linux/arch/x86/kernel/cpu/resctrl/pseudo_lock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Resource Director Technology (RDT)
   4 *
   5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
   6 *
   7 * Copyright (C) 2018 Intel Corporation
   8 *
   9 * Author: Reinette Chatre <reinette.chatre@intel.com>
  10 */
  11
  12#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  13
  14#include <linux/cacheinfo.h>
  15#include <linux/cpu.h>
  16#include <linux/cpumask.h>
  17#include <linux/debugfs.h>
  18#include <linux/kthread.h>
  19#include <linux/mman.h>
  20#include <linux/perf_event.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/intel-family.h>
  27#include <asm/resctrl.h>
  28#include <asm/perf_event.h>
  29
  30#include "../../events/perf_event.h" /* For X86_CONFIG() */
  31#include "internal.h"
  32
  33#define CREATE_TRACE_POINTS
  34#include "pseudo_lock_event.h"
  35
  36/*
  37 * The bits needed to disable hardware prefetching varies based on the
  38 * platform. During initialization we will discover which bits to use.
  39 */
  40static u64 prefetch_disable_bits;
  41
  42/*
  43 * Major number assigned to and shared by all devices exposing
  44 * pseudo-locked regions.
  45 */
  46static unsigned int pseudo_lock_major;
  47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
  48static struct class *pseudo_lock_class;
  49
  50/**
  51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
  52 *
  53 * Capture the list of platforms that have been validated to support
  54 * pseudo-locking. This includes testing to ensure pseudo-locked regions
  55 * with low cache miss rates can be created under variety of load conditions
  56 * as well as that these pseudo-locked regions can maintain their low cache
  57 * miss rates under variety of load conditions for significant lengths of time.
  58 *
  59 * After a platform has been validated to support pseudo-locking its
  60 * hardware prefetch disable bits are included here as they are documented
  61 * in the SDM.
  62 *
  63 * When adding a platform here also add support for its cache events to
  64 * measure_cycles_perf_fn()
  65 *
  66 * Return:
  67 * If platform is supported, the bits to disable hardware prefetchers, 0
  68 * if platform is not supported.
  69 */
  70static u64 get_prefetch_disable_bits(void)
  71{
  72        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
  73            boot_cpu_data.x86 != 6)
  74                return 0;
  75
  76        switch (boot_cpu_data.x86_model) {
  77        case INTEL_FAM6_BROADWELL_X:
  78                /*
  79                 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  80                 * as:
  81                 * 0    L2 Hardware Prefetcher Disable (R/W)
  82                 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
  83                 * 2    DCU Hardware Prefetcher Disable (R/W)
  84                 * 3    DCU IP Prefetcher Disable (R/W)
  85                 * 63:4 Reserved
  86                 */
  87                return 0xF;
  88        case INTEL_FAM6_ATOM_GOLDMONT:
  89        case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
  90                /*
  91                 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  92                 * as:
  93                 * 0     L2 Hardware Prefetcher Disable (R/W)
  94                 * 1     Reserved
  95                 * 2     DCU Hardware Prefetcher Disable (R/W)
  96                 * 63:3  Reserved
  97                 */
  98                return 0x5;
  99        }
 100
 101        return 0;
 102}
 103
 104/**
 105 * pseudo_lock_minor_get - Obtain available minor number
 106 * @minor: Pointer to where new minor number will be stored
 107 *
 108 * A bitmask is used to track available minor numbers. Here the next free
 109 * minor number is marked as unavailable and returned.
 110 *
 111 * Return: 0 on success, <0 on failure.
 112 */
 113static int pseudo_lock_minor_get(unsigned int *minor)
 114{
 115        unsigned long first_bit;
 116
 117        first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
 118
 119        if (first_bit == MINORBITS)
 120                return -ENOSPC;
 121
 122        __clear_bit(first_bit, &pseudo_lock_minor_avail);
 123        *minor = first_bit;
 124
 125        return 0;
 126}
 127
 128/**
 129 * pseudo_lock_minor_release - Return minor number to available
 130 * @minor: The minor number made available
 131 */
 132static void pseudo_lock_minor_release(unsigned int minor)
 133{
 134        __set_bit(minor, &pseudo_lock_minor_avail);
 135}
 136
 137/**
 138 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 139 * @minor: The minor number of the device representing pseudo-locked region
 140 *
 141 * When the character device is accessed we need to determine which
 142 * pseudo-locked region it belongs to. This is done by matching the minor
 143 * number of the device to the pseudo-locked region it belongs.
 144 *
 145 * Minor numbers are assigned at the time a pseudo-locked region is associated
 146 * with a cache instance.
 147 *
 148 * Return: On success return pointer to resource group owning the pseudo-locked
 149 *         region, NULL on failure.
 150 */
 151static struct rdtgroup *region_find_by_minor(unsigned int minor)
 152{
 153        struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
 154
 155        list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 156                if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
 157                        rdtgrp_match = rdtgrp;
 158                        break;
 159                }
 160        }
 161        return rdtgrp_match;
 162}
 163
 164/**
 165 * pseudo_lock_pm_req - A power management QoS request list entry
 166 * @list:       Entry within the @pm_reqs list for a pseudo-locked region
 167 * @req:        PM QoS request
 168 */
 169struct pseudo_lock_pm_req {
 170        struct list_head list;
 171        struct dev_pm_qos_request req;
 172};
 173
 174static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
 175{
 176        struct pseudo_lock_pm_req *pm_req, *next;
 177
 178        list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
 179                dev_pm_qos_remove_request(&pm_req->req);
 180                list_del(&pm_req->list);
 181                kfree(pm_req);
 182        }
 183}
 184
 185/**
 186 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 187 *
 188 * To prevent the cache from being affected by power management entering
 189 * C6 has to be avoided. This is accomplished by requesting a latency
 190 * requirement lower than lowest C6 exit latency of all supported
 191 * platforms as found in the cpuidle state tables in the intel_idle driver.
 192 * At this time it is possible to do so with a single latency requirement
 193 * for all supported platforms.
 194 *
 195 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 196 * the ACPI latencies need to be considered while keeping in mind that C2
 197 * may be set to map to deeper sleep states. In this case the latency
 198 * requirement needs to prevent entering C2 also.
 199 */
 200static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 201{
 202        struct pseudo_lock_pm_req *pm_req;
 203        int cpu;
 204        int ret;
 205
 206        for_each_cpu(cpu, &plr->d->cpu_mask) {
 207                pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 208                if (!pm_req) {
 209                        rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 210                        ret = -ENOMEM;
 211                        goto out_err;
 212                }
 213                ret = dev_pm_qos_add_request(get_cpu_device(cpu),
 214                                             &pm_req->req,
 215                                             DEV_PM_QOS_RESUME_LATENCY,
 216                                             30);
 217                if (ret < 0) {
 218                        rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 219                                            cpu);
 220                        kfree(pm_req);
 221                        ret = -1;
 222                        goto out_err;
 223                }
 224                list_add(&pm_req->list, &plr->pm_reqs);
 225        }
 226
 227        return 0;
 228
 229out_err:
 230        pseudo_lock_cstates_relax(plr);
 231        return ret;
 232}
 233
 234/**
 235 * pseudo_lock_region_clear - Reset pseudo-lock region data
 236 * @plr: pseudo-lock region
 237 *
 238 * All content of the pseudo-locked region is reset - any memory allocated
 239 * freed.
 240 *
 241 * Return: void
 242 */
 243static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
 244{
 245        plr->size = 0;
 246        plr->line_size = 0;
 247        kfree(plr->kmem);
 248        plr->kmem = NULL;
 249        plr->r = NULL;
 250        if (plr->d)
 251                plr->d->plr = NULL;
 252        plr->d = NULL;
 253        plr->cbm = 0;
 254        plr->debugfs_dir = NULL;
 255}
 256
 257/**
 258 * pseudo_lock_region_init - Initialize pseudo-lock region information
 259 * @plr: pseudo-lock region
 260 *
 261 * Called after user provided a schemata to be pseudo-locked. From the
 262 * schemata the &struct pseudo_lock_region is on entry already initialized
 263 * with the resource, domain, and capacity bitmask. Here the information
 264 * required for pseudo-locking is deduced from this data and &struct
 265 * pseudo_lock_region initialized further. This information includes:
 266 * - size in bytes of the region to be pseudo-locked
 267 * - cache line size to know the stride with which data needs to be accessed
 268 *   to be pseudo-locked
 269 * - a cpu associated with the cache instance on which the pseudo-locking
 270 *   flow can be executed
 271 *
 272 * Return: 0 on success, <0 on failure. Descriptive error will be written
 273 * to last_cmd_status buffer.
 274 */
 275static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 276{
 277        struct cpu_cacheinfo *ci;
 278        int ret;
 279        int i;
 280
 281        /* Pick the first cpu we find that is associated with the cache. */
 282        plr->cpu = cpumask_first(&plr->d->cpu_mask);
 283
 284        if (!cpu_online(plr->cpu)) {
 285                rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 286                                    plr->cpu);
 287                ret = -ENODEV;
 288                goto out_region;
 289        }
 290
 291        ci = get_cpu_cacheinfo(plr->cpu);
 292
 293        plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
 294
 295        for (i = 0; i < ci->num_leaves; i++) {
 296                if (ci->info_list[i].level == plr->r->cache_level) {
 297                        plr->line_size = ci->info_list[i].coherency_line_size;
 298                        return 0;
 299                }
 300        }
 301
 302        ret = -1;
 303        rdt_last_cmd_puts("Unable to determine cache line size\n");
 304out_region:
 305        pseudo_lock_region_clear(plr);
 306        return ret;
 307}
 308
 309/**
 310 * pseudo_lock_init - Initialize a pseudo-lock region
 311 * @rdtgrp: resource group to which new pseudo-locked region will belong
 312 *
 313 * A pseudo-locked region is associated with a resource group. When this
 314 * association is created the pseudo-locked region is initialized. The
 315 * details of the pseudo-locked region are not known at this time so only
 316 * allocation is done and association established.
 317 *
 318 * Return: 0 on success, <0 on failure
 319 */
 320static int pseudo_lock_init(struct rdtgroup *rdtgrp)
 321{
 322        struct pseudo_lock_region *plr;
 323
 324        plr = kzalloc(sizeof(*plr), GFP_KERNEL);
 325        if (!plr)
 326                return -ENOMEM;
 327
 328        init_waitqueue_head(&plr->lock_thread_wq);
 329        INIT_LIST_HEAD(&plr->pm_reqs);
 330        rdtgrp->plr = plr;
 331        return 0;
 332}
 333
 334/**
 335 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 336 * @plr: pseudo-lock region
 337 *
 338 * Initialize the details required to set up the pseudo-locked region and
 339 * allocate the contiguous memory that will be pseudo-locked to the cache.
 340 *
 341 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 342 * to last_cmd_status buffer.
 343 */
 344static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 345{
 346        int ret;
 347
 348        ret = pseudo_lock_region_init(plr);
 349        if (ret < 0)
 350                return ret;
 351
 352        /*
 353         * We do not yet support contiguous regions larger than
 354         * KMALLOC_MAX_SIZE.
 355         */
 356        if (plr->size > KMALLOC_MAX_SIZE) {
 357                rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 358                ret = -E2BIG;
 359                goto out_region;
 360        }
 361
 362        plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 363        if (!plr->kmem) {
 364                rdt_last_cmd_puts("Unable to allocate memory\n");
 365                ret = -ENOMEM;
 366                goto out_region;
 367        }
 368
 369        ret = 0;
 370        goto out;
 371out_region:
 372        pseudo_lock_region_clear(plr);
 373out:
 374        return ret;
 375}
 376
 377/**
 378 * pseudo_lock_free - Free a pseudo-locked region
 379 * @rdtgrp: resource group to which pseudo-locked region belonged
 380 *
 381 * The pseudo-locked region's resources have already been released, or not
 382 * yet created at this point. Now it can be freed and disassociated from the
 383 * resource group.
 384 *
 385 * Return: void
 386 */
 387static void pseudo_lock_free(struct rdtgroup *rdtgrp)
 388{
 389        pseudo_lock_region_clear(rdtgrp->plr);
 390        kfree(rdtgrp->plr);
 391        rdtgrp->plr = NULL;
 392}
 393
 394/**
 395 * pseudo_lock_fn - Load kernel memory into cache
 396 * @_rdtgrp: resource group to which pseudo-lock region belongs
 397 *
 398 * This is the core pseudo-locking flow.
 399 *
 400 * First we ensure that the kernel memory cannot be found in the cache.
 401 * Then, while taking care that there will be as little interference as
 402 * possible, the memory to be loaded is accessed while core is running
 403 * with class of service set to the bitmask of the pseudo-locked region.
 404 * After this is complete no future CAT allocations will be allowed to
 405 * overlap with this bitmask.
 406 *
 407 * Local register variables are utilized to ensure that the memory region
 408 * to be locked is the only memory access made during the critical locking
 409 * loop.
 410 *
 411 * Return: 0. Waiter on waitqueue will be woken on completion.
 412 */
 413static int pseudo_lock_fn(void *_rdtgrp)
 414{
 415        struct rdtgroup *rdtgrp = _rdtgrp;
 416        struct pseudo_lock_region *plr = rdtgrp->plr;
 417        u32 rmid_p, closid_p;
 418        unsigned long i;
 419#ifdef CONFIG_KASAN
 420        /*
 421         * The registers used for local register variables are also used
 422         * when KASAN is active. When KASAN is active we use a regular
 423         * variable to ensure we always use a valid pointer, but the cost
 424         * is that this variable will enter the cache through evicting the
 425         * memory we are trying to lock into the cache. Thus expect lower
 426         * pseudo-locking success rate when KASAN is active.
 427         */
 428        unsigned int line_size;
 429        unsigned int size;
 430        void *mem_r;
 431#else
 432        register unsigned int line_size asm("esi");
 433        register unsigned int size asm("edi");
 434        register void *mem_r asm(_ASM_BX);
 435#endif /* CONFIG_KASAN */
 436
 437        /*
 438         * Make sure none of the allocated memory is cached. If it is we
 439         * will get a cache hit in below loop from outside of pseudo-locked
 440         * region.
 441         * wbinvd (as opposed to clflush/clflushopt) is required to
 442         * increase likelihood that allocated cache portion will be filled
 443         * with associated memory.
 444         */
 445        native_wbinvd();
 446
 447        /*
 448         * Always called with interrupts enabled. By disabling interrupts
 449         * ensure that we will not be preempted during this critical section.
 450         */
 451        local_irq_disable();
 452
 453        /*
 454         * Call wrmsr and rdmsr as directly as possible to avoid tracing
 455         * clobbering local register variables or affecting cache accesses.
 456         *
 457         * Disable the hardware prefetcher so that when the end of the memory
 458         * being pseudo-locked is reached the hardware will not read beyond
 459         * the buffer and evict pseudo-locked memory read earlier from the
 460         * cache.
 461         */
 462        __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 463        closid_p = this_cpu_read(pqr_state.cur_closid);
 464        rmid_p = this_cpu_read(pqr_state.cur_rmid);
 465        mem_r = plr->kmem;
 466        size = plr->size;
 467        line_size = plr->line_size;
 468        /*
 469         * Critical section begin: start by writing the closid associated
 470         * with the capacity bitmask of the cache region being
 471         * pseudo-locked followed by reading of kernel memory to load it
 472         * into the cache.
 473         */
 474        __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
 475        /*
 476         * Cache was flushed earlier. Now access kernel memory to read it
 477         * into cache region associated with just activated plr->closid.
 478         * Loop over data twice:
 479         * - In first loop the cache region is shared with the page walker
 480         *   as it populates the paging structure caches (including TLB).
 481         * - In the second loop the paging structure caches are used and
 482         *   cache region is populated with the memory being referenced.
 483         */
 484        for (i = 0; i < size; i += PAGE_SIZE) {
 485                /*
 486                 * Add a barrier to prevent speculative execution of this
 487                 * loop reading beyond the end of the buffer.
 488                 */
 489                rmb();
 490                asm volatile("mov (%0,%1,1), %%eax\n\t"
 491                        :
 492                        : "r" (mem_r), "r" (i)
 493                        : "%eax", "memory");
 494        }
 495        for (i = 0; i < size; i += line_size) {
 496                /*
 497                 * Add a barrier to prevent speculative execution of this
 498                 * loop reading beyond the end of the buffer.
 499                 */
 500                rmb();
 501                asm volatile("mov (%0,%1,1), %%eax\n\t"
 502                        :
 503                        : "r" (mem_r), "r" (i)
 504                        : "%eax", "memory");
 505        }
 506        /*
 507         * Critical section end: restore closid with capacity bitmask that
 508         * does not overlap with pseudo-locked region.
 509         */
 510        __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
 511
 512        /* Re-enable the hardware prefetcher(s) */
 513        wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 514        local_irq_enable();
 515
 516        plr->thread_done = 1;
 517        wake_up_interruptible(&plr->lock_thread_wq);
 518        return 0;
 519}
 520
 521/**
 522 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 523 * @r: resource group being queried
 524 *
 525 * Return: 1 if monitor groups have been created for this resource
 526 * group, 0 otherwise.
 527 */
 528static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
 529{
 530        return !list_empty(&rdtgrp->mon.crdtgrp_list);
 531}
 532
 533/**
 534 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 535 * @rdtgrp: resource group needing access restricted
 536 *
 537 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 538 * assigned to it. This is communicated to the user by restricting access
 539 * to all the files that can be used to make such changes.
 540 *
 541 * Permissions restored with rdtgroup_locksetup_user_restore()
 542 *
 543 * Return: 0 on success, <0 on failure. If a failure occurs during the
 544 * restriction of access an attempt will be made to restore permissions but
 545 * the state of the mode of these files will be uncertain when a failure
 546 * occurs.
 547 */
 548static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
 549{
 550        int ret;
 551
 552        ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 553        if (ret)
 554                return ret;
 555
 556        ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 557        if (ret)
 558                goto err_tasks;
 559
 560        ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 561        if (ret)
 562                goto err_cpus;
 563
 564        if (rdt_mon_capable) {
 565                ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
 566                if (ret)
 567                        goto err_cpus_list;
 568        }
 569
 570        ret = 0;
 571        goto out;
 572
 573err_cpus_list:
 574        rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 575err_cpus:
 576        rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 577err_tasks:
 578        rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 579out:
 580        return ret;
 581}
 582
 583/**
 584 * rdtgroup_locksetup_user_restore - Restore user access to group
 585 * @rdtgrp: resource group needing access restored
 586 *
 587 * Restore all file access previously removed using
 588 * rdtgroup_locksetup_user_restrict()
 589 *
 590 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 591 * restoration of access an attempt will be made to restrict permissions
 592 * again but the state of the mode of these files will be uncertain when
 593 * a failure occurs.
 594 */
 595static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
 596{
 597        int ret;
 598
 599        ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 600        if (ret)
 601                return ret;
 602
 603        ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 604        if (ret)
 605                goto err_tasks;
 606
 607        ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 608        if (ret)
 609                goto err_cpus;
 610
 611        if (rdt_mon_capable) {
 612                ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
 613                if (ret)
 614                        goto err_cpus_list;
 615        }
 616
 617        ret = 0;
 618        goto out;
 619
 620err_cpus_list:
 621        rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 622err_cpus:
 623        rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 624err_tasks:
 625        rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 626out:
 627        return ret;
 628}
 629
 630/**
 631 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 632 * @rdtgrp: resource group requested to enter locksetup mode
 633 *
 634 * A resource group enters locksetup mode to reflect that it would be used
 635 * to represent a pseudo-locked region and is in the process of being set
 636 * up to do so. A resource group used for a pseudo-locked region would
 637 * lose the closid associated with it so we cannot allow it to have any
 638 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 639 * future. Monitoring of a pseudo-locked region is not allowed either.
 640 *
 641 * The above and more restrictions on a pseudo-locked region are checked
 642 * for and enforced before the resource group enters the locksetup mode.
 643 *
 644 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 645 * on failure. On failure the last_cmd_status buffer is updated with text to
 646 * communicate details of failure to the user.
 647 */
 648int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 649{
 650        int ret;
 651
 652        /*
 653         * The default resource group can neither be removed nor lose the
 654         * default closid associated with it.
 655         */
 656        if (rdtgrp == &rdtgroup_default) {
 657                rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 658                return -EINVAL;
 659        }
 660
 661        /*
 662         * Cache Pseudo-locking not supported when CDP is enabled.
 663         *
 664         * Some things to consider if you would like to enable this
 665         * support (using L3 CDP as example):
 666         * - When CDP is enabled two separate resources are exposed,
 667         *   L3DATA and L3CODE, but they are actually on the same cache.
 668         *   The implication for pseudo-locking is that if a
 669         *   pseudo-locked region is created on a domain of one
 670         *   resource (eg. L3CODE), then a pseudo-locked region cannot
 671         *   be created on that same domain of the other resource
 672         *   (eg. L3DATA). This is because the creation of a
 673         *   pseudo-locked region involves a call to wbinvd that will
 674         *   affect all cache allocations on particular domain.
 675         * - Considering the previous, it may be possible to only
 676         *   expose one of the CDP resources to pseudo-locking and
 677         *   hide the other. For example, we could consider to only
 678         *   expose L3DATA and since the L3 cache is unified it is
 679         *   still possible to place instructions there are execute it.
 680         * - If only one region is exposed to pseudo-locking we should
 681         *   still keep in mind that availability of a portion of cache
 682         *   for pseudo-locking should take into account both resources.
 683         *   Similarly, if a pseudo-locked region is created in one
 684         *   resource, the portion of cache used by it should be made
 685         *   unavailable to all future allocations from both resources.
 686         */
 687        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
 688            rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
 689                rdt_last_cmd_puts("CDP enabled\n");
 690                return -EINVAL;
 691        }
 692
 693        /*
 694         * Not knowing the bits to disable prefetching implies that this
 695         * platform does not support Cache Pseudo-Locking.
 696         */
 697        prefetch_disable_bits = get_prefetch_disable_bits();
 698        if (prefetch_disable_bits == 0) {
 699                rdt_last_cmd_puts("Pseudo-locking not supported\n");
 700                return -EINVAL;
 701        }
 702
 703        if (rdtgroup_monitor_in_progress(rdtgrp)) {
 704                rdt_last_cmd_puts("Monitoring in progress\n");
 705                return -EINVAL;
 706        }
 707
 708        if (rdtgroup_tasks_assigned(rdtgrp)) {
 709                rdt_last_cmd_puts("Tasks assigned to resource group\n");
 710                return -EINVAL;
 711        }
 712
 713        if (!cpumask_empty(&rdtgrp->cpu_mask)) {
 714                rdt_last_cmd_puts("CPUs assigned to resource group\n");
 715                return -EINVAL;
 716        }
 717
 718        if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
 719                rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 720                return -EIO;
 721        }
 722
 723        ret = pseudo_lock_init(rdtgrp);
 724        if (ret) {
 725                rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 726                goto out_release;
 727        }
 728
 729        /*
 730         * If this system is capable of monitoring a rmid would have been
 731         * allocated when the control group was created. This is not needed
 732         * anymore when this group would be used for pseudo-locking. This
 733         * is safe to call on platforms not capable of monitoring.
 734         */
 735        free_rmid(rdtgrp->mon.rmid);
 736
 737        ret = 0;
 738        goto out;
 739
 740out_release:
 741        rdtgroup_locksetup_user_restore(rdtgrp);
 742out:
 743        return ret;
 744}
 745
 746/**
 747 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 748 * @rdtgrp: resource group
 749 *
 750 * When a resource group exits locksetup mode the earlier restrictions are
 751 * lifted.
 752 *
 753 * Return: 0 on success, <0 on failure
 754 */
 755int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 756{
 757        int ret;
 758
 759        if (rdt_mon_capable) {
 760                ret = alloc_rmid();
 761                if (ret < 0) {
 762                        rdt_last_cmd_puts("Out of RMIDs\n");
 763                        return ret;
 764                }
 765                rdtgrp->mon.rmid = ret;
 766        }
 767
 768        ret = rdtgroup_locksetup_user_restore(rdtgrp);
 769        if (ret) {
 770                free_rmid(rdtgrp->mon.rmid);
 771                return ret;
 772        }
 773
 774        pseudo_lock_free(rdtgrp);
 775        return 0;
 776}
 777
 778/**
 779 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 780 * @d: RDT domain
 781 * @cbm: CBM to test
 782 *
 783 * @d represents a cache instance and @cbm a capacity bitmask that is
 784 * considered for it. Determine if @cbm overlaps with any existing
 785 * pseudo-locked region on @d.
 786 *
 787 * @cbm is unsigned long, even if only 32 bits are used, to make the
 788 * bitmap functions work correctly.
 789 *
 790 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 791 * otherwise.
 792 */
 793bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
 794{
 795        unsigned int cbm_len;
 796        unsigned long cbm_b;
 797
 798        if (d->plr) {
 799                cbm_len = d->plr->r->cache.cbm_len;
 800                cbm_b = d->plr->cbm;
 801                if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
 802                        return true;
 803        }
 804        return false;
 805}
 806
 807/**
 808 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 809 * @d: RDT domain under test
 810 *
 811 * The setup of a pseudo-locked region affects all cache instances within
 812 * the hierarchy of the region. It is thus essential to know if any
 813 * pseudo-locked regions exist within a cache hierarchy to prevent any
 814 * attempts to create new pseudo-locked regions in the same hierarchy.
 815 *
 816 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 817 *         if it is not possible to test due to memory allocation issue,
 818 *         false otherwise.
 819 */
 820bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
 821{
 822        cpumask_var_t cpu_with_psl;
 823        struct rdt_resource *r;
 824        struct rdt_domain *d_i;
 825        bool ret = false;
 826
 827        if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
 828                return true;
 829
 830        /*
 831         * First determine which cpus have pseudo-locked regions
 832         * associated with them.
 833         */
 834        for_each_alloc_enabled_rdt_resource(r) {
 835                list_for_each_entry(d_i, &r->domains, list) {
 836                        if (d_i->plr)
 837                                cpumask_or(cpu_with_psl, cpu_with_psl,
 838                                           &d_i->cpu_mask);
 839                }
 840        }
 841
 842        /*
 843         * Next test if new pseudo-locked region would intersect with
 844         * existing region.
 845         */
 846        if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
 847                ret = true;
 848
 849        free_cpumask_var(cpu_with_psl);
 850        return ret;
 851}
 852
 853/**
 854 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 855 * @_plr: pseudo-lock region to measure
 856 *
 857 * There is no deterministic way to test if a memory region is cached. One
 858 * way is to measure how long it takes to read the memory, the speed of
 859 * access is a good way to learn how close to the cpu the data was. Even
 860 * more, if the prefetcher is disabled and the memory is read at a stride
 861 * of half the cache line, then a cache miss will be easy to spot since the
 862 * read of the first half would be significantly slower than the read of
 863 * the second half.
 864 *
 865 * Return: 0. Waiter on waitqueue will be woken on completion.
 866 */
 867static int measure_cycles_lat_fn(void *_plr)
 868{
 869        struct pseudo_lock_region *plr = _plr;
 870        unsigned long i;
 871        u64 start, end;
 872        void *mem_r;
 873
 874        local_irq_disable();
 875        /*
 876         * Disable hardware prefetchers.
 877         */
 878        wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 879        mem_r = READ_ONCE(plr->kmem);
 880        /*
 881         * Dummy execute of the time measurement to load the needed
 882         * instructions into the L1 instruction cache.
 883         */
 884        start = rdtsc_ordered();
 885        for (i = 0; i < plr->size; i += 32) {
 886                start = rdtsc_ordered();
 887                asm volatile("mov (%0,%1,1), %%eax\n\t"
 888                             :
 889                             : "r" (mem_r), "r" (i)
 890                             : "%eax", "memory");
 891                end = rdtsc_ordered();
 892                trace_pseudo_lock_mem_latency((u32)(end - start));
 893        }
 894        wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 895        local_irq_enable();
 896        plr->thread_done = 1;
 897        wake_up_interruptible(&plr->lock_thread_wq);
 898        return 0;
 899}
 900
 901/*
 902 * Create a perf_event_attr for the hit and miss perf events that will
 903 * be used during the performance measurement. A perf_event maintains
 904 * a pointer to its perf_event_attr so a unique attribute structure is
 905 * created for each perf_event.
 906 *
 907 * The actual configuration of the event is set right before use in order
 908 * to use the X86_CONFIG macro.
 909 */
 910static struct perf_event_attr perf_miss_attr = {
 911        .type           = PERF_TYPE_RAW,
 912        .size           = sizeof(struct perf_event_attr),
 913        .pinned         = 1,
 914        .disabled       = 0,
 915        .exclude_user   = 1,
 916};
 917
 918static struct perf_event_attr perf_hit_attr = {
 919        .type           = PERF_TYPE_RAW,
 920        .size           = sizeof(struct perf_event_attr),
 921        .pinned         = 1,
 922        .disabled       = 0,
 923        .exclude_user   = 1,
 924};
 925
 926struct residency_counts {
 927        u64 miss_before, hits_before;
 928        u64 miss_after,  hits_after;
 929};
 930
 931static int measure_residency_fn(struct perf_event_attr *miss_attr,
 932                                struct perf_event_attr *hit_attr,
 933                                struct pseudo_lock_region *plr,
 934                                struct residency_counts *counts)
 935{
 936        u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
 937        struct perf_event *miss_event, *hit_event;
 938        int hit_pmcnum, miss_pmcnum;
 939        unsigned int line_size;
 940        unsigned int size;
 941        unsigned long i;
 942        void *mem_r;
 943        u64 tmp;
 944
 945        miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
 946                                                      NULL, NULL, NULL);
 947        if (IS_ERR(miss_event))
 948                goto out;
 949
 950        hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
 951                                                     NULL, NULL, NULL);
 952        if (IS_ERR(hit_event))
 953                goto out_miss;
 954
 955        local_irq_disable();
 956        /*
 957         * Check any possible error state of events used by performing
 958         * one local read.
 959         */
 960        if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
 961                local_irq_enable();
 962                goto out_hit;
 963        }
 964        if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
 965                local_irq_enable();
 966                goto out_hit;
 967        }
 968
 969        /*
 970         * Disable hardware prefetchers.
 971         */
 972        wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 973
 974        /* Initialize rest of local variables */
 975        /*
 976         * Performance event has been validated right before this with
 977         * interrupts disabled - it is thus safe to read the counter index.
 978         */
 979        miss_pmcnum = x86_perf_rdpmc_index(miss_event);
 980        hit_pmcnum = x86_perf_rdpmc_index(hit_event);
 981        line_size = READ_ONCE(plr->line_size);
 982        mem_r = READ_ONCE(plr->kmem);
 983        size = READ_ONCE(plr->size);
 984
 985        /*
 986         * Read counter variables twice - first to load the instructions
 987         * used in L1 cache, second to capture accurate value that does not
 988         * include cache misses incurred because of instruction loads.
 989         */
 990        rdpmcl(hit_pmcnum, hits_before);
 991        rdpmcl(miss_pmcnum, miss_before);
 992        /*
 993         * From SDM: Performing back-to-back fast reads are not guaranteed
 994         * to be monotonic.
 995         * Use LFENCE to ensure all previous instructions are retired
 996         * before proceeding.
 997         */
 998        rmb();
 999        rdpmcl(hit_pmcnum, hits_before);
1000        rdpmcl(miss_pmcnum, miss_before);
1001        /*
1002         * Use LFENCE to ensure all previous instructions are retired
1003         * before proceeding.
1004         */
1005        rmb();
1006        for (i = 0; i < size; i += line_size) {
1007                /*
1008                 * Add a barrier to prevent speculative execution of this
1009                 * loop reading beyond the end of the buffer.
1010                 */
1011                rmb();
1012                asm volatile("mov (%0,%1,1), %%eax\n\t"
1013                             :
1014                             : "r" (mem_r), "r" (i)
1015                             : "%eax", "memory");
1016        }
1017        /*
1018         * Use LFENCE to ensure all previous instructions are retired
1019         * before proceeding.
1020         */
1021        rmb();
1022        rdpmcl(hit_pmcnum, hits_after);
1023        rdpmcl(miss_pmcnum, miss_after);
1024        /*
1025         * Use LFENCE to ensure all previous instructions are retired
1026         * before proceeding.
1027         */
1028        rmb();
1029        /* Re-enable hardware prefetchers */
1030        wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1031        local_irq_enable();
1032out_hit:
1033        perf_event_release_kernel(hit_event);
1034out_miss:
1035        perf_event_release_kernel(miss_event);
1036out:
1037        /*
1038         * All counts will be zero on failure.
1039         */
1040        counts->miss_before = miss_before;
1041        counts->hits_before = hits_before;
1042        counts->miss_after  = miss_after;
1043        counts->hits_after  = hits_after;
1044        return 0;
1045}
1046
1047static int measure_l2_residency(void *_plr)
1048{
1049        struct pseudo_lock_region *plr = _plr;
1050        struct residency_counts counts = {0};
1051
1052        /*
1053         * Non-architectural event for the Goldmont Microarchitecture
1054         * from Intel x86 Architecture Software Developer Manual (SDM):
1055         * MEM_LOAD_UOPS_RETIRED D1H (event number)
1056         * Umask values:
1057         *     L2_HIT   02H
1058         *     L2_MISS  10H
1059         */
1060        switch (boot_cpu_data.x86_model) {
1061        case INTEL_FAM6_ATOM_GOLDMONT:
1062        case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1063                perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1064                                                   .umask = 0x10);
1065                perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1066                                                  .umask = 0x2);
1067                break;
1068        default:
1069                goto out;
1070        }
1071
1072        measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1073        /*
1074         * If a failure prevented the measurements from succeeding
1075         * tracepoints will still be written and all counts will be zero.
1076         */
1077        trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1078                             counts.miss_after - counts.miss_before);
1079out:
1080        plr->thread_done = 1;
1081        wake_up_interruptible(&plr->lock_thread_wq);
1082        return 0;
1083}
1084
1085static int measure_l3_residency(void *_plr)
1086{
1087        struct pseudo_lock_region *plr = _plr;
1088        struct residency_counts counts = {0};
1089
1090        /*
1091         * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1092         * has two "no fix" errata associated with it: BDM35 and BDM100. On
1093         * this platform the following events are used instead:
1094         * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1095         *       REFERENCE 4FH
1096         *       MISS      41H
1097         */
1098
1099        switch (boot_cpu_data.x86_model) {
1100        case INTEL_FAM6_BROADWELL_X:
1101                /* On BDW the hit event counts references, not hits */
1102                perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1103                                                  .umask = 0x4f);
1104                perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1105                                                   .umask = 0x41);
1106                break;
1107        default:
1108                goto out;
1109        }
1110
1111        measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1112        /*
1113         * If a failure prevented the measurements from succeeding
1114         * tracepoints will still be written and all counts will be zero.
1115         */
1116
1117        counts.miss_after -= counts.miss_before;
1118        if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1119                /*
1120                 * On BDW references and misses are counted, need to adjust.
1121                 * Sometimes the "hits" counter is a bit more than the
1122                 * references, for example, x references but x + 1 hits.
1123                 * To not report invalid hit values in this case we treat
1124                 * that as misses equal to references.
1125                 */
1126                /* First compute the number of cache references measured */
1127                counts.hits_after -= counts.hits_before;
1128                /* Next convert references to cache hits */
1129                counts.hits_after -= min(counts.miss_after, counts.hits_after);
1130        } else {
1131                counts.hits_after -= counts.hits_before;
1132        }
1133
1134        trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1135out:
1136        plr->thread_done = 1;
1137        wake_up_interruptible(&plr->lock_thread_wq);
1138        return 0;
1139}
1140
1141/**
1142 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1143 *
1144 * The measurement of latency to access a pseudo-locked region should be
1145 * done from a cpu that is associated with that pseudo-locked region.
1146 * Determine which cpu is associated with this region and start a thread on
1147 * that cpu to perform the measurement, wait for that thread to complete.
1148 *
1149 * Return: 0 on success, <0 on failure
1150 */
1151static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1152{
1153        struct pseudo_lock_region *plr = rdtgrp->plr;
1154        struct task_struct *thread;
1155        unsigned int cpu;
1156        int ret = -1;
1157
1158        cpus_read_lock();
1159        mutex_lock(&rdtgroup_mutex);
1160
1161        if (rdtgrp->flags & RDT_DELETED) {
1162                ret = -ENODEV;
1163                goto out;
1164        }
1165
1166        if (!plr->d) {
1167                ret = -ENODEV;
1168                goto out;
1169        }
1170
1171        plr->thread_done = 0;
1172        cpu = cpumask_first(&plr->d->cpu_mask);
1173        if (!cpu_online(cpu)) {
1174                ret = -ENODEV;
1175                goto out;
1176        }
1177
1178        plr->cpu = cpu;
1179
1180        if (sel == 1)
1181                thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1182                                                cpu_to_node(cpu),
1183                                                "pseudo_lock_measure/%u",
1184                                                cpu);
1185        else if (sel == 2)
1186                thread = kthread_create_on_node(measure_l2_residency, plr,
1187                                                cpu_to_node(cpu),
1188                                                "pseudo_lock_measure/%u",
1189                                                cpu);
1190        else if (sel == 3)
1191                thread = kthread_create_on_node(measure_l3_residency, plr,
1192                                                cpu_to_node(cpu),
1193                                                "pseudo_lock_measure/%u",
1194                                                cpu);
1195        else
1196                goto out;
1197
1198        if (IS_ERR(thread)) {
1199                ret = PTR_ERR(thread);
1200                goto out;
1201        }
1202        kthread_bind(thread, cpu);
1203        wake_up_process(thread);
1204
1205        ret = wait_event_interruptible(plr->lock_thread_wq,
1206                                       plr->thread_done == 1);
1207        if (ret < 0)
1208                goto out;
1209
1210        ret = 0;
1211
1212out:
1213        mutex_unlock(&rdtgroup_mutex);
1214        cpus_read_unlock();
1215        return ret;
1216}
1217
1218static ssize_t pseudo_lock_measure_trigger(struct file *file,
1219                                           const char __user *user_buf,
1220                                           size_t count, loff_t *ppos)
1221{
1222        struct rdtgroup *rdtgrp = file->private_data;
1223        size_t buf_size;
1224        char buf[32];
1225        int ret;
1226        int sel;
1227
1228        buf_size = min(count, (sizeof(buf) - 1));
1229        if (copy_from_user(buf, user_buf, buf_size))
1230                return -EFAULT;
1231
1232        buf[buf_size] = '\0';
1233        ret = kstrtoint(buf, 10, &sel);
1234        if (ret == 0) {
1235                if (sel != 1 && sel != 2 && sel != 3)
1236                        return -EINVAL;
1237                ret = debugfs_file_get(file->f_path.dentry);
1238                if (ret)
1239                        return ret;
1240                ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1241                if (ret == 0)
1242                        ret = count;
1243                debugfs_file_put(file->f_path.dentry);
1244        }
1245
1246        return ret;
1247}
1248
1249static const struct file_operations pseudo_measure_fops = {
1250        .write = pseudo_lock_measure_trigger,
1251        .open = simple_open,
1252        .llseek = default_llseek,
1253};
1254
1255/**
1256 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1257 * @rdtgrp: resource group to which pseudo-lock region belongs
1258 *
1259 * Called when a resource group in the pseudo-locksetup mode receives a
1260 * valid schemata that should be pseudo-locked. Since the resource group is
1261 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1262 * allocated and initialized with the essential information. If a failure
1263 * occurs the resource group remains in the pseudo-locksetup mode with the
1264 * &struct pseudo_lock_region associated with it, but cleared from all
1265 * information and ready for the user to re-attempt pseudo-locking by
1266 * writing the schemata again.
1267 *
1268 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1269 * on failure. Descriptive error will be written to last_cmd_status buffer.
1270 */
1271int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1272{
1273        struct pseudo_lock_region *plr = rdtgrp->plr;
1274        struct task_struct *thread;
1275        unsigned int new_minor;
1276        struct device *dev;
1277        int ret;
1278
1279        ret = pseudo_lock_region_alloc(plr);
1280        if (ret < 0)
1281                return ret;
1282
1283        ret = pseudo_lock_cstates_constrain(plr);
1284        if (ret < 0) {
1285                ret = -EINVAL;
1286                goto out_region;
1287        }
1288
1289        plr->thread_done = 0;
1290
1291        thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1292                                        cpu_to_node(plr->cpu),
1293                                        "pseudo_lock/%u", plr->cpu);
1294        if (IS_ERR(thread)) {
1295                ret = PTR_ERR(thread);
1296                rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1297                goto out_cstates;
1298        }
1299
1300        kthread_bind(thread, plr->cpu);
1301        wake_up_process(thread);
1302
1303        ret = wait_event_interruptible(plr->lock_thread_wq,
1304                                       plr->thread_done == 1);
1305        if (ret < 0) {
1306                /*
1307                 * If the thread does not get on the CPU for whatever
1308                 * reason and the process which sets up the region is
1309                 * interrupted then this will leave the thread in runnable
1310                 * state and once it gets on the CPU it will derefence
1311                 * the cleared, but not freed, plr struct resulting in an
1312                 * empty pseudo-locking loop.
1313                 */
1314                rdt_last_cmd_puts("Locking thread interrupted\n");
1315                goto out_cstates;
1316        }
1317
1318        ret = pseudo_lock_minor_get(&new_minor);
1319        if (ret < 0) {
1320                rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1321                goto out_cstates;
1322        }
1323
1324        /*
1325         * Unlock access but do not release the reference. The
1326         * pseudo-locked region will still be here on return.
1327         *
1328         * The mutex has to be released temporarily to avoid a potential
1329         * deadlock with the mm->mmap_lock which is obtained in the
1330         * device_create() and debugfs_create_dir() callpath below as well as
1331         * before the mmap() callback is called.
1332         */
1333        mutex_unlock(&rdtgroup_mutex);
1334
1335        if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1336                plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1337                                                      debugfs_resctrl);
1338                if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1339                        debugfs_create_file("pseudo_lock_measure", 0200,
1340                                            plr->debugfs_dir, rdtgrp,
1341                                            &pseudo_measure_fops);
1342        }
1343
1344        dev = device_create(pseudo_lock_class, NULL,
1345                            MKDEV(pseudo_lock_major, new_minor),
1346                            rdtgrp, "%s", rdtgrp->kn->name);
1347
1348        mutex_lock(&rdtgroup_mutex);
1349
1350        if (IS_ERR(dev)) {
1351                ret = PTR_ERR(dev);
1352                rdt_last_cmd_printf("Failed to create character device: %d\n",
1353                                    ret);
1354                goto out_debugfs;
1355        }
1356
1357        /* We released the mutex - check if group was removed while we did so */
1358        if (rdtgrp->flags & RDT_DELETED) {
1359                ret = -ENODEV;
1360                goto out_device;
1361        }
1362
1363        plr->minor = new_minor;
1364
1365        rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1366        closid_free(rdtgrp->closid);
1367        rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1368        rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1369
1370        ret = 0;
1371        goto out;
1372
1373out_device:
1374        device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1375out_debugfs:
1376        debugfs_remove_recursive(plr->debugfs_dir);
1377        pseudo_lock_minor_release(new_minor);
1378out_cstates:
1379        pseudo_lock_cstates_relax(plr);
1380out_region:
1381        pseudo_lock_region_clear(plr);
1382out:
1383        return ret;
1384}
1385
1386/**
1387 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1388 * @rdtgrp: resource group to which the pseudo-locked region belongs
1389 *
1390 * The removal of a pseudo-locked region can be initiated when the resource
1391 * group is removed from user space via a "rmdir" from userspace or the
1392 * unmount of the resctrl filesystem. On removal the resource group does
1393 * not go back to pseudo-locksetup mode before it is removed, instead it is
1394 * removed directly. There is thus assymmetry with the creation where the
1395 * &struct pseudo_lock_region is removed here while it was not created in
1396 * rdtgroup_pseudo_lock_create().
1397 *
1398 * Return: void
1399 */
1400void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1401{
1402        struct pseudo_lock_region *plr = rdtgrp->plr;
1403
1404        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1405                /*
1406                 * Default group cannot be a pseudo-locked region so we can
1407                 * free closid here.
1408                 */
1409                closid_free(rdtgrp->closid);
1410                goto free;
1411        }
1412
1413        pseudo_lock_cstates_relax(plr);
1414        debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1415        device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1416        pseudo_lock_minor_release(plr->minor);
1417
1418free:
1419        pseudo_lock_free(rdtgrp);
1420}
1421
1422static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1423{
1424        struct rdtgroup *rdtgrp;
1425
1426        mutex_lock(&rdtgroup_mutex);
1427
1428        rdtgrp = region_find_by_minor(iminor(inode));
1429        if (!rdtgrp) {
1430                mutex_unlock(&rdtgroup_mutex);
1431                return -ENODEV;
1432        }
1433
1434        filp->private_data = rdtgrp;
1435        atomic_inc(&rdtgrp->waitcount);
1436        /* Perform a non-seekable open - llseek is not supported */
1437        filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1438
1439        mutex_unlock(&rdtgroup_mutex);
1440
1441        return 0;
1442}
1443
1444static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1445{
1446        struct rdtgroup *rdtgrp;
1447
1448        mutex_lock(&rdtgroup_mutex);
1449        rdtgrp = filp->private_data;
1450        WARN_ON(!rdtgrp);
1451        if (!rdtgrp) {
1452                mutex_unlock(&rdtgroup_mutex);
1453                return -ENODEV;
1454        }
1455        filp->private_data = NULL;
1456        atomic_dec(&rdtgrp->waitcount);
1457        mutex_unlock(&rdtgroup_mutex);
1458        return 0;
1459}
1460
1461static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1462{
1463        /* Not supported */
1464        return -EINVAL;
1465}
1466
1467static const struct vm_operations_struct pseudo_mmap_ops = {
1468        .mremap = pseudo_lock_dev_mremap,
1469};
1470
1471static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1472{
1473        unsigned long vsize = vma->vm_end - vma->vm_start;
1474        unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1475        struct pseudo_lock_region *plr;
1476        struct rdtgroup *rdtgrp;
1477        unsigned long physical;
1478        unsigned long psize;
1479
1480        mutex_lock(&rdtgroup_mutex);
1481
1482        rdtgrp = filp->private_data;
1483        WARN_ON(!rdtgrp);
1484        if (!rdtgrp) {
1485                mutex_unlock(&rdtgroup_mutex);
1486                return -ENODEV;
1487        }
1488
1489        plr = rdtgrp->plr;
1490
1491        if (!plr->d) {
1492                mutex_unlock(&rdtgroup_mutex);
1493                return -ENODEV;
1494        }
1495
1496        /*
1497         * Task is required to run with affinity to the cpus associated
1498         * with the pseudo-locked region. If this is not the case the task
1499         * may be scheduled elsewhere and invalidate entries in the
1500         * pseudo-locked region.
1501         */
1502        if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1503                mutex_unlock(&rdtgroup_mutex);
1504                return -EINVAL;
1505        }
1506
1507        physical = __pa(plr->kmem) >> PAGE_SHIFT;
1508        psize = plr->size - off;
1509
1510        if (off > plr->size) {
1511                mutex_unlock(&rdtgroup_mutex);
1512                return -ENOSPC;
1513        }
1514
1515        /*
1516         * Ensure changes are carried directly to the memory being mapped,
1517         * do not allow copy-on-write mapping.
1518         */
1519        if (!(vma->vm_flags & VM_SHARED)) {
1520                mutex_unlock(&rdtgroup_mutex);
1521                return -EINVAL;
1522        }
1523
1524        if (vsize > psize) {
1525                mutex_unlock(&rdtgroup_mutex);
1526                return -ENOSPC;
1527        }
1528
1529        memset(plr->kmem + off, 0, vsize);
1530
1531        if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1532                            vsize, vma->vm_page_prot)) {
1533                mutex_unlock(&rdtgroup_mutex);
1534                return -EAGAIN;
1535        }
1536        vma->vm_ops = &pseudo_mmap_ops;
1537        mutex_unlock(&rdtgroup_mutex);
1538        return 0;
1539}
1540
1541static const struct file_operations pseudo_lock_dev_fops = {
1542        .owner =        THIS_MODULE,
1543        .llseek =       no_llseek,
1544        .read =         NULL,
1545        .write =        NULL,
1546        .open =         pseudo_lock_dev_open,
1547        .release =      pseudo_lock_dev_release,
1548        .mmap =         pseudo_lock_dev_mmap,
1549};
1550
1551static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1552{
1553        struct rdtgroup *rdtgrp;
1554
1555        rdtgrp = dev_get_drvdata(dev);
1556        if (mode)
1557                *mode = 0600;
1558        return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1559}
1560
1561int rdt_pseudo_lock_init(void)
1562{
1563        int ret;
1564
1565        ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1566        if (ret < 0)
1567                return ret;
1568
1569        pseudo_lock_major = ret;
1570
1571        pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1572        if (IS_ERR(pseudo_lock_class)) {
1573                ret = PTR_ERR(pseudo_lock_class);
1574                unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1575                return ret;
1576        }
1577
1578        pseudo_lock_class->devnode = pseudo_lock_devnode;
1579        return 0;
1580}
1581
1582void rdt_pseudo_lock_release(void)
1583{
1584        class_destroy(pseudo_lock_class);
1585        pseudo_lock_class = NULL;
1586        unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587        pseudo_lock_major = 0;
1588}
1589