1/* 2 * Header file for the BFQ I/O scheduler: data structures and 3 * prototypes of interface functions among BFQ components. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation; either version 2 of the 8 * License, or (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * General Public License for more details. 14 */ 15#ifndef _BFQ_H 16#define _BFQ_H 17 18#include <linux/blktrace_api.h> 19#include <linux/hrtimer.h> 20#include <linux/blk-cgroup.h> 21 22#include "blk-cgroup-rwstat.h" 23 24#define BFQ_IOPRIO_CLASSES 3 25#define BFQ_CL_IDLE_TIMEOUT (HZ/5) 26 27#define BFQ_MIN_WEIGHT 1 28#define BFQ_MAX_WEIGHT 1000 29#define BFQ_WEIGHT_CONVERSION_COEFF 10 30 31#define BFQ_DEFAULT_QUEUE_IOPRIO 4 32 33#define BFQ_WEIGHT_LEGACY_DFL 100 34#define BFQ_DEFAULT_GRP_IOPRIO 0 35#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE 36 37#define MAX_PID_STR_LENGTH 12 38 39/* 40 * Soft real-time applications are extremely more latency sensitive 41 * than interactive ones. Over-raise the weight of the former to 42 * privilege them against the latter. 43 */ 44#define BFQ_SOFTRT_WEIGHT_FACTOR 100 45 46struct bfq_entity; 47 48/** 49 * struct bfq_service_tree - per ioprio_class service tree. 50 * 51 * Each service tree represents a B-WF2Q+ scheduler on its own. Each 52 * ioprio_class has its own independent scheduler, and so its own 53 * bfq_service_tree. All the fields are protected by the queue lock 54 * of the containing bfqd. 55 */ 56struct bfq_service_tree { 57 /* tree for active entities (i.e., those backlogged) */ 58 struct rb_root active; 59 /* tree for idle entities (i.e., not backlogged, with V < F_i)*/ 60 struct rb_root idle; 61 62 /* idle entity with minimum F_i */ 63 struct bfq_entity *first_idle; 64 /* idle entity with maximum F_i */ 65 struct bfq_entity *last_idle; 66 67 /* scheduler virtual time */ 68 u64 vtime; 69 /* scheduler weight sum; active and idle entities contribute to it */ 70 unsigned long wsum; 71}; 72 73/** 74 * struct bfq_sched_data - multi-class scheduler. 75 * 76 * bfq_sched_data is the basic scheduler queue. It supports three 77 * ioprio_classes, and can be used either as a toplevel queue or as an 78 * intermediate queue in a hierarchical setup. 79 * 80 * The supported ioprio_classes are the same as in CFQ, in descending 81 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. 82 * Requests from higher priority queues are served before all the 83 * requests from lower priority queues; among requests of the same 84 * queue requests are served according to B-WF2Q+. 85 * 86 * The schedule is implemented by the service trees, plus the field 87 * @next_in_service, which points to the entity on the active trees 88 * that will be served next, if 1) no changes in the schedule occurs 89 * before the current in-service entity is expired, 2) the in-service 90 * queue becomes idle when it expires, and 3) if the entity pointed by 91 * in_service_entity is not a queue, then the in-service child entity 92 * of the entity pointed by in_service_entity becomes idle on 93 * expiration. This peculiar definition allows for the following 94 * optimization, not yet exploited: while a given entity is still in 95 * service, we already know which is the best candidate for next 96 * service among the other active entitities in the same parent 97 * entity. We can then quickly compare the timestamps of the 98 * in-service entity with those of such best candidate. 99 * 100 * All fields are protected by the lock of the containing bfqd. 101 */ 102struct bfq_sched_data { 103 /* entity in service */ 104 struct bfq_entity *in_service_entity; 105 /* head-of-line entity (see comments above) */ 106 struct bfq_entity *next_in_service; 107 /* array of service trees, one per ioprio_class */ 108 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; 109 /* last time CLASS_IDLE was served */ 110 unsigned long bfq_class_idle_last_service; 111 112}; 113 114/** 115 * struct bfq_weight_counter - counter of the number of all active queues 116 * with a given weight. 117 */ 118struct bfq_weight_counter { 119 unsigned int weight; /* weight of the queues this counter refers to */ 120 unsigned int num_active; /* nr of active queues with this weight */ 121 /* 122 * Weights tree member (see bfq_data's @queue_weights_tree) 123 */ 124 struct rb_node weights_node; 125}; 126 127/** 128 * struct bfq_entity - schedulable entity. 129 * 130 * A bfq_entity is used to represent either a bfq_queue (leaf node in the 131 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each 132 * entity belongs to the sched_data of the parent group in the cgroup 133 * hierarchy. Non-leaf entities have also their own sched_data, stored 134 * in @my_sched_data. 135 * 136 * Each entity stores independently its priority values; this would 137 * allow different weights on different devices, but this 138 * functionality is not exported to userspace by now. Priorities and 139 * weights are updated lazily, first storing the new values into the 140 * new_* fields, then setting the @prio_changed flag. As soon as 141 * there is a transition in the entity state that allows the priority 142 * update to take place the effective and the requested priority 143 * values are synchronized. 144 * 145 * Unless cgroups are used, the weight value is calculated from the 146 * ioprio to export the same interface as CFQ. When dealing with 147 * ``well-behaved'' queues (i.e., queues that do not spend too much 148 * time to consume their budget and have true sequential behavior, and 149 * when there are no external factors breaking anticipation) the 150 * relative weights at each level of the cgroups hierarchy should be 151 * guaranteed. All the fields are protected by the queue lock of the 152 * containing bfqd. 153 */ 154struct bfq_entity { 155 /* service_tree member */ 156 struct rb_node rb_node; 157 158 /* 159 * Flag, true if the entity is on a tree (either the active or 160 * the idle one of its service_tree) or is in service. 161 */ 162 bool on_st_or_in_serv; 163 164 /* B-WF2Q+ start and finish timestamps [sectors/weight] */ 165 u64 start, finish; 166 167 /* tree the entity is enqueued into; %NULL if not on a tree */ 168 struct rb_root *tree; 169 170 /* 171 * minimum start time of the (active) subtree rooted at this 172 * entity; used for O(log N) lookups into active trees 173 */ 174 u64 min_start; 175 176 /* amount of service received during the last service slot */ 177 int service; 178 179 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ 180 int budget; 181 182 /* device weight, if non-zero, it overrides the default weight of 183 * bfq_group_data */ 184 int dev_weight; 185 /* weight of the queue */ 186 int weight; 187 /* next weight if a change is in progress */ 188 int new_weight; 189 190 /* original weight, used to implement weight boosting */ 191 int orig_weight; 192 193 /* parent entity, for hierarchical scheduling */ 194 struct bfq_entity *parent; 195 196 /* 197 * For non-leaf nodes in the hierarchy, the associated 198 * scheduler queue, %NULL on leaf nodes. 199 */ 200 struct bfq_sched_data *my_sched_data; 201 /* the scheduler queue this entity belongs to */ 202 struct bfq_sched_data *sched_data; 203 204 /* flag, set to request a weight, ioprio or ioprio_class change */ 205 int prio_changed; 206 207 /* flag, set if the entity is counted in groups_with_pending_reqs */ 208 bool in_groups_with_pending_reqs; 209 210 /* last child queue of entity created (for non-leaf entities) */ 211 struct bfq_queue *last_bfqq_created; 212}; 213 214struct bfq_group; 215 216/** 217 * struct bfq_ttime - per process thinktime stats. 218 */ 219struct bfq_ttime { 220 /* completion time of the last request */ 221 u64 last_end_request; 222 223 /* total process thinktime */ 224 u64 ttime_total; 225 /* number of thinktime samples */ 226 unsigned long ttime_samples; 227 /* average process thinktime */ 228 u64 ttime_mean; 229}; 230 231/** 232 * struct bfq_queue - leaf schedulable entity. 233 * 234 * A bfq_queue is a leaf request queue; it can be associated with an 235 * io_context or more, if it is async or shared between cooperating 236 * processes. @cgroup holds a reference to the cgroup, to be sure that it 237 * does not disappear while a bfqq still references it (mostly to avoid 238 * races between request issuing and task migration followed by cgroup 239 * destruction). 240 * All the fields are protected by the queue lock of the containing bfqd. 241 */ 242struct bfq_queue { 243 /* reference counter */ 244 int ref; 245 /* counter of references from other queues for delayed stable merge */ 246 int stable_ref; 247 /* parent bfq_data */ 248 struct bfq_data *bfqd; 249 250 /* current ioprio and ioprio class */ 251 unsigned short ioprio, ioprio_class; 252 /* next ioprio and ioprio class if a change is in progress */ 253 unsigned short new_ioprio, new_ioprio_class; 254 255 /* last total-service-time sample, see bfq_update_inject_limit() */ 256 u64 last_serv_time_ns; 257 /* limit for request injection */ 258 unsigned int inject_limit; 259 /* last time the inject limit has been decreased, in jiffies */ 260 unsigned long decrease_time_jif; 261 262 /* 263 * Shared bfq_queue if queue is cooperating with one or more 264 * other queues. 265 */ 266 struct bfq_queue *new_bfqq; 267 /* request-position tree member (see bfq_group's @rq_pos_tree) */ 268 struct rb_node pos_node; 269 /* request-position tree root (see bfq_group's @rq_pos_tree) */ 270 struct rb_root *pos_root; 271 272 /* sorted list of pending requests */ 273 struct rb_root sort_list; 274 /* if fifo isn't expired, next request to serve */ 275 struct request *next_rq; 276 /* number of sync and async requests queued */ 277 int queued[2]; 278 /* number of requests currently allocated */ 279 int allocated; 280 /* number of pending metadata requests */ 281 int meta_pending; 282 /* fifo list of requests in sort_list */ 283 struct list_head fifo; 284 285 /* entity representing this queue in the scheduler */ 286 struct bfq_entity entity; 287 288 /* pointer to the weight counter associated with this entity */ 289 struct bfq_weight_counter *weight_counter; 290 291 /* maximum budget allowed from the feedback mechanism */ 292 int max_budget; 293 /* budget expiration (in jiffies) */ 294 unsigned long budget_timeout; 295 296 /* number of requests on the dispatch list or inside driver */ 297 int dispatched; 298 299 /* status flags */ 300 unsigned long flags; 301 302 /* node for active/idle bfqq list inside parent bfqd */ 303 struct list_head bfqq_list; 304 305 /* associated @bfq_ttime struct */ 306 struct bfq_ttime ttime; 307 308 /* when bfqq started to do I/O within the last observation window */ 309 u64 io_start_time; 310 /* how long bfqq has remained empty during the last observ. window */ 311 u64 tot_idle_time; 312 313 /* bit vector: a 1 for each seeky requests in history */ 314 u32 seek_history; 315 316 /* node for the device's burst list */ 317 struct hlist_node burst_list_node; 318 319 /* position of the last request enqueued */ 320 sector_t last_request_pos; 321 322 /* Number of consecutive pairs of request completion and 323 * arrival, such that the queue becomes idle after the 324 * completion, but the next request arrives within an idle 325 * time slice; used only if the queue's IO_bound flag has been 326 * cleared. 327 */ 328 unsigned int requests_within_timer; 329 330 /* pid of the process owning the queue, used for logging purposes */ 331 pid_t pid; 332 333 /* 334 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL 335 * if the queue is shared. 336 */ 337 struct bfq_io_cq *bic; 338 339 /* current maximum weight-raising time for this queue */ 340 unsigned long wr_cur_max_time; 341 /* 342 * Minimum time instant such that, only if a new request is 343 * enqueued after this time instant in an idle @bfq_queue with 344 * no outstanding requests, then the task associated with the 345 * queue it is deemed as soft real-time (see the comments on 346 * the function bfq_bfqq_softrt_next_start()) 347 */ 348 unsigned long soft_rt_next_start; 349 /* 350 * Start time of the current weight-raising period if 351 * the @bfq-queue is being weight-raised, otherwise 352 * finish time of the last weight-raising period. 353 */ 354 unsigned long last_wr_start_finish; 355 /* factor by which the weight of this queue is multiplied */ 356 unsigned int wr_coeff; 357 /* 358 * Time of the last transition of the @bfq_queue from idle to 359 * backlogged. 360 */ 361 unsigned long last_idle_bklogged; 362 /* 363 * Cumulative service received from the @bfq_queue since the 364 * last transition from idle to backlogged. 365 */ 366 unsigned long service_from_backlogged; 367 /* 368 * Cumulative service received from the @bfq_queue since its 369 * last transition to weight-raised state. 370 */ 371 unsigned long service_from_wr; 372 373 /* 374 * Value of wr start time when switching to soft rt 375 */ 376 unsigned long wr_start_at_switch_to_srt; 377 378 unsigned long split_time; /* time of last split */ 379 380 unsigned long first_IO_time; /* time of first I/O for this queue */ 381 382 unsigned long creation_time; /* when this queue is created */ 383 384 /* max service rate measured so far */ 385 u32 max_service_rate; 386 387 /* 388 * Pointer to the waker queue for this queue, i.e., to the 389 * queue Q such that this queue happens to get new I/O right 390 * after some I/O request of Q is completed. For details, see 391 * the comments on the choice of the queue for injection in 392 * bfq_select_queue(). 393 */ 394 struct bfq_queue *waker_bfqq; 395 /* pointer to the curr. tentative waker queue, see bfq_check_waker() */ 396 struct bfq_queue *tentative_waker_bfqq; 397 /* number of times the same tentative waker has been detected */ 398 unsigned int num_waker_detections; 399 400 /* node for woken_list, see below */ 401 struct hlist_node woken_list_node; 402 /* 403 * Head of the list of the woken queues for this queue, i.e., 404 * of the list of the queues for which this queue is a waker 405 * queue. This list is used to reset the waker_bfqq pointer in 406 * the woken queues when this queue exits. 407 */ 408 struct hlist_head woken_list; 409}; 410 411/** 412 * struct bfq_io_cq - per (request_queue, io_context) structure. 413 */ 414struct bfq_io_cq { 415 /* associated io_cq structure */ 416 struct io_cq icq; /* must be the first member */ 417 /* array of two process queues, the sync and the async */ 418 struct bfq_queue *bfqq[2]; 419 /* per (request_queue, blkcg) ioprio */ 420 int ioprio; 421#ifdef CONFIG_BFQ_GROUP_IOSCHED 422 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 423#endif 424 /* 425 * Snapshot of the has_short_time flag before merging; taken 426 * to remember its value while the queue is merged, so as to 427 * be able to restore it in case of split. 428 */ 429 bool saved_has_short_ttime; 430 /* 431 * Same purpose as the previous two fields for the I/O bound 432 * classification of a queue. 433 */ 434 bool saved_IO_bound; 435 436 u64 saved_io_start_time; 437 u64 saved_tot_idle_time; 438 439 /* 440 * Same purpose as the previous fields for the value of the 441 * field keeping the queue's belonging to a large burst 442 */ 443 bool saved_in_large_burst; 444 /* 445 * True if the queue belonged to a burst list before its merge 446 * with another cooperating queue. 447 */ 448 bool was_in_burst_list; 449 450 /* 451 * Save the weight when a merge occurs, to be able 452 * to restore it in case of split. If the weight is not 453 * correctly resumed when the queue is recycled, 454 * then the weight of the recycled queue could differ 455 * from the weight of the original queue. 456 */ 457 unsigned int saved_weight; 458 459 /* 460 * Similar to previous fields: save wr information. 461 */ 462 unsigned long saved_wr_coeff; 463 unsigned long saved_last_wr_start_finish; 464 unsigned long saved_service_from_wr; 465 unsigned long saved_wr_start_at_switch_to_srt; 466 unsigned int saved_wr_cur_max_time; 467 struct bfq_ttime saved_ttime; 468 469 /* Save also injection state */ 470 u64 saved_last_serv_time_ns; 471 unsigned int saved_inject_limit; 472 unsigned long saved_decrease_time_jif; 473 474 /* candidate queue for a stable merge (due to close creation time) */ 475 struct bfq_queue *stable_merge_bfqq; 476 477 bool stably_merged; /* non splittable if true */ 478}; 479 480/** 481 * struct bfq_data - per-device data structure. 482 * 483 * All the fields are protected by @lock. 484 */ 485struct bfq_data { 486 /* device request queue */ 487 struct request_queue *queue; 488 /* dispatch queue */ 489 struct list_head dispatch; 490 491 /* root bfq_group for the device */ 492 struct bfq_group *root_group; 493 494 /* 495 * rbtree of weight counters of @bfq_queues, sorted by 496 * weight. Used to keep track of whether all @bfq_queues have 497 * the same weight. The tree contains one counter for each 498 * distinct weight associated to some active and not 499 * weight-raised @bfq_queue (see the comments to the functions 500 * bfq_weights_tree_[add|remove] for further details). 501 */ 502 struct rb_root_cached queue_weights_tree; 503 504 /* 505 * Number of groups with at least one descendant process that 506 * has at least one request waiting for completion. Note that 507 * this accounts for also requests already dispatched, but not 508 * yet completed. Therefore this number of groups may differ 509 * (be larger) than the number of active groups, as a group is 510 * considered active only if its corresponding entity has 511 * descendant queues with at least one request queued. This 512 * number is used to decide whether a scenario is symmetric. 513 * For a detailed explanation see comments on the computation 514 * of the variable asymmetric_scenario in the function 515 * bfq_better_to_idle(). 516 * 517 * However, it is hard to compute this number exactly, for 518 * groups with multiple descendant processes. Consider a group 519 * that is inactive, i.e., that has no descendant process with 520 * pending I/O inside BFQ queues. Then suppose that 521 * num_groups_with_pending_reqs is still accounting for this 522 * group, because the group has descendant processes with some 523 * I/O request still in flight. num_groups_with_pending_reqs 524 * should be decremented when the in-flight request of the 525 * last descendant process is finally completed (assuming that 526 * nothing else has changed for the group in the meantime, in 527 * terms of composition of the group and active/inactive state of child 528 * groups and processes). To accomplish this, an additional 529 * pending-request counter must be added to entities, and must 530 * be updated correctly. To avoid this additional field and operations, 531 * we resort to the following tradeoff between simplicity and 532 * accuracy: for an inactive group that is still counted in 533 * num_groups_with_pending_reqs, we decrement 534 * num_groups_with_pending_reqs when the first descendant 535 * process of the group remains with no request waiting for 536 * completion. 537 * 538 * Even this simpler decrement strategy requires a little 539 * carefulness: to avoid multiple decrements, we flag a group, 540 * more precisely an entity representing a group, as still 541 * counted in num_groups_with_pending_reqs when it becomes 542 * inactive. Then, when the first descendant queue of the 543 * entity remains with no request waiting for completion, 544 * num_groups_with_pending_reqs is decremented, and this flag 545 * is reset. After this flag is reset for the entity, 546 * num_groups_with_pending_reqs won't be decremented any 547 * longer in case a new descendant queue of the entity remains 548 * with no request waiting for completion. 549 */ 550 unsigned int num_groups_with_pending_reqs; 551 552 /* 553 * Per-class (RT, BE, IDLE) number of bfq_queues containing 554 * requests (including the queue in service, even if it is 555 * idling). 556 */ 557 unsigned int busy_queues[3]; 558 /* number of weight-raised busy @bfq_queues */ 559 int wr_busy_queues; 560 /* number of queued requests */ 561 int queued; 562 /* number of requests dispatched and waiting for completion */ 563 int rq_in_driver; 564 565 /* true if the device is non rotational and performs queueing */ 566 bool nonrot_with_queueing; 567 568 /* 569 * Maximum number of requests in driver in the last 570 * @hw_tag_samples completed requests. 571 */ 572 int max_rq_in_driver; 573 /* number of samples used to calculate hw_tag */ 574 int hw_tag_samples; 575 /* flag set to one if the driver is showing a queueing behavior */ 576 int hw_tag; 577 578 /* number of budgets assigned */ 579 int budgets_assigned; 580 581 /* 582 * Timer set when idling (waiting) for the next request from 583 * the queue in service. 584 */ 585 struct hrtimer idle_slice_timer; 586 587 /* bfq_queue in service */ 588 struct bfq_queue *in_service_queue; 589 590 /* on-disk position of the last served request */ 591 sector_t last_position; 592 593 /* position of the last served request for the in-service queue */ 594 sector_t in_serv_last_pos; 595 596 /* time of last request completion (ns) */ 597 u64 last_completion; 598 599 /* bfqq owning the last completed rq */ 600 struct bfq_queue *last_completed_rq_bfqq; 601 602 /* last bfqq created, among those in the root group */ 603 struct bfq_queue *last_bfqq_created; 604 605 /* time of last transition from empty to non-empty (ns) */ 606 u64 last_empty_occupied_ns; 607 608 /* 609 * Flag set to activate the sampling of the total service time 610 * of a just-arrived first I/O request (see 611 * bfq_update_inject_limit()). This will cause the setting of 612 * waited_rq when the request is finally dispatched. 613 */ 614 bool wait_dispatch; 615 /* 616 * If set, then bfq_update_inject_limit() is invoked when 617 * waited_rq is eventually completed. 618 */ 619 struct request *waited_rq; 620 /* 621 * True if some request has been injected during the last service hole. 622 */ 623 bool rqs_injected; 624 625 /* time of first rq dispatch in current observation interval (ns) */ 626 u64 first_dispatch; 627 /* time of last rq dispatch in current observation interval (ns) */ 628 u64 last_dispatch; 629 630 /* beginning of the last budget */ 631 ktime_t last_budget_start; 632 /* beginning of the last idle slice */ 633 ktime_t last_idling_start; 634 unsigned long last_idling_start_jiffies; 635 636 /* number of samples in current observation interval */ 637 int peak_rate_samples; 638 /* num of samples of seq dispatches in current observation interval */ 639 u32 sequential_samples; 640 /* total num of sectors transferred in current observation interval */ 641 u64 tot_sectors_dispatched; 642 /* max rq size seen during current observation interval (sectors) */ 643 u32 last_rq_max_size; 644 /* time elapsed from first dispatch in current observ. interval (us) */ 645 u64 delta_from_first; 646 /* 647 * Current estimate of the device peak rate, measured in 648 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by 649 * BFQ_RATE_SHIFT is performed to increase precision in 650 * fixed-point calculations. 651 */ 652 u32 peak_rate; 653 654 /* maximum budget allotted to a bfq_queue before rescheduling */ 655 int bfq_max_budget; 656 657 /* list of all the bfq_queues active on the device */ 658 struct list_head active_list; 659 /* list of all the bfq_queues idle on the device */ 660 struct list_head idle_list; 661 662 /* 663 * Timeout for async/sync requests; when it fires, requests 664 * are served in fifo order. 665 */ 666 u64 bfq_fifo_expire[2]; 667 /* weight of backward seeks wrt forward ones */ 668 unsigned int bfq_back_penalty; 669 /* maximum allowed backward seek */ 670 unsigned int bfq_back_max; 671 /* maximum idling time */ 672 u32 bfq_slice_idle; 673 674 /* user-configured max budget value (0 for auto-tuning) */ 675 int bfq_user_max_budget; 676 /* 677 * Timeout for bfq_queues to consume their budget; used to 678 * prevent seeky queues from imposing long latencies to 679 * sequential or quasi-sequential ones (this also implies that 680 * seeky queues cannot receive guarantees in the service 681 * domain; after a timeout they are charged for the time they 682 * have been in service, to preserve fairness among them, but 683 * without service-domain guarantees). 684 */ 685 unsigned int bfq_timeout; 686 687 /* 688 * Force device idling whenever needed to provide accurate 689 * service guarantees, without caring about throughput 690 * issues. CAVEAT: this may even increase latencies, in case 691 * of useless idling for processes that did stop doing I/O. 692 */ 693 bool strict_guarantees; 694 695 /* 696 * Last time at which a queue entered the current burst of 697 * queues being activated shortly after each other; for more 698 * details about this and the following parameters related to 699 * a burst of activations, see the comments on the function 700 * bfq_handle_burst. 701 */ 702 unsigned long last_ins_in_burst; 703 /* 704 * Reference time interval used to decide whether a queue has 705 * been activated shortly after @last_ins_in_burst. 706 */ 707 unsigned long bfq_burst_interval; 708 /* number of queues in the current burst of queue activations */ 709 int burst_size; 710 711 /* common parent entity for the queues in the burst */ 712 struct bfq_entity *burst_parent_entity; 713 /* Maximum burst size above which the current queue-activation 714 * burst is deemed as 'large'. 715 */ 716 unsigned long bfq_large_burst_thresh; 717 /* true if a large queue-activation burst is in progress */ 718 bool large_burst; 719 /* 720 * Head of the burst list (as for the above fields, more 721 * details in the comments on the function bfq_handle_burst). 722 */ 723 struct hlist_head burst_list; 724 725 /* if set to true, low-latency heuristics are enabled */ 726 bool low_latency; 727 /* 728 * Maximum factor by which the weight of a weight-raised queue 729 * is multiplied. 730 */ 731 unsigned int bfq_wr_coeff; 732 /* maximum duration of a weight-raising period (jiffies) */ 733 unsigned int bfq_wr_max_time; 734 735 /* Maximum weight-raising duration for soft real-time processes */ 736 unsigned int bfq_wr_rt_max_time; 737 /* 738 * Minimum idle period after which weight-raising may be 739 * reactivated for a queue (in jiffies). 740 */ 741 unsigned int bfq_wr_min_idle_time; 742 /* 743 * Minimum period between request arrivals after which 744 * weight-raising may be reactivated for an already busy async 745 * queue (in jiffies). 746 */ 747 unsigned long bfq_wr_min_inter_arr_async; 748 749 /* Max service-rate for a soft real-time queue, in sectors/sec */ 750 unsigned int bfq_wr_max_softrt_rate; 751 /* 752 * Cached value of the product ref_rate*ref_wr_duration, used 753 * for computing the maximum duration of weight raising 754 * automatically. 755 */ 756 u64 rate_dur_prod; 757 758 /* fallback dummy bfqq for extreme OOM conditions */ 759 struct bfq_queue oom_bfqq; 760 761 spinlock_t lock; 762 763 /* 764 * bic associated with the task issuing current bio for 765 * merging. This and the next field are used as a support to 766 * be able to perform the bic lookup, needed by bio-merge 767 * functions, before the scheduler lock is taken, and thus 768 * avoid taking the request-queue lock while the scheduler 769 * lock is being held. 770 */ 771 struct bfq_io_cq *bio_bic; 772 /* bfqq associated with the task issuing current bio for merging */ 773 struct bfq_queue *bio_bfqq; 774 775 /* 776 * Depth limits used in bfq_limit_depth (see comments on the 777 * function) 778 */ 779 unsigned int word_depths[2][2]; 780}; 781 782enum bfqq_state_flags { 783 BFQQF_just_created = 0, /* queue just allocated */ 784 BFQQF_busy, /* has requests or is in service */ 785 BFQQF_wait_request, /* waiting for a request */ 786 BFQQF_non_blocking_wait_rq, /* 787 * waiting for a request 788 * without idling the device 789 */ 790 BFQQF_fifo_expire, /* FIFO checked in this slice */ 791 BFQQF_has_short_ttime, /* queue has a short think time */ 792 BFQQF_sync, /* synchronous queue */ 793 BFQQF_IO_bound, /* 794 * bfqq has timed-out at least once 795 * having consumed at most 2/10 of 796 * its budget 797 */ 798 BFQQF_in_large_burst, /* 799 * bfqq activated in a large burst, 800 * see comments to bfq_handle_burst. 801 */ 802 BFQQF_softrt_update, /* 803 * may need softrt-next-start 804 * update 805 */ 806 BFQQF_coop, /* bfqq is shared */ 807 BFQQF_split_coop, /* shared bfqq will be split */ 808}; 809 810#define BFQ_BFQQ_FNS(name) \ 811void bfq_mark_bfqq_##name(struct bfq_queue *bfqq); \ 812void bfq_clear_bfqq_##name(struct bfq_queue *bfqq); \ 813int bfq_bfqq_##name(const struct bfq_queue *bfqq); 814 815BFQ_BFQQ_FNS(just_created); 816BFQ_BFQQ_FNS(busy); 817BFQ_BFQQ_FNS(wait_request); 818BFQ_BFQQ_FNS(non_blocking_wait_rq); 819BFQ_BFQQ_FNS(fifo_expire); 820BFQ_BFQQ_FNS(has_short_ttime); 821BFQ_BFQQ_FNS(sync); 822BFQ_BFQQ_FNS(IO_bound); 823BFQ_BFQQ_FNS(in_large_burst); 824BFQ_BFQQ_FNS(coop); 825BFQ_BFQQ_FNS(split_coop); 826BFQ_BFQQ_FNS(softrt_update); 827#undef BFQ_BFQQ_FNS 828 829/* Expiration reasons. */ 830enum bfqq_expiration { 831 BFQQE_TOO_IDLE = 0, /* 832 * queue has been idling for 833 * too long 834 */ 835 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ 836 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ 837 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ 838 BFQQE_PREEMPTED /* preemption in progress */ 839}; 840 841struct bfq_stat { 842 struct percpu_counter cpu_cnt; 843 atomic64_t aux_cnt; 844}; 845 846struct bfqg_stats { 847 /* basic stats */ 848 struct blkg_rwstat bytes; 849 struct blkg_rwstat ios; 850#ifdef CONFIG_BFQ_CGROUP_DEBUG 851 /* number of ios merged */ 852 struct blkg_rwstat merged; 853 /* total time spent on device in ns, may not be accurate w/ queueing */ 854 struct blkg_rwstat service_time; 855 /* total time spent waiting in scheduler queue in ns */ 856 struct blkg_rwstat wait_time; 857 /* number of IOs queued up */ 858 struct blkg_rwstat queued; 859 /* total disk time and nr sectors dispatched by this group */ 860 struct bfq_stat time; 861 /* sum of number of ios queued across all samples */ 862 struct bfq_stat avg_queue_size_sum; 863 /* count of samples taken for average */ 864 struct bfq_stat avg_queue_size_samples; 865 /* how many times this group has been removed from service tree */ 866 struct bfq_stat dequeue; 867 /* total time spent waiting for it to be assigned a timeslice. */ 868 struct bfq_stat group_wait_time; 869 /* time spent idling for this blkcg_gq */ 870 struct bfq_stat idle_time; 871 /* total time with empty current active q with other requests queued */ 872 struct bfq_stat empty_time; 873 /* fields after this shouldn't be cleared on stat reset */ 874 u64 start_group_wait_time; 875 u64 start_idle_time; 876 u64 start_empty_time; 877 uint16_t flags; 878#endif /* CONFIG_BFQ_CGROUP_DEBUG */ 879}; 880 881#ifdef CONFIG_BFQ_GROUP_IOSCHED 882 883/* 884 * struct bfq_group_data - per-blkcg storage for the blkio subsystem. 885 * 886 * @ps: @blkcg_policy_storage that this structure inherits 887 * @weight: weight of the bfq_group 888 */ 889struct bfq_group_data { 890 /* must be the first member */ 891 struct blkcg_policy_data pd; 892 893 unsigned int weight; 894}; 895 896/** 897 * struct bfq_group - per (device, cgroup) data structure. 898 * @entity: schedulable entity to insert into the parent group sched_data. 899 * @sched_data: own sched_data, to contain child entities (they may be 900 * both bfq_queues and bfq_groups). 901 * @bfqd: the bfq_data for the device this group acts upon. 902 * @async_bfqq: array of async queues for all the tasks belonging to 903 * the group, one queue per ioprio value per ioprio_class, 904 * except for the idle class that has only one queue. 905 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). 906 * @my_entity: pointer to @entity, %NULL for the toplevel group; used 907 * to avoid too many special cases during group creation/ 908 * migration. 909 * @stats: stats for this bfqg. 910 * @active_entities: number of active entities belonging to the group; 911 * unused for the root group. Used to know whether there 912 * are groups with more than one active @bfq_entity 913 * (see the comments to the function 914 * bfq_bfqq_may_idle()). 915 * @rq_pos_tree: rbtree sorted by next_request position, used when 916 * determining if two or more queues have interleaving 917 * requests (see bfq_find_close_cooperator()). 918 * 919 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup 920 * there is a set of bfq_groups, each one collecting the lower-level 921 * entities belonging to the group that are acting on the same device. 922 * 923 * Locking works as follows: 924 * o @bfqd is protected by the queue lock, RCU is used to access it 925 * from the readers. 926 * o All the other fields are protected by the @bfqd queue lock. 927 */ 928struct bfq_group { 929 /* must be the first member */ 930 struct blkg_policy_data pd; 931 932 /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */ 933 char blkg_path[128]; 934 935 /* reference counter (see comments in bfq_bic_update_cgroup) */ 936 int ref; 937 938 struct bfq_entity entity; 939 struct bfq_sched_data sched_data; 940 941 void *bfqd; 942 943 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 944 struct bfq_queue *async_idle_bfqq; 945 946 struct bfq_entity *my_entity; 947 948 int active_entities; 949 950 struct rb_root rq_pos_tree; 951 952 struct bfqg_stats stats; 953}; 954 955#else 956struct bfq_group { 957 struct bfq_entity entity; 958 struct bfq_sched_data sched_data; 959 960 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 961 struct bfq_queue *async_idle_bfqq; 962 963 struct rb_root rq_pos_tree; 964}; 965#endif 966 967struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 968 969/* --------------- main algorithm interface ----------------- */ 970 971#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ 972 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) 973 974extern const int bfq_timeout; 975 976struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync); 977void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync); 978struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic); 979void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq); 980void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq, 981 struct rb_root_cached *root); 982void __bfq_weights_tree_remove(struct bfq_data *bfqd, 983 struct bfq_queue *bfqq, 984 struct rb_root_cached *root); 985void bfq_weights_tree_remove(struct bfq_data *bfqd, 986 struct bfq_queue *bfqq); 987void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, 988 bool compensate, enum bfqq_expiration reason); 989void bfq_put_queue(struct bfq_queue *bfqq); 990void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 991void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq); 992void bfq_schedule_dispatch(struct bfq_data *bfqd); 993void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 994 995/* ------------ end of main algorithm interface -------------- */ 996 997/* ---------------- cgroups-support interface ---------------- */ 998 999void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq); 1000void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
1001 unsigned int op); 1002void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op); 1003void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op); 1004void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, 1005 u64 io_start_time_ns, unsigned int op); 1006void bfqg_stats_update_dequeue(struct bfq_group *bfqg); 1007void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); 1008void bfqg_stats_update_idle_time(struct bfq_group *bfqg); 1009void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg); 1010void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg); 1011void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1012 struct bfq_group *bfqg); 1013 1014void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg); 1015void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio); 1016void bfq_end_wr_async(struct bfq_data *bfqd); 1017struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, 1018 struct blkcg *blkcg); 1019struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); 1020struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1021struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node); 1022void bfqg_and_blkg_get(struct bfq_group *bfqg); 1023void bfqg_and_blkg_put(struct bfq_group *bfqg); 1024 1025#ifdef CONFIG_BFQ_GROUP_IOSCHED 1026extern struct cftype bfq_blkcg_legacy_files[]; 1027extern struct cftype bfq_blkg_files[]; 1028extern struct blkcg_policy blkcg_policy_bfq; 1029#endif 1030 1031/* ------------- end of cgroups-support interface ------------- */ 1032 1033/* - interface of the internal hierarchical B-WF2Q+ scheduler - */ 1034 1035#ifdef CONFIG_BFQ_GROUP_IOSCHED 1036/* both next loops stop at one of the child entities of the root group */ 1037#define for_each_entity(entity) \ 1038 for (; entity ; entity = entity->parent) 1039 1040/* 1041 * For each iteration, compute parent in advance, so as to be safe if 1042 * entity is deallocated during the iteration. Such a deallocation may 1043 * happen as a consequence of a bfq_put_queue that frees the bfq_queue 1044 * containing entity. 1045 */ 1046#define for_each_entity_safe(entity, parent) \ 1047 for (; entity && ({ parent = entity->parent; 1; }); entity = parent) 1048 1049#else /* CONFIG_BFQ_GROUP_IOSCHED */ 1050/* 1051 * Next two macros are fake loops when cgroups support is not 1052 * enabled. I fact, in such a case, there is only one level to go up 1053 * (to reach the root group). 1054 */ 1055#define for_each_entity(entity) \ 1056 for (; entity ; entity = NULL) 1057 1058#define for_each_entity_safe(entity, parent) \ 1059 for (parent = NULL; entity ; entity = parent) 1060#endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1061 1062struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq); 1063struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 1064unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd); 1065struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity); 1066struct bfq_entity *bfq_entity_of(struct rb_node *node); 1067unsigned short bfq_ioprio_to_weight(int ioprio); 1068void bfq_put_idle_entity(struct bfq_service_tree *st, 1069 struct bfq_entity *entity); 1070struct bfq_service_tree * 1071__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, 1072 struct bfq_entity *entity, 1073 bool update_class_too); 1074void bfq_bfqq_served(struct bfq_queue *bfqq, int served); 1075void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1076 unsigned long time_ms); 1077bool __bfq_deactivate_entity(struct bfq_entity *entity, 1078 bool ins_into_idle_tree); 1079bool next_queue_may_preempt(struct bfq_data *bfqd); 1080struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd); 1081bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd); 1082void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1083 bool ins_into_idle_tree, bool expiration); 1084void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1085void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1086 bool expiration); 1087void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1088 bool expiration); 1089void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1090 1091/* --------------- end of interface of B-WF2Q+ ---------------- */ 1092 1093/* Logging facilities. */ 1094static inline void bfq_pid_to_str(int pid, char *str, int len) 1095{ 1096 if (pid != -1) 1097 snprintf(str, len, "%d", pid); 1098 else 1099 snprintf(str, len, "SHARED-"); 1100} 1101 1102#ifdef CONFIG_BFQ_GROUP_IOSCHED 1103struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1104 1105#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1106 char pid_str[MAX_PID_STR_LENGTH]; \ 1107 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1108 break; \ 1109 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1110 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1111 bfqg_to_blkg(bfqq_group(bfqq))->blkcg, \ 1112 "bfq%s%c " fmt, pid_str, \ 1113 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args); \ 1114} while (0) 1115 1116#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ 1117 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1118 bfqg_to_blkg(bfqg)->blkcg, fmt, ##args); \ 1119} while (0) 1120 1121#else /* CONFIG_BFQ_GROUP_IOSCHED */ 1122 1123#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1124 char pid_str[MAX_PID_STR_LENGTH]; \ 1125 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1126 break; \ 1127 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1128 blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str, \ 1129 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ 1130 ##args); \ 1131} while (0) 1132#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) 1133 1134#endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1135 1136#define bfq_log(bfqd, fmt, args...) \ 1137 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) 1138 1139#endif /* _BFQ_H */ 1140