrated from the vendor driver.
 512 *
 513 * data_offset: (read only)
 514 *      The user application should read data_offset field from the migration
 515 *      region. The user application should read the device data from this
 516 *      offset within the migration region during the _SAVING state or write
 517 *      the device data during the _RESUMING state. See below for details of
 518 *      sequence to be followed.
 519 *
 520 * data_size: (read/write)
 521 *      The user application should read data_size to get the size in bytes of
 522 *      the data copied in the migration region during the _SAVING state and
 523 *      write the size in bytes of the data copied in the migration region
 524 *      during the _RESUMING state.
 525 *
 526 * The format of the migration region is as follows:
 527 *  ------------------------------------------------------------------
 528 * |vfio_device_migration_info|    data section                      |
 529 * |                          |     ///////////////////////////////  |
 530 * ------------------------------------------------------------------
 531 *   ^                              ^
 532 *  offset 0-trapped part        data_offset
 533 *
 534 * The structure vfio_device_migration_info is always followed by the data
 535 * section in the region, so data_offset will always be nonzero. The offset
 536 * from where the data is copied is decided by the kernel driver. The data
 537 * section can be trapped, mmapped, or partitioned, depending on how the kernel
 538 * driver defines the data section. The data section partition can be defined
 539 * as mapped by the sparse mmap capability. If mmapped, data_offset must be
 540 * page aligned, whereas initial section which contains the
 541 * vfio_device_migration_info structure, might not end at the offset, which is
 542 * page aligned. The user is not required to access through mmap regardless
 543 * of the capabilities of the region mmap.
 544 * The vendor driver should determine whether and how to partition the data
 545 * section. The vendor driver should return data_offset accordingly.
 546 *
 547 * The sequence to be followed while in pre-copy state and stop-and-copy state
 548 * is as follows:
 549 * a. Read pending_bytes, indicating the start of a new iteration to get device
 550 *    data. Repeated read on pending_bytes at this stage should have no side
 551 *    effects.
 552 *    If pending_bytes == 0, the user application should not iterate to get data
 553 *    for that device.
 554 *    If pending_bytes > 0, perform the following steps.
 555 * b. Read data_offset, indicating that the vendor driver should make data
 556 *    available through the data section. The vendor driver should return this
 557 *    read operation only after data is available from (region + data_offset)
 558 *    to (region + data_offset + data_size).
 559 * c. Read data_size, which is the amount of data in bytes available through
 560 *    the migration region.
 561 *    Read on data_offset and data_size should return the offset and size of
 562 *    the current buffer if the user application reads data_offset and
 563 *    data_size more than once here.
 564 * d. Read data_size bytes of data from (region + data_offset) from the
 565 *    migration region.
 566 * e. Process the data.
 567 * f. Read pending_bytes, which indicates that the data from the previous
 568 *    iteration has been read. If pending_bytes > 0, go to step b.
 569 *
 570 * The user application can transition from the _SAVING|_RUNNING
 571 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
 572 * number of pending bytes. The user application should iterate in _SAVING
 573 * (stop-and-copy) until pending_bytes is 0.
 574 *
 575 * The sequence to be followed while _RESUMING device state is as follows:
 576 * While data for this device is available, repeat the following steps:
 577 * a. Read data_offset from where the user application should write data.
 578 * b. Write migration data starting at the migration region + data_offset for
 579 *    the length determined by data_size from the migration source.
 580 * c. Write data_size, which indicates to the vendor driver that data is
 581 *    written in the migration region. Vendor driver must return this write
 582 *    operations on consuming data. Vendor driver should apply the
 583 *    user-provided migration region data to the device resume state.
 584 *
 585 * If an error occurs during the above sequences, the vendor driver can return
 586 * an error code for next read() or write() operation, which will terminate the
 587 * loop. The user application should then take the next necessary action, for
 588 * example, failing migration or terminating the user application.
 589 *
 590 * For the user application, data is opaque. The user application should write
 591 * data in the same order as the data is received and the data should be of
 592 * same transaction size at the source.
 593 */
 594
 595struct vfio_device_migration_info {
 596        __u32 device_state;         /* VFIO device state */
 597#define VFIO_DEVICE_STATE_STOP      (0)
 598#define VFIO_DEVICE_STATE_RUNNING   (1 << 0)
 599#define VFIO_DEVICE_STATE_SAVING    (1 << 1)
 600#define VFIO_DEVICE_STATE_RESUMING  (1 << 2)
 601#define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_RUNNING | \
 602                                     VFIO_DEVICE_STATE_SAVING |  \
 603                                     VFIO_DEVICE_STATE_RESUMING)
 604
 605#define VFIO_DEVICE_STATE_VALID(state) \
 606        (state & VFIO_DEVICE_STATE_RESUMING ? \
 607        (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
 608
 609#define VFIO_DEVICE_STATE_IS_ERROR(state) \
 610        ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
 611                                              VFIO_DEVICE_STATE_RESUMING))
 612
 613#define VFIO_DEVICE_STATE_SET_ERROR(state) \
 614        ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
 615                                             VFIO_DEVICE_STATE_RESUMING)
 616
 617        __u32 reserved;
 618        __u64 pending_bytes;
 619        __u64 data_offset;
 620        __u64 data_size;
 621};
 622
 623/*
 624 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
 625 * which allows direct access to non-MSIX registers which happened to be within
 626 * the same system page.
 627 *
 628 * Even though the userspace gets direct access to the MSIX data, the existing
 629 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
 630 */
 631#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE      3
 632
 633/*
 634 * Capability with compressed real address (aka SSA - small system address)
 635 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
 636 * and by the userspace to associate a NVLink bridge with a GPU.
 637 */
 638#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT     4
 639
 640struct vfio_region_info_cap_nvlink2_ssatgt {
 641        struct vfio_info_cap_header header;
 642        __u64 tgt;
 643};
 644
 645/*
 646 * Capability with an NVLink link speed. The value is read by
 647 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
 648 * property in the device tree. The value is fixed in the hardware
 649 * and failing to provide the correct value results in the link
 650 * not working with no indication from the driver why.
 651 */
 652#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD     5
 653
 654struct vfio_region_info_cap_nvlink2_lnkspd {
 655        struct vfio_info_cap_header header;
 656        __u32 link_speed;
 657        __u32 __pad;
 658};
 659
 660/**
 661 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
 662 *                                  struct vfio_irq_info)
 663 *
 664 * Retrieve information about a device IRQ.  Caller provides
 665 * struct vfio_irq_info with index value set.  Caller sets argsz.
 666 * Implementation of IRQ mapping is bus driver specific.  Indexes
 667 * using multiple IRQs are primarily intended to support MSI-like
 668 * interrupt blocks.  Zero count irq blocks may be used to describe
 669 * unimplemented interrupt types.
 670 *
 671 * The EVENTFD flag indicates the interrupt index supports eventfd based
 672 * signaling.
 673 *
 674 * The MASKABLE flags indicates the index supports MASK and UNMASK
 675 * actions described below.
 676 *
 677 * AUTOMASKED indicates that after signaling, the interrupt line is
 678 * automatically masked by VFIO and the user needs to unmask the line
 679 * to receive new interrupts.  This is primarily intended to distinguish
 680 * level triggered interrupts.
 681 *
 682 * The NORESIZE flag indicates that the interrupt lines within the index
 683 * are setup as a set and new subindexes cannot be enabled without first
 684 * disabling the entire index.  This is used for interrupts like PCI MSI
 685 * and MSI-X where the driver may only use a subset of the available
 686 * indexes, but VFIO needs to enable a specific number of vectors
 687 * upfront.  In the case of MSI-X, where the user can enable MSI-X and
 688 * then add and unmask vectors, it's up to userspace to make the decision
 689 * whether to allocate the maximum supported number of vectors or tear
 690 * down setup and incrementally increase the vectors as each is enabled.
 691 */
 692struct vfio_irq_info {
 693        __u32   argsz;
 694        __u32   flags;
 695#define VFIO_IRQ_INFO_EVENTFD           (1 << 0)
 696#define VFIO_IRQ_INFO_MASKABLE          (1 << 1)
 697#define VFIO_IRQ_INFO_AUTOMASKED        (1 << 2)
 698#define VFIO_IRQ_INFO_NORESIZE          (1 << 3)
 699        __u32   index;          /* IRQ index */
 700        __u32   count;          /* Number of IRQs within this index */
 701};
 702#define VFIO_DEVICE_GET_IRQ_INFO        _IO(VFIO_TYPE, VFIO_BASE + 9)
 703
 704/**
 705 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
 706 *
 707 * Set signaling, masking, and unmasking of interrupts.  Caller provides
 708 * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
 709 * the range of subindexes being specified.
 710 *
 711 * The DATA flags specify the type of data provided.  If DATA_NONE, the
 712 * operation performs the specified action immediately on the specified
 713 * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
 714 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
 715 *
 716 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
 717 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
 718 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
 719 * data = {1,0,1}
 720 *
 721 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
 722 * A value of -1 can be used to either de-assign interrupts if already
 723 * assigned or skip un-assigned interrupts.  For example, to set an eventfd
 724 * to be trigger for interrupts [0,0] and [0,2]:
 725 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
 726 * data = {fd1, -1, fd2}
 727 * If index [0,1] is previously set, two count = 1 ioctls calls would be
 728 * required to set [0,0] and [0,2] without changing [0,1].
 729 *
 730 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
 731 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
 732 * from userspace (ie. simulate hardware triggering).
 733 *
 734 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
 735 * enables the interrupt index for the device.  Individual subindex interrupts
 736 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
 737 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
 738 *
 739 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
 740 * ACTION_TRIGGER specifies kernel->user signaling.
 741 */
 742struct vfio_irq_set {
 743        __u32   argsz;
 744        __u32   flags;
 745#define VFIO_IRQ_SET_DATA_NONE          (1 << 0) /* Data not present */
 746#define VFIO_IRQ_SET_DATA_BOOL          (1 << 1) /* Data is bool (u8) */
 747#define VFIO_IRQ_SET_DATA_EVENTFD       (1 << 2) /* Data is eventfd (s32) */
 748#define VFIO_IRQ_SET_ACTION_MASK        (1 << 3) /* Mask interrupt */
 749#define VFIO_IRQ_SET_ACTION_UNMASK      (1 << 4) /* Unmask interrupt */
 750#define VFIO_IRQ_SET_ACTION_TRIGGER     (1 << 5) /* Trigger interrupt */
 751        __u32   index;
 752        __u32   start;
 753        __u32   count;
 754        __u8    data[];
 755};
 756#define VFIO_DEVICE_SET_IRQS            _IO(VFIO_TYPE, VFIO_BASE + 10)
 757
 758#define VFIO_IRQ_SET_DATA_TYPE_MASK     (VFIO_IRQ_SET_DATA_NONE | \
 759                                         VFIO_IRQ_SET_DATA_BOOL | \
 760                                         VFIO_IRQ_SET_DATA_EVENTFD)
 761#define VFIO_IRQ_SET_ACTION_TYPE_MASK   (VFIO_IRQ_SET_ACTION_MASK | \
 762                                         VFIO_IRQ_SET_ACTION_UNMASK | \
 763                                         VFIO_IRQ_SET_ACTION_TRIGGER)
 764/**
 765 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
 766 *
 767 * Reset a device.
 768 */
 769#define VFIO_DEVICE_RESET               _IO(VFIO_TYPE, VFIO_BASE + 11)
 770
 771/*
 772 * The VFIO-PCI bus driver makes use of the following fixed region and
 773 * IRQ index mapping.  Unimplemented regions return a size of zero.
 774 * Unimplemented IRQ types return a count of zero.
 775 */
 776
 777enum {
 778        VFIO_PCI_BAR0_REGION_INDEX,
 779        VFIO_PCI_BAR1_REGION_INDEX,
 780        VFIO_PCI_BAR2_REGION_INDEX,
 781        VFIO_PCI_BAR3_REGION_INDEX,
 782        VFIO_PCI_BAR4_REGION_INDEX,
 783        VFIO_PCI_BAR5_REGION_INDEX,
 784        VFIO_PCI_ROM_REGION_INDEX,
 785        VFIO_PCI_CONFIG_REGION_INDEX,
 786        /*
 787         * Expose VGA regions defined for PCI base class 03, subclass 00.
 788         * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
 789         * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
 790         * range is found at it's identity mapped offset from the region
 791         * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
 792         * between described ranges are unimplemented.
 793         */
 794        VFIO_PCI_VGA_REGION_INDEX,
 795        VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
 796                                 /* device specific cap to define content. */
 797};
 798
 799enum {
 800        VFIO_PCI_INTX_IRQ_INDEX,
 801        VFIO_PCI_MSI_IRQ_INDEX,
 802        VFIO_PCI_MSIX_IRQ_INDEX,
 803        VFIO_PCI_ERR_IRQ_INDEX,
 804        VFIO_PCI_REQ_IRQ_INDEX,
 805        VFIO_PCI_NUM_IRQS
 806};
 807
 808/*
 809 * The vfio-ccw bus driver makes use of the following fixed region and
 810 * IRQ index mapping. Unimplemented regions return a size of zero.
 811 * Unimplemented IRQ types return a count of zero.
 812 */
 813
 814enum {
 815        VFIO_CCW_CONFIG_REGION_INDEX,
 816        VFIO_CCW_NUM_REGIONS
 817};
 818
 819enum {
 820        VFIO_CCW_IO_IRQ_INDEX,
 821        VFIO_CCW_CRW_IRQ_INDEX,
 822        VFIO_CCW_REQ_IRQ_INDEX,
 823        VFIO_CCW_NUM_IRQS
 824};
 825
 826/**
 827 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
 828 *                                            struct vfio_pci_hot_reset_info)
 829 *
 830 * Return: 0 on success, -errno on failure:
 831 *      -enospc = insufficient buffer, -enodev = unsupported for device.
 832 */
 833struct vfio_pci_dependent_device {
 834        __u32   group_id;
 835        __u16   segment;
 836        __u8    bus;
 837        __u8    devfn; /* Use PCI_SLOT/PCI_FUNC */
 838};
 839
 840struct vfio_pci_hot_reset_info {
 841        __u32   argsz;
 842        __u32   flags;
 843        __u32   count;
 844        struct vfio_pci_dependent_device        devices[];
 845};
 846
 847#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO      _IO(VFIO_TYPE, VFIO_BASE + 12)
 848
 849/**
 850 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
 851 *                                  struct vfio_pci_hot_reset)
 852 *
 853 * Return: 0 on success, -errno on failure.
 854 */
 855struct vfio_pci_hot_reset {
 856        __u32   argsz;
 857        __u32   flags;
 858        __u32   count;
 859        __s32   group_fds[];
 860};
 861
 862#define VFIO_DEVICE_PCI_HOT_RESET       _IO(VFIO_TYPE, VFIO_BASE + 13)
 863
 864/**
 865 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
 866 *                                    struct vfio_device_query_gfx_plane)
 867 *
 868 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
 869 *
 870 * flags supported:
 871 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
 872 *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
 873 *   support for dma-buf.
 874 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
 875 *   to ask if the mdev supports region. 0 on support, -EINVAL on no
 876 *   support for region.
 877 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
 878 *   with each call to query the plane info.
 879 * - Others are invalid and return -EINVAL.
 880 *
 881 * Note:
 882 * 1. Plane could be disabled by guest. In that case, success will be
 883 *    returned with zero-initialized drm_format, size, width and height
 884 *    fields.
 885 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
 886 *
 887 * Return: 0 on success, -errno on other failure.
 888 */
 889struct vfio_device_gfx_plane_info {
 890        __u32 argsz;
 891        __u32 flags;
 892#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
 893#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
 894#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
 895        /* in */
 896        __u32 drm_plane_type;   /* type of plane: DRM_PLANE_TYPE_* */
 897        /* out */
 898        __u32 drm_format;       /* drm format of plane */
 899        __u64 drm_format_mod;   /* tiled mode */
 900        __u32 width;    /* width of plane */
 901        __u32 height;   /* height of plane */
 902        __u32 stride;   /* stride of plane */
 903        __u32 size;     /* size of plane in bytes, align on page*/
 904        __u32 x_pos;    /* horizontal position of cursor plane */
 905        __u32 y_pos;    /* vertical position of cursor plane*/
 906        __u32 x_hot;    /* horizontal position of cursor hotspot */
 907        __u32 y_hot;    /* vertical position of cursor hotspot */
 908        union {
 909                __u32 region_index;     /* region index */
 910                __u32 dmabuf_id;        /* dma-buf id */
 911        };
 912};
 913
 914#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
 915
 916/**
 917 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
 918 *
 919 * Return a new dma-buf file descriptor for an exposed guest framebuffer
 920 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
 921 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
 922 */
 923
 924#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
 925
 926/**
 927 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
 928 *                              struct vfio_device_ioeventfd)
 929 *
 930 * Perform a write to the device at the specified device fd offset, with
 931 * the specified data and width when the provided eventfd is triggered.
 932 * vfio bus drivers may not support this for all regions, for all widths,
 933 * or at all.  vfio-pci currently only enables support for BAR regions,
 934 * excluding the MSI-X vector table.
 935 *
 936 * Return: 0 on success, -errno on failure.
 937 */
 938struct vfio_device_ioeventfd {
 939        __u32   argsz;
 940        __u32   flags;
 941#define VFIO_DEVICE_IOEVENTFD_8         (1 << 0) /* 1-byte write */
 942#define VFIO_DEVICE_IOEVENTFD_16        (1 << 1) /* 2-byte write */
 943#define VFIO_DEVICE_IOEVENTFD_32        (1 << 2) /* 4-byte write */
 944#define VFIO_DEVICE_IOEVENTFD_64        (1 << 3) /* 8-byte write */
 945#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
 946        __u64   offset;                 /* device fd offset of write */
 947        __u64   data;                   /* data to be written */
 948        __s32   fd;                     /* -1 for de-assignment */
 949};
 950
 951#define VFIO_DEVICE_IOEVENTFD           _IO(VFIO_TYPE, VFIO_BASE + 16)
 952
 953/**
 954 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
 955 *                             struct vfio_device_feature)
 956 *
 957 * Get, set, or probe feature data of the device.  The feature is selected
 958 * using the FEATURE_MASK portion of the flags field.  Support for a feature
 959 * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
 960 * may optionally include the GET and/or SET bits to determine read vs write
 961 * access of the feature respectively.  Probing a feature will return success
 962 * if the feature is supported and all of the optionally indicated GET/SET
 963 * methods are supported.  The format of the data portion of the structure is
 964 * specific to the given feature.  The data portion is not required for
 965 * probing.  GET and SET are mutually exclusive, except for use with PROBE.
 966 *
 967 * Return 0 on success, -errno on failure.
 968 */
 969struct vfio_device_feature {
 970        __u32   argsz;
 971        __u32   flags;
 972#define VFIO_DEVICE_FEATURE_MASK        (0xffff) /* 16-bit feature index */
 973#define VFIO_DEVICE_FEATURE_GET         (1 << 16) /* Get feature into data[] */
 974#define VFIO_DEVICE_FEATURE_SET         (1 << 17) /* Set feature from data[] */
 975#define VFIO_DEVICE_FEATURE_PROBE       (1 << 18) /* Probe feature support */
 976        __u8    data[];
 977};
 978
 979#define VFIO_DEVICE_FEATURE             _IO(VFIO_TYPE, VFIO_BASE + 17)
 980
 981/*
 982 * Provide support for setting a PCI VF Token, which is used as a shared
 983 * secret between PF and VF drivers.  This feature may only be set on a
 984 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
 985 * open VFs.  Data provided when setting this feature is a 16-byte array
 986 * (__u8 b[16]), representing a UUID.
 987 */
 988#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN        (0)
 989
 990/* -------- API for Type1 VFIO IOMMU -------- */
 991
 992/**
 993 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
 994 *
 995 * Retrieve information about the IOMMU object. Fills in provided
 996 * struct vfio_iommu_info. Caller sets argsz.
 997 *
 998 * XXX Should we do these by CHECK_EXTENSION too?
 999 */
1000struct vfio_iommu_type1_info {
1001        __u32   argsz;
1002        __u32   flags;
1003#define VFIO_IOMMU_INFO_PGSIZES (1 << 0)        /* supported page sizes info */
1004#define VFIO_IOMMU_INFO_CAPS    (1 << 1)        /* Info supports caps */
1005        __u64   iova_pgsizes;   /* Bitmap of supported page sizes */
1006        __u32   cap_offset;     /* Offset within info struct of first cap */
1007};
1008
1009/*
1010 * The IOVA capability allows to report the valid IOVA range(s)
1011 * excluding any non-relaxable reserved regions exposed by
1012 * devices attached to the container. Any DMA map attempt
1013 * outside the valid iova range will return error.
1014 *
1015 * The structures below define version 1 of this capability.
1016 */
1017#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1018
1019struct vfio_iova_range {
1020        __u64   start;
1021        __u64   end;
1022};
1023
1024struct vfio_iommu_type1_info_cap_iova_range {
1025        struct  vfio_info_cap_header header;
1026        __u32   nr_iovas;
1027        __u32   reserved;
1028        struct  vfio_iova_range iova_ranges[];
1029};
1030
1031/*
1032 * The migration capability allows to report supported features for migration.
1033 *
1034 * The structures below define version 1 of this capability.
1035 *
1036 * The existence of this capability indicates that IOMMU kernel driver supports
1037 * dirty page logging.
1038 *
1039 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1040 * page logging.
1041 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1042 * size in bytes that can be used by user applications when getting the dirty
1043 * bitmap.
1044 */
1045#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1046
1047struct vfio_iommu_type1_info_cap_migration {
1048        struct  vfio_info_cap_header header;
1049        __u32   flags;
1050        __u64   pgsize_bitmap;
1051        __u64   max_dirty_bitmap_size;          /* in bytes */
1052};
1053
1054/*
1055 * The DMA available capability allows to report the current number of
1056 * simultaneously outstanding DMA mappings that are allowed.
1057 *
1058 * The structure below defines version 1 of this capability.
1059 *
1060 * avail: specifies the current number of outstanding DMA mappings allowed.
1061 */
1062#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1063
1064struct vfio_iommu_type1_info_dma_avail {
1065        struct  vfio_info_cap_header header;
1066        __u32   avail;
1067};
1068
1069#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1070
1071/**
1072 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1073 *
1074 * Map process virtual addresses to IO virtual addresses using the
1075 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1076 */
1077struct vfio_iommu_type1_dma_map {
1078        __u32   argsz;
1079        __u32   flags;
1080#define VFIO_DMA_MAP_FLAG_READ (1 << 0)         /* readable from device */
1081#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)        /* writable from device */
1082        __u64   vaddr;                          /* Process virtual address */
1083        __u64   iova;                           /* IO virtual address */
1084        __u64   size;                           /* Size of mapping (bytes) */
1085};
1086
1087#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1088
1089struct vfio_bitmap {
1090        __u64        pgsize;    /* page size for bitmap in bytes */
1091        __u64        size;      /* in bytes */
1092        __u64 __user *data;     /* one bit per page */
1093};
1094
1095/**
1096 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1097 *                                                      struct vfio_dma_unmap)
1098 *
1099 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1100 * Caller sets argsz.  The actual unmapped size is returned in the size
1101 * field.  No guarantee is made to the user that arbitrary unmaps of iova
1102 * or size different from those used in the original mapping call will
1103 * succeed.
1104 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1105 * before unmapping IO virtual addresses. When this flag is set, the user must
1106 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1107 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1108 * A bit in the bitmap represents one page, of user provided page size in
1109 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1110 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1111 * pages in the range of unmapped size is returned in the user-provided
1112 * vfio_bitmap.data.
1113 */
1114struct vfio_iommu_type1_dma_unmap {
1115        __u32   argsz;
1116        __u32   flags;
1117#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1118        __u64   iova;                           /* IO virtual address */
1119        __u64   size;                           /* Size of mapping (bytes) */
1120        __u8    data[];
1121};
1122
1123#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1124
1125/*
1126 * IOCTLs to enable/disable IOMMU container usage.
1127 * No parameters are supported.
1128 */
1129#define VFIO_IOMMU_ENABLE       _IO(VFIO_TYPE, VFIO_BASE + 15)
1130#define VFIO_IOMMU_DISABLE      _IO(VFIO_TYPE, VFIO_BASE + 16)
1131
1132/**
1133 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1134 *                                     struct vfio_iommu_type1_dirty_bitmap)
1135 * IOCTL is used for dirty pages logging.
1136 * Caller should set flag depending on which operation to perform, details as
1137 * below:
1138 *
1139 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1140 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1141 * the device; designed to be used when a migration is in progress. Dirty pages
1142 * are logged until logging is disabled by user application by calling the IOCTL
1143 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1144 *
1145 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1146 * the IOMMU driver to stop logging dirtied pages.
1147 *
1148 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1149 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1150 * The user must specify the IOVA range and the pgsize through the structure
1151 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1152 * supports getting a bitmap of the smallest supported pgsize only and can be
1153 * modified in future to get a bitmap of any specified supported pgsize. The
1154 * user must provide a zeroed memory area for the bitmap memory and specify its
1155 * size in bitmap.size. One bit is used to represent one page consecutively
1156 * starting from iova offset. The user should provide page size in bitmap.pgsize
1157 * field. A bit set in the bitmap indicates that the page at that offset from
1158 * iova is dirty. The caller must set argsz to a value including the size of
1159 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1160 * actual bitmap. If dirty pages logging is not enabled, an error will be
1161 * returned.
1162 *
1163 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1164 *
1165 */
1166struct vfio_iommu_type1_dirty_bitmap {
1167        __u32        argsz;
1168        __u32        flags;
1169#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START       (1 << 0)
1170#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP        (1 << 1)
1171#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP  (1 << 2)
1172        __u8         data[];
1173};
1174
1175struct vfio_iommu_type1_dirty_bitmap_get {
1176        __u64              iova;        /* IO virtual address */
1177        __u64              size;        /* Size of iova range */
1178        struct vfio_bitmap bitmap;
1179};
1180
1181#define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1182
1183/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1184
1185/*
1186 * The SPAPR TCE DDW info struct provides the information about
1187 * the details of Dynamic DMA window capability.
1188 *
1189 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1190 * @max_dynamic_windows_supported tells the maximum number of windows
1191 * which the platform can create.
1192 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1193 * this allows splitting a table into smaller chunks which reduces
1194 * the amount of physically contiguous memory required for the table.
1195 */
1196struct vfio_iommu_spapr_tce_ddw_info {
1197        __u64 pgsizes;                  /* Bitmap of supported page sizes */
1198        __u32 max_dynamic_windows_supported;
1199        __u32 levels;
1200};
1201
1202/*
1203 * The SPAPR TCE info struct provides the information about the PCI bus
1204 * address ranges available for DMA, these values are programmed into
1205 * the hardware so the guest has to know that information.
1206 *
1207 * The DMA 32 bit window start is an absolute PCI bus address.
1208 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1209 * addresses too so the window works as a filter rather than an offset
1210 * for IOVA addresses.
1211 *
1212 * Flags supported:
1213 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1214 *   (DDW) support is present. @ddw is only supported when DDW is present.
1215 */
1216struct vfio_iommu_spapr_tce_info {
1217        __u32 argsz;
1218        __u32 flags;
1219#define VFIO_IOMMU_SPAPR_INFO_DDW       (1 << 0)        /* DDW supported */
1220        __u32 dma32_window_start;       /* 32 bit window start (bytes) */
1221        __u32 dma32_window_size;        /* 32 bit window size (bytes) */
1222        struct vfio_iommu_spapr_tce_ddw_info ddw;
1223};
1224
1225#define VFIO_IOMMU_SPAPR_TCE_GET_INFO   _IO(VFIO_TYPE, VFIO_BASE + 12)
1226
1227/*
1228 * EEH PE operation struct provides ways to:
1229 * - enable/disable EEH functionality;
1230 * - unfreeze IO/DMA for frozen PE;
1231 * - read PE state;
1232 * - reset PE;
1233 * - configure PE;
1234 * - inject EEH error.
1235 */
1236struct vfio_eeh_pe_err {
1237        __u32 type;
1238        __u32 func;
1239        __u64 addr;
1240        __u64 mask;
1241};
1242
1243struct vfio_eeh_pe_op {
1244        __u32 argsz;
1245        __u32 flags;
1246        __u32 op;
1247        union {
1248                struct vfio_eeh_pe_err err;
1249        };
1250};
1251
1252#define VFIO_EEH_PE_DISABLE             0       /* Disable EEH functionality */
1253#define VFIO_EEH_PE_ENABLE              1       /* Enable EEH functionality  */
1254#define VFIO_EEH_PE_UNFREEZE_IO         2       /* Enable IO for frozen PE   */
1255#define VFIO_EEH_PE_UNFREEZE_DMA        3       /* Enable DMA for frozen PE  */
1256#define VFIO_EEH_PE_GET_STATE           4       /* PE state retrieval        */
1257#define  VFIO_EEH_PE_STATE_NORMAL       0       /* PE in functional state    */
1258#define  VFIO_EEH_PE_STATE_RESET        1       /* PE reset in progress      */
1259#define  VFIO_EEH_PE_STATE_STOPPED      2       /* Stopped DMA and IO        */
1260#define  VFIO_EEH_PE_STATE_STOPPED_DMA  4       /* Stopped DMA only          */
1261#define  VFIO_EEH_PE_STATE_UNAVAIL      5       /* State unavailable         */
1262#define VFIO_EEH_PE_RESET_DEACTIVATE    5       /* Deassert PE reset         */
1263#define VFIO_EEH_PE_RESET_HOT           6       /* Assert hot reset          */
1264#define VFIO_EEH_PE_RESET_FUNDAMENTAL   7       /* Assert fundamental reset  */
1265#define VFIO_EEH_PE_CONFIGURE           8       /* PE configuration          */
1266#define VFIO_EEH_PE_INJECT_ERR          9       /* Inject EEH error          */
1267
1268#define VFIO_EEH_PE_OP                  _IO(VFIO_TYPE, VFIO_BASE + 21)
1269
1270/**
1271 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1272 *
1273 * Registers user space memory where DMA is allowed. It pins
1274 * user pages and does the locked memory accounting so
1275 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1276 * get faster.
1277 */
1278struct vfio_iommu_spapr_register_memory {
1279        __u32   argsz;
1280        __u32   flags;
1281        __u64   vaddr;                          /* Process virtual address */
1282        __u64   size;                           /* Size of mapping (bytes) */
1283};
1284#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY        _IO(VFIO_TYPE, VFIO_BASE + 17)
1285
1286/**
1287 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1288 *
1289 * Unregisters user space memory registered with
1290 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1291 * Uses vfio_iommu_spapr_register_memory for parameters.
1292 */
1293#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY      _IO(VFIO_TYPE, VFIO_BASE + 18)
1294
1295/**
1296 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1297 *
1298 * Creates an additional TCE table and programs it (sets a new DMA window)
1299 * to every IOMMU group in the container. It receives page shift, window
1300 * size and number of levels in the TCE table being created.
1301 *
1302 * It allocates and returns an offset on a PCI bus of the new DMA window.
1303 */
1304struct vfio_iommu_spapr_tce_create {
1305        __u32 argsz;
1306        __u32 flags;
1307        /* in */
1308        __u32 page_shift;
1309        __u32 __resv1;
1310        __u64 window_size;
1311        __u32 levels;
1312        __u32 __resv2;
1313        /* out */
1314        __u64 start_addr;
1315};
1316#define VFIO_IOMMU_SPAPR_TCE_CREATE     _IO(VFIO_TYPE, VFIO_BASE + 19)
1317
1318/**
1319 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1320 *
1321 * Unprograms a TCE table from all groups in the container and destroys it.
1322 * It receives a PCI bus offset as a window id.
1323 */
1324struct vfio_iommu_spapr_tce_remove {
1325        __u32 argsz;
1326        __u32 flags;
1327        /* in */
1328        __u64 start_addr;
1329};
1330#define VFIO_IOMMU_SPAPR_TCE_REMOVE     _IO(VFIO_TYPE, VFIO_BASE + 20)
1331
1332/* ***************************************************************** */
1333
1334#endif /* _UAPIVFIO_H */
1335