linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware vSockets Driver
   4 *
   5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6 */
   7
   8/* Implementation notes:
   9 *
  10 * - There are two kinds of sockets: those created by user action (such as
  11 * calling socket(2)) and those created by incoming connection request packets.
  12 *
  13 * - There are two "global" tables, one for bound sockets (sockets that have
  14 * specified an address that they are responsible for) and one for connected
  15 * sockets (sockets that have established a connection with another socket).
  16 * These tables are "global" in that all sockets on the system are placed
  17 * within them. - Note, though, that the bound table contains an extra entry
  18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  19 * that list. The bound table is used solely for lookup of sockets when packets
  20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  22 * sockets out of the bound hash buckets will reduce the chance of collisions
  23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  24 * socket type in the hash table lookups.
  25 *
  26 * - Sockets created by user action will either be "client" sockets that
  27 * initiate a connection or "server" sockets that listen for connections; we do
  28 * not support simultaneous connects (two "client" sockets connecting).
  29 *
  30 * - "Server" sockets are referred to as listener sockets throughout this
  31 * implementation because they are in the TCP_LISTEN state.  When a
  32 * connection request is received (the second kind of socket mentioned above),
  33 * we create a new socket and refer to it as a pending socket.  These pending
  34 * sockets are placed on the pending connection list of the listener socket.
  35 * When future packets are received for the address the listener socket is
  36 * bound to, we check if the source of the packet is from one that has an
  37 * existing pending connection.  If it does, we process the packet for the
  38 * pending socket.  When that socket reaches the connected state, it is removed
  39 * from the listener socket's pending list and enqueued in the listener
  40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  41 * from the listener socket's accept queue.  If the socket cannot be accepted
  42 * for some reason then it is marked rejected.  Once the connection is
  43 * accepted, it is owned by the user process and the responsibility for cleanup
  44 * falls with that user process.
  45 *
  46 * - It is possible that these pending sockets will never reach the connected
  47 * state; in fact, we may never receive another packet after the connection
  48 * request.  Because of this, we must schedule a cleanup function to run in the
  49 * future, after some amount of time passes where a connection should have been
  50 * established.  This function ensures that the socket is off all lists so it
  51 * cannot be retrieved, then drops all references to the socket so it is cleaned
  52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  53 * function will also cleanup rejected sockets, those that reach the connected
  54 * state but leave it before they have been accepted.
  55 *
  56 * - Lock ordering for pending or accept queue sockets is:
  57 *
  58 *     lock_sock(listener);
  59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  60 *
  61 * Using explicit nested locking keeps lockdep happy since normally only one
  62 * lock of a given class may be taken at a time.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 *
  78 * - sk->sk_state uses the TCP state constants because they are widely used by
  79 * other address families and exposed to userspace tools like ss(8):
  80 *
  81 *   TCP_CLOSE - unconnected
  82 *   TCP_SYN_SENT - connecting
  83 *   TCP_ESTABLISHED - connected
  84 *   TCP_CLOSING - disconnecting
  85 *   TCP_LISTEN - listening
  86 */
  87
  88#include <linux/types.h>
  89#include <linux/bitops.h>
  90#include <linux/cred.h>
  91#include <linux/init.h>
  92#include <linux/io.h>
  93#include <linux/kernel.h>
  94#include <linux/sched/signal.h>
  95#include <linux/kmod.h>
  96#include <linux/list.h>
  97#include <linux/miscdevice.h>
  98#include <linux/module.h>
  99#include <linux/mutex.h>
 100#include <linux/net.h>
 101#include <linux/poll.h>
 102#include <linux/random.h>
 103#include <linux/skbuff.h>
 104#include <linux/smp.h>
 105#include <linux/socket.h>
 106#include <linux/stddef.h>
 107#include <linux/unistd.h>
 108#include <linux/wait.h>
 109#include <linux/workqueue.h>
 110#include <net/sock.h>
 111#include <net/af_vsock.h>
 112
 113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 114static void vsock_sk_destruct(struct sock *sk);
 115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 116
 117/* Protocol family. */
 118static struct proto vsock_proto = {
 119        .name = "AF_VSOCK",
 120        .owner = THIS_MODULE,
 121        .obj_size = sizeof(struct vsock_sock),
 122};
 123
 124/* The default peer timeout indicates how long we will wait for a peer response
 125 * to a control message.
 126 */
 127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 128
 129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
 130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
 131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
 132
 133/* Transport used for host->guest communication */
 134static const struct vsock_transport *transport_h2g;
 135/* Transport used for guest->host communication */
 136static const struct vsock_transport *transport_g2h;
 137/* Transport used for DGRAM communication */
 138static const struct vsock_transport *transport_dgram;
 139/* Transport used for local communication */
 140static const struct vsock_transport *transport_local;
 141static DEFINE_MUTEX(vsock_register_mutex);
 142
 143/**** UTILS ****/
 144
 145/* Each bound VSocket is stored in the bind hash table and each connected
 146 * VSocket is stored in the connected hash table.
 147 *
 148 * Unbound sockets are all put on the same list attached to the end of the hash
 149 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 151 * represents the list that addr hashes to).
 152 *
 153 * Specifically, we initialize the vsock_bind_table array to a size of
 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 157 * mods with VSOCK_HASH_SIZE to ensure this.
 158 */
 159#define MAX_PORT_RETRIES        24
 160
 161#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 162#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 163#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 164
 165/* XXX This can probably be implemented in a better way. */
 166#define VSOCK_CONN_HASH(src, dst)                               \
 167        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 168#define vsock_connected_sockets(src, dst)               \
 169        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 170#define vsock_connected_sockets_vsk(vsk)                                \
 171        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 172
 173struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 174EXPORT_SYMBOL_GPL(vsock_bind_table);
 175struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 176EXPORT_SYMBOL_GPL(vsock_connected_table);
 177DEFINE_SPINLOCK(vsock_table_lock);
 178EXPORT_SYMBOL_GPL(vsock_table_lock);
 179
 180/* Autobind this socket to the local address if necessary. */
 181static int vsock_auto_bind(struct vsock_sock *vsk)
 182{
 183        struct sock *sk = sk_vsock(vsk);
 184        struct sockaddr_vm local_addr;
 185
 186        if (vsock_addr_bound(&vsk->local_addr))
 187                return 0;
 188        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 189        return __vsock_bind(sk, &local_addr);
 190}
 191
 192static void vsock_init_tables(void)
 193{
 194        int i;
 195
 196        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 197                INIT_LIST_HEAD(&vsock_bind_table[i]);
 198
 199        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 200                INIT_LIST_HEAD(&vsock_connected_table[i]);
 201}
 202
 203static void __vsock_insert_bound(struct list_head *list,
 204                                 struct vsock_sock *vsk)
 205{
 206        sock_hold(&vsk->sk);
 207        list_add(&vsk->bound_table, list);
 208}
 209
 210static void __vsock_insert_connected(struct list_head *list,
 211                                     struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->connected_table, list);
 215}
 216
 217static void __vsock_remove_bound(struct vsock_sock *vsk)
 218{
 219        list_del_init(&vsk->bound_table);
 220        sock_put(&vsk->sk);
 221}
 222
 223static void __vsock_remove_connected(struct vsock_sock *vsk)
 224{
 225        list_del_init(&vsk->connected_table);
 226        sock_put(&vsk->sk);
 227}
 228
 229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 230{
 231        struct vsock_sock *vsk;
 232
 233        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
 234                if (vsock_addr_equals_addr(addr, &vsk->local_addr))
 235                        return sk_vsock(vsk);
 236
 237                if (addr->svm_port == vsk->local_addr.svm_port &&
 238                    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
 239                     addr->svm_cid == VMADDR_CID_ANY))
 240                        return sk_vsock(vsk);
 241        }
 242
 243        return NULL;
 244}
 245
 246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 247                                                  struct sockaddr_vm *dst)
 248{
 249        struct vsock_sock *vsk;
 250
 251        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 252                            connected_table) {
 253                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 254                    dst->svm_port == vsk->local_addr.svm_port) {
 255                        return sk_vsock(vsk);
 256                }
 257        }
 258
 259        return NULL;
 260}
 261
 262static void vsock_insert_unbound(struct vsock_sock *vsk)
 263{
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268
 269void vsock_insert_connected(struct vsock_sock *vsk)
 270{
 271        struct list_head *list = vsock_connected_sockets(
 272                &vsk->remote_addr, &vsk->local_addr);
 273
 274        spin_lock_bh(&vsock_table_lock);
 275        __vsock_insert_connected(list, vsk);
 276        spin_unlock_bh(&vsock_table_lock);
 277}
 278EXPORT_SYMBOL_GPL(vsock_insert_connected);
 279
 280void vsock_remove_bound(struct vsock_sock *vsk)
 281{
 282        spin_lock_bh(&vsock_table_lock);
 283        if (__vsock_in_bound_table(vsk))
 284                __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        if (__vsock_in_connected_table(vsk))
 293                __vsock_remove_connected(vsk);
 294        spin_unlock_bh(&vsock_table_lock);
 295}
 296EXPORT_SYMBOL_GPL(vsock_remove_connected);
 297
 298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 299{
 300        struct sock *sk;
 301
 302        spin_lock_bh(&vsock_table_lock);
 303        sk = __vsock_find_bound_socket(addr);
 304        if (sk)
 305                sock_hold(sk);
 306
 307        spin_unlock_bh(&vsock_table_lock);
 308
 309        return sk;
 310}
 311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 312
 313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 314                                         struct sockaddr_vm *dst)
 315{
 316        struct sock *sk;
 317
 318        spin_lock_bh(&vsock_table_lock);
 319        sk = __vsock_find_connected_socket(src, dst);
 320        if (sk)
 321                sock_hold(sk);
 322
 323        spin_unlock_bh(&vsock_table_lock);
 324
 325        return sk;
 326}
 327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 328
 329void vsock_remove_sock(struct vsock_sock *vsk)
 330{
 331        vsock_remove_bound(vsk);
 332        vsock_remove_connected(vsk);
 333}
 334EXPORT_SYMBOL_GPL(vsock_remove_sock);
 335
 336void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 337{
 338        int i;
 339
 340        spin_lock_bh(&vsock_table_lock);
 341
 342        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 343                struct vsock_sock *vsk;
 344                list_for_each_entry(vsk, &vsock_connected_table[i],
 345                                    connected_table)
 346                        fn(sk_vsock(vsk));
 347        }
 348
 349        spin_unlock_bh(&vsock_table_lock);
 350}
 351EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 352
 353void vsock_add_pending(struct sock *listener, struct sock *pending)
 354{
 355        struct vsock_sock *vlistener;
 356        struct vsock_sock *vpending;
 357
 358        vlistener = vsock_sk(listener);
 359        vpending = vsock_sk(pending);
 360
 361        sock_hold(pending);
 362        sock_hold(listener);
 363        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 364}
 365EXPORT_SYMBOL_GPL(vsock_add_pending);
 366
 367void vsock_remove_pending(struct sock *listener, struct sock *pending)
 368{
 369        struct vsock_sock *vpending = vsock_sk(pending);
 370
 371        list_del_init(&vpending->pending_links);
 372        sock_put(listener);
 373        sock_put(pending);
 374}
 375EXPORT_SYMBOL_GPL(vsock_remove_pending);
 376
 377void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vconnected;
 381
 382        vlistener = vsock_sk(listener);
 383        vconnected = vsock_sk(connected);
 384
 385        sock_hold(connected);
 386        sock_hold(listener);
 387        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 388}
 389EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 390
 391static bool vsock_use_local_transport(unsigned int remote_cid)
 392{
 393        if (!transport_local)
 394                return false;
 395
 396        if (remote_cid == VMADDR_CID_LOCAL)
 397                return true;
 398
 399        if (transport_g2h) {
 400                return remote_cid == transport_g2h->get_local_cid();
 401        } else {
 402                return remote_cid == VMADDR_CID_HOST;
 403        }
 404}
 405
 406static void vsock_deassign_transport(struct vsock_sock *vsk)
 407{
 408        if (!vsk->transport)
 409                return;
 410
 411        vsk->transport->destruct(vsk);
 412        module_put(vsk->transport->module);
 413        vsk->transport = NULL;
 414}
 415
 416/* Assign a transport to a socket and call the .init transport callback.
 417 *
 418 * Note: for stream socket this must be called when vsk->remote_addr is set
 419 * (e.g. during the connect() or when a connection request on a listener
 420 * socket is received).
 421 * The vsk->remote_addr is used to decide which transport to use:
 422 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
 423 *    g2h is not loaded, will use local transport;
 424 *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
 425 *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
 426 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
 427 */
 428int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
 429{
 430        const struct vsock_transport *new_transport;
 431        struct sock *sk = sk_vsock(vsk);
 432        unsigned int remote_cid = vsk->remote_addr.svm_cid;
 433        __u8 remote_flags;
 434        int ret;
 435
 436        /* If the packet is coming with the source and destination CIDs higher
 437         * than VMADDR_CID_HOST, then a vsock channel where all the packets are
 438         * forwarded to the host should be established. Then the host will
 439         * need to forward the packets to the guest.
 440         *
 441         * The flag is set on the (listen) receive path (psk is not NULL). On
 442         * the connect path the flag can be set by the user space application.
 443         */
 444        if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
 445            vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
 446                vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
 447
 448        remote_flags = vsk->remote_addr.svm_flags;
 449
 450        switch (sk->sk_type) {
 451        case SOCK_DGRAM:
 452                new_transport = transport_dgram;
 453                break;
 454        case SOCK_STREAM:
 455                if (vsock_use_local_transport(remote_cid))
 456                        new_transport = transport_local;
 457                else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
 458                         (remote_flags & VMADDR_FLAG_TO_HOST))
 459                        new_transport = transport_g2h;
 460                else
 461                        new_transport = transport_h2g;
 462                break;
 463        default:
 464                return -ESOCKTNOSUPPORT;
 465        }
 466
 467        if (vsk->transport) {
 468                if (vsk->transport == new_transport)
 469                        return 0;
 470
 471                /* transport->release() must be called with sock lock acquired.
 472                 * This path can only be taken during vsock_stream_connect(),
 473                 * where we have already held the sock lock.
 474                 * In the other cases, this function is called on a new socket
 475                 * which is not assigned to any transport.
 476                 */
 477                vsk->transport->release(vsk);
 478                vsock_deassign_transport(vsk);
 479        }
 480
 481        /* We increase the module refcnt to prevent the transport unloading
 482         * while there are open sockets assigned to it.
 483         */
 484        if (!new_transport || !try_module_get(new_transport->module))
 485                return -ENODEV;
 486
 487        ret = new_transport->init(vsk, psk);
 488        if (ret) {
 489                module_put(new_transport->module);
 490                return ret;
 491        }
 492
 493        vsk->transport = new_transport;
 494
 495        return 0;
 496}
 497EXPORT_SYMBOL_GPL(vsock_assign_transport);
 498
 499bool vsock_find_cid(unsigned int cid)
 500{
 501        if (transport_g2h && cid == transport_g2h->get_local_cid())
 502                return true;
 503
 504        if (transport_h2g && cid == VMADDR_CID_HOST)
 505                return true;
 506
 507        if (transport_local && cid == VMADDR_CID_LOCAL)
 508                return true;
 509
 510        return false;
 511}
 512EXPORT_SYMBOL_GPL(vsock_find_cid);
 513
 514static struct sock *vsock_dequeue_accept(struct sock *listener)
 515{
 516        struct vsock_sock *vlistener;
 517        struct vsock_sock *vconnected;
 518
 519        vlistener = vsock_sk(listener);
 520
 521        if (list_empty(&vlistener->accept_queue))
 522                return NULL;
 523
 524        vconnected = list_entry(vlistener->accept_queue.next,
 525                                struct vsock_sock, accept_queue);
 526
 527        list_del_init(&vconnected->accept_queue);
 528        sock_put(listener);
 529        /* The caller will need a reference on the connected socket so we let
 530         * it call sock_put().
 531         */
 532
 533        return sk_vsock(vconnected);
 534}
 535
 536static bool vsock_is_accept_queue_empty(struct sock *sk)
 537{
 538        struct vsock_sock *vsk = vsock_sk(sk);
 539        return list_empty(&vsk->accept_queue);
 540}
 541
 542static bool vsock_is_pending(struct sock *sk)
 543{
 544        struct vsock_sock *vsk = vsock_sk(sk);
 545        return !list_empty(&vsk->pending_links);
 546}
 547
 548static int vsock_send_shutdown(struct sock *sk, int mode)
 549{
 550        struct vsock_sock *vsk = vsock_sk(sk);
 551
 552        if (!vsk->transport)
 553                return -ENODEV;
 554
 555        return vsk->transport->shutdown(vsk, mode);
 556}
 557
 558static void vsock_pending_work(struct work_struct *work)
 559{
 560        struct sock *sk;
 561        struct sock *listener;
 562        struct vsock_sock *vsk;
 563        bool cleanup;
 564
 565        vsk = container_of(work, struct vsock_sock, pending_work.work);
 566        sk = sk_vsock(vsk);
 567        listener = vsk->listener;
 568        cleanup = true;
 569
 570        lock_sock(listener);
 571        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 572
 573        if (vsock_is_pending(sk)) {
 574                vsock_remove_pending(listener, sk);
 575
 576                sk_acceptq_removed(listener);
 577        } else if (!vsk->rejected) {
 578                /* We are not on the pending list and accept() did not reject
 579                 * us, so we must have been accepted by our user process.  We
 580                 * just need to drop our references to the sockets and be on
 581                 * our way.
 582                 */
 583                cleanup = false;
 584                goto out;
 585        }
 586
 587        /* We need to remove ourself from the global connected sockets list so
 588         * incoming packets can't find this socket, and to reduce the reference
 589         * count.
 590         */
 591        vsock_remove_connected(vsk);
 592
 593        sk->sk_state = TCP_CLOSE;
 594
 595out:
 596        release_sock(sk);
 597        release_sock(listener);
 598        if (cleanup)
 599                sock_put(sk);
 600
 601        sock_put(sk);
 602        sock_put(listener);
 603}
 604
 605/**** SOCKET OPERATIONS ****/
 606
 607static int __vsock_bind_stream(struct vsock_sock *vsk,
 608                               struct sockaddr_vm *addr)
 609{
 610        static u32 port;
 611        struct sockaddr_vm new_addr;
 612
 613        if (!port)
 614                port = LAST_RESERVED_PORT + 1 +
 615                        prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
 616
 617        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 618
 619        if (addr->svm_port == VMADDR_PORT_ANY) {
 620                bool found = false;
 621                unsigned int i;
 622
 623                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 624                        if (port <= LAST_RESERVED_PORT)
 625                                port = LAST_RESERVED_PORT + 1;
 626
 627                        new_addr.svm_port = port++;
 628
 629                        if (!__vsock_find_bound_socket(&new_addr)) {
 630                                found = true;
 631                                break;
 632                        }
 633                }
 634
 635                if (!found)
 636                        return -EADDRNOTAVAIL;
 637        } else {
 638                /* If port is in reserved range, ensure caller
 639                 * has necessary privileges.
 640                 */
 641                if (addr->svm_port <= LAST_RESERVED_PORT &&
 642                    !capable(CAP_NET_BIND_SERVICE)) {
 643                        return -EACCES;
 644                }
 645
 646                if (__vsock_find_bound_socket(&new_addr))
 647                        return -EADDRINUSE;
 648        }
 649
 650        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 651
 652        /* Remove stream sockets from the unbound list and add them to the hash
 653         * table for easy lookup by its address.  The unbound list is simply an
 654         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 655         */
 656        __vsock_remove_bound(vsk);
 657        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 658
 659        return 0;
 660}
 661
 662static int __vsock_bind_dgram(struct vsock_sock *vsk,
 663                              struct sockaddr_vm *addr)
 664{
 665        return vsk->transport->dgram_bind(vsk, addr);
 666}
 667
 668static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 669{
 670        struct vsock_sock *vsk = vsock_sk(sk);
 671        int retval;
 672
 673        /* First ensure this socket isn't already bound. */
 674        if (vsock_addr_bound(&vsk->local_addr))
 675                return -EINVAL;
 676
 677        /* Now bind to the provided address or select appropriate values if
 678         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 679         * like AF_INET prevents binding to a non-local IP address (in most
 680         * cases), we only allow binding to a local CID.
 681         */
 682        if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
 683                return -EADDRNOTAVAIL;
 684
 685        switch (sk->sk_socket->type) {
 686        case SOCK_STREAM:
 687                spin_lock_bh(&vsock_table_lock);
 688                retval = __vsock_bind_stream(vsk, addr);
 689                spin_unlock_bh(&vsock_table_lock);
 690                break;
 691
 692        case SOCK_DGRAM:
 693                retval = __vsock_bind_dgram(vsk, addr);
 694                break;
 695
 696        default:
 697                retval = -EINVAL;
 698                break;
 699        }
 700
 701        return retval;
 702}
 703
 704static void vsock_connect_timeout(struct work_struct *work);
 705
 706static struct sock *__vsock_create(struct net *net,
 707                                   struct socket *sock,
 708                                   struct sock *parent,
 709                                   gfp_t priority,
 710                                   unsigned short type,
 711                                   int kern)
 712{
 713        struct sock *sk;
 714        struct vsock_sock *psk;
 715        struct vsock_sock *vsk;
 716
 717        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 718        if (!sk)
 719                return NULL;
 720
 721        sock_init_data(sock, sk);
 722
 723        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 724         * non-NULL. We make sure that our sockets always have a type by
 725         * setting it here if needed.
 726         */
 727        if (!sock)
 728                sk->sk_type = type;
 729
 730        vsk = vsock_sk(sk);
 731        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 732        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 733
 734        sk->sk_destruct = vsock_sk_destruct;
 735        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 736        sock_reset_flag(sk, SOCK_DONE);
 737
 738        INIT_LIST_HEAD(&vsk->bound_table);
 739        INIT_LIST_HEAD(&vsk->connected_table);
 740        vsk->listener = NULL;
 741        INIT_LIST_HEAD(&vsk->pending_links);
 742        INIT_LIST_HEAD(&vsk->accept_queue);
 743        vsk->rejected = false;
 744        vsk->sent_request = false;
 745        vsk->ignore_connecting_rst = false;
 746        vsk->peer_shutdown = 0;
 747        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 748        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 749
 750        psk = parent ? vsock_sk(parent) : NULL;
 751        if (parent) {
 752                vsk->trusted = psk->trusted;
 753                vsk->owner = get_cred(psk->owner);
 754                vsk->connect_timeout = psk->connect_timeout;
 755                vsk->buffer_size = psk->buffer_size;
 756                vsk->buffer_min_size = psk->buffer_min_size;
 757                vsk->buffer_max_size = psk->buffer_max_size;
 758                security_sk_clone(parent, sk);
 759        } else {
 760                vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
 761                vsk->owner = get_current_cred();
 762                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 763                vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
 764                vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
 765                vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
 766        }
 767
 768        return sk;
 769}
 770
 771static void __vsock_release(struct sock *sk, int level)
 772{
 773        if (sk) {
 774                struct sock *pending;
 775                struct vsock_sock *vsk;
 776
 777                vsk = vsock_sk(sk);
 778                pending = NULL; /* Compiler warning. */
 779
 780                /* When "level" is SINGLE_DEPTH_NESTING, use the nested
 781                 * version to avoid the warning "possible recursive locking
 782                 * detected". When "level" is 0, lock_sock_nested(sk, level)
 783                 * is the same as lock_sock(sk).
 784                 */
 785                lock_sock_nested(sk, level);
 786
 787                if (vsk->transport)
 788                        vsk->transport->release(vsk);
 789                else if (sk->sk_type == SOCK_STREAM)
 790                        vsock_remove_sock(vsk);
 791
 792                sock_orphan(sk);
 793                sk->sk_shutdown = SHUTDOWN_MASK;
 794
 795                skb_queue_purge(&sk->sk_receive_queue);
 796
 797                /* Clean up any sockets that never were accepted. */
 798                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 799                        __vsock_release(pending, SINGLE_DEPTH_NESTING);
 800                        sock_put(pending);
 801                }
 802
 803                release_sock(sk);
 804                sock_put(sk);
 805        }
 806}
 807
 808static void vsock_sk_destruct(struct sock *sk)
 809{
 810        struct vsock_sock *vsk = vsock_sk(sk);
 811
 812        vsock_deassign_transport(vsk);
 813
 814        /* When clearing these addresses, there's no need to set the family and
 815         * possibly register the address family with the kernel.
 816         */
 817        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 818        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 819
 820        put_cred(vsk->owner);
 821}
 822
 823static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 824{
 825        int err;
 826
 827        err = sock_queue_rcv_skb(sk, skb);
 828        if (err)
 829                kfree_skb(skb);
 830
 831        return err;
 832}
 833
 834struct sock *vsock_create_connected(struct sock *parent)
 835{
 836        return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
 837                              parent->sk_type, 0);
 838}
 839EXPORT_SYMBOL_GPL(vsock_create_connected);
 840
 841s64 vsock_stream_has_data(struct vsock_sock *vsk)
 842{
 843        return vsk->transport->stream_has_data(vsk);
 844}
 845EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 846
 847s64 vsock_stream_has_space(struct vsock_sock *vsk)
 848{
 849        return vsk->transport->stream_has_space(vsk);
 850}
 851EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 852
 853static int vsock_release(struct socket *sock)
 854{
 855        __vsock_release(sock->sk, 0);
 856        sock->sk = NULL;
 857        sock->state = SS_FREE;
 858
 859        return 0;
 860}
 861
 862static int
 863vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 864{
 865        int err;
 866        struct sock *sk;
 867        struct sockaddr_vm *vm_addr;
 868
 869        sk = sock->sk;
 870
 871        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 872                return -EINVAL;
 873
 874        lock_sock(sk);
 875        err = __vsock_bind(sk, vm_addr);
 876        release_sock(sk);
 877
 878        return err;
 879}
 880
 881static int vsock_getname(struct socket *sock,
 882                         struct sockaddr *addr, int peer)
 883{
 884        int err;
 885        struct sock *sk;
 886        struct vsock_sock *vsk;
 887        struct sockaddr_vm *vm_addr;
 888
 889        sk = sock->sk;
 890        vsk = vsock_sk(sk);
 891        err = 0;
 892
 893        lock_sock(sk);
 894
 895        if (peer) {
 896                if (sock->state != SS_CONNECTED) {
 897                        err = -ENOTCONN;
 898                        goto out;
 899                }
 900                vm_addr = &vsk->remote_addr;
 901        } else {
 902                vm_addr = &vsk->local_addr;
 903        }
 904
 905        if (!vm_addr) {
 906                err = -EINVAL;
 907                goto out;
 908        }
 909
 910        /* sys_getsockname() and sys_getpeername() pass us a
 911         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 912         * that macro is defined in socket.c instead of .h, so we hardcode its
 913         * value here.
 914         */
 915        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 916        memcpy(addr, vm_addr, sizeof(*vm_addr));
 917        err = sizeof(*vm_addr);
 918
 919out:
 920        release_sock(sk);
 921        return err;
 922}
 923
 924static int vsock_shutdown(struct socket *sock, int mode)
 925{
 926        int err;
 927        struct sock *sk;
 928
 929        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 930         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 931         * here like the other address families do.  Note also that the
 932         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 933         * which is what we want.
 934         */
 935        mode++;
 936
 937        if ((mode & ~SHUTDOWN_MASK) || !mode)
 938                return -EINVAL;
 939
 940        /* If this is a STREAM socket and it is not connected then bail out
 941         * immediately.  If it is a DGRAM socket then we must first kick the
 942         * socket so that it wakes up from any sleeping calls, for example
 943         * recv(), and then afterwards return the error.
 944         */
 945
 946        sk = sock->sk;
 947
 948        lock_sock(sk);
 949        if (sock->state == SS_UNCONNECTED) {
 950                err = -ENOTCONN;
 951                if (sk->sk_type == SOCK_STREAM)
 952                        goto out;
 953        } else {
 954                sock->state = SS_DISCONNECTING;
 955                err = 0;
 956        }
 957
 958        /* Receive and send shutdowns are treated alike. */
 959        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 960        if (mode) {
 961                sk->sk_shutdown |= mode;
 962                sk->sk_state_change(sk);
 963
 964                if (sk->sk_type == SOCK_STREAM) {
 965                        sock_reset_flag(sk, SOCK_DONE);
 966                        vsock_send_shutdown(sk, mode);
 967                }
 968        }
 969
 970out:
 971        release_sock(sk);
 972        return err;
 973}
 974
 975static __poll_t vsock_poll(struct file *file, struct socket *sock,
 976                               poll_table *wait)
 977{
 978        struct sock *sk;
 979        __poll_t mask;
 980        struct vsock_sock *vsk;
 981
 982        sk = sock->sk;
 983        vsk = vsock_sk(sk);
 984
 985        poll_wait(file, sk_sleep(sk), wait);
 986        mask = 0;
 987
 988        if (sk->sk_err)
 989                /* Signify that there has been an error on this socket. */
 990                mask |= EPOLLERR;
 991
 992        /* INET sockets treat local write shutdown and peer write shutdown as a
 993         * case of EPOLLHUP set.
 994         */
 995        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 996            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 997             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 998                mask |= EPOLLHUP;
 999        }
1000
1001        if (sk->sk_shutdown & RCV_SHUTDOWN ||
1002            vsk->peer_shutdown & SEND_SHUTDOWN) {
1003                mask |= EPOLLRDHUP;
1004        }
1005
1006        if (sock->type == SOCK_DGRAM) {
1007                /* For datagram sockets we can read if there is something in
1008                 * the queue and write as long as the socket isn't shutdown for
1009                 * sending.
1010                 */
1011                if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1012                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1013                        mask |= EPOLLIN | EPOLLRDNORM;
1014                }
1015
1016                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1017                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1018
1019        } else if (sock->type == SOCK_STREAM) {
1020                const struct vsock_transport *transport;
1021
1022                lock_sock(sk);
1023
1024                transport = vsk->transport;
1025
1026                /* Listening sockets that have connections in their accept
1027                 * queue can be read.
1028                 */
1029                if (sk->sk_state == TCP_LISTEN
1030                    && !vsock_is_accept_queue_empty(sk))
1031                        mask |= EPOLLIN | EPOLLRDNORM;
1032
1033                /* If there is something in the queue then we can read. */
1034                if (transport && transport->stream_is_active(vsk) &&
1035                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1036                        bool data_ready_now = false;
1037                        int ret = transport->notify_poll_in(
1038                                        vsk, 1, &data_ready_now);
1039                        if (ret < 0) {
1040                                mask |= EPOLLERR;
1041                        } else {
1042                                if (data_ready_now)
1043                                        mask |= EPOLLIN | EPOLLRDNORM;
1044
1045                        }
1046                }
1047
1048                /* Sockets whose connections have been closed, reset, or
1049                 * terminated should also be considered read, and we check the
1050                 * shutdown flag for that.
1051                 */
1052                if (sk->sk_shutdown & RCV_SHUTDOWN ||
1053                    vsk->peer_shutdown & SEND_SHUTDOWN) {
1054                        mask |= EPOLLIN | EPOLLRDNORM;
1055                }
1056
1057                /* Connected sockets that can produce data can be written. */
1058                if (transport && sk->sk_state == TCP_ESTABLISHED) {
1059                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1060                                bool space_avail_now = false;
1061                                int ret = transport->notify_poll_out(
1062                                                vsk, 1, &space_avail_now);
1063                                if (ret < 0) {
1064                                        mask |= EPOLLERR;
1065                                } else {
1066                                        if (space_avail_now)
1067                                                /* Remove EPOLLWRBAND since INET
1068                                                 * sockets are not setting it.
1069                                                 */
1070                                                mask |= EPOLLOUT | EPOLLWRNORM;
1071
1072                                }
1073                        }
1074                }
1075
1076                /* Simulate INET socket poll behaviors, which sets
1077                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1078                 * but local send is not shutdown.
1079                 */
1080                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1081                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1082                                mask |= EPOLLOUT | EPOLLWRNORM;
1083
1084                }
1085
1086                release_sock(sk);
1087        }
1088
1089        return mask;
1090}
1091
1092static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1093                               size_t len)
1094{
1095        int err;
1096        struct sock *sk;
1097        struct vsock_sock *vsk;
1098        struct sockaddr_vm *remote_addr;
1099        const struct vsock_transport *transport;
1100
1101        if (msg->msg_flags & MSG_OOB)
1102                return -EOPNOTSUPP;
1103
1104        /* For now, MSG_DONTWAIT is always assumed... */
1105        err = 0;
1106        sk = sock->sk;
1107        vsk = vsock_sk(sk);
1108
1109        lock_sock(sk);
1110
1111        transport = vsk->transport;
1112
1113        err = vsock_auto_bind(vsk);
1114        if (err)
1115                goto out;
1116
1117
1118        /* If the provided message contains an address, use that.  Otherwise
1119         * fall back on the socket's remote handle (if it has been connected).
1120         */
1121        if (msg->msg_name &&
1122            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1123                            &remote_addr) == 0) {
1124                /* Ensure this address is of the right type and is a valid
1125                 * destination.
1126                 */
1127
1128                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1129                        remote_addr->svm_cid = transport->get_local_cid();
1130
1131                if (!vsock_addr_bound(remote_addr)) {
1132                        err = -EINVAL;
1133                        goto out;
1134                }
1135        } else if (sock->state == SS_CONNECTED) {
1136                remote_addr = &vsk->remote_addr;
1137
1138                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1139                        remote_addr->svm_cid = transport->get_local_cid();
1140
1141                /* XXX Should connect() or this function ensure remote_addr is
1142                 * bound?
1143                 */
1144                if (!vsock_addr_bound(&vsk->remote_addr)) {
1145                        err = -EINVAL;
1146                        goto out;
1147                }
1148        } else {
1149                err = -EINVAL;
1150                goto out;
1151        }
1152
1153        if (!transport->dgram_allow(remote_addr->svm_cid,
1154                                    remote_addr->svm_port)) {
1155                err = -EINVAL;
1156                goto out;
1157        }
1158
1159        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1160
1161out:
1162        release_sock(sk);
1163        return err;
1164}
1165
1166static int vsock_dgram_connect(struct socket *sock,
1167                               struct sockaddr *addr, int addr_len, int flags)
1168{
1169        int err;
1170        struct sock *sk;
1171        struct vsock_sock *vsk;
1172        struct sockaddr_vm *remote_addr;
1173
1174        sk = sock->sk;
1175        vsk = vsock_sk(sk);
1176
1177        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1178        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1179                lock_sock(sk);
1180                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1181                                VMADDR_PORT_ANY);
1182                sock->state = SS_UNCONNECTED;
1183                release_sock(sk);
1184                return 0;
1185        } else if (err != 0)
1186                return -EINVAL;
1187
1188        lock_sock(sk);
1189
1190        err = vsock_auto_bind(vsk);
1191        if (err)
1192                goto out;
1193
1194        if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1195                                         remote_addr->svm_port)) {
1196                err = -EINVAL;
1197                goto out;
1198        }
1199
1200        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1201        sock->state = SS_CONNECTED;
1202
1203out:
1204        release_sock(sk);
1205        return err;
1206}
1207
1208static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1209                               size_t len, int flags)
1210{
1211        struct vsock_sock *vsk = vsock_sk(sock->sk);
1212
1213        return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1214}
1215
1216static const struct proto_ops vsock_dgram_ops = {
1217        .family = PF_VSOCK,
1218        .owner = THIS_MODULE,
1219        .release = vsock_release,
1220        .bind = vsock_bind,
1221        .connect = vsock_dgram_connect,
1222        .socketpair = sock_no_socketpair,
1223        .accept = sock_no_accept,
1224        .getname = vsock_getname,
1225        .poll = vsock_poll,
1226        .ioctl = sock_no_ioctl,
1227        .listen = sock_no_listen,
1228        .shutdown = vsock_shutdown,
1229        .setsockopt = sock_no_setsockopt,
1230        .getsockopt = sock_no_getsockopt,
1231        .sendmsg = vsock_dgram_sendmsg,
1232        .recvmsg = vsock_dgram_recvmsg,
1233        .mmap = sock_no_mmap,
1234        .sendpage = sock_no_sendpage,
1235};
1236
1237static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1238{
1239        const struct vsock_transport *transport = vsk->transport;
1240
1241        if (!transport || !transport->cancel_pkt)
1242                return -EOPNOTSUPP;
1243
1244        return transport->cancel_pkt(vsk);
1245}
1246
1247static void vsock_connect_timeout(struct work_struct *work)
1248{
1249        struct sock *sk;
1250        struct vsock_sock *vsk;
1251
1252        vsk = container_of(work, struct vsock_sock, connect_work.work);
1253        sk = sk_vsock(vsk);
1254
1255        lock_sock(sk);
1256        if (sk->sk_state == TCP_SYN_SENT &&
1257            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1258                sk->sk_state = TCP_CLOSE;
1259                sk->sk_err = ETIMEDOUT;
1260                sk->sk_error_report(sk);
1261                vsock_transport_cancel_pkt(vsk);
1262        }
1263        release_sock(sk);
1264
1265        sock_put(sk);
1266}
1267
1268static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1269                                int addr_len, int flags)
1270{
1271        int err;
1272        struct sock *sk;
1273        struct vsock_sock *vsk;
1274        const struct vsock_transport *transport;
1275        struct sockaddr_vm *remote_addr;
1276        long timeout;
1277        DEFINE_WAIT(wait);
1278
1279        err = 0;
1280        sk = sock->sk;
1281        vsk = vsock_sk(sk);
1282
1283        lock_sock(sk);
1284
1285        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1286        switch (sock->state) {
1287        case SS_CONNECTED:
1288                err = -EISCONN;
1289                goto out;
1290        case SS_DISCONNECTING:
1291                err = -EINVAL;
1292                goto out;
1293        case SS_CONNECTING:
1294                /* This continues on so we can move sock into the SS_CONNECTED
1295                 * state once the connection has completed (at which point err
1296                 * will be set to zero also).  Otherwise, we will either wait
1297                 * for the connection or return -EALREADY should this be a
1298                 * non-blocking call.
1299                 */
1300                err = -EALREADY;
1301                break;
1302        default:
1303                if ((sk->sk_state == TCP_LISTEN) ||
1304                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1305                        err = -EINVAL;
1306                        goto out;
1307                }
1308
1309                /* Set the remote address that we are connecting to. */
1310                memcpy(&vsk->remote_addr, remote_addr,
1311                       sizeof(vsk->remote_addr));
1312
1313                err = vsock_assign_transport(vsk, NULL);
1314                if (err)
1315                        goto out;
1316
1317                transport = vsk->transport;
1318
1319                /* The hypervisor and well-known contexts do not have socket
1320                 * endpoints.
1321                 */
1322                if (!transport ||
1323                    !transport->stream_allow(remote_addr->svm_cid,
1324                                             remote_addr->svm_port)) {
1325                        err = -ENETUNREACH;
1326                        goto out;
1327                }
1328
1329                err = vsock_auto_bind(vsk);
1330                if (err)
1331                        goto out;
1332
1333                sk->sk_state = TCP_SYN_SENT;
1334
1335                err = transport->connect(vsk);
1336                if (err < 0)
1337                        goto out;
1338
1339                /* Mark sock as connecting and set the error code to in
1340                 * progress in case this is a non-blocking connect.
1341                 */
1342                sock->state = SS_CONNECTING;
1343                err = -EINPROGRESS;
1344        }
1345
1346        /* The receive path will handle all communication until we are able to
1347         * enter the connected state.  Here we wait for the connection to be
1348         * completed or a notification of an error.
1349         */
1350        timeout = vsk->connect_timeout;
1351        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1352
1353        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1354                if (flags & O_NONBLOCK) {
1355                        /* If we're not going to block, we schedule a timeout
1356                         * function to generate a timeout on the connection
1357                         * attempt, in case the peer doesn't respond in a
1358                         * timely manner. We hold on to the socket until the
1359                         * timeout fires.
1360                         */
1361                        sock_hold(sk);
1362                        schedule_delayed_work(&vsk->connect_work, timeout);
1363
1364                        /* Skip ahead to preserve error code set above. */
1365                        goto out_wait;
1366                }
1367
1368                release_sock(sk);
1369                timeout = schedule_timeout(timeout);
1370                lock_sock(sk);
1371
1372                if (signal_pending(current)) {
1373                        err = sock_intr_errno(timeout);
1374                        sk->sk_state = TCP_CLOSE;
1375                        sock->state = SS_UNCONNECTED;
1376                        vsock_transport_cancel_pkt(vsk);
1377                        goto out_wait;
1378                } else if (timeout == 0) {
1379                        err = -ETIMEDOUT;
1380                        sk->sk_state = TCP_CLOSE;
1381                        sock->state = SS_UNCONNECTED;
1382                        vsock_transport_cancel_pkt(vsk);
1383                        goto out_wait;
1384                }
1385
1386                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1387        }
1388
1389        if (sk->sk_err) {
1390                err = -sk->sk_err;
1391                sk->sk_state = TCP_CLOSE;
1392                sock->state = SS_UNCONNECTED;
1393        } else {
1394                err = 0;
1395        }
1396
1397out_wait:
1398        finish_wait(sk_sleep(sk), &wait);
1399out:
1400        release_sock(sk);
1401        return err;
1402}
1403
1404static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1405                        bool kern)
1406{
1407        struct sock *listener;
1408        int err;
1409        struct sock *connected;
1410        struct vsock_sock *vconnected;
1411        long timeout;
1412        DEFINE_WAIT(wait);
1413
1414        err = 0;
1415        listener = sock->sk;
1416
1417        lock_sock(listener);
1418
1419        if (sock->type != SOCK_STREAM) {
1420                err = -EOPNOTSUPP;
1421                goto out;
1422        }
1423
1424        if (listener->sk_state != TCP_LISTEN) {
1425                err = -EINVAL;
1426                goto out;
1427        }
1428
1429        /* Wait for children sockets to appear; these are the new sockets
1430         * created upon connection establishment.
1431         */
1432        timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1433        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1434
1435        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1436               listener->sk_err == 0) {
1437                release_sock(listener);
1438                timeout = schedule_timeout(timeout);
1439                finish_wait(sk_sleep(listener), &wait);
1440                lock_sock(listener);
1441
1442                if (signal_pending(current)) {
1443                        err = sock_intr_errno(timeout);
1444                        goto out;
1445                } else if (timeout == 0) {
1446                        err = -EAGAIN;
1447                        goto out;
1448                }
1449
1450                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1451        }
1452        finish_wait(sk_sleep(listener), &wait);
1453
1454        if (listener->sk_err)
1455                err = -listener->sk_err;
1456
1457        if (connected) {
1458                sk_acceptq_removed(listener);
1459
1460                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1461                vconnected = vsock_sk(connected);
1462
1463                /* If the listener socket has received an error, then we should
1464                 * reject this socket and return.  Note that we simply mark the
1465                 * socket rejected, drop our reference, and let the cleanup
1466                 * function handle the cleanup; the fact that we found it in
1467                 * the listener's accept queue guarantees that the cleanup
1468                 * function hasn't run yet.
1469                 */
1470                if (err) {
1471                        vconnected->rejected = true;
1472                } else {
1473                        newsock->state = SS_CONNECTED;
1474                        sock_graft(connected, newsock);
1475                }
1476
1477                release_sock(connected);
1478                sock_put(connected);
1479        }
1480
1481out:
1482        release_sock(listener);
1483        return err;
1484}
1485
1486static int vsock_listen(struct socket *sock, int backlog)
1487{
1488        int err;
1489        struct sock *sk;
1490        struct vsock_sock *vsk;
1491
1492        sk = sock->sk;
1493
1494        lock_sock(sk);
1495
1496        if (sock->type != SOCK_STREAM) {
1497                err = -EOPNOTSUPP;
1498                goto out;
1499        }
1500
1501        if (sock->state != SS_UNCONNECTED) {
1502                err = -EINVAL;
1503                goto out;
1504        }
1505
1506        vsk = vsock_sk(sk);
1507
1508        if (!vsock_addr_bound(&vsk->local_addr)) {
1509                err = -EINVAL;
1510                goto out;
1511        }
1512
1513        sk->sk_max_ack_backlog = backlog;
1514        sk->sk_state = TCP_LISTEN;
1515
1516        err = 0;
1517
1518out:
1519        release_sock(sk);
1520        return err;
1521}
1522
1523static void vsock_update_buffer_size(struct vsock_sock *vsk,
1524                                     const struct vsock_transport *transport,
1525                                     u64 val)
1526{
1527        if (val > vsk->buffer_max_size)
1528                val = vsk->buffer_max_size;
1529
1530        if (val < vsk->buffer_min_size)
1531                val = vsk->buffer_min_size;
1532
1533        if (val != vsk->buffer_size &&
1534            transport && transport->notify_buffer_size)
1535                transport->notify_buffer_size(vsk, &val);
1536
1537        vsk->buffer_size = val;
1538}
1539
1540static int vsock_stream_setsockopt(struct socket *sock,
1541                                   int level,
1542                                   int optname,
1543                                   char __user *optval,
1544                                   unsigned int optlen)
1545{
1546        int err;
1547        struct sock *sk;
1548        struct vsock_sock *vsk;
1549        const struct vsock_transport *transport;
1550        u64 val;
1551
1552        if (level != AF_VSOCK)
1553                return -ENOPROTOOPT;
1554
1555#define COPY_IN(_v)                                       \
1556        do {                                              \
1557                if (optlen < sizeof(_v)) {                \
1558                        err = -EINVAL;                    \
1559                        goto exit;                        \
1560                }                                         \
1561                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1562                        err = -EFAULT;                                  \
1563                        goto exit;                                      \
1564                }                                                       \
1565        } while (0)
1566
1567        err = 0;
1568        sk = sock->sk;
1569        vsk = vsock_sk(sk);
1570
1571        lock_sock(sk);
1572
1573        transport = vsk->transport;
1574
1575        switch (optname) {
1576        case SO_VM_SOCKETS_BUFFER_SIZE:
1577                COPY_IN(val);
1578                vsock_update_buffer_size(vsk, transport, val);
1579                break;
1580
1581        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1582                COPY_IN(val);
1583                vsk->buffer_max_size = val;
1584                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1585                break;
1586
1587        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1588                COPY_IN(val);
1589                vsk->buffer_min_size = val;
1590                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1591                break;
1592
1593        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1594                struct __kernel_old_timeval tv;
1595                COPY_IN(tv);
1596                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1597                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1598                        vsk->connect_timeout = tv.tv_sec * HZ +
1599                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1600                        if (vsk->connect_timeout == 0)
1601                                vsk->connect_timeout =
1602                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1603
1604                } else {
1605                        err = -ERANGE;
1606                }
1607                break;
1608        }
1609
1610        default:
1611                err = -ENOPROTOOPT;
1612                break;
1613        }
1614
1615#undef COPY_IN
1616
1617exit:
1618        release_sock(sk);
1619        return err;
1620}
1621
1622static int vsock_stream_getsockopt(struct socket *sock,
1623                                   int level, int optname,
1624                                   char __user *optval,
1625                                   int __user *optlen)
1626{
1627        int err;
1628        int len;
1629        struct sock *sk;
1630        struct vsock_sock *vsk;
1631        u64 val;
1632
1633        if (level != AF_VSOCK)
1634                return -ENOPROTOOPT;
1635
1636        err = get_user(len, optlen);
1637        if (err != 0)
1638                return err;
1639
1640#define COPY_OUT(_v)                            \
1641        do {                                    \
1642                if (len < sizeof(_v))           \
1643                        return -EINVAL;         \
1644                                                \
1645                len = sizeof(_v);               \
1646                if (copy_to_user(optval, &_v, len) != 0)        \
1647                        return -EFAULT;                         \
1648                                                                \
1649        } while (0)
1650
1651        err = 0;
1652        sk = sock->sk;
1653        vsk = vsock_sk(sk);
1654
1655        switch (optname) {
1656        case SO_VM_SOCKETS_BUFFER_SIZE:
1657                val = vsk->buffer_size;
1658                COPY_OUT(val);
1659                break;
1660
1661        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1662                val = vsk->buffer_max_size;
1663                COPY_OUT(val);
1664                break;
1665
1666        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1667                val = vsk->buffer_min_size;
1668                COPY_OUT(val);
1669                break;
1670
1671        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1672                struct __kernel_old_timeval tv;
1673                tv.tv_sec = vsk->connect_timeout / HZ;
1674                tv.tv_usec =
1675                    (vsk->connect_timeout -
1676                     tv.tv_sec * HZ) * (1000000 / HZ);
1677                COPY_OUT(tv);
1678                break;
1679        }
1680        default:
1681                return -ENOPROTOOPT;
1682        }
1683
1684        err = put_user(len, optlen);
1685        if (err != 0)
1686                return -EFAULT;
1687
1688#undef COPY_OUT
1689
1690        return 0;
1691}
1692
1693static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1694                                size_t len)
1695{
1696        struct sock *sk;
1697        struct vsock_sock *vsk;
1698        const struct vsock_transport *transport;
1699        ssize_t total_written;
1700        long timeout;
1701        int err;
1702        struct vsock_transport_send_notify_data send_data;
1703        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1704
1705        sk = sock->sk;
1706        vsk = vsock_sk(sk);
1707        total_written = 0;
1708        err = 0;
1709
1710        if (msg->msg_flags & MSG_OOB)
1711                return -EOPNOTSUPP;
1712
1713        lock_sock(sk);
1714
1715        transport = vsk->transport;
1716
1717        /* Callers should not provide a destination with stream sockets. */
1718        if (msg->msg_namelen) {
1719                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1720                goto out;
1721        }
1722
1723        /* Send data only if both sides are not shutdown in the direction. */
1724        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1725            vsk->peer_shutdown & RCV_SHUTDOWN) {
1726                err = -EPIPE;
1727                goto out;
1728        }
1729
1730        if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1731            !vsock_addr_bound(&vsk->local_addr)) {
1732                err = -ENOTCONN;
1733                goto out;
1734        }
1735
1736        if (!vsock_addr_bound(&vsk->remote_addr)) {
1737                err = -EDESTADDRREQ;
1738                goto out;
1739        }
1740
1741        /* Wait for room in the produce queue to enqueue our user's data. */
1742        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1743
1744        err = transport->notify_send_init(vsk, &send_data);
1745        if (err < 0)
1746                goto out;
1747
1748        while (total_written < len) {
1749                ssize_t written;
1750
1751                add_wait_queue(sk_sleep(sk), &wait);
1752                while (vsock_stream_has_space(vsk) == 0 &&
1753                       sk->sk_err == 0 &&
1754                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1755                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1756
1757                        /* Don't wait for non-blocking sockets. */
1758                        if (timeout == 0) {
1759                                err = -EAGAIN;
1760                                remove_wait_queue(sk_sleep(sk), &wait);
1761                                goto out_err;
1762                        }
1763
1764                        err = transport->notify_send_pre_block(vsk, &send_data);
1765                        if (err < 0) {
1766                                remove_wait_queue(sk_sleep(sk), &wait);
1767                                goto out_err;
1768                        }
1769
1770                        release_sock(sk);
1771                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1772                        lock_sock(sk);
1773                        if (signal_pending(current)) {
1774                                err = sock_intr_errno(timeout);
1775                                remove_wait_queue(sk_sleep(sk), &wait);
1776                                goto out_err;
1777                        } else if (timeout == 0) {
1778                                err = -EAGAIN;
1779                                remove_wait_queue(sk_sleep(sk), &wait);
1780                                goto out_err;
1781                        }
1782                }
1783                remove_wait_queue(sk_sleep(sk), &wait);
1784
1785                /* These checks occur both as part of and after the loop
1786                 * conditional since we need to check before and after
1787                 * sleeping.
1788                 */
1789                if (sk->sk_err) {
1790                        err = -sk->sk_err;
1791                        goto out_err;
1792                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1793                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1794                        err = -EPIPE;
1795                        goto out_err;
1796                }
1797
1798                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1799                if (err < 0)
1800                        goto out_err;
1801
1802                /* Note that enqueue will only write as many bytes as are free
1803                 * in the produce queue, so we don't need to ensure len is
1804                 * smaller than the queue size.  It is the caller's
1805                 * responsibility to check how many bytes we were able to send.
1806                 */
1807
1808                written = transport->stream_enqueue(
1809                                vsk, msg,
1810                                len - total_written);
1811                if (written < 0) {
1812                        err = -ENOMEM;
1813                        goto out_err;
1814                }
1815
1816                total_written += written;
1817
1818                err = transport->notify_send_post_enqueue(
1819                                vsk, written, &send_data);
1820                if (err < 0)
1821                        goto out_err;
1822
1823        }
1824
1825out_err:
1826        if (total_written > 0)
1827                err = total_written;
1828out:
1829        release_sock(sk);
1830        return err;
1831}
1832
1833
1834static int
1835vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1836                     int flags)
1837{
1838        struct sock *sk;
1839        struct vsock_sock *vsk;
1840        const struct vsock_transport *transport;
1841        int err;
1842        size_t target;
1843        ssize_t copied;
1844        long timeout;
1845        struct vsock_transport_recv_notify_data recv_data;
1846
1847        DEFINE_WAIT(wait);
1848
1849        sk = sock->sk;
1850        vsk = vsock_sk(sk);
1851        err = 0;
1852
1853        lock_sock(sk);
1854
1855        transport = vsk->transport;
1856
1857        if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1858                /* Recvmsg is supposed to return 0 if a peer performs an
1859                 * orderly shutdown. Differentiate between that case and when a
1860                 * peer has not connected or a local shutdown occurred with the
1861                 * SOCK_DONE flag.
1862                 */
1863                if (sock_flag(sk, SOCK_DONE))
1864                        err = 0;
1865                else
1866                        err = -ENOTCONN;
1867
1868                goto out;
1869        }
1870
1871        if (flags & MSG_OOB) {
1872                err = -EOPNOTSUPP;
1873                goto out;
1874        }
1875
1876        /* We don't check peer_shutdown flag here since peer may actually shut
1877         * down, but there can be data in the queue that a local socket can
1878         * receive.
1879         */
1880        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1881                err = 0;
1882                goto out;
1883        }
1884
1885        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1886         * is not an error.  We may as well bail out now.
1887         */
1888        if (!len) {
1889                err = 0;
1890                goto out;
1891        }
1892
1893        /* We must not copy less than target bytes into the user's buffer
1894         * before returning successfully, so we wait for the consume queue to
1895         * have that much data to consume before dequeueing.  Note that this
1896         * makes it impossible to handle cases where target is greater than the
1897         * queue size.
1898         */
1899        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1900        if (target >= transport->stream_rcvhiwat(vsk)) {
1901                err = -ENOMEM;
1902                goto out;
1903        }
1904        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1905        copied = 0;
1906
1907        err = transport->notify_recv_init(vsk, target, &recv_data);
1908        if (err < 0)
1909                goto out;
1910
1911
1912        while (1) {
1913                s64 ready;
1914
1915                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1916                ready = vsock_stream_has_data(vsk);
1917
1918                if (ready == 0) {
1919                        if (sk->sk_err != 0 ||
1920                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1921                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1922                                finish_wait(sk_sleep(sk), &wait);
1923                                break;
1924                        }
1925                        /* Don't wait for non-blocking sockets. */
1926                        if (timeout == 0) {
1927                                err = -EAGAIN;
1928                                finish_wait(sk_sleep(sk), &wait);
1929                                break;
1930                        }
1931
1932                        err = transport->notify_recv_pre_block(
1933                                        vsk, target, &recv_data);
1934                        if (err < 0) {
1935                                finish_wait(sk_sleep(sk), &wait);
1936                                break;
1937                        }
1938                        release_sock(sk);
1939                        timeout = schedule_timeout(timeout);
1940                        lock_sock(sk);
1941
1942                        if (signal_pending(current)) {
1943                                err = sock_intr_errno(timeout);
1944                                finish_wait(sk_sleep(sk), &wait);
1945                                break;
1946                        } else if (timeout == 0) {
1947                                err = -EAGAIN;
1948                                finish_wait(sk_sleep(sk), &wait);
1949                                break;
1950                        }
1951                } else {
1952                        ssize_t read;
1953
1954                        finish_wait(sk_sleep(sk), &wait);
1955
1956                        if (ready < 0) {
1957                                /* Invalid queue pair content. XXX This should
1958                                * be changed to a connection reset in a later
1959                                * change.
1960                                */
1961
1962                                err = -ENOMEM;
1963                                goto out;
1964                        }
1965
1966                        err = transport->notify_recv_pre_dequeue(
1967                                        vsk, target, &recv_data);
1968                        if (err < 0)
1969                                break;
1970
1971                        read = transport->stream_dequeue(
1972                                        vsk, msg,
1973                                        len - copied, flags);
1974                        if (read < 0) {
1975                                err = -ENOMEM;
1976                                break;
1977                        }
1978
1979                        copied += read;
1980
1981                        err = transport->notify_recv_post_dequeue(
1982                                        vsk, target, read,
1983                                        !(flags & MSG_PEEK), &recv_data);
1984                        if (err < 0)
1985                                goto out;
1986
1987                        if (read >= target || flags & MSG_PEEK)
1988                                break;
1989
1990                        target -= read;
1991                }
1992        }
1993
1994        if (sk->sk_err)
1995                err = -sk->sk_err;
1996        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1997                err = 0;
1998
1999        if (copied > 0)
2000                err = copied;
2001
2002out:
2003        release_sock(sk);
2004        return err;
2005}
2006
2007static const struct proto_ops vsock_stream_ops = {
2008        .family = PF_VSOCK,
2009        .owner = THIS_MODULE,
2010        .release = vsock_release,
2011        .bind = vsock_bind,
2012        .connect = vsock_stream_connect,
2013        .socketpair = sock_no_socketpair,
2014        .accept = vsock_accept,
2015        .getname = vsock_getname,
2016        .poll = vsock_poll,
2017        .ioctl = sock_no_ioctl,
2018        .listen = vsock_listen,
2019        .shutdown = vsock_shutdown,
2020        .setsockopt = vsock_stream_setsockopt,
2021        .getsockopt = vsock_stream_getsockopt,
2022        .sendmsg = vsock_stream_sendmsg,
2023        .recvmsg = vsock_stream_recvmsg,
2024        .mmap = sock_no_mmap,
2025        .sendpage = sock_no_sendpage,
2026};
2027
2028static int vsock_create(struct net *net, struct socket *sock,
2029                        int protocol, int kern)
2030{
2031        struct vsock_sock *vsk;
2032        struct sock *sk;
2033        int ret;
2034
2035        if (!sock)
2036                return -EINVAL;
2037
2038        if (protocol && protocol != PF_VSOCK)
2039                return -EPROTONOSUPPORT;
2040
2041        switch (sock->type) {
2042        case SOCK_DGRAM:
2043                sock->ops = &vsock_dgram_ops;
2044                break;
2045        case SOCK_STREAM:
2046                sock->ops = &vsock_stream_ops;
2047                break;
2048        default:
2049                return -ESOCKTNOSUPPORT;
2050        }
2051
2052        sock->state = SS_UNCONNECTED;
2053
2054        sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2055        if (!sk)
2056                return -ENOMEM;
2057
2058        vsk = vsock_sk(sk);
2059
2060        if (sock->type == SOCK_DGRAM) {
2061                ret = vsock_assign_transport(vsk, NULL);
2062                if (ret < 0) {
2063                        sock_put(sk);
2064                        return ret;
2065                }
2066        }
2067
2068        vsock_insert_unbound(vsk);
2069
2070        return 0;
2071}
2072
2073static const struct net_proto_family vsock_family_ops = {
2074        .family = AF_VSOCK,
2075        .create = vsock_create,
2076        .owner = THIS_MODULE,
2077};
2078
2079static long vsock_dev_do_ioctl(struct file *filp,
2080                               unsigned int cmd, void __user *ptr)
2081{
2082        u32 __user *p = ptr;
2083        u32 cid = VMADDR_CID_ANY;
2084        int retval = 0;
2085
2086        switch (cmd) {
2087        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2088                /* To be compatible with the VMCI behavior, we prioritize the
2089                 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2090                 */
2091                if (transport_g2h)
2092                        cid = transport_g2h->get_local_cid();
2093                else if (transport_h2g)
2094                        cid = transport_h2g->get_local_cid();
2095
2096                if (put_user(cid, p) != 0)
2097                        retval = -EFAULT;
2098                break;
2099
2100        default:
2101                retval = -ENOIOCTLCMD;
2102        }
2103
2104        return retval;
2105}
2106
2107static long vsock_dev_ioctl(struct file *filp,
2108                            unsigned int cmd, unsigned long arg)
2109{
2110        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2111}
2112
2113#ifdef CONFIG_COMPAT
2114static long vsock_dev_compat_ioctl(struct file *filp,
2115                                   unsigned int cmd, unsigned long arg)
2116{
2117        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2118}
2119#endif
2120
2121static const struct file_operations vsock_device_ops = {
2122        .owner          = THIS_MODULE,
2123        .unlocked_ioctl = vsock_dev_ioctl,
2124#ifdef CONFIG_COMPAT
2125        .compat_ioctl   = vsock_dev_compat_ioctl,
2126#endif
2127        .open           = nonseekable_open,
2128};
2129
2130static struct miscdevice vsock_device = {
2131        .name           = "vsock",
2132        .fops           = &vsock_device_ops,
2133};
2134
2135static int __init vsock_init(void)
2136{
2137        int err = 0;
2138
2139        vsock_init_tables();
2140
2141        vsock_proto.owner = THIS_MODULE;
2142        vsock_device.minor = MISC_DYNAMIC_MINOR;
2143        err = misc_register(&vsock_device);
2144        if (err) {
2145                pr_err("Failed to register misc device\n");
2146                goto err_reset_transport;
2147        }
2148
2149        err = proto_register(&vsock_proto, 1);  /* we want our slab */
2150        if (err) {
2151                pr_err("Cannot register vsock protocol\n");
2152                goto err_deregister_misc;
2153        }
2154
2155        err = sock_register(&vsock_family_ops);
2156        if (err) {
2157                pr_err("could not register af_vsock (%d) address family: %d\n",
2158                       AF_VSOCK, err);
2159                goto err_unregister_proto;
2160        }
2161
2162        return 0;
2163
2164err_unregister_proto:
2165        proto_unregister(&vsock_proto);
2166err_deregister_misc:
2167        misc_deregister(&vsock_device);
2168err_reset_transport:
2169        return err;
2170}
2171
2172static void __exit vsock_exit(void)
2173{
2174        misc_deregister(&vsock_device);
2175        sock_unregister(AF_VSOCK);
2176        proto_unregister(&vsock_proto);
2177}
2178
2179const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2180{
2181        return vsk->transport;
2182}
2183EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2184
2185int vsock_core_register(const struct vsock_transport *t, int features)
2186{
2187        const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2188        int err = mutex_lock_interruptible(&vsock_register_mutex);
2189
2190        if (err)
2191                return err;
2192
2193        t_h2g = transport_h2g;
2194        t_g2h = transport_g2h;
2195        t_dgram = transport_dgram;
2196        t_local = transport_local;
2197
2198        if (features & VSOCK_TRANSPORT_F_H2G) {
2199                if (t_h2g) {
2200                        err = -EBUSY;
2201                        goto err_busy;
2202                }
2203                t_h2g = t;
2204        }
2205
2206        if (features & VSOCK_TRANSPORT_F_G2H) {
2207                if (t_g2h) {
2208                        err = -EBUSY;
2209                        goto err_busy;
2210                }
2211                t_g2h = t;
2212        }
2213
2214        if (features & VSOCK_TRANSPORT_F_DGRAM) {
2215                if (t_dgram) {
2216                        err = -EBUSY;
2217                        goto err_busy;
2218                }
2219                t_dgram = t;
2220        }
2221
2222        if (features & VSOCK_TRANSPORT_F_LOCAL) {
2223                if (t_local) {
2224                        err = -EBUSY;
2225                        goto err_busy;
2226                }
2227                t_local = t;
2228        }
2229
2230        transport_h2g = t_h2g;
2231        transport_g2h = t_g2h;
2232        transport_dgram = t_dgram;
2233        transport_local = t_local;
2234
2235err_busy:
2236        mutex_unlock(&vsock_register_mutex);
2237        return err;
2238}
2239EXPORT_SYMBOL_GPL(vsock_core_register);
2240
2241void vsock_core_unregister(const struct vsock_transport *t)
2242{
2243        mutex_lock(&vsock_register_mutex);
2244
2245        if (transport_h2g == t)
2246                transport_h2g = NULL;
2247
2248        if (transport_g2h == t)
2249                transport_g2h = NULL;
2250
2251        if (transport_dgram == t)
2252                transport_dgram = NULL;
2253
2254        if (transport_local == t)
2255                transport_local = NULL;
2256
2257        mutex_unlock(&vsock_register_mutex);
2258}
2259EXPORT_SYMBOL_GPL(vsock_core_unregister);
2260
2261module_init(vsock_init);
2262module_exit(vsock_exit);
2263
2264MODULE_AUTHOR("VMware, Inc.");
2265MODULE_DESCRIPTION("VMware Virtual Socket Family");
2266MODULE_VERSION("1.0.2.0-k");
2267MODULE_LICENSE("GPL v2");
2268