linux/kernel/sched/psi.c
<<
>>
Prefs
   1/*
   2 * Pressure stall information for CPU, memory and IO
   3 *
   4 * Copyright (c) 2018 Facebook, Inc.
   5 * Author: Johannes Weiner <hannes@cmpxchg.org>
   6 *
   7 * Polling support by Suren Baghdasaryan <surenb@google.com>
   8 * Copyright (c) 2018 Google, Inc.
   9 *
  10 * When CPU, memory and IO are contended, tasks experience delays that
  11 * reduce throughput and introduce latencies into the workload. Memory
  12 * and IO contention, in addition, can cause a full loss of forward
  13 * progress in which the CPU goes idle.
  14 *
  15 * This code aggregates individual task delays into resource pressure
  16 * metrics that indicate problems with both workload health and
  17 * resource utilization.
  18 *
  19 *                      Model
  20 *
  21 * The time in which a task can execute on a CPU is our baseline for
  22 * productivity. Pressure expresses the amount of time in which this
  23 * potential cannot be realized due to resource contention.
  24 *
  25 * This concept of productivity has two components: the workload and
  26 * the CPU. To measure the impact of pressure on both, we define two
  27 * contention states for a resource: SOME and FULL.
  28 *
  29 * In the SOME state of a given resource, one or more tasks are
  30 * delayed on that resource. This affects the workload's ability to
  31 * perform work, but the CPU may still be executing other tasks.
  32 *
  33 * In the FULL state of a given resource, all non-idle tasks are
  34 * delayed on that resource such that nobody is advancing and the CPU
  35 * goes idle. This leaves both workload and CPU unproductive.
  36 *
  37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
  38 *
  39 *      SOME = nr_delayed_tasks != 0
  40 *      FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
  41 *
  42 * The percentage of wallclock time spent in those compound stall
  43 * states gives pressure numbers between 0 and 100 for each resource,
  44 * where the SOME percentage indicates workload slowdowns and the FULL
  45 * percentage indicates reduced CPU utilization:
  46 *
  47 *      %SOME = time(SOME) / period
  48 *      %FULL = time(FULL) / period
  49 *
  50 *                      Multiple CPUs
  51 *
  52 * The more tasks and available CPUs there are, the more work can be
  53 * performed concurrently. This means that the potential that can go
  54 * unrealized due to resource contention *also* scales with non-idle
  55 * tasks and CPUs.
  56 *
  57 * Consider a scenario where 257 number crunching tasks are trying to
  58 * run concurrently on 256 CPUs. If we simply aggregated the task
  59 * states, we would have to conclude a CPU SOME pressure number of
  60 * 100%, since *somebody* is waiting on a runqueue at all
  61 * times. However, that is clearly not the amount of contention the
  62 * workload is experiencing: only one out of 256 possible exceution
  63 * threads will be contended at any given time, or about 0.4%.
  64 *
  65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
  66 * given time *one* of the tasks is delayed due to a lack of memory.
  67 * Again, looking purely at the task state would yield a memory FULL
  68 * pressure number of 0%, since *somebody* is always making forward
  69 * progress. But again this wouldn't capture the amount of execution
  70 * potential lost, which is 1 out of 4 CPUs, or 25%.
  71 *
  72 * To calculate wasted potential (pressure) with multiple processors,
  73 * we have to base our calculation on the number of non-idle tasks in
  74 * conjunction with the number of available CPUs, which is the number
  75 * of potential execution threads. SOME becomes then the proportion of
  76 * delayed tasks to possibe threads, and FULL is the share of possible
  77 * threads that are unproductive due to delays:
  78 *
  79 *      threads = min(nr_nonidle_tasks, nr_cpus)
  80 *         SOME = min(nr_delayed_tasks / threads, 1)
  81 *         FULL = (threads - min(nr_running_tasks, threads)) / threads
  82 *
  83 * For the 257 number crunchers on 256 CPUs, this yields:
  84 *
  85 *      threads = min(257, 256)
  86 *         SOME = min(1 / 256, 1)             = 0.4%
  87 *         FULL = (256 - min(257, 256)) / 256 = 0%
  88 *
  89 * For the 1 out of 4 memory-delayed tasks, this yields:
  90 *
  91 *      threads = min(4, 4)
  92 *         SOME = min(1 / 4, 1)               = 25%
  93 *         FULL = (4 - min(3, 4)) / 4         = 25%
  94 *
  95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
  96 *   extension of the single-CPU model. ]
  97 *
  98 *                      Implementation
  99 *
 100 * To assess the precise time spent in each such state, we would have
 101 * to freeze the system on task changes and start/stop the state
 102 * clocks accordingly. Obviously that doesn't scale in practice.
 103 *
 104 * Because the scheduler aims to distribute the compute load evenly
 105 * among the available CPUs, we can track task state locally to each
 106 * CPU and, at much lower frequency, extrapolate the global state for
 107 * the cumulative stall times and the running averages.
 108 *
 109 * For each runqueue, we track:
 110 *
 111 *         tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 112 *         tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 113 *      tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 114 *
 115 * and then periodically aggregate:
 116 *
 117 *      tNONIDLE = sum(tNONIDLE[i])
 118 *
 119 *         tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 120 *         tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 121 *
 122 *         %SOME = tSOME / period
 123 *         %FULL = tFULL / period
 124 *
 125 * This gives us an approximation of pressure that is practical
 126 * cost-wise, yet way more sensitive and accurate than periodic
 127 * sampling of the aggregate task states would be.
 128 */
 129
 130#include "../workqueue_internal.h"
 131#include <linux/sched/loadavg.h>
 132#include <linux/seq_file.h>
 133#include <linux/proc_fs.h>
 134#include <linux/seqlock.h>
 135#include <linux/uaccess.h>
 136#include <linux/cgroup.h>
 137#include <linux/module.h>
 138#include <linux/sched.h>
 139#include <linux/ctype.h>
 140#include <linux/file.h>
 141#include <linux/poll.h>
 142#include <linux/psi.h>
 143#include "sched.h"
 144
 145static int psi_bug __read_mostly;
 146
 147DEFINE_STATIC_KEY_FALSE(psi_disabled);
 148
 149#ifdef CONFIG_PSI_DEFAULT_DISABLED
 150static bool psi_enable;
 151#else
 152static bool psi_enable = true;
 153#endif
 154static int __init setup_psi(char *str)
 155{
 156        return kstrtobool(str, &psi_enable) == 0;
 157}
 158__setup("psi=", setup_psi);
 159
 160/* Running averages - we need to be higher-res than loadavg */
 161#define PSI_FREQ        (2*HZ+1)        /* 2 sec intervals */
 162#define EXP_10s         1677            /* 1/exp(2s/10s) as fixed-point */
 163#define EXP_60s         1981            /* 1/exp(2s/60s) */
 164#define EXP_300s        2034            /* 1/exp(2s/300s) */
 165
 166/* PSI trigger definitions */
 167#define WINDOW_MIN_US 500000    /* Min window size is 500ms */
 168#define WINDOW_MAX_US 10000000  /* Max window size is 10s */
 169#define UPDATES_PER_WINDOW 10   /* 10 updates per window */
 170
 171/* Sampling frequency in nanoseconds */
 172static u64 psi_period __read_mostly;
 173
 174/* System-level pressure and stall tracking */
 175static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 176struct psi_group psi_system = {
 177        .pcpu = &system_group_pcpu,
 178};
 179
 180static void psi_avgs_work(struct work_struct *work);
 181
 182static void group_init(struct psi_group *group)
 183{
 184        int cpu;
 185
 186        for_each_possible_cpu(cpu)
 187                seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 188        group->avg_last_update = sched_clock();
 189        group->avg_next_update = group->avg_last_update + psi_period;
 190        INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 191        mutex_init(&group->avgs_lock);
 192        /* Init trigger-related members */
 193        mutex_init(&group->trigger_lock);
 194        INIT_LIST_HEAD(&group->triggers);
 195        memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
 196        group->poll_states = 0;
 197        group->poll_min_period = U32_MAX;
 198        memset(group->polling_total, 0, sizeof(group->polling_total));
 199        group->polling_next_update = ULLONG_MAX;
 200        group->polling_until = 0;
 201        rcu_assign_pointer(group->poll_task, NULL);
 202}
 203
 204void __init psi_init(void)
 205{
 206        if (!psi_enable) {
 207                static_branch_enable(&psi_disabled);
 208                return;
 209        }
 210
 211        psi_period = jiffies_to_nsecs(PSI_FREQ);
 212        group_init(&psi_system);
 213}
 214
 215static bool test_state(unsigned int *tasks, enum psi_states state)
 216{
 217        switch (state) {
 218        case PSI_IO_SOME:
 219                return tasks[NR_IOWAIT];
 220        case PSI_IO_FULL:
 221                return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
 222        case PSI_MEM_SOME:
 223                return tasks[NR_MEMSTALL];
 224        case PSI_MEM_FULL:
 225                return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
 226        case PSI_CPU_SOME:
 227                return tasks[NR_RUNNING] > 1;
 228        case PSI_NONIDLE:
 229                return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
 230                        tasks[NR_RUNNING];
 231        default:
 232                return false;
 233        }
 234}
 235
 236static void get_recent_times(struct psi_group *group, int cpu,
 237                             enum psi_aggregators aggregator, u32 *times,
 238                             u32 *pchanged_states)
 239{
 240        struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 241        u64 now, state_start;
 242        enum psi_states s;
 243        unsigned int seq;
 244        u32 state_mask;
 245
 246        *pchanged_states = 0;
 247
 248        /* Snapshot a coherent view of the CPU state */
 249        do {
 250                seq = read_seqcount_begin(&groupc->seq);
 251                now = cpu_clock(cpu);
 252                memcpy(times, groupc->times, sizeof(groupc->times));
 253                state_mask = groupc->state_mask;
 254                state_start = groupc->state_start;
 255        } while (read_seqcount_retry(&groupc->seq, seq));
 256
 257        /* Calculate state time deltas against the previous snapshot */
 258        for (s = 0; s < NR_PSI_STATES; s++) {
 259                u32 delta;
 260                /*
 261                 * In addition to already concluded states, we also
 262                 * incorporate currently active states on the CPU,
 263                 * since states may last for many sampling periods.
 264                 *
 265                 * This way we keep our delta sampling buckets small
 266                 * (u32) and our reported pressure close to what's
 267                 * actually happening.
 268                 */
 269                if (state_mask & (1 << s))
 270                        times[s] += now - state_start;
 271
 272                delta = times[s] - groupc->times_prev[aggregator][s];
 273                groupc->times_prev[aggregator][s] = times[s];
 274
 275                times[s] = delta;
 276                if (delta)
 277                        *pchanged_states |= (1 << s);
 278        }
 279}
 280
 281static void calc_avgs(unsigned long avg[3], int missed_periods,
 282                      u64 time, u64 period)
 283{
 284        unsigned long pct;
 285
 286        /* Fill in zeroes for periods of no activity */
 287        if (missed_periods) {
 288                avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 289                avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 290                avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 291        }
 292
 293        /* Sample the most recent active period */
 294        pct = div_u64(time * 100, period);
 295        pct *= FIXED_1;
 296        avg[0] = calc_load(avg[0], EXP_10s, pct);
 297        avg[1] = calc_load(avg[1], EXP_60s, pct);
 298        avg[2] = calc_load(avg[2], EXP_300s, pct);
 299}
 300
 301static void collect_percpu_times(struct psi_group *group,
 302                                 enum psi_aggregators aggregator,
 303                                 u32 *pchanged_states)
 304{
 305        u64 deltas[NR_PSI_STATES - 1] = { 0, };
 306        unsigned long nonidle_total = 0;
 307        u32 changed_states = 0;
 308        int cpu;
 309        int s;
 310
 311        /*
 312         * Collect the per-cpu time buckets and average them into a
 313         * single time sample that is normalized to wallclock time.
 314         *
 315         * For averaging, each CPU is weighted by its non-idle time in
 316         * the sampling period. This eliminates artifacts from uneven
 317         * loading, or even entirely idle CPUs.
 318         */
 319        for_each_possible_cpu(cpu) {
 320                u32 times[NR_PSI_STATES];
 321                u32 nonidle;
 322                u32 cpu_changed_states;
 323
 324                get_recent_times(group, cpu, aggregator, times,
 325                                &cpu_changed_states);
 326                changed_states |= cpu_changed_states;
 327
 328                nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 329                nonidle_total += nonidle;
 330
 331                for (s = 0; s < PSI_NONIDLE; s++)
 332                        deltas[s] += (u64)times[s] * nonidle;
 333        }
 334
 335        /*
 336         * Integrate the sample into the running statistics that are
 337         * reported to userspace: the cumulative stall times and the
 338         * decaying averages.
 339         *
 340         * Pressure percentages are sampled at PSI_FREQ. We might be
 341         * called more often when the user polls more frequently than
 342         * that; we might be called less often when there is no task
 343         * activity, thus no data, and clock ticks are sporadic. The
 344         * below handles both.
 345         */
 346
 347        /* total= */
 348        for (s = 0; s < NR_PSI_STATES - 1; s++)
 349                group->total[aggregator][s] +=
 350                                div_u64(deltas[s], max(nonidle_total, 1UL));
 351
 352        if (pchanged_states)
 353                *pchanged_states = changed_states;
 354}
 355
 356static u64 update_averages(struct psi_group *group, u64 now)
 357{
 358        unsigned long missed_periods = 0;
 359        u64 expires, period;
 360        u64 avg_next_update;
 361        int s;
 362
 363        /* avgX= */
 364        expires = group->avg_next_update;
 365        if (now - expires >= psi_period)
 366                missed_periods = div_u64(now - expires, psi_period);
 367
 368        /*
 369         * The periodic clock tick can get delayed for various
 370         * reasons, especially on loaded systems. To avoid clock
 371         * drift, we schedule the clock in fixed psi_period intervals.
 372         * But the deltas we sample out of the per-cpu buckets above
 373         * are based on the actual time elapsing between clock ticks.
 374         */
 375        avg_next_update = expires + ((1 + missed_periods) * psi_period);
 376        period = now - (group->avg_last_update + (missed_periods * psi_period));
 377        group->avg_last_update = now;
 378
 379        for (s = 0; s < NR_PSI_STATES - 1; s++) {
 380                u32 sample;
 381
 382                sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 383                /*
 384                 * Due to the lockless sampling of the time buckets,
 385                 * recorded time deltas can slip into the next period,
 386                 * which under full pressure can result in samples in
 387                 * excess of the period length.
 388                 *
 389                 * We don't want to report non-sensical pressures in
 390                 * excess of 100%, nor do we want to drop such events
 391                 * on the floor. Instead we punt any overage into the
 392                 * future until pressure subsides. By doing this we
 393                 * don't underreport the occurring pressure curve, we
 394                 * just report it delayed by one period length.
 395                 *
 396                 * The error isn't cumulative. As soon as another
 397                 * delta slips from a period P to P+1, by definition
 398                 * it frees up its time T in P.
 399                 */
 400                if (sample > period)
 401                        sample = period;
 402                group->avg_total[s] += sample;
 403                calc_avgs(group->avg[s], missed_periods, sample, period);
 404        }
 405
 406        return avg_next_update;
 407}
 408
 409static void psi_avgs_work(struct work_struct *work)
 410{
 411        struct delayed_work *dwork;
 412        struct psi_group *group;
 413        u32 changed_states;
 414        bool nonidle;
 415        u64 now;
 416
 417        dwork = to_delayed_work(work);
 418        group = container_of(dwork, struct psi_group, avgs_work);
 419
 420        mutex_lock(&group->avgs_lock);
 421
 422        now = sched_clock();
 423
 424        collect_percpu_times(group, PSI_AVGS, &changed_states);
 425        nonidle = changed_states & (1 << PSI_NONIDLE);
 426        /*
 427         * If there is task activity, periodically fold the per-cpu
 428         * times and feed samples into the running averages. If things
 429         * are idle and there is no data to process, stop the clock.
 430         * Once restarted, we'll catch up the running averages in one
 431         * go - see calc_avgs() and missed_periods.
 432         */
 433        if (now >= group->avg_next_update)
 434                group->avg_next_update = update_averages(group, now);
 435
 436        if (nonidle) {
 437                schedule_delayed_work(dwork, nsecs_to_jiffies(
 438                                group->avg_next_update - now) + 1);
 439        }
 440
 441        mutex_unlock(&group->avgs_lock);
 442}
 443
 444/* Trigger tracking window manupulations */
 445static void window_reset(struct psi_window *win, u64 now, u64 value,
 446                         u64 prev_growth)
 447{
 448        win->start_time = now;
 449        win->start_value = value;
 450        win->prev_growth = prev_growth;
 451}
 452
 453/*
 454 * PSI growth tracking window update and growth calculation routine.
 455 *
 456 * This approximates a sliding tracking window by interpolating
 457 * partially elapsed windows using historical growth data from the
 458 * previous intervals. This minimizes memory requirements (by not storing
 459 * all the intermediate values in the previous window) and simplifies
 460 * the calculations. It works well because PSI signal changes only in
 461 * positive direction and over relatively small window sizes the growth
 462 * is close to linear.
 463 */
 464static u64 window_update(struct psi_window *win, u64 now, u64 value)
 465{
 466        u64 elapsed;
 467        u64 growth;
 468
 469        elapsed = now - win->start_time;
 470        growth = value - win->start_value;
 471        /*
 472         * After each tracking window passes win->start_value and
 473         * win->start_time get reset and win->prev_growth stores
 474         * the average per-window growth of the previous window.
 475         * win->prev_growth is then used to interpolate additional
 476         * growth from the previous window assuming it was linear.
 477         */
 478        if (elapsed > win->size)
 479                window_reset(win, now, value, growth);
 480        else {
 481                u32 remaining;
 482
 483                remaining = win->size - elapsed;
 484                growth += div64_u64(win->prev_growth * remaining, win->size);
 485        }
 486
 487        return growth;
 488}
 489
 490static void init_triggers(struct psi_group *group, u64 now)
 491{
 492        struct psi_trigger *t;
 493
 494        list_for_each_entry(t, &group->triggers, node)
 495                window_reset(&t->win, now,
 496                                group->total[PSI_POLL][t->state], 0);
 497        memcpy(group->polling_total, group->total[PSI_POLL],
 498                   sizeof(group->polling_total));
 499        group->polling_next_update = now + group->poll_min_period;
 500}
 501
 502static u64 update_triggers(struct psi_group *group, u64 now)
 503{
 504        struct psi_trigger *t;
 505        bool new_stall = false;
 506        u64 *total = group->total[PSI_POLL];
 507
 508        /*
 509         * On subsequent updates, calculate growth deltas and let
 510         * watchers know when their specified thresholds are exceeded.
 511         */
 512        list_for_each_entry(t, &group->triggers, node) {
 513                u64 growth;
 514
 515                /* Check for stall activity */
 516                if (group->polling_total[t->state] == total[t->state])
 517                        continue;
 518
 519                /*
 520                 * Multiple triggers might be looking at the same state,
 521                 * remember to update group->polling_total[] once we've
 522                 * been through all of them. Also remember to extend the
 523                 * polling time if we see new stall activity.
 524                 */
 525                new_stall = true;
 526
 527                /* Calculate growth since last update */
 528                growth = window_update(&t->win, now, total[t->state]);
 529                if (growth < t->threshold)
 530                        continue;
 531
 532                /* Limit event signaling to once per window */
 533                if (now < t->last_event_time + t->win.size)
 534                        continue;
 535
 536                /* Generate an event */
 537                if (cmpxchg(&t->event, 0, 1) == 0)
 538                        wake_up_interruptible(&t->event_wait);
 539                t->last_event_time = now;
 540        }
 541
 542        if (new_stall)
 543                memcpy(group->polling_total, total,
 544                                sizeof(group->polling_total));
 545
 546        return now + group->poll_min_period;
 547}
 548
 549/* Schedule polling if it's not already scheduled. */
 550static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
 551{
 552        struct task_struct *task;
 553
 554        /*
 555         * Do not reschedule if already scheduled.
 556         * Possible race with a timer scheduled after this check but before
 557         * mod_timer below can be tolerated because group->polling_next_update
 558         * will keep updates on schedule.
 559         */
 560        if (timer_pending(&group->poll_timer))
 561                return;
 562
 563        rcu_read_lock();
 564
 565        task = rcu_dereference(group->poll_task);
 566        /*
 567         * kworker might be NULL in case psi_trigger_destroy races with
 568         * psi_task_change (hotpath) which can't use locks
 569         */
 570        if (likely(task))
 571                mod_timer(&group->poll_timer, jiffies + delay);
 572
 573        rcu_read_unlock();
 574}
 575
 576static void psi_poll_work(struct psi_group *group)
 577{
 578        u32 changed_states;
 579        u64 now;
 580
 581        mutex_lock(&group->trigger_lock);
 582
 583        now = sched_clock();
 584
 585        collect_percpu_times(group, PSI_POLL, &changed_states);
 586
 587        if (changed_states & group->poll_states) {
 588                /* Initialize trigger windows when entering polling mode */
 589                if (now > group->polling_until)
 590                        init_triggers(group, now);
 591
 592                /*
 593                 * Keep the monitor active for at least the duration of the
 594                 * minimum tracking window as long as monitor states are
 595                 * changing.
 596                 */
 597                group->polling_until = now +
 598                        group->poll_min_period * UPDATES_PER_WINDOW;
 599        }
 600
 601        if (now > group->polling_until) {
 602                group->polling_next_update = ULLONG_MAX;
 603                goto out;
 604        }
 605
 606        if (now >= group->polling_next_update)
 607                group->polling_next_update = update_triggers(group, now);
 608
 609        psi_schedule_poll_work(group,
 610                nsecs_to_jiffies(group->polling_next_update - now) + 1);
 611
 612out:
 613        mutex_unlock(&group->trigger_lock);
 614}
 615
 616static int psi_poll_worker(void *data)
 617{
 618        struct psi_group *group = (struct psi_group *)data;
 619        struct sched_param param = {
 620                .sched_priority = 1,
 621        };
 622
 623        sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
 624
 625        while (true) {
 626                wait_event_interruptible(group->poll_wait,
 627                                atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
 628                                kthread_should_stop());
 629                if (kthread_should_stop())
 630                        break;
 631
 632                psi_poll_work(group);
 633        }
 634        return 0;
 635}
 636
 637static void poll_timer_fn(struct timer_list *t)
 638{
 639        struct psi_group *group = from_timer(group, t, poll_timer);
 640
 641        atomic_set(&group->poll_wakeup, 1);
 642        wake_up_interruptible(&group->poll_wait);
 643}
 644
 645static void record_times(struct psi_group_cpu *groupc, int cpu,
 646                         bool memstall_tick)
 647{
 648        u32 delta;
 649        u64 now;
 650
 651        now = cpu_clock(cpu);
 652        delta = now - groupc->state_start;
 653        groupc->state_start = now;
 654
 655        if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 656                groupc->times[PSI_IO_SOME] += delta;
 657                if (groupc->state_mask & (1 << PSI_IO_FULL))
 658                        groupc->times[PSI_IO_FULL] += delta;
 659        }
 660
 661        if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 662                groupc->times[PSI_MEM_SOME] += delta;
 663                if (groupc->state_mask & (1 << PSI_MEM_FULL))
 664                        groupc->times[PSI_MEM_FULL] += delta;
 665                else if (memstall_tick) {
 666                        u32 sample;
 667                        /*
 668                         * Since we care about lost potential, a
 669                         * memstall is FULL when there are no other
 670                         * working tasks, but also when the CPU is
 671                         * actively reclaiming and nothing productive
 672                         * could run even if it were runnable.
 673                         *
 674                         * When the timer tick sees a reclaiming CPU,
 675                         * regardless of runnable tasks, sample a FULL
 676                         * tick (or less if it hasn't been a full tick
 677                         * since the last state change).
 678                         */
 679                        sample = min(delta, (u32)jiffies_to_nsecs(1));
 680                        groupc->times[PSI_MEM_FULL] += sample;
 681                }
 682        }
 683
 684        if (groupc->state_mask & (1 << PSI_CPU_SOME))
 685                groupc->times[PSI_CPU_SOME] += delta;
 686
 687        if (groupc->state_mask & (1 << PSI_NONIDLE))
 688                groupc->times[PSI_NONIDLE] += delta;
 689}
 690
 691static u32 psi_group_change(struct psi_group *group, int cpu,
 692                            unsigned int clear, unsigned int set)
 693{
 694        struct psi_group_cpu *groupc;
 695        unsigned int t, m;
 696        enum psi_states s;
 697        u32 state_mask = 0;
 698
 699        groupc = per_cpu_ptr(group->pcpu, cpu);
 700
 701        /*
 702         * First we assess the aggregate resource states this CPU's
 703         * tasks have been in since the last change, and account any
 704         * SOME and FULL time these may have resulted in.
 705         *
 706         * Then we update the task counts according to the state
 707         * change requested through the @clear and @set bits.
 708         */
 709        write_seqcount_begin(&groupc->seq);
 710
 711        record_times(groupc, cpu, false);
 712
 713        for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 714                if (!(m & (1 << t)))
 715                        continue;
 716                if (groupc->tasks[t] == 0 && !psi_bug) {
 717                        printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
 718                                        cpu, t, groupc->tasks[0],
 719                                        groupc->tasks[1], groupc->tasks[2],
 720                                        clear, set);
 721                        psi_bug = 1;
 722                }
 723                groupc->tasks[t]--;
 724        }
 725
 726        for (t = 0; set; set &= ~(1 << t), t++)
 727                if (set & (1 << t))
 728                        groupc->tasks[t]++;
 729
 730        /* Calculate state mask representing active states */
 731        for (s = 0; s < NR_PSI_STATES; s++) {
 732                if (test_state(groupc->tasks, s))
 733                        state_mask |= (1 << s);
 734        }
 735        groupc->state_mask = state_mask;
 736
 737        write_seqcount_end(&groupc->seq);
 738
 739        return state_mask;
 740}
 741
 742static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
 743{
 744#ifdef CONFIG_CGROUPS
 745        struct cgroup *cgroup = NULL;
 746
 747        if (!*iter)
 748                cgroup = task->cgroups->dfl_cgrp;
 749        else if (*iter == &psi_system)
 750                return NULL;
 751        else
 752                cgroup = cgroup_parent(*iter);
 753
 754        if (cgroup && cgroup_parent(cgroup)) {
 755                *iter = cgroup;
 756                return cgroup_psi(cgroup);
 757        }
 758#else
 759        if (*iter)
 760                return NULL;
 761#endif
 762        *iter = &psi_system;
 763        return &psi_system;
 764}
 765
 766void psi_task_change(struct task_struct *task, int clear, int set)
 767{
 768        int cpu = task_cpu(task);
 769        struct psi_group *group;
 770        bool wake_clock = true;
 771        void *iter = NULL;
 772
 773        if (!task->pid)
 774                return;
 775
 776        if (((task->psi_flags & set) ||
 777             (task->psi_flags & clear) != clear) &&
 778            !psi_bug) {
 779                printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 780                                task->pid, task->comm, cpu,
 781                                task->psi_flags, clear, set);
 782                psi_bug = 1;
 783        }
 784
 785        task->psi_flags &= ~clear;
 786        task->psi_flags |= set;
 787
 788        /*
 789         * Periodic aggregation shuts off if there is a period of no
 790         * task changes, so we wake it back up if necessary. However,
 791         * don't do this if the task change is the aggregation worker
 792         * itself going to sleep, or we'll ping-pong forever.
 793         */
 794        if (unlikely((clear & TSK_RUNNING) &&
 795                     (task->flags & PF_WQ_WORKER) &&
 796                     wq_worker_last_func(task) == psi_avgs_work))
 797                wake_clock = false;
 798
 799        while ((group = iterate_groups(task, &iter))) {
 800                u32 state_mask = psi_group_change(group, cpu, clear, set);
 801
 802                if (state_mask & group->poll_states)
 803                        psi_schedule_poll_work(group, 1);
 804
 805                if (wake_clock && !delayed_work_pending(&group->avgs_work))
 806                        schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 807        }
 808}
 809
 810void psi_memstall_tick(struct task_struct *task, int cpu)
 811{
 812        struct psi_group *group;
 813        void *iter = NULL;
 814
 815        while ((group = iterate_groups(task, &iter))) {
 816                struct psi_group_cpu *groupc;
 817
 818                groupc = per_cpu_ptr(group->pcpu, cpu);
 819                write_seqcount_begin(&groupc->seq);
 820                record_times(groupc, cpu, true);
 821                write_seqcount_end(&groupc->seq);
 822        }
 823}
 824
 825/**
 826 * psi_memstall_enter - mark the beginning of a memory stall section
 827 * @flags: flags to handle nested sections
 828 *
 829 * Marks the calling task as being stalled due to a lack of memory,
 830 * such as waiting for a refault or performing reclaim.
 831 */
 832void psi_memstall_enter(unsigned long *flags)
 833{
 834        struct rq_flags rf;
 835        struct rq *rq;
 836
 837        if (static_branch_likely(&psi_disabled))
 838                return;
 839
 840        *flags = current->flags & PF_MEMSTALL;
 841        if (*flags)
 842                return;
 843        /*
 844         * PF_MEMSTALL setting & accounting needs to be atomic wrt
 845         * changes to the task's scheduling state, otherwise we can
 846         * race with CPU migration.
 847         */
 848        rq = this_rq_lock_irq(&rf);
 849
 850        current->flags |= PF_MEMSTALL;
 851        psi_task_change(current, 0, TSK_MEMSTALL);
 852
 853        rq_unlock_irq(rq, &rf);
 854}
 855
 856/**
 857 * psi_memstall_leave - mark the end of an memory stall section
 858 * @flags: flags to handle nested memdelay sections
 859 *
 860 * Marks the calling task as no longer stalled due to lack of memory.
 861 */
 862void psi_memstall_leave(unsigned long *flags)
 863{
 864        struct rq_flags rf;
 865        struct rq *rq;
 866
 867        if (static_branch_likely(&psi_disabled))
 868                return;
 869
 870        if (*flags)
 871                return;
 872        /*
 873         * PF_MEMSTALL clearing & accounting needs to be atomic wrt
 874         * changes to the task's scheduling state, otherwise we could
 875         * race with CPU migration.
 876         */
 877        rq = this_rq_lock_irq(&rf);
 878
 879        current->flags &= ~PF_MEMSTALL;
 880        psi_task_change(current, TSK_MEMSTALL, 0);
 881
 882        rq_unlock_irq(rq, &rf);
 883}
 884
 885#ifdef CONFIG_CGROUPS
 886int psi_cgroup_alloc(struct cgroup *cgroup)
 887{
 888        if (static_branch_likely(&psi_disabled))
 889                return 0;
 890
 891        cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
 892        if (!cgroup->psi.pcpu)
 893                return -ENOMEM;
 894        group_init(&cgroup->psi);
 895        return 0;
 896}
 897
 898void psi_cgroup_free(struct cgroup *cgroup)
 899{
 900        if (static_branch_likely(&psi_disabled))
 901                return;
 902
 903        cancel_delayed_work_sync(&cgroup->psi.avgs_work);
 904        free_percpu(cgroup->psi.pcpu);
 905        /* All triggers must be removed by now */
 906        WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
 907}
 908
 909/**
 910 * cgroup_move_task - move task to a different cgroup
 911 * @task: the task
 912 * @to: the target css_set
 913 *
 914 * Move task to a new cgroup and safely migrate its associated stall
 915 * state between the different groups.
 916 *
 917 * This function acquires the task's rq lock to lock out concurrent
 918 * changes to the task's scheduling state and - in case the task is
 919 * running - concurrent changes to its stall state.
 920 */
 921void cgroup_move_task(struct task_struct *task, struct css_set *to)
 922{
 923        unsigned int task_flags = 0;
 924        struct rq_flags rf;
 925        struct rq *rq;
 926
 927        if (static_branch_likely(&psi_disabled)) {
 928                /*
 929                 * Lame to do this here, but the scheduler cannot be locked
 930                 * from the outside, so we move cgroups from inside sched/.
 931                 */
 932                rcu_assign_pointer(task->cgroups, to);
 933                return;
 934        }
 935
 936        rq = task_rq_lock(task, &rf);
 937
 938        if (task_on_rq_queued(task))
 939                task_flags = TSK_RUNNING;
 940        else if (task->in_iowait)
 941                task_flags = TSK_IOWAIT;
 942
 943        if (task->flags & PF_MEMSTALL)
 944                task_flags |= TSK_MEMSTALL;
 945
 946        if (task_flags)
 947                psi_task_change(task, task_flags, 0);
 948
 949        /* See comment above */
 950        rcu_assign_pointer(task->cgroups, to);
 951
 952        if (task_flags)
 953                psi_task_change(task, 0, task_flags);
 954
 955        task_rq_unlock(rq, task, &rf);
 956}
 957#endif /* CONFIG_CGROUPS */
 958
 959int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
 960{
 961        int full;
 962        u64 now;
 963
 964        if (static_branch_likely(&psi_disabled))
 965                return -EOPNOTSUPP;
 966
 967        /* Update averages before reporting them */
 968        mutex_lock(&group->avgs_lock);
 969        now = sched_clock();
 970        collect_percpu_times(group, PSI_AVGS, NULL);
 971        if (now >= group->avg_next_update)
 972                group->avg_next_update = update_averages(group, now);
 973        mutex_unlock(&group->avgs_lock);
 974
 975        for (full = 0; full < 2 - (res == PSI_CPU); full++) {
 976                unsigned long avg[3];
 977                u64 total;
 978                int w;
 979
 980                for (w = 0; w < 3; w++)
 981                        avg[w] = group->avg[res * 2 + full][w];
 982                total = div_u64(group->total[PSI_AVGS][res * 2 + full],
 983                                NSEC_PER_USEC);
 984
 985                seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
 986                           full ? "full" : "some",
 987                           LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
 988                           LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
 989                           LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
 990                           total);
 991        }
 992
 993        return 0;
 994}
 995
 996static int psi_io_show(struct seq_file *m, void *v)
 997{
 998        return psi_show(m, &psi_system, PSI_IO);
 999}
1000
1001static int psi_memory_show(struct seq_file *m, void *v)
1002{
1003        return psi_show(m, &psi_system, PSI_MEM);
1004}
1005
1006static int psi_cpu_show(struct seq_file *m, void *v)
1007{
1008        return psi_show(m, &psi_system, PSI_CPU);
1009}
1010
1011static int psi_io_open(struct inode *inode, struct file *file)
1012{
1013        return single_open(file, psi_io_show, NULL);
1014}
1015
1016static int psi_memory_open(struct inode *inode, struct file *file)
1017{
1018        return single_open(file, psi_memory_show, NULL);
1019}
1020
1021static int psi_cpu_open(struct inode *inode, struct file *file)
1022{
1023        return single_open(file, psi_cpu_show, NULL);
1024}
1025
1026struct psi_trigger *psi_trigger_create(struct psi_group *group,
1027                        char *buf, size_t nbytes, enum psi_res res)
1028{
1029        struct psi_trigger *t;
1030        enum psi_states state;
1031        u32 threshold_us;
1032        u32 window_us;
1033
1034        if (static_branch_likely(&psi_disabled))
1035                return ERR_PTR(-EOPNOTSUPP);
1036
1037        if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1038                state = PSI_IO_SOME + res * 2;
1039        else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1040                state = PSI_IO_FULL + res * 2;
1041        else
1042                return ERR_PTR(-EINVAL);
1043
1044        if (state >= PSI_NONIDLE)
1045                return ERR_PTR(-EINVAL);
1046
1047        if (window_us < WINDOW_MIN_US ||
1048                window_us > WINDOW_MAX_US)
1049                return ERR_PTR(-EINVAL);
1050
1051        /* Check threshold */
1052        if (threshold_us == 0 || threshold_us > window_us)
1053                return ERR_PTR(-EINVAL);
1054
1055        t = kmalloc(sizeof(*t), GFP_KERNEL);
1056        if (!t)
1057                return ERR_PTR(-ENOMEM);
1058
1059        t->group = group;
1060        t->state = state;
1061        t->threshold = threshold_us * NSEC_PER_USEC;
1062        t->win.size = window_us * NSEC_PER_USEC;
1063        window_reset(&t->win, 0, 0, 0);
1064
1065        t->event = 0;
1066        t->last_event_time = 0;
1067        init_waitqueue_head(&t->event_wait);
1068        kref_init(&t->refcount);
1069
1070        mutex_lock(&group->trigger_lock);
1071
1072        if (!rcu_access_pointer(group->poll_task)) {
1073                struct task_struct *task;
1074
1075                task = kthread_create(psi_poll_worker, group, "psimon");
1076                if (IS_ERR(task)) {
1077                        kfree(t);
1078                        mutex_unlock(&group->trigger_lock);
1079                        return ERR_CAST(task);
1080                }
1081                atomic_set(&group->poll_wakeup, 0);
1082                init_waitqueue_head(&group->poll_wait);
1083                wake_up_process(task);
1084                timer_setup(&group->poll_timer, poll_timer_fn, 0);
1085                rcu_assign_pointer(group->poll_task, task);
1086        }
1087
1088        list_add(&t->node, &group->triggers);
1089        group->poll_min_period = min(group->poll_min_period,
1090                div_u64(t->win.size, UPDATES_PER_WINDOW));
1091        group->nr_triggers[t->state]++;
1092        group->poll_states |= (1 << t->state);
1093
1094        mutex_unlock(&group->trigger_lock);
1095
1096        return t;
1097}
1098
1099static void psi_trigger_destroy(struct kref *ref)
1100{
1101        struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1102        struct psi_group *group = t->group;
1103        struct task_struct *task_to_destroy = NULL;
1104
1105        if (static_branch_likely(&psi_disabled))
1106                return;
1107
1108        /*
1109         * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1110         * from under a polling process.
1111         */
1112        wake_up_interruptible(&t->event_wait);
1113
1114        mutex_lock(&group->trigger_lock);
1115
1116        if (!list_empty(&t->node)) {
1117                struct psi_trigger *tmp;
1118                u64 period = ULLONG_MAX;
1119
1120                list_del(&t->node);
1121                group->nr_triggers[t->state]--;
1122                if (!group->nr_triggers[t->state])
1123                        group->poll_states &= ~(1 << t->state);
1124                /* reset min update period for the remaining triggers */
1125                list_for_each_entry(tmp, &group->triggers, node)
1126                        period = min(period, div_u64(tmp->win.size,
1127                                        UPDATES_PER_WINDOW));
1128                group->poll_min_period = period;
1129                /* Destroy poll_task when the last trigger is destroyed */
1130                if (group->poll_states == 0) {
1131                        group->polling_until = 0;
1132                        task_to_destroy = rcu_dereference_protected(
1133                                        group->poll_task,
1134                                        lockdep_is_held(&group->trigger_lock));
1135                        rcu_assign_pointer(group->poll_task, NULL);
1136                }
1137        }
1138
1139        mutex_unlock(&group->trigger_lock);
1140
1141        /*
1142         * Wait for both *trigger_ptr from psi_trigger_replace and
1143         * poll_task RCUs to complete their read-side critical sections
1144         * before destroying the trigger and optionally the poll_task
1145         */
1146        synchronize_rcu();
1147        /*
1148         * Destroy the kworker after releasing trigger_lock to prevent a
1149         * deadlock while waiting for psi_poll_work to acquire trigger_lock
1150         */
1151        if (task_to_destroy) {
1152                /*
1153                 * After the RCU grace period has expired, the worker
1154                 * can no longer be found through group->poll_task.
1155                 * But it might have been already scheduled before
1156                 * that - deschedule it cleanly before destroying it.
1157                 */
1158                del_timer_sync(&group->poll_timer);
1159                kthread_stop(task_to_destroy);
1160        }
1161        kfree(t);
1162}
1163
1164void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1165{
1166        struct psi_trigger *old = *trigger_ptr;
1167
1168        if (static_branch_likely(&psi_disabled))
1169                return;
1170
1171        rcu_assign_pointer(*trigger_ptr, new);
1172        if (old)
1173                kref_put(&old->refcount, psi_trigger_destroy);
1174}
1175
1176__poll_t psi_trigger_poll(void **trigger_ptr,
1177                                struct file *file, poll_table *wait)
1178{
1179        __poll_t ret = DEFAULT_POLLMASK;
1180        struct psi_trigger *t;
1181
1182        if (static_branch_likely(&psi_disabled))
1183                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1184
1185        rcu_read_lock();
1186
1187        t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1188        if (!t) {
1189                rcu_read_unlock();
1190                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1191        }
1192        kref_get(&t->refcount);
1193
1194        rcu_read_unlock();
1195
1196        poll_wait(file, &t->event_wait, wait);
1197
1198        if (cmpxchg(&t->event, 1, 0) == 1)
1199                ret |= EPOLLPRI;
1200
1201        kref_put(&t->refcount, psi_trigger_destroy);
1202
1203        return ret;
1204}
1205
1206static ssize_t psi_write(struct file *file, const char __user *user_buf,
1207                         size_t nbytes, enum psi_res res)
1208{
1209        char buf[32];
1210        size_t buf_size;
1211        struct seq_file *seq;
1212        struct psi_trigger *new;
1213
1214        if (static_branch_likely(&psi_disabled))
1215                return -EOPNOTSUPP;
1216
1217        if (!nbytes)
1218                return -EINVAL;
1219
1220        buf_size = min(nbytes, sizeof(buf));
1221        if (copy_from_user(buf, user_buf, buf_size))
1222                return -EFAULT;
1223
1224        buf[buf_size - 1] = '\0';
1225
1226        new = psi_trigger_create(&psi_system, buf, nbytes, res);
1227        if (IS_ERR(new))
1228                return PTR_ERR(new);
1229
1230        seq = file->private_data;
1231        /* Take seq->lock to protect seq->private from concurrent writes */
1232        mutex_lock(&seq->lock);
1233        psi_trigger_replace(&seq->private, new);
1234        mutex_unlock(&seq->lock);
1235
1236        return nbytes;
1237}
1238
1239static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1240                            size_t nbytes, loff_t *ppos)
1241{
1242        return psi_write(file, user_buf, nbytes, PSI_IO);
1243}
1244
1245static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1246                                size_t nbytes, loff_t *ppos)
1247{
1248        return psi_write(file, user_buf, nbytes, PSI_MEM);
1249}
1250
1251static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1252                             size_t nbytes, loff_t *ppos)
1253{
1254        return psi_write(file, user_buf, nbytes, PSI_CPU);
1255}
1256
1257static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1258{
1259        struct seq_file *seq = file->private_data;
1260
1261        return psi_trigger_poll(&seq->private, file, wait);
1262}
1263
1264static int psi_fop_release(struct inode *inode, struct file *file)
1265{
1266        struct seq_file *seq = file->private_data;
1267
1268        psi_trigger_replace(&seq->private, NULL);
1269        return single_release(inode, file);
1270}
1271
1272static const struct file_operations psi_io_fops = {
1273        .open           = psi_io_open,
1274        .read           = seq_read,
1275        .llseek         = seq_lseek,
1276        .write          = psi_io_write,
1277        .poll           = psi_fop_poll,
1278        .release        = psi_fop_release,
1279};
1280
1281static const struct file_operations psi_memory_fops = {
1282        .open           = psi_memory_open,
1283        .read           = seq_read,
1284        .llseek         = seq_lseek,
1285        .write          = psi_memory_write,
1286        .poll           = psi_fop_poll,
1287        .release        = psi_fop_release,
1288};
1289
1290static const struct file_operations psi_cpu_fops = {
1291        .open           = psi_cpu_open,
1292        .read           = seq_read,
1293        .llseek         = seq_lseek,
1294        .write          = psi_cpu_write,
1295        .poll           = psi_fop_poll,
1296        .release        = psi_fop_release,
1297};
1298
1299static int __init psi_proc_init(void)
1300{
1301        if (psi_enable) {
1302                proc_mkdir("pressure", NULL);
1303                proc_create("pressure/io", 0, NULL, &psi_io_fops);
1304                proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
1305                proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
1306        }
1307        return 0;
1308}
1309module_init(psi_proc_init);
1310