linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are three exported interfaces; the first is one designed to
 105 * be used from within the kernel:
 106 *
 107 *      void get_random_bytes(void *buf, int nbytes);
 108 *
 109 * This interface will return the requested number of random bytes,
 110 * and place it in the requested buffer.
 111 *
 112 * The two other interfaces are two character devices /dev/random and
 113 * /dev/urandom.  /dev/random is suitable for use when very high
 114 * quality randomness is desired (for example, for key generation or
 115 * one-time pads), as it will only return a maximum of the number of
 116 * bits of randomness (as estimated by the random number generator)
 117 * contained in the entropy pool.
 118 *
 119 * The /dev/urandom device does not have this limit, and will return
 120 * as many bytes as are requested.  As more and more random bytes are
 121 * requested without giving time for the entropy pool to recharge,
 122 * this will result in random numbers that are merely cryptographically
 123 * strong.  For many applications, however, this is acceptable.
 124 *
 125 * Exported interfaces ---- input
 126 * ==============================
 127 *
 128 * The current exported interfaces for gathering environmental noise
 129 * from the devices are:
 130 *
 131 *      void add_device_randomness(const void *buf, unsigned int size);
 132 *      void add_input_randomness(unsigned int type, unsigned int code,
 133 *                                unsigned int value);
 134 *      void add_interrupt_randomness(int irq, int irq_flags);
 135 *      void add_disk_randomness(struct gendisk *disk);
 136 *
 137 * add_device_randomness() is for adding data to the random pool that
 138 * is likely to differ between two devices (or possibly even per boot).
 139 * This would be things like MAC addresses or serial numbers, or the
 140 * read-out of the RTC. This does *not* add any actual entropy to the
 141 * pool, but it initializes the pool to different values for devices
 142 * that might otherwise be identical and have very little entropy
 143 * available to them (particularly common in the embedded world).
 144 *
 145 * add_input_randomness() uses the input layer interrupt timing, as well as
 146 * the event type information from the hardware.
 147 *
 148 * add_interrupt_randomness() uses the interrupt timing as random
 149 * inputs to the entropy pool. Using the cycle counters and the irq source
 150 * as inputs, it feeds the randomness roughly once a second.
 151 *
 152 * add_disk_randomness() uses what amounts to the seek time of block
 153 * layer request events, on a per-disk_devt basis, as input to the
 154 * entropy pool. Note that high-speed solid state drives with very low
 155 * seek times do not make for good sources of entropy, as their seek
 156 * times are usually fairly consistent.
 157 *
 158 * All of these routines try to estimate how many bits of randomness a
 159 * particular randomness source.  They do this by keeping track of the
 160 * first and second order deltas of the event timings.
 161 *
 162 * Ensuring unpredictability at system startup
 163 * ============================================
 164 *
 165 * When any operating system starts up, it will go through a sequence
 166 * of actions that are fairly predictable by an adversary, especially
 167 * if the start-up does not involve interaction with a human operator.
 168 * This reduces the actual number of bits of unpredictability in the
 169 * entropy pool below the value in entropy_count.  In order to
 170 * counteract this effect, it helps to carry information in the
 171 * entropy pool across shut-downs and start-ups.  To do this, put the
 172 * following lines an appropriate script which is run during the boot
 173 * sequence:
 174 *
 175 *      echo "Initializing random number generator..."
 176 *      random_seed=/var/run/random-seed
 177 *      # Carry a random seed from start-up to start-up
 178 *      # Load and then save the whole entropy pool
 179 *      if [ -f $random_seed ]; then
 180 *              cat $random_seed >/dev/urandom
 181 *      else
 182 *              touch $random_seed
 183 *      fi
 184 *      chmod 600 $random_seed
 185 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 186 *
 187 * and the following lines in an appropriate script which is run as
 188 * the system is shutdown:
 189 *
 190 *      # Carry a random seed from shut-down to start-up
 191 *      # Save the whole entropy pool
 192 *      echo "Saving random seed..."
 193 *      random_seed=/var/run/random-seed
 194 *      touch $random_seed
 195 *      chmod 600 $random_seed
 196 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 197 *
 198 * For example, on most modern systems using the System V init
 199 * scripts, such code fragments would be found in
 200 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 202 *
 203 * Effectively, these commands cause the contents of the entropy pool
 204 * to be saved at shut-down time and reloaded into the entropy pool at
 205 * start-up.  (The 'dd' in the addition to the bootup script is to
 206 * make sure that /etc/random-seed is different for every start-up,
 207 * even if the system crashes without executing rc.0.)  Even with
 208 * complete knowledge of the start-up activities, predicting the state
 209 * of the entropy pool requires knowledge of the previous history of
 210 * the system.
 211 *
 212 * Configuring the /dev/random driver under Linux
 213 * ==============================================
 214 *
 215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 216 * the /dev/mem major number (#1).  So if your system does not have
 217 * /dev/random and /dev/urandom created already, they can be created
 218 * by using the commands:
 219 *
 220 *      mknod /dev/random c 1 8
 221 *      mknod /dev/urandom c 1 9
 222 *
 223 * Acknowledgements:
 224 * =================
 225 *
 226 * Ideas for constructing this random number generator were derived
 227 * from Pretty Good Privacy's random number generator, and from private
 228 * discussions with Phil Karn.  Colin Plumb provided a faster random
 229 * number generator, which speed up the mixing function of the entropy
 230 * pool, taken from PGPfone.  Dale Worley has also contributed many
 231 * useful ideas and suggestions to improve this driver.
 232 *
 233 * Any flaws in the design are solely my responsibility, and should
 234 * not be attributed to the Phil, Colin, or any of authors of PGP.
 235 *
 236 * Further background information on this topic may be obtained from
 237 * RFC 1750, "Randomness Recommendations for Security", by Donald
 238 * Eastlake, Steve Crocker, and Jeff Schiller.
 239 */
 240
 241#include <linux/utsname.h>
 242#include <linux/module.h>
 243#include <linux/kernel.h>
 244#include <linux/major.h>
 245#include <linux/string.h>
 246#include <linux/fcntl.h>
 247#include <linux/slab.h>
 248#include <linux/random.h>
 249#include <linux/poll.h>
 250#include <linux/init.h>
 251#include <linux/fs.h>
 252#include <linux/genhd.h>
 253#include <linux/interrupt.h>
 254#include <linux/mm.h>
 255#include <linux/nodemask.h>
 256#include <linux/spinlock.h>
 257#include <linux/kthread.h>
 258#include <linux/percpu.h>
 259#include <linux/cryptohash.h>
 260#include <linux/fips.h>
 261#include <linux/ptrace.h>
 262#include <linux/workqueue.h>
 263#include <linux/irq.h>
 264#include <linux/ratelimit.h>
 265#include <linux/syscalls.h>
 266#include <linux/completion.h>
 267#include <linux/uuid.h>
 268#include <linux/rcupdate.h>
 269#include <crypto/chacha20.h>
 270
 271#include <asm/processor.h>
 272#include <linux/uaccess.h>
 273#include <asm/irq.h>
 274#include <asm/irq_regs.h>
 275#include <asm/io.h>
 276
 277#define CREATE_TRACE_POINTS
 278#include <trace/events/random.h>
 279
 280/* #define ADD_INTERRUPT_BENCH */
 281
 282/*
 283 * Configuration information
 284 */
 285#define INPUT_POOL_SHIFT        12
 286#define INPUT_POOL_WORDS        (1 << (INPUT_POOL_SHIFT-5))
 287#define OUTPUT_POOL_SHIFT       10
 288#define OUTPUT_POOL_WORDS       (1 << (OUTPUT_POOL_SHIFT-5))
 289#define SEC_XFER_SIZE           512
 290#define EXTRACT_SIZE            10
 291
 292
 293#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 294
 295/*
 296 * To allow fractional bits to be tracked, the entropy_count field is
 297 * denominated in units of 1/8th bits.
 298 *
 299 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 300 * credit_entropy_bits() needs to be 64 bits wide.
 301 */
 302#define ENTROPY_SHIFT 3
 303#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 304
 305/*
 306 * Hook for external RNG.
 307 */
 308static const struct random_extrng __rcu *extrng;
 309
 310/*
 311 * The minimum number of bits of entropy before we wake up a read on
 312 * /dev/random.  Should be enough to do a significant reseed.
 313 */
 314static int random_read_wakeup_bits = 64;
 315
 316/*
 317 * If the entropy count falls under this number of bits, then we
 318 * should wake up processes which are selecting or polling on write
 319 * access to /dev/random.
 320 */
 321static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 322
 323/*
 324 * Originally, we used a primitive polynomial of degree .poolwords
 325 * over GF(2).  The taps for various sizes are defined below.  They
 326 * were chosen to be evenly spaced except for the last tap, which is 1
 327 * to get the twisting happening as fast as possible.
 328 *
 329 * For the purposes of better mixing, we use the CRC-32 polynomial as
 330 * well to make a (modified) twisted Generalized Feedback Shift
 331 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 332 * generators.  ACM Transactions on Modeling and Computer Simulation
 333 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 334 * GFSR generators II.  ACM Transactions on Modeling and Computer
 335 * Simulation 4:254-266)
 336 *
 337 * Thanks to Colin Plumb for suggesting this.
 338 *
 339 * The mixing operation is much less sensitive than the output hash,
 340 * where we use SHA-1.  All that we want of mixing operation is that
 341 * it be a good non-cryptographic hash; i.e. it not produce collisions
 342 * when fed "random" data of the sort we expect to see.  As long as
 343 * the pool state differs for different inputs, we have preserved the
 344 * input entropy and done a good job.  The fact that an intelligent
 345 * attacker can construct inputs that will produce controlled
 346 * alterations to the pool's state is not important because we don't
 347 * consider such inputs to contribute any randomness.  The only
 348 * property we need with respect to them is that the attacker can't
 349 * increase his/her knowledge of the pool's state.  Since all
 350 * additions are reversible (knowing the final state and the input,
 351 * you can reconstruct the initial state), if an attacker has any
 352 * uncertainty about the initial state, he/she can only shuffle that
 353 * uncertainty about, but never cause any collisions (which would
 354 * decrease the uncertainty).
 355 *
 356 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 357 * Videau in their paper, "The Linux Pseudorandom Number Generator
 358 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 359 * paper, they point out that we are not using a true Twisted GFSR,
 360 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 361 * is, with only three taps, instead of the six that we are using).
 362 * As a result, the resulting polynomial is neither primitive nor
 363 * irreducible, and hence does not have a maximal period over
 364 * GF(2**32).  They suggest a slight change to the generator
 365 * polynomial which improves the resulting TGFSR polynomial to be
 366 * irreducible, which we have made here.
 367 */
 368static struct poolinfo {
 369        int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 370#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 371        int tap1, tap2, tap3, tap4, tap5;
 372} poolinfo_table[] = {
 373        /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 374        /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 375        { S(128),       104,    76,     51,     25,     1 },
 376        /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 377        /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 378        { S(32),        26,     19,     14,     7,      1 },
 379#if 0
 380        /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 381        { S(2048),      1638,   1231,   819,    411,    1 },
 382
 383        /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 384        { S(1024),      817,    615,    412,    204,    1 },
 385
 386        /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 387        { S(1024),      819,    616,    410,    207,    2 },
 388
 389        /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 390        { S(512),       411,    308,    208,    104,    1 },
 391
 392        /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 393        { S(512),       409,    307,    206,    102,    2 },
 394        /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 395        { S(512),       409,    309,    205,    103,    2 },
 396
 397        /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 398        { S(256),       205,    155,    101,    52,     1 },
 399
 400        /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 401        { S(128),       103,    78,     51,     27,     2 },
 402
 403        /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 404        { S(64),        52,     39,     26,     14,     1 },
 405#endif
 406};
 407
 408/*
 409 * Static global variables
 410 */
 411static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 412static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 413static struct fasync_struct *fasync;
 414
 415static DEFINE_SPINLOCK(random_ready_list_lock);
 416static LIST_HEAD(random_ready_list);
 417
 418struct crng_state {
 419        __u32           state[16];
 420        unsigned long   init_time;
 421        spinlock_t      lock;
 422};
 423
 424struct crng_state primary_crng = {
 425        .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 426};
 427
 428/*
 429 * crng_init =  0 --> Uninitialized
 430 *              1 --> Initialized
 431 *              2 --> Initialized from input_pool
 432 *
 433 * crng_init is protected by primary_crng->lock, and only increases
 434 * its value (from 0->1->2).
 435 */
 436static int crng_init = 0;
 437#define crng_ready() (likely(crng_init > 1))
 438static int crng_init_cnt = 0;
 439static unsigned long crng_global_init_time = 0;
 440#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
 441static void _extract_crng(struct crng_state *crng,
 442                          __u8 out[CHACHA20_BLOCK_SIZE]);
 443static void _crng_backtrack_protect(struct crng_state *crng,
 444                                    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
 445static void process_random_ready_list(void);
 446static void _get_random_bytes(void *buf, int nbytes);
 447
 448static struct ratelimit_state unseeded_warning =
 449        RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 450static struct ratelimit_state urandom_warning =
 451        RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 452
 453static int ratelimit_disable __read_mostly;
 454
 455module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 456MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 457
 458static const struct file_operations extrng_random_fops;
 459static const struct file_operations extrng_urandom_fops;
 460
 461/**********************************************************************
 462 *
 463 * OS independent entropy store.   Here are the functions which handle
 464 * storing entropy in an entropy pool.
 465 *
 466 **********************************************************************/
 467
 468struct entropy_store;
 469struct entropy_store {
 470        /* read-only data: */
 471        const struct poolinfo *poolinfo;
 472        __u32 *pool;
 473        const char *name;
 474        struct entropy_store *pull;
 475        struct work_struct push_work;
 476
 477        /* read-write data: */
 478        unsigned long last_pulled;
 479        spinlock_t lock;
 480        unsigned short add_ptr;
 481        unsigned short input_rotate;
 482        int entropy_count;
 483        int entropy_total;
 484        unsigned int initialized:1;
 485        unsigned int last_data_init:1;
 486        __u8 last_data[EXTRACT_SIZE];
 487};
 488
 489static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 490                               size_t nbytes, int min, int rsvd);
 491static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 492                                size_t nbytes, int fips);
 493
 494static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 495static void push_to_pool(struct work_struct *work);
 496static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 497static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
 498
 499static struct entropy_store input_pool = {
 500        .poolinfo = &poolinfo_table[0],
 501        .name = "input",
 502        .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 503        .pool = input_pool_data
 504};
 505
 506static struct entropy_store blocking_pool = {
 507        .poolinfo = &poolinfo_table[1],
 508        .name = "blocking",
 509        .pull = &input_pool,
 510        .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 511        .pool = blocking_pool_data,
 512        .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 513                                        push_to_pool),
 514};
 515
 516static __u32 const twist_table[8] = {
 517        0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 518        0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 519
 520/*
 521 * This function adds bytes into the entropy "pool".  It does not
 522 * update the entropy estimate.  The caller should call
 523 * credit_entropy_bits if this is appropriate.
 524 *
 525 * The pool is stirred with a primitive polynomial of the appropriate
 526 * degree, and then twisted.  We twist by three bits at a time because
 527 * it's cheap to do so and helps slightly in the expected case where
 528 * the entropy is concentrated in the low-order bits.
 529 */
 530static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 531                            int nbytes)
 532{
 533        unsigned long i, tap1, tap2, tap3, tap4, tap5;
 534        int input_rotate;
 535        int wordmask = r->poolinfo->poolwords - 1;
 536        const char *bytes = in;
 537        __u32 w;
 538
 539        tap1 = r->poolinfo->tap1;
 540        tap2 = r->poolinfo->tap2;
 541        tap3 = r->poolinfo->tap3;
 542        tap4 = r->poolinfo->tap4;
 543        tap5 = r->poolinfo->tap5;
 544
 545        input_rotate = r->input_rotate;
 546        i = r->add_ptr;
 547
 548        /* mix one byte at a time to simplify size handling and churn faster */
 549        while (nbytes--) {
 550                w = rol32(*bytes++, input_rotate);
 551                i = (i - 1) & wordmask;
 552
 553                /* XOR in the various taps */
 554                w ^= r->pool[i];
 555                w ^= r->pool[(i + tap1) & wordmask];
 556                w ^= r->pool[(i + tap2) & wordmask];
 557                w ^= r->pool[(i + tap3) & wordmask];
 558                w ^= r->pool[(i + tap4) & wordmask];
 559                w ^= r->pool[(i + tap5) & wordmask];
 560
 561                /* Mix the result back in with a twist */
 562                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 563
 564                /*
 565                 * Normally, we add 7 bits of rotation to the pool.
 566                 * At the beginning of the pool, add an extra 7 bits
 567                 * rotation, so that successive passes spread the
 568                 * input bits across the pool evenly.
 569                 */
 570                input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 571        }
 572
 573        r->input_rotate = input_rotate;
 574        r->add_ptr = i;
 575}
 576
 577static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 578                             int nbytes)
 579{
 580        trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 581        _mix_pool_bytes(r, in, nbytes);
 582}
 583
 584static void mix_pool_bytes(struct entropy_store *r, const void *in,
 585                           int nbytes)
 586{
 587        unsigned long flags;
 588
 589        trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 590        spin_lock_irqsave(&r->lock, flags);
 591        _mix_pool_bytes(r, in, nbytes);
 592        spin_unlock_irqrestore(&r->lock, flags);
 593}
 594
 595struct fast_pool {
 596        __u32           pool[4];
 597        unsigned long   last;
 598        unsigned short  reg_idx;
 599        unsigned char   count;
 600};
 601
 602/*
 603 * This is a fast mixing routine used by the interrupt randomness
 604 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 605 * locks that might be needed are taken by the caller.
 606 */
 607static void fast_mix(struct fast_pool *f)
 608{
 609        __u32 a = f->pool[0],   b = f->pool[1];
 610        __u32 c = f->pool[2],   d = f->pool[3];
 611
 612        a += b;                 c += d;
 613        b = rol32(b, 6);        d = rol32(d, 27);
 614        d ^= a;                 b ^= c;
 615
 616        a += b;                 c += d;
 617        b = rol32(b, 16);       d = rol32(d, 14);
 618        d ^= a;                 b ^= c;
 619
 620        a += b;                 c += d;
 621        b = rol32(b, 6);        d = rol32(d, 27);
 622        d ^= a;                 b ^= c;
 623
 624        a += b;                 c += d;
 625        b = rol32(b, 16);       d = rol32(d, 14);
 626        d ^= a;                 b ^= c;
 627
 628        f->pool[0] = a;  f->pool[1] = b;
 629        f->pool[2] = c;  f->pool[3] = d;
 630        f->count++;
 631}
 632
 633static void process_random_ready_list(void)
 634{
 635        unsigned long flags;
 636        struct random_ready_callback *rdy, *tmp;
 637
 638        spin_lock_irqsave(&random_ready_list_lock, flags);
 639        list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 640                struct module *owner = rdy->owner;
 641
 642                list_del_init(&rdy->list);
 643                rdy->func(rdy);
 644                module_put(owner);
 645        }
 646        spin_unlock_irqrestore(&random_ready_list_lock, flags);
 647}
 648
 649/*
 650 * Credit (or debit) the entropy store with n bits of entropy.
 651 * Use credit_entropy_bits_safe() if the value comes from userspace
 652 * or otherwise should be checked for extreme values.
 653 */
 654static void credit_entropy_bits(struct entropy_store *r, int nbits)
 655{
 656        int entropy_count, orig;
 657        const int pool_size = r->poolinfo->poolfracbits;
 658        int nfrac = nbits << ENTROPY_SHIFT;
 659
 660        if (!nbits)
 661                return;
 662
 663retry:
 664        entropy_count = orig = READ_ONCE(r->entropy_count);
 665        if (nfrac < 0) {
 666                /* Debit */
 667                entropy_count += nfrac;
 668        } else {
 669                /*
 670                 * Credit: we have to account for the possibility of
 671                 * overwriting already present entropy.  Even in the
 672                 * ideal case of pure Shannon entropy, new contributions
 673                 * approach the full value asymptotically:
 674                 *
 675                 * entropy <- entropy + (pool_size - entropy) *
 676                 *      (1 - exp(-add_entropy/pool_size))
 677                 *
 678                 * For add_entropy <= pool_size/2 then
 679                 * (1 - exp(-add_entropy/pool_size)) >=
 680                 *    (add_entropy/pool_size)*0.7869...
 681                 * so we can approximate the exponential with
 682                 * 3/4*add_entropy/pool_size and still be on the
 683                 * safe side by adding at most pool_size/2 at a time.
 684                 *
 685                 * The use of pool_size-2 in the while statement is to
 686                 * prevent rounding artifacts from making the loop
 687                 * arbitrarily long; this limits the loop to log2(pool_size)*2
 688                 * turns no matter how large nbits is.
 689                 */
 690                int pnfrac = nfrac;
 691                const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 692                /* The +2 corresponds to the /4 in the denominator */
 693
 694                do {
 695                        unsigned int anfrac = min(pnfrac, pool_size/2);
 696                        unsigned int add =
 697                                ((pool_size - entropy_count)*anfrac*3) >> s;
 698
 699                        entropy_count += add;
 700                        pnfrac -= anfrac;
 701                } while (unlikely(entropy_count < pool_size-2 && pnfrac));
 702        }
 703
 704        if (unlikely(entropy_count < 0)) {
 705                pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 706                        r->name, entropy_count);
 707                WARN_ON(1);
 708                entropy_count = 0;
 709        } else if (entropy_count > pool_size)
 710                entropy_count = pool_size;
 711        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 712                goto retry;
 713
 714        r->entropy_total += nbits;
 715        if (!r->initialized && r->entropy_total > 128) {
 716                r->initialized = 1;
 717                r->entropy_total = 0;
 718        }
 719
 720        trace_credit_entropy_bits(r->name, nbits,
 721                                  entropy_count >> ENTROPY_SHIFT,
 722                                  r->entropy_total, _RET_IP_);
 723
 724        if (r == &input_pool) {
 725                int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 726
 727                if (crng_init < 2 && entropy_bits >= 128) {
 728                        crng_reseed(&primary_crng, r);
 729                        entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
 730                }
 731
 732                /* should we wake readers? */
 733                if (entropy_bits >= random_read_wakeup_bits &&
 734                    wq_has_sleeper(&random_read_wait)) {
 735                        wake_up_interruptible(&random_read_wait);
 736                        kill_fasync(&fasync, SIGIO, POLL_IN);
 737                }
 738                /* If the input pool is getting full, send some
 739                 * entropy to the blocking pool until it is 75% full.
 740                 */
 741                if (entropy_bits > random_write_wakeup_bits &&
 742                    r->initialized &&
 743                    r->entropy_total >= 2*random_read_wakeup_bits) {
 744                        struct entropy_store *other = &blocking_pool;
 745
 746                        if (other->entropy_count <=
 747                            3 * other->poolinfo->poolfracbits / 4) {
 748                                schedule_work(&other->push_work);
 749                                r->entropy_total = 0;
 750                        }
 751                }
 752        }
 753}
 754
 755static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 756{
 757        const int nbits_max = r->poolinfo->poolwords * 32;
 758
 759        if (nbits < 0)
 760                return -EINVAL;
 761
 762        /* Cap the value to avoid overflows */
 763        nbits = min(nbits,  nbits_max);
 764
 765        credit_entropy_bits(r, nbits);
 766        return 0;
 767}
 768
 769/*********************************************************************
 770 *
 771 * CRNG using CHACHA20
 772 *
 773 *********************************************************************/
 774
 775#define CRNG_RESEED_INTERVAL (300*HZ)
 776
 777static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 778
 779#ifdef CONFIG_NUMA
 780/*
 781 * Hack to deal with crazy userspace progams when they are all trying
 782 * to access /dev/urandom in parallel.  The programs are almost
 783 * certainly doing something terribly wrong, but we'll work around
 784 * their brain damage.
 785 */
 786static struct crng_state **crng_node_pool __read_mostly;
 787#endif
 788
 789static void invalidate_batched_entropy(void);
 790static void numa_crng_init(void);
 791
 792static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 793static int __init parse_trust_cpu(char *arg)
 794{
 795        return kstrtobool(arg, &trust_cpu);
 796}
 797early_param("random.trust_cpu", parse_trust_cpu);
 798
 799static void crng_initialize(struct crng_state *crng)
 800{
 801        int             i;
 802        int             arch_init = 1;
 803        unsigned long   rv;
 804
 805        memcpy(&crng->state[0], "expand 32-byte k", 16);
 806        if (crng == &primary_crng)
 807                _extract_entropy(&input_pool, &crng->state[4],
 808                                 sizeof(__u32) * 12, 0);
 809        else
 810                _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 811        for (i = 4; i < 16; i++) {
 812                if (!arch_get_random_seed_long(&rv) &&
 813                    !arch_get_random_long(&rv)) {
 814                        rv = random_get_entropy();
 815                        arch_init = 0;
 816                }
 817                crng->state[i] ^= rv;
 818        }
 819        if (trust_cpu && arch_init && crng == &primary_crng) {
 820                invalidate_batched_entropy();
 821                numa_crng_init();
 822                crng_init = 2;
 823                pr_notice("random: crng done (trusting CPU's manufacturer)\n");
 824        }
 825        crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 826}
 827
 828#ifdef CONFIG_NUMA
 829static void do_numa_crng_init(struct work_struct *work)
 830{
 831        int i;
 832        struct crng_state *crng;
 833        struct crng_state **pool;
 834
 835        pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 836        for_each_online_node(i) {
 837                crng = kmalloc_node(sizeof(struct crng_state),
 838                                    GFP_KERNEL | __GFP_NOFAIL, i);
 839                spin_lock_init(&crng->lock);
 840                crng_initialize(crng);
 841                pool[i] = crng;
 842        }
 843        mb();
 844        if (cmpxchg(&crng_node_pool, NULL, pool)) {
 845                for_each_node(i)
 846                        kfree(pool[i]);
 847                kfree(pool);
 848        }
 849}
 850
 851static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 852
 853static void numa_crng_init(void)
 854{
 855        schedule_work(&numa_crng_init_work);
 856}
 857#else
 858static void numa_crng_init(void) {}
 859#endif
 860
 861/*
 862 * crng_fast_load() can be called by code in the interrupt service
 863 * path.  So we can't afford to dilly-dally.
 864 */
 865static int crng_fast_load(const char *cp, size_t len)
 866{
 867        unsigned long flags;
 868        char *p;
 869
 870        if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 871                return 0;
 872        if (crng_init != 0) {
 873                spin_unlock_irqrestore(&primary_crng.lock, flags);
 874                return 0;
 875        }
 876        p = (unsigned char *) &primary_crng.state[4];
 877        while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 878                p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
 879                cp++; crng_init_cnt++; len--;
 880        }
 881        spin_unlock_irqrestore(&primary_crng.lock, flags);
 882        if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 883                invalidate_batched_entropy();
 884                crng_init = 1;
 885                wake_up_interruptible(&crng_init_wait);
 886                pr_notice("random: fast init done\n");
 887        }
 888        return 1;
 889}
 890
 891/*
 892 * crng_slow_load() is called by add_device_randomness, which has two
 893 * attributes.  (1) We can't trust the buffer passed to it is
 894 * guaranteed to be unpredictable (so it might not have any entropy at
 895 * all), and (2) it doesn't have the performance constraints of
 896 * crng_fast_load().
 897 *
 898 * So we do something more comprehensive which is guaranteed to touch
 899 * all of the primary_crng's state, and which uses a LFSR with a
 900 * period of 255 as part of the mixing algorithm.  Finally, we do
 901 * *not* advance crng_init_cnt since buffer we may get may be something
 902 * like a fixed DMI table (for example), which might very well be
 903 * unique to the machine, but is otherwise unvarying.
 904 */
 905static int crng_slow_load(const char *cp, size_t len)
 906{
 907        unsigned long           flags;
 908        static unsigned char    lfsr = 1;
 909        unsigned char           tmp;
 910        unsigned                i, max = CHACHA20_KEY_SIZE;
 911        const char *            src_buf = cp;
 912        char *                  dest_buf = (char *) &primary_crng.state[4];
 913
 914        if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 915                return 0;
 916        if (crng_init != 0) {
 917                spin_unlock_irqrestore(&primary_crng.lock, flags);
 918                return 0;
 919        }
 920        if (len > max)
 921                max = len;
 922
 923        for (i = 0; i < max ; i++) {
 924                tmp = lfsr;
 925                lfsr >>= 1;
 926                if (tmp & 1)
 927                        lfsr ^= 0xE1;
 928                tmp = dest_buf[i % CHACHA20_KEY_SIZE];
 929                dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 930                lfsr += (tmp << 3) | (tmp >> 5);
 931        }
 932        spin_unlock_irqrestore(&primary_crng.lock, flags);
 933        return 1;
 934}
 935
 936static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 937{
 938        unsigned long   flags;
 939        int             i, num;
 940        union {
 941                __u8    block[CHACHA20_BLOCK_SIZE];
 942                __u32   key[8];
 943        } buf;
 944
 945        if (r) {
 946                num = extract_entropy(r, &buf, 32, 16, 0);
 947                if (num == 0)
 948                        return;
 949        } else {
 950                _extract_crng(&primary_crng, buf.block);
 951                _crng_backtrack_protect(&primary_crng, buf.block,
 952                                        CHACHA20_KEY_SIZE);
 953        }
 954        spin_lock_irqsave(&crng->lock, flags);
 955        for (i = 0; i < 8; i++) {
 956                unsigned long   rv;
 957                if (!arch_get_random_seed_long(&rv) &&
 958                    !arch_get_random_long(&rv))
 959                        rv = random_get_entropy();
 960                crng->state[i+4] ^= buf.key[i] ^ rv;
 961        }
 962        memzero_explicit(&buf, sizeof(buf));
 963        crng->init_time = jiffies;
 964        spin_unlock_irqrestore(&crng->lock, flags);
 965        if (crng == &primary_crng && crng_init < 2) {
 966                invalidate_batched_entropy();
 967                numa_crng_init();
 968                crng_init = 2;
 969                process_random_ready_list();
 970                wake_up_interruptible(&crng_init_wait);
 971                pr_notice("random: crng init done\n");
 972                if (unseeded_warning.missed) {
 973                        pr_notice("random: %d get_random_xx warning(s) missed "
 974                                  "due to ratelimiting\n",
 975                                  unseeded_warning.missed);
 976                        unseeded_warning.missed = 0;
 977                }
 978                if (urandom_warning.missed) {
 979                        pr_notice("random: %d urandom warning(s) missed "
 980                                  "due to ratelimiting\n",
 981                                  urandom_warning.missed);
 982                        urandom_warning.missed = 0;
 983                }
 984        }
 985}
 986
 987static void _extract_crng(struct crng_state *crng,
 988                          __u8 out[CHACHA20_BLOCK_SIZE])
 989{
 990        unsigned long v, flags;
 991
 992        if (crng_ready() &&
 993            (time_after(crng_global_init_time, crng->init_time) ||
 994             time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 995                crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 996        spin_lock_irqsave(&crng->lock, flags);
 997        if (arch_get_random_long(&v))
 998                crng->state[14] ^= v;
 999        chacha20_block(&crng->state[0], out);
1000        if (crng->state[12] == 0)
1001                crng->state[13]++;
1002        spin_unlock_irqrestore(&crng->lock, flags);
1003}
1004
1005static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
1006{
1007        struct crng_state *crng = NULL;
1008
1009#ifdef CONFIG_NUMA
1010        if (crng_node_pool)
1011                crng = crng_node_pool[numa_node_id()];
1012        if (crng == NULL)
1013#endif
1014                crng = &primary_crng;
1015        _extract_crng(crng, out);
1016}
1017
1018/*
1019 * Use the leftover bytes from the CRNG block output (if there is
1020 * enough) to mutate the CRNG key to provide backtracking protection.
1021 */
1022static void _crng_backtrack_protect(struct crng_state *crng,
1023                                    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1024{
1025        unsigned long   flags;
1026        __u32           *s, *d;
1027        int             i;
1028
1029        used = round_up(used, sizeof(__u32));
1030        if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1031                extract_crng(tmp);
1032                used = 0;
1033        }
1034        spin_lock_irqsave(&crng->lock, flags);
1035        s = (__u32 *) &tmp[used];
1036        d = &crng->state[4];
1037        for (i=0; i < 8; i++)
1038                *d++ ^= *s++;
1039        spin_unlock_irqrestore(&crng->lock, flags);
1040}
1041
1042static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1043{
1044        struct crng_state *crng = NULL;
1045
1046#ifdef CONFIG_NUMA
1047        if (crng_node_pool)
1048                crng = crng_node_pool[numa_node_id()];
1049        if (crng == NULL)
1050#endif
1051                crng = &primary_crng;
1052        _crng_backtrack_protect(crng, tmp, used);
1053}
1054
1055static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1056{
1057        ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1058        __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1059        int large_request = (nbytes > 256);
1060
1061        while (nbytes) {
1062                if (large_request && need_resched()) {
1063                        if (signal_pending(current)) {
1064                                if (ret == 0)
1065                                        ret = -ERESTARTSYS;
1066                                break;
1067                        }
1068                        schedule();
1069                }
1070
1071                extract_crng(tmp);
1072                i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1073                if (copy_to_user(buf, tmp, i)) {
1074                        ret = -EFAULT;
1075                        break;
1076                }
1077
1078                nbytes -= i;
1079                buf += i;
1080                ret += i;
1081        }
1082        crng_backtrack_protect(tmp, i);
1083
1084        /* Wipe data just written to memory */
1085        memzero_explicit(tmp, sizeof(tmp));
1086
1087        return ret;
1088}
1089
1090
1091/*********************************************************************
1092 *
1093 * Entropy input management
1094 *
1095 *********************************************************************/
1096
1097/* There is one of these per entropy source */
1098struct timer_rand_state {
1099        cycles_t last_time;
1100        long last_delta, last_delta2;
1101};
1102
1103#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1104
1105/*
1106 * Add device- or boot-specific data to the input pool to help
1107 * initialize it.
1108 *
1109 * None of this adds any entropy; it is meant to avoid the problem of
1110 * the entropy pool having similar initial state across largely
1111 * identical devices.
1112 */
1113void add_device_randomness(const void *buf, unsigned int size)
1114{
1115        unsigned long time = random_get_entropy() ^ jiffies;
1116        unsigned long flags;
1117
1118        if (!crng_ready() && size)
1119                crng_slow_load(buf, size);
1120
1121        trace_add_device_randomness(size, _RET_IP_);
1122        spin_lock_irqsave(&input_pool.lock, flags);
1123        _mix_pool_bytes(&input_pool, buf, size);
1124        _mix_pool_bytes(&input_pool, &time, sizeof(time));
1125        spin_unlock_irqrestore(&input_pool.lock, flags);
1126}
1127EXPORT_SYMBOL(add_device_randomness);
1128
1129static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1130
1131/*
1132 * This function adds entropy to the entropy "pool" by using timing
1133 * delays.  It uses the timer_rand_state structure to make an estimate
1134 * of how many bits of entropy this call has added to the pool.
1135 *
1136 * The number "num" is also added to the pool - it should somehow describe
1137 * the type of event which just happened.  This is currently 0-255 for
1138 * keyboard scan codes, and 256 upwards for interrupts.
1139 *
1140 */
1141static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1142{
1143        struct entropy_store    *r;
1144        struct {
1145                long jiffies;
1146                unsigned cycles;
1147                unsigned num;
1148        } sample;
1149        long delta, delta2, delta3;
1150
1151        sample.jiffies = jiffies;
1152        sample.cycles = random_get_entropy();
1153        sample.num = num;
1154        r = &input_pool;
1155        mix_pool_bytes(r, &sample, sizeof(sample));
1156
1157        /*
1158         * Calculate number of bits of randomness we probably added.
1159         * We take into account the first, second and third-order deltas
1160         * in order to make our estimate.
1161         */
1162        delta = sample.jiffies - state->last_time;
1163        state->last_time = sample.jiffies;
1164
1165        delta2 = delta - state->last_delta;
1166        state->last_delta = delta;
1167
1168        delta3 = delta2 - state->last_delta2;
1169        state->last_delta2 = delta2;
1170
1171        if (delta < 0)
1172                delta = -delta;
1173        if (delta2 < 0)
1174                delta2 = -delta2;
1175        if (delta3 < 0)
1176                delta3 = -delta3;
1177        if (delta > delta2)
1178                delta = delta2;
1179        if (delta > delta3)
1180                delta = delta3;
1181
1182        /*
1183         * delta is now minimum absolute delta.
1184         * Round down by 1 bit on general principles,
1185         * and limit entropy entimate to 12 bits.
1186         */
1187        credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1188}
1189
1190void add_input_randomness(unsigned int type, unsigned int code,
1191                                 unsigned int value)
1192{
1193        static unsigned char last_value;
1194
1195        /* ignore autorepeat and the like */
1196        if (value == last_value)
1197                return;
1198
1199        last_value = value;
1200        add_timer_randomness(&input_timer_state,
1201                             (type << 4) ^ code ^ (code >> 4) ^ value);
1202        trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1203}
1204EXPORT_SYMBOL_GPL(add_input_randomness);
1205
1206static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1207
1208#ifdef ADD_INTERRUPT_BENCH
1209static unsigned long avg_cycles, avg_deviation;
1210
1211#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1212#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1213
1214static void add_interrupt_bench(cycles_t start)
1215{
1216        long delta = random_get_entropy() - start;
1217
1218        /* Use a weighted moving average */
1219        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1220        avg_cycles += delta;
1221        /* And average deviation */
1222        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1223        avg_deviation += delta;
1224}
1225#else
1226#define add_interrupt_bench(x)
1227#endif
1228
1229static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1230{
1231        __u32 *ptr = (__u32 *) regs;
1232        unsigned int idx;
1233
1234        if (regs == NULL)
1235                return 0;
1236        idx = READ_ONCE(f->reg_idx);
1237        if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1238                idx = 0;
1239        ptr += idx++;
1240        WRITE_ONCE(f->reg_idx, idx);
1241        return *ptr;
1242}
1243
1244void add_interrupt_randomness(int irq, int irq_flags)
1245{
1246        struct entropy_store    *r;
1247        struct fast_pool        *fast_pool = this_cpu_ptr(&irq_randomness);
1248        struct pt_regs          *regs = get_irq_regs();
1249        unsigned long           now = jiffies;
1250        cycles_t                cycles = random_get_entropy();
1251        __u32                   c_high, j_high;
1252        __u64                   ip;
1253        unsigned long           seed;
1254        int                     credit = 0;
1255
1256        if (cycles == 0)
1257                cycles = get_reg(fast_pool, regs);
1258        c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1259        j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1260        fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1261        fast_pool->pool[1] ^= now ^ c_high;
1262        ip = regs ? instruction_pointer(regs) : _RET_IP_;
1263        fast_pool->pool[2] ^= ip;
1264        fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1265                get_reg(fast_pool, regs);
1266
1267        fast_mix(fast_pool);
1268        add_interrupt_bench(cycles);
1269
1270        if (unlikely(crng_init == 0)) {
1271                if ((fast_pool->count >= 64) &&
1272                    crng_fast_load((char *) fast_pool->pool,
1273                                   sizeof(fast_pool->pool))) {
1274                        fast_pool->count = 0;
1275                        fast_pool->last = now;
1276                }
1277                return;
1278        }
1279
1280        if ((fast_pool->count < 64) &&
1281            !time_after(now, fast_pool->last + HZ))
1282                return;
1283
1284        r = &input_pool;
1285        if (!spin_trylock(&r->lock))
1286                return;
1287
1288        fast_pool->last = now;
1289        __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1290
1291        /*
1292         * If we have architectural seed generator, produce a seed and
1293         * add it to the pool.  For the sake of paranoia don't let the
1294         * architectural seed generator dominate the input from the
1295         * interrupt noise.
1296         */
1297        if (arch_get_random_seed_long(&seed)) {
1298                __mix_pool_bytes(r, &seed, sizeof(seed));
1299                credit = 1;
1300        }
1301        spin_unlock(&r->lock);
1302
1303        fast_pool->count = 0;
1304
1305        /* award one bit for the contents of the fast pool */
1306        credit_entropy_bits(r, credit + 1);
1307}
1308EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1309
1310#ifdef CONFIG_BLOCK
1311void add_disk_randomness(struct gendisk *disk)
1312{
1313        if (!disk || !disk->random)
1314                return;
1315        /* first major is 1, so we get >= 0x200 here */
1316        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1317        trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1318}
1319EXPORT_SYMBOL_GPL(add_disk_randomness);
1320#endif
1321
1322/*********************************************************************
1323 *
1324 * Entropy extraction routines
1325 *
1326 *********************************************************************/
1327
1328/*
1329 * This utility inline function is responsible for transferring entropy
1330 * from the primary pool to the secondary extraction pool. We make
1331 * sure we pull enough for a 'catastrophic reseed'.
1332 */
1333static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1334static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1335{
1336        if (!r->pull ||
1337            r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1338            r->entropy_count > r->poolinfo->poolfracbits)
1339                return;
1340
1341        _xfer_secondary_pool(r, nbytes);
1342}
1343
1344static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1345{
1346        __u32   tmp[OUTPUT_POOL_WORDS];
1347
1348        int bytes = nbytes;
1349
1350        /* pull at least as much as a wakeup */
1351        bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1352        /* but never more than the buffer size */
1353        bytes = min_t(int, bytes, sizeof(tmp));
1354
1355        trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1356                                  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1357        bytes = extract_entropy(r->pull, tmp, bytes,
1358                                random_read_wakeup_bits / 8, 0);
1359        mix_pool_bytes(r, tmp, bytes);
1360        credit_entropy_bits(r, bytes*8);
1361}
1362
1363/*
1364 * Used as a workqueue function so that when the input pool is getting
1365 * full, we can "spill over" some entropy to the output pools.  That
1366 * way the output pools can store some of the excess entropy instead
1367 * of letting it go to waste.
1368 */
1369static void push_to_pool(struct work_struct *work)
1370{
1371        struct entropy_store *r = container_of(work, struct entropy_store,
1372                                              push_work);
1373        BUG_ON(!r);
1374        _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1375        trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1376                           r->pull->entropy_count >> ENTROPY_SHIFT);
1377}
1378
1379/*
1380 * This function decides how many bytes to actually take from the
1381 * given pool, and also debits the entropy count accordingly.
1382 */
1383static size_t account(struct entropy_store *r, size_t nbytes, int min,
1384                      int reserved)
1385{
1386        int entropy_count, orig, have_bytes;
1387        size_t ibytes, nfrac;
1388
1389        BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1390
1391        /* Can we pull enough? */
1392retry:
1393        entropy_count = orig = READ_ONCE(r->entropy_count);
1394        ibytes = nbytes;
1395        /* never pull more than available */
1396        have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1397
1398        if ((have_bytes -= reserved) < 0)
1399                have_bytes = 0;
1400        ibytes = min_t(size_t, ibytes, have_bytes);
1401        if (ibytes < min)
1402                ibytes = 0;
1403
1404        if (unlikely(entropy_count < 0)) {
1405                pr_warn("random: negative entropy count: pool %s count %d\n",
1406                        r->name, entropy_count);
1407                WARN_ON(1);
1408                entropy_count = 0;
1409        }
1410        nfrac = ibytes << (ENTROPY_SHIFT + 3);
1411        if ((size_t) entropy_count > nfrac)
1412                entropy_count -= nfrac;
1413        else
1414                entropy_count = 0;
1415
1416        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1417                goto retry;
1418
1419        trace_debit_entropy(r->name, 8 * ibytes);
1420        if (ibytes &&
1421            (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1422                wake_up_interruptible(&random_write_wait);
1423                kill_fasync(&fasync, SIGIO, POLL_OUT);
1424        }
1425
1426        return ibytes;
1427}
1428
1429/*
1430 * This function does the actual extraction for extract_entropy and
1431 * extract_entropy_user.
1432 *
1433 * Note: we assume that .poolwords is a multiple of 16 words.
1434 */
1435static void extract_buf(struct entropy_store *r, __u8 *out)
1436{
1437        int i;
1438        union {
1439                __u32 w[5];
1440                unsigned long l[LONGS(20)];
1441        } hash;
1442        __u32 workspace[SHA1_WORKSPACE_WORDS];
1443        unsigned long flags;
1444
1445        /*
1446         * If we have an architectural hardware random number
1447         * generator, use it for SHA's initial vector
1448         */
1449        sha1_init(hash.w);
1450        for (i = 0; i < LONGS(20); i++) {
1451                unsigned long v;
1452                if (!arch_get_random_long(&v))
1453                        break;
1454                hash.l[i] = v;
1455        }
1456
1457        /* Generate a hash across the pool, 16 words (512 bits) at a time */
1458        spin_lock_irqsave(&r->lock, flags);
1459        for (i = 0; i < r->poolinfo->poolwords; i += 16)
1460                sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1461
1462        /*
1463         * We mix the hash back into the pool to prevent backtracking
1464         * attacks (where the attacker knows the state of the pool
1465         * plus the current outputs, and attempts to find previous
1466         * ouputs), unless the hash function can be inverted. By
1467         * mixing at least a SHA1 worth of hash data back, we make
1468         * brute-forcing the feedback as hard as brute-forcing the
1469         * hash.
1470         */
1471        __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1472        spin_unlock_irqrestore(&r->lock, flags);
1473
1474        memzero_explicit(workspace, sizeof(workspace));
1475
1476        /*
1477         * In case the hash function has some recognizable output
1478         * pattern, we fold it in half. Thus, we always feed back
1479         * twice as much data as we output.
1480         */
1481        hash.w[0] ^= hash.w[3];
1482        hash.w[1] ^= hash.w[4];
1483        hash.w[2] ^= rol32(hash.w[2], 16);
1484
1485        memcpy(out, &hash, EXTRACT_SIZE);
1486        memzero_explicit(&hash, sizeof(hash));
1487}
1488
1489static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1490                                size_t nbytes, int fips)
1491{
1492        ssize_t ret = 0, i;
1493        __u8 tmp[EXTRACT_SIZE];
1494        unsigned long flags;
1495
1496        while (nbytes) {
1497                extract_buf(r, tmp);
1498
1499                if (fips) {
1500                        spin_lock_irqsave(&r->lock, flags);
1501                        if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1502                                panic("Hardware RNG duplicated output!\n");
1503                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1504                        spin_unlock_irqrestore(&r->lock, flags);
1505                }
1506                i = min_t(int, nbytes, EXTRACT_SIZE);
1507                memcpy(buf, tmp, i);
1508                nbytes -= i;
1509                buf += i;
1510                ret += i;
1511        }
1512
1513        /* Wipe data just returned from memory */
1514        memzero_explicit(tmp, sizeof(tmp));
1515
1516        return ret;
1517}
1518
1519/*
1520 * This function extracts randomness from the "entropy pool", and
1521 * returns it in a buffer.
1522 *
1523 * The min parameter specifies the minimum amount we can pull before
1524 * failing to avoid races that defeat catastrophic reseeding while the
1525 * reserved parameter indicates how much entropy we must leave in the
1526 * pool after each pull to avoid starving other readers.
1527 */
1528static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1529                                 size_t nbytes, int min, int reserved)
1530{
1531        __u8 tmp[EXTRACT_SIZE];
1532        unsigned long flags;
1533
1534        /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1535        if (fips_enabled) {
1536                spin_lock_irqsave(&r->lock, flags);
1537                if (!r->last_data_init) {
1538                        r->last_data_init = 1;
1539                        spin_unlock_irqrestore(&r->lock, flags);
1540                        trace_extract_entropy(r->name, EXTRACT_SIZE,
1541                                              ENTROPY_BITS(r), _RET_IP_);
1542                        xfer_secondary_pool(r, EXTRACT_SIZE);
1543                        extract_buf(r, tmp);
1544                        spin_lock_irqsave(&r->lock, flags);
1545                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1546                }
1547                spin_unlock_irqrestore(&r->lock, flags);
1548        }
1549
1550        trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1551        xfer_secondary_pool(r, nbytes);
1552        nbytes = account(r, nbytes, min, reserved);
1553
1554        return _extract_entropy(r, buf, nbytes, fips_enabled);
1555}
1556
1557/*
1558 * This function extracts randomness from the "entropy pool", and
1559 * returns it in a userspace buffer.
1560 */
1561static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1562                                    size_t nbytes)
1563{
1564        ssize_t ret = 0, i;
1565        __u8 tmp[EXTRACT_SIZE];
1566        int large_request = (nbytes > 256);
1567
1568        trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1569        xfer_secondary_pool(r, nbytes);
1570        nbytes = account(r, nbytes, 0, 0);
1571
1572        while (nbytes) {
1573                if (large_request && need_resched()) {
1574                        if (signal_pending(current)) {
1575                                if (ret == 0)
1576                                        ret = -ERESTARTSYS;
1577                                break;
1578                        }
1579                        schedule();
1580                }
1581
1582                extract_buf(r, tmp);
1583                i = min_t(int, nbytes, EXTRACT_SIZE);
1584                if (copy_to_user(buf, tmp, i)) {
1585                        ret = -EFAULT;
1586                        break;
1587                }
1588
1589                nbytes -= i;
1590                buf += i;
1591                ret += i;
1592        }
1593
1594        /* Wipe data just returned from memory */
1595        memzero_explicit(tmp, sizeof(tmp));
1596
1597        return ret;
1598}
1599
1600#define warn_unseeded_randomness(previous) \
1601        _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1602
1603static void _warn_unseeded_randomness(const char *func_name, void *caller,
1604                                      void **previous)
1605{
1606#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1607        const bool print_once = false;
1608#else
1609        static bool print_once __read_mostly;
1610#endif
1611
1612        if (print_once ||
1613            crng_ready() ||
1614            (previous && (caller == READ_ONCE(*previous))))
1615                return;
1616        WRITE_ONCE(*previous, caller);
1617#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1618        print_once = true;
1619#endif
1620        if (__ratelimit(&unseeded_warning))
1621                printk_deferred(KERN_NOTICE "random: %s called from %pS "
1622                                "with crng_init=%d\n", func_name, caller,
1623                                crng_init);
1624}
1625
1626/*
1627 * This function is the exported kernel interface.  It returns some
1628 * number of good random numbers, suitable for key generation, seeding
1629 * TCP sequence numbers, etc.  It does not rely on the hardware random
1630 * number generator.  For random bytes direct from the hardware RNG
1631 * (when available), use get_random_bytes_arch(). In order to ensure
1632 * that the randomness provided by this function is okay, the function
1633 * wait_for_random_bytes() should be called and return 0 at least once
1634 * at any point prior.
1635 */
1636static void _get_random_bytes(void *buf, int nbytes)
1637{
1638        __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1639
1640        trace_get_random_bytes(nbytes, _RET_IP_);
1641
1642        while (nbytes >= CHACHA20_BLOCK_SIZE) {
1643                extract_crng(buf);
1644                buf += CHACHA20_BLOCK_SIZE;
1645                nbytes -= CHACHA20_BLOCK_SIZE;
1646        }
1647
1648        if (nbytes > 0) {
1649                extract_crng(tmp);
1650                memcpy(buf, tmp, nbytes);
1651                crng_backtrack_protect(tmp, nbytes);
1652        } else
1653                crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1654        memzero_explicit(tmp, sizeof(tmp));
1655}
1656
1657void get_random_bytes(void *buf, int nbytes)
1658{
1659        static void *previous;
1660
1661        warn_unseeded_randomness(&previous);
1662        _get_random_bytes(buf, nbytes);
1663}
1664EXPORT_SYMBOL(get_random_bytes);
1665
1666
1667/*
1668 * Each time the timer fires, we expect that we got an unpredictable
1669 * jump in the cycle counter. Even if the timer is running on another
1670 * CPU, the timer activity will be touching the stack of the CPU that is
1671 * generating entropy..
1672 *
1673 * Note that we don't re-arm the timer in the timer itself - we are
1674 * happy to be scheduled away, since that just makes the load more
1675 * complex, but we do not want the timer to keep ticking unless the
1676 * entropy loop is running.
1677 *
1678 * So the re-arming always happens in the entropy loop itself.
1679 */
1680static void entropy_timer(struct timer_list *t)
1681{
1682        credit_entropy_bits(&input_pool, 1);
1683}
1684
1685/*
1686 * If we have an actual cycle counter, see if we can
1687 * generate enough entropy with timing noise
1688 */
1689static void try_to_generate_entropy(void)
1690{
1691        struct {
1692                unsigned long now;
1693                struct timer_list timer;
1694        } stack;
1695
1696        stack.now = random_get_entropy();
1697
1698        /* Slow counter - or none. Don't even bother */
1699        if (stack.now == random_get_entropy())
1700                return;
1701
1702        timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1703        while (!crng_ready()) {
1704                if (!timer_pending(&stack.timer))
1705                        mod_timer(&stack.timer, jiffies+1);
1706                mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1707                schedule();
1708                stack.now = random_get_entropy();
1709        }
1710
1711        del_timer_sync(&stack.timer);
1712        destroy_timer_on_stack(&stack.timer);
1713        mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1714}
1715
1716/*
1717 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1718 * cryptographically secure random numbers. This applies to: the /dev/urandom
1719 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1720 * family of functions. Using any of these functions without first calling
1721 * this function forfeits the guarantee of security.
1722 *
1723 * Returns: 0 if the urandom pool has been seeded.
1724 *          -ERESTARTSYS if the function was interrupted by a signal.
1725 */
1726int wait_for_random_bytes(void)
1727{
1728        if (likely(crng_ready()))
1729                return 0;
1730
1731        do {
1732                int ret;
1733                ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1734                if (ret)
1735                        return ret > 0 ? 0 : ret;
1736
1737                try_to_generate_entropy();
1738        } while (!crng_ready());
1739
1740        return 0;
1741}
1742EXPORT_SYMBOL(wait_for_random_bytes);
1743
1744/*
1745 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1746 * to supply cryptographically secure random numbers. This applies to: the
1747 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1748 * ,u64,int,long} family of functions.
1749 *
1750 * Returns: true if the urandom pool has been seeded.
1751 *          false if the urandom pool has not been seeded.
1752 */
1753bool rng_is_initialized(void)
1754{
1755        return crng_ready();
1756}
1757EXPORT_SYMBOL(rng_is_initialized);
1758
1759/*
1760 * Add a callback function that will be invoked when the nonblocking
1761 * pool is initialised.
1762 *
1763 * returns: 0 if callback is successfully added
1764 *          -EALREADY if pool is already initialised (callback not called)
1765 *          -ENOENT if module for callback is not alive
1766 */
1767int add_random_ready_callback(struct random_ready_callback *rdy)
1768{
1769        struct module *owner;
1770        unsigned long flags;
1771        int err = -EALREADY;
1772
1773        if (crng_ready())
1774                return err;
1775
1776        owner = rdy->owner;
1777        if (!try_module_get(owner))
1778                return -ENOENT;
1779
1780        spin_lock_irqsave(&random_ready_list_lock, flags);
1781        if (crng_ready())
1782                goto out;
1783
1784        owner = NULL;
1785
1786        list_add(&rdy->list, &random_ready_list);
1787        err = 0;
1788
1789out:
1790        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1791
1792        module_put(owner);
1793
1794        return err;
1795}
1796EXPORT_SYMBOL(add_random_ready_callback);
1797
1798/*
1799 * Delete a previously registered readiness callback function.
1800 */
1801void del_random_ready_callback(struct random_ready_callback *rdy)
1802{
1803        unsigned long flags;
1804        struct module *owner = NULL;
1805
1806        spin_lock_irqsave(&random_ready_list_lock, flags);
1807        if (!list_empty(&rdy->list)) {
1808                list_del_init(&rdy->list);
1809                owner = rdy->owner;
1810        }
1811        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1812
1813        module_put(owner);
1814}
1815EXPORT_SYMBOL(del_random_ready_callback);
1816
1817/*
1818 * This function will use the architecture-specific hardware random
1819 * number generator if it is available.  The arch-specific hw RNG will
1820 * almost certainly be faster than what we can do in software, but it
1821 * is impossible to verify that it is implemented securely (as
1822 * opposed, to, say, the AES encryption of a sequence number using a
1823 * key known by the NSA).  So it's useful if we need the speed, but
1824 * only if we're willing to trust the hardware manufacturer not to
1825 * have put in a back door.
1826 *
1827 * Return number of bytes filled in.
1828 */
1829int __must_check get_random_bytes_arch(void *buf, int nbytes)
1830{
1831        int left = nbytes;
1832        char *p = buf;
1833
1834        trace_get_random_bytes_arch(left, _RET_IP_);
1835        while (left) {
1836                unsigned long v;
1837                int chunk = min_t(int, left, sizeof(unsigned long));
1838
1839                if (!arch_get_random_long(&v))
1840                        break;
1841
1842                memcpy(p, &v, chunk);
1843                p += chunk;
1844                left -= chunk;
1845        }
1846
1847        return nbytes - left;
1848}
1849EXPORT_SYMBOL(get_random_bytes_arch);
1850
1851/*
1852 * init_std_data - initialize pool with system data
1853 *
1854 * @r: pool to initialize
1855 *
1856 * This function clears the pool's entropy count and mixes some system
1857 * data into the pool to prepare it for use. The pool is not cleared
1858 * as that can only decrease the entropy in the pool.
1859 */
1860static void __init init_std_data(struct entropy_store *r)
1861{
1862        int i;
1863        ktime_t now = ktime_get_real();
1864        unsigned long rv;
1865
1866        r->last_pulled = jiffies;
1867        mix_pool_bytes(r, &now, sizeof(now));
1868        for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1869                if (!arch_get_random_seed_long(&rv) &&
1870                    !arch_get_random_long(&rv))
1871                        rv = random_get_entropy();
1872                mix_pool_bytes(r, &rv, sizeof(rv));
1873        }
1874        mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1875}
1876
1877/*
1878 * Note that setup_arch() may call add_device_randomness()
1879 * long before we get here. This allows seeding of the pools
1880 * with some platform dependent data very early in the boot
1881 * process. But it limits our options here. We must use
1882 * statically allocated structures that already have all
1883 * initializations complete at compile time. We should also
1884 * take care not to overwrite the precious per platform data
1885 * we were given.
1886 */
1887int __init rand_initialize(void)
1888{
1889        init_std_data(&input_pool);
1890        init_std_data(&blocking_pool);
1891        crng_initialize(&primary_crng);
1892        crng_global_init_time = jiffies;
1893        if (ratelimit_disable) {
1894                urandom_warning.interval = 0;
1895                unseeded_warning.interval = 0;
1896        }
1897        return 0;
1898}
1899
1900#ifdef CONFIG_BLOCK
1901void rand_initialize_disk(struct gendisk *disk)
1902{
1903        struct timer_rand_state *state;
1904
1905        /*
1906         * If kzalloc returns null, we just won't use that entropy
1907         * source.
1908         */
1909        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1910        if (state) {
1911                state->last_time = INITIAL_JIFFIES;
1912                disk->random = state;
1913        }
1914}
1915#endif
1916
1917static ssize_t
1918_random_read(int nonblock, char __user *buf, size_t nbytes)
1919{
1920        ssize_t n;
1921
1922        if (nbytes == 0)
1923                return 0;
1924
1925        nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1926        while (1) {
1927                n = extract_entropy_user(&blocking_pool, buf, nbytes);
1928                if (n < 0)
1929                        return n;
1930                trace_random_read(n*8, (nbytes-n)*8,
1931                                  ENTROPY_BITS(&blocking_pool),
1932                                  ENTROPY_BITS(&input_pool));
1933                if (n > 0)
1934                        return n;
1935
1936                /* Pool is (near) empty.  Maybe wait and retry. */
1937                if (nonblock)
1938                        return -EAGAIN;
1939
1940                wait_event_interruptible(random_read_wait,
1941                        ENTROPY_BITS(&input_pool) >=
1942                        random_read_wakeup_bits);
1943                if (signal_pending(current))
1944                        return -ERESTARTSYS;
1945        }
1946}
1947
1948static ssize_t
1949random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1950{
1951        return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1952}
1953
1954static ssize_t
1955urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1956{
1957        unsigned long flags;
1958        static int maxwarn = 10;
1959        int ret;
1960
1961        if (!crng_ready() && maxwarn > 0) {
1962                maxwarn--;
1963                if (__ratelimit(&urandom_warning))
1964                        printk(KERN_NOTICE "random: %s: uninitialized "
1965                               "urandom read (%zd bytes read)\n",
1966                               current->comm, nbytes);
1967                spin_lock_irqsave(&primary_crng.lock, flags);
1968                crng_init_cnt = 0;
1969                spin_unlock_irqrestore(&primary_crng.lock, flags);
1970        }
1971        nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1972        ret = extract_crng_user(buf, nbytes);
1973        trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1974        return ret;
1975}
1976
1977static __poll_t
1978random_poll(struct file *file, poll_table * wait)
1979{
1980        __poll_t mask;
1981
1982        poll_wait(file, &random_read_wait, wait);
1983        poll_wait(file, &random_write_wait, wait);
1984        mask = 0;
1985        if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1986                mask |= EPOLLIN | EPOLLRDNORM;
1987        if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1988                mask |= EPOLLOUT | EPOLLWRNORM;
1989        return mask;
1990}
1991
1992static __poll_t
1993extrng_poll(struct file *file, poll_table * wait)
1994{
1995        /* extrng pool is always full, always read, no writes */
1996        return EPOLLIN | EPOLLRDNORM;
1997}
1998
1999static int
2000write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
2001{
2002        size_t bytes;
2003        __u32 t, buf[16];
2004        const char __user *p = buffer;
2005
2006        while (count > 0) {
2007                int b, i = 0;
2008
2009                bytes = min(count, sizeof(buf));
2010                if (copy_from_user(&buf, p, bytes))
2011                        return -EFAULT;
2012
2013                for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
2014                        if (!arch_get_random_int(&t))
2015                                break;
2016                        buf[i] ^= t;
2017                }
2018
2019                count -= bytes;
2020                p += bytes;
2021
2022                mix_pool_bytes(r, buf, bytes);
2023                cond_resched();
2024        }
2025
2026        return 0;
2027}
2028
2029static ssize_t random_write(struct file *file, const char __user *buffer,
2030                            size_t count, loff_t *ppos)
2031{
2032        size_t ret;
2033
2034        ret = write_pool(&input_pool, buffer, count);
2035        if (ret)
2036                return ret;
2037
2038        return (ssize_t)count;
2039}
2040
2041static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2042{
2043        int size, ent_count;
2044        int __user *p = (int __user *)arg;
2045        int retval;
2046
2047        switch (cmd) {
2048        case RNDGETENTCNT:
2049                /* inherently racy, no point locking */
2050                ent_count = ENTROPY_BITS(&input_pool);
2051                if (put_user(ent_count, p))
2052                        return -EFAULT;
2053                return 0;
2054        case RNDADDTOENTCNT:
2055                if (!capable(CAP_SYS_ADMIN))
2056                        return -EPERM;
2057                if (get_user(ent_count, p))
2058                        return -EFAULT;
2059                return credit_entropy_bits_safe(&input_pool, ent_count);
2060        case RNDADDENTROPY:
2061                if (!capable(CAP_SYS_ADMIN))
2062                        return -EPERM;
2063                if (get_user(ent_count, p++))
2064                        return -EFAULT;
2065                if (ent_count < 0)
2066                        return -EINVAL;
2067                if (get_user(size, p++))
2068                        return -EFAULT;
2069                retval = write_pool(&input_pool, (const char __user *)p,
2070                                    size);
2071                if (retval < 0)
2072                        return retval;
2073                return credit_entropy_bits_safe(&input_pool, ent_count);
2074        case RNDZAPENTCNT:
2075        case RNDCLEARPOOL:
2076                /*
2077                 * Clear the entropy pool counters. We no longer clear
2078                 * the entropy pool, as that's silly.
2079                 */
2080                if (!capable(CAP_SYS_ADMIN))
2081                        return -EPERM;
2082                input_pool.entropy_count = 0;
2083                blocking_pool.entropy_count = 0;
2084                return 0;
2085        case RNDRESEEDCRNG:
2086                if (!capable(CAP_SYS_ADMIN))
2087                        return -EPERM;
2088                if (crng_init < 2)
2089                        return -ENODATA;
2090                crng_reseed(&primary_crng, NULL);
2091                crng_global_init_time = jiffies - 1;
2092                return 0;
2093        default:
2094                return -EINVAL;
2095        }
2096}
2097
2098static int random_fasync(int fd, struct file *filp, int on)
2099{
2100        return fasync_helper(fd, filp, on, &fasync);
2101}
2102
2103static int random_open(struct inode *inode, struct file *filp)
2104{
2105        const struct random_extrng *rng;
2106
2107        rcu_read_lock();
2108        rng = extrng;
2109        if (rng && !try_module_get(rng->owner))
2110                rng = NULL;
2111        rcu_read_unlock();
2112
2113        if (!rng)
2114                return 0;
2115
2116        filp->f_op = &extrng_random_fops;
2117
2118        return 0;
2119}
2120
2121static int urandom_open(struct inode *inode, struct file *filp)
2122{
2123        const struct random_extrng *rng;
2124
2125        rcu_read_lock();
2126        rng = extrng;
2127        if (rng && !try_module_get(rng->owner))
2128                rng = NULL;
2129        rcu_read_unlock();
2130
2131        if (!rng)
2132                return 0;
2133
2134        filp->f_op = &extrng_urandom_fops;
2135
2136        return 0;
2137}
2138
2139static int extrng_release(struct inode *inode, struct file *filp)
2140{
2141        module_put(extrng->owner);
2142        return 0;
2143}
2144
2145static ssize_t
2146extrng_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2147{
2148        return rcu_dereference_raw(extrng)->extrng_read(buf, nbytes);
2149}
2150
2151const struct file_operations random_fops = {
2152        .open  = random_open,
2153        .read  = random_read,
2154        .write = random_write,
2155        .poll  = random_poll,
2156        .unlocked_ioctl = random_ioctl,
2157        .fasync = random_fasync,
2158        .llseek = noop_llseek,
2159};
2160
2161const struct file_operations urandom_fops = {
2162        .open  = urandom_open,
2163        .read  = urandom_read,
2164        .write = random_write,
2165        .unlocked_ioctl = random_ioctl,
2166        .fasync = random_fasync,
2167        .llseek = noop_llseek,
2168};
2169
2170static const struct file_operations extrng_random_fops = {
2171        .open  = random_open,
2172        .read  = extrng_read,
2173        .write = random_write,
2174        .poll  = extrng_poll,
2175        .unlocked_ioctl = random_ioctl,
2176        .fasync = random_fasync,
2177        .llseek = noop_llseek,
2178        .release = extrng_release,
2179};
2180
2181static const struct file_operations extrng_urandom_fops = {
2182        .open  = urandom_open,
2183        .read  = extrng_read,
2184        .write = random_write,
2185        .unlocked_ioctl = random_ioctl,
2186        .fasync = random_fasync,
2187        .llseek = noop_llseek,
2188        .release = extrng_release,
2189};
2190
2191SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2192                unsigned int, flags)
2193{
2194        const struct random_extrng *rng;
2195        int ret;
2196
2197        if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2198                return -EINVAL;
2199
2200        if (count > INT_MAX)
2201                count = INT_MAX;
2202
2203        rcu_read_lock();
2204        rng = extrng;
2205        if (rng && !try_module_get(rng->owner))
2206                rng = NULL;
2207        rcu_read_unlock();
2208
2209        if (rng) {
2210                ret = rng->extrng_read(buf, count);
2211                module_put(extrng->owner);
2212                return ret;
2213        }
2214
2215        if (flags & GRND_RANDOM)
2216                return _random_read(flags & GRND_NONBLOCK, buf, count);
2217
2218        if (!crng_ready()) {
2219                if (flags & GRND_NONBLOCK)
2220                        return -EAGAIN;
2221                ret = wait_for_random_bytes();
2222                if (unlikely(ret))
2223                        return ret;
2224        }
2225        return urandom_read(NULL, buf, count, NULL);
2226}
2227
2228/********************************************************************
2229 *
2230 * Sysctl interface
2231 *
2232 ********************************************************************/
2233
2234#ifdef CONFIG_SYSCTL
2235
2236#include <linux/sysctl.h>
2237
2238static int min_read_thresh = 8, min_write_thresh;
2239static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2240static int max_write_thresh = INPUT_POOL_WORDS * 32;
2241static int random_min_urandom_seed = 60;
2242static char sysctl_bootid[16];
2243
2244/*
2245 * This function is used to return both the bootid UUID, and random
2246 * UUID.  The difference is in whether table->data is NULL; if it is,
2247 * then a new UUID is generated and returned to the user.
2248 *
2249 * If the user accesses this via the proc interface, the UUID will be
2250 * returned as an ASCII string in the standard UUID format; if via the
2251 * sysctl system call, as 16 bytes of binary data.
2252 */
2253static int proc_do_uuid(struct ctl_table *table, int write,
2254                        void __user *buffer, size_t *lenp, loff_t *ppos)
2255{
2256        struct ctl_table fake_table;
2257        unsigned char buf[64], tmp_uuid[16], *uuid;
2258
2259        uuid = table->data;
2260        if (!uuid) {
2261                uuid = tmp_uuid;
2262                generate_random_uuid(uuid);
2263        } else {
2264                static DEFINE_SPINLOCK(bootid_spinlock);
2265
2266                spin_lock(&bootid_spinlock);
2267                if (!uuid[8])
2268                        generate_random_uuid(uuid);
2269                spin_unlock(&bootid_spinlock);
2270        }
2271
2272        sprintf(buf, "%pU", uuid);
2273
2274        fake_table.data = buf;
2275        fake_table.maxlen = sizeof(buf);
2276
2277        return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2278}
2279
2280/*
2281 * Return entropy available scaled to integral bits
2282 */
2283static int proc_do_entropy(struct ctl_table *table, int write,
2284                           void __user *buffer, size_t *lenp, loff_t *ppos)
2285{
2286        struct ctl_table fake_table;
2287        int entropy_count;
2288
2289        entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2290
2291        fake_table.data = &entropy_count;
2292        fake_table.maxlen = sizeof(entropy_count);
2293
2294        return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2295}
2296
2297static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2298extern struct ctl_table random_table[];
2299struct ctl_table random_table[] = {
2300        {
2301                .procname       = "poolsize",
2302                .data           = &sysctl_poolsize,
2303                .maxlen         = sizeof(int),
2304                .mode           = 0444,
2305                .proc_handler   = proc_dointvec,
2306        },
2307        {
2308                .procname       = "entropy_avail",
2309                .maxlen         = sizeof(int),
2310                .mode           = 0444,
2311                .proc_handler   = proc_do_entropy,
2312                .data           = &input_pool.entropy_count,
2313        },
2314        {
2315                .procname       = "read_wakeup_threshold",
2316                .data           = &random_read_wakeup_bits,
2317                .maxlen         = sizeof(int),
2318                .mode           = 0644,
2319                .proc_handler   = proc_dointvec_minmax,
2320                .extra1         = &min_read_thresh,
2321                .extra2         = &max_read_thresh,
2322        },
2323        {
2324                .procname       = "write_wakeup_threshold",
2325                .data           = &random_write_wakeup_bits,
2326                .maxlen         = sizeof(int),
2327                .mode           = 0644,
2328                .proc_handler   = proc_dointvec_minmax,
2329                .extra1         = &min_write_thresh,
2330                .extra2         = &max_write_thresh,
2331        },
2332        {
2333                .procname       = "urandom_min_reseed_secs",
2334                .data           = &random_min_urandom_seed,
2335                .maxlen         = sizeof(int),
2336                .mode           = 0644,
2337                .proc_handler   = proc_dointvec,
2338        },
2339        {
2340                .procname       = "boot_id",
2341                .data           = &sysctl_bootid,
2342                .maxlen         = 16,
2343                .mode           = 0444,
2344                .proc_handler   = proc_do_uuid,
2345        },
2346        {
2347                .procname       = "uuid",
2348                .maxlen         = 16,
2349                .mode           = 0444,
2350                .proc_handler   = proc_do_uuid,
2351        },
2352#ifdef ADD_INTERRUPT_BENCH
2353        {
2354                .procname       = "add_interrupt_avg_cycles",
2355                .data           = &avg_cycles,
2356                .maxlen         = sizeof(avg_cycles),
2357                .mode           = 0444,
2358                .proc_handler   = proc_doulongvec_minmax,
2359        },
2360        {
2361                .procname       = "add_interrupt_avg_deviation",
2362                .data           = &avg_deviation,
2363                .maxlen         = sizeof(avg_deviation),
2364                .mode           = 0444,
2365                .proc_handler   = proc_doulongvec_minmax,
2366        },
2367#endif
2368        { }
2369};
2370#endif  /* CONFIG_SYSCTL */
2371
2372struct batched_entropy {
2373        union {
2374                u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2375                u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2376        };
2377        unsigned int position;
2378        spinlock_t batch_lock;
2379};
2380
2381/*
2382 * Get a random word for internal kernel use only. The quality of the random
2383 * number is either as good as RDRAND or as good as /dev/urandom, with the
2384 * goal of being quite fast and not depleting entropy. In order to ensure
2385 * that the randomness provided by this function is okay, the function
2386 * wait_for_random_bytes() should be called and return 0 at least once
2387 * at any point prior.
2388 */
2389static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2390        .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2391};
2392
2393u64 get_random_u64(void)
2394{
2395        u64 ret;
2396        unsigned long flags;
2397        struct batched_entropy *batch;
2398        static void *previous;
2399
2400#if BITS_PER_LONG == 64
2401        if (arch_get_random_long((unsigned long *)&ret))
2402                return ret;
2403#else
2404        if (arch_get_random_long((unsigned long *)&ret) &&
2405            arch_get_random_long((unsigned long *)&ret + 1))
2406            return ret;
2407#endif
2408
2409        warn_unseeded_randomness(&previous);
2410
2411        batch = raw_cpu_ptr(&batched_entropy_u64);
2412        spin_lock_irqsave(&batch->batch_lock, flags);
2413        if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2414                extract_crng((u8 *)batch->entropy_u64);
2415                batch->position = 0;
2416        }
2417        ret = batch->entropy_u64[batch->position++];
2418        spin_unlock_irqrestore(&batch->batch_lock, flags);
2419        return ret;
2420}
2421EXPORT_SYMBOL(get_random_u64);
2422
2423static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2424        .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2425};
2426u32 get_random_u32(void)
2427{
2428        u32 ret;
2429        unsigned long flags;
2430        struct batched_entropy *batch;
2431        static void *previous;
2432
2433        if (arch_get_random_int(&ret))
2434                return ret;
2435
2436        warn_unseeded_randomness(&previous);
2437
2438        batch = raw_cpu_ptr(&batched_entropy_u32);
2439        spin_lock_irqsave(&batch->batch_lock, flags);
2440        if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2441                extract_crng((u8 *)batch->entropy_u32);
2442                batch->position = 0;
2443        }
2444        ret = batch->entropy_u32[batch->position++];
2445        spin_unlock_irqrestore(&batch->batch_lock, flags);
2446        return ret;
2447}
2448EXPORT_SYMBOL(get_random_u32);
2449
2450/* It's important to invalidate all potential batched entropy that might
2451 * be stored before the crng is initialized, which we can do lazily by
2452 * simply resetting the counter to zero so that it's re-extracted on the
2453 * next usage. */
2454static void invalidate_batched_entropy(void)
2455{
2456        int cpu;
2457        unsigned long flags;
2458
2459        for_each_possible_cpu (cpu) {
2460                struct batched_entropy *batched_entropy;
2461
2462                batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2463                spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2464                batched_entropy->position = 0;
2465                spin_unlock(&batched_entropy->batch_lock);
2466
2467                batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2468                spin_lock(&batched_entropy->batch_lock);
2469                batched_entropy->position = 0;
2470                spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2471        }
2472}
2473
2474/**
2475 * randomize_page - Generate a random, page aligned address
2476 * @start:      The smallest acceptable address the caller will take.
2477 * @range:      The size of the area, starting at @start, within which the
2478 *              random address must fall.
2479 *
2480 * If @start + @range would overflow, @range is capped.
2481 *
2482 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2483 * @start was already page aligned.  We now align it regardless.
2484 *
2485 * Return: A page aligned address within [start, start + range).  On error,
2486 * @start is returned.
2487 */
2488unsigned long
2489randomize_page(unsigned long start, unsigned long range)
2490{
2491        if (!PAGE_ALIGNED(start)) {
2492                range -= PAGE_ALIGN(start) - start;
2493                start = PAGE_ALIGN(start);
2494        }
2495
2496        if (start > ULONG_MAX - range)
2497                range = ULONG_MAX - start;
2498
2499        range >>= PAGE_SHIFT;
2500
2501        if (range == 0)
2502                return start;
2503
2504        return start + (get_random_long() % range << PAGE_SHIFT);
2505}
2506
2507/* Interface for in-kernel drivers of true hardware RNGs.
2508 * Those devices may produce endless random bits and will be throttled
2509 * when our pool is full.
2510 */
2511void add_hwgenerator_randomness(const char *buffer, size_t count,
2512                                size_t entropy)
2513{
2514        struct entropy_store *poolp = &input_pool;
2515
2516        if (unlikely(crng_init == 0)) {
2517                crng_fast_load(buffer, count);
2518                return;
2519        }
2520
2521        /* Suspend writing if we're above the trickle threshold.
2522         * We'll be woken up again once below random_write_wakeup_thresh,
2523         * or when the calling thread is about to terminate.
2524         */
2525        wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2526                        ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2527        mix_pool_bytes(poolp, buffer, count);
2528        credit_entropy_bits(poolp, entropy);
2529}
2530EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2531
2532void random_register_extrng(const struct random_extrng *rng)
2533{
2534        rcu_assign_pointer(extrng, rng);
2535}
2536EXPORT_SYMBOL_GPL(random_register_extrng);
2537
2538void random_unregister_extrng(void)
2539{
2540        RCU_INIT_POINTER(extrng, NULL);
2541        synchronize_rcu();
2542}
2543EXPORT_SYMBOL_GPL(random_unregister_extrng);
2544