linux/drivers/clk/clk.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sched.h>
  26#include <linux/clkdev.h>
  27
  28#include "clk.h"
  29
  30static DEFINE_SPINLOCK(enable_lock);
  31static DEFINE_MUTEX(prepare_lock);
  32
  33static struct task_struct *prepare_owner;
  34static struct task_struct *enable_owner;
  35
  36static int prepare_refcnt;
  37static int enable_refcnt;
  38
  39static HLIST_HEAD(clk_root_list);
  40static HLIST_HEAD(clk_orphan_list);
  41static LIST_HEAD(clk_notifier_list);
  42
  43/***    private data structures    ***/
  44
  45struct clk_core {
  46        const char              *name;
  47        const struct clk_ops    *ops;
  48        struct clk_hw           *hw;
  49        struct module           *owner;
  50        struct device           *dev;
  51        struct clk_core         *parent;
  52        const char              **parent_names;
  53        struct clk_core         **parents;
  54        u8                      num_parents;
  55        u8                      new_parent_index;
  56        unsigned long           rate;
  57        unsigned long           req_rate;
  58        unsigned long           new_rate;
  59        struct clk_core         *new_parent;
  60        struct clk_core         *new_child;
  61        unsigned long           flags;
  62        bool                    orphan;
  63        unsigned int            enable_count;
  64        unsigned int            prepare_count;
  65        unsigned int            protect_count;
  66        unsigned long           min_rate;
  67        unsigned long           max_rate;
  68        unsigned long           accuracy;
  69        int                     phase;
  70        struct hlist_head       children;
  71        struct hlist_node       child_node;
  72        struct hlist_head       clks;
  73        unsigned int            notifier_count;
  74#ifdef CONFIG_DEBUG_FS
  75        struct dentry           *dentry;
  76        struct hlist_node       debug_node;
  77#endif
  78        struct kref             ref;
  79};
  80
  81#define CREATE_TRACE_POINTS
  82#include <trace/events/clk.h>
  83
  84struct clk {
  85        struct clk_core *core;
  86        const char *dev_id;
  87        const char *con_id;
  88        unsigned long min_rate;
  89        unsigned long max_rate;
  90        unsigned int exclusive_count;
  91        struct hlist_node clks_node;
  92};
  93
  94/***           runtime pm          ***/
  95static int clk_pm_runtime_get(struct clk_core *core)
  96{
  97        int ret = 0;
  98
  99        if (!core->dev)
 100                return 0;
 101
 102        ret = pm_runtime_get_sync(core->dev);
 103        return ret < 0 ? ret : 0;
 104}
 105
 106static void clk_pm_runtime_put(struct clk_core *core)
 107{
 108        if (!core->dev)
 109                return;
 110
 111        pm_runtime_put_sync(core->dev);
 112}
 113
 114/***           locking             ***/
 115static void clk_prepare_lock(void)
 116{
 117        if (!mutex_trylock(&prepare_lock)) {
 118                if (prepare_owner == current) {
 119                        prepare_refcnt++;
 120                        return;
 121                }
 122                mutex_lock(&prepare_lock);
 123        }
 124        WARN_ON_ONCE(prepare_owner != NULL);
 125        WARN_ON_ONCE(prepare_refcnt != 0);
 126        prepare_owner = current;
 127        prepare_refcnt = 1;
 128}
 129
 130static void clk_prepare_unlock(void)
 131{
 132        WARN_ON_ONCE(prepare_owner != current);
 133        WARN_ON_ONCE(prepare_refcnt == 0);
 134
 135        if (--prepare_refcnt)
 136                return;
 137        prepare_owner = NULL;
 138        mutex_unlock(&prepare_lock);
 139}
 140
 141static unsigned long clk_enable_lock(void)
 142        __acquires(enable_lock)
 143{
 144        unsigned long flags;
 145
 146        /*
 147         * On UP systems, spin_trylock_irqsave() always returns true, even if
 148         * we already hold the lock. So, in that case, we rely only on
 149         * reference counting.
 150         */
 151        if (!IS_ENABLED(CONFIG_SMP) ||
 152            !spin_trylock_irqsave(&enable_lock, flags)) {
 153                if (enable_owner == current) {
 154                        enable_refcnt++;
 155                        __acquire(enable_lock);
 156                        if (!IS_ENABLED(CONFIG_SMP))
 157                                local_save_flags(flags);
 158                        return flags;
 159                }
 160                spin_lock_irqsave(&enable_lock, flags);
 161        }
 162        WARN_ON_ONCE(enable_owner != NULL);
 163        WARN_ON_ONCE(enable_refcnt != 0);
 164        enable_owner = current;
 165        enable_refcnt = 1;
 166        return flags;
 167}
 168
 169static void clk_enable_unlock(unsigned long flags)
 170        __releases(enable_lock)
 171{
 172        WARN_ON_ONCE(enable_owner != current);
 173        WARN_ON_ONCE(enable_refcnt == 0);
 174
 175        if (--enable_refcnt) {
 176                __release(enable_lock);
 177                return;
 178        }
 179        enable_owner = NULL;
 180        spin_unlock_irqrestore(&enable_lock, flags);
 181}
 182
 183static bool clk_core_rate_is_protected(struct clk_core *core)
 184{
 185        return core->protect_count;
 186}
 187
 188static bool clk_core_is_prepared(struct clk_core *core)
 189{
 190        bool ret = false;
 191
 192        /*
 193         * .is_prepared is optional for clocks that can prepare
 194         * fall back to software usage counter if it is missing
 195         */
 196        if (!core->ops->is_prepared)
 197                return core->prepare_count;
 198
 199        if (!clk_pm_runtime_get(core)) {
 200                ret = core->ops->is_prepared(core->hw);
 201                clk_pm_runtime_put(core);
 202        }
 203
 204        return ret;
 205}
 206
 207static bool clk_core_is_enabled(struct clk_core *core)
 208{
 209        bool ret = false;
 210
 211        /*
 212         * .is_enabled is only mandatory for clocks that gate
 213         * fall back to software usage counter if .is_enabled is missing
 214         */
 215        if (!core->ops->is_enabled)
 216                return core->enable_count;
 217
 218        /*
 219         * Check if clock controller's device is runtime active before
 220         * calling .is_enabled callback. If not, assume that clock is
 221         * disabled, because we might be called from atomic context, from
 222         * which pm_runtime_get() is not allowed.
 223         * This function is called mainly from clk_disable_unused_subtree,
 224         * which ensures proper runtime pm activation of controller before
 225         * taking enable spinlock, but the below check is needed if one tries
 226         * to call it from other places.
 227         */
 228        if (core->dev) {
 229                pm_runtime_get_noresume(core->dev);
 230                if (!pm_runtime_active(core->dev)) {
 231                        ret = false;
 232                        goto done;
 233                }
 234        }
 235
 236        ret = core->ops->is_enabled(core->hw);
 237done:
 238        if (core->dev)
 239                pm_runtime_put(core->dev);
 240
 241        return ret;
 242}
 243
 244/***    helper functions   ***/
 245
 246const char *__clk_get_name(const struct clk *clk)
 247{
 248        return !clk ? NULL : clk->core->name;
 249}
 250EXPORT_SYMBOL_GPL(__clk_get_name);
 251
 252const char *clk_hw_get_name(const struct clk_hw *hw)
 253{
 254        return hw->core->name;
 255}
 256EXPORT_SYMBOL_GPL(clk_hw_get_name);
 257
 258struct clk_hw *__clk_get_hw(struct clk *clk)
 259{
 260        return !clk ? NULL : clk->core->hw;
 261}
 262EXPORT_SYMBOL_GPL(__clk_get_hw);
 263
 264unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 265{
 266        return hw->core->num_parents;
 267}
 268EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 269
 270struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 271{
 272        return hw->core->parent ? hw->core->parent->hw : NULL;
 273}
 274EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 275
 276static struct clk_core *__clk_lookup_subtree(const char *name,
 277                                             struct clk_core *core)
 278{
 279        struct clk_core *child;
 280        struct clk_core *ret;
 281
 282        if (!strcmp(core->name, name))
 283                return core;
 284
 285        hlist_for_each_entry(child, &core->children, child_node) {
 286                ret = __clk_lookup_subtree(name, child);
 287                if (ret)
 288                        return ret;
 289        }
 290
 291        return NULL;
 292}
 293
 294static struct clk_core *clk_core_lookup(const char *name)
 295{
 296        struct clk_core *root_clk;
 297        struct clk_core *ret;
 298
 299        if (!name)
 300                return NULL;
 301
 302        /* search the 'proper' clk tree first */
 303        hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 304                ret = __clk_lookup_subtree(name, root_clk);
 305                if (ret)
 306                        return ret;
 307        }
 308
 309        /* if not found, then search the orphan tree */
 310        hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 311                ret = __clk_lookup_subtree(name, root_clk);
 312                if (ret)
 313                        return ret;
 314        }
 315
 316        return NULL;
 317}
 318
 319static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 320                                                         u8 index)
 321{
 322        if (!core || index >= core->num_parents)
 323                return NULL;
 324
 325        if (!core->parents[index])
 326                core->parents[index] =
 327                                clk_core_lookup(core->parent_names[index]);
 328
 329        return core->parents[index];
 330}
 331
 332struct clk_hw *
 333clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 334{
 335        struct clk_core *parent;
 336
 337        parent = clk_core_get_parent_by_index(hw->core, index);
 338
 339        return !parent ? NULL : parent->hw;
 340}
 341EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 342
 343unsigned int __clk_get_enable_count(struct clk *clk)
 344{
 345        return !clk ? 0 : clk->core->enable_count;
 346}
 347
 348static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 349{
 350        unsigned long ret;
 351
 352        if (!core) {
 353                ret = 0;
 354                goto out;
 355        }
 356
 357        ret = core->rate;
 358
 359        if (!core->num_parents)
 360                goto out;
 361
 362        if (!core->parent)
 363                ret = 0;
 364
 365out:
 366        return ret;
 367}
 368
 369unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 370{
 371        return clk_core_get_rate_nolock(hw->core);
 372}
 373EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 374
 375static unsigned long __clk_get_accuracy(struct clk_core *core)
 376{
 377        if (!core)
 378                return 0;
 379
 380        return core->accuracy;
 381}
 382
 383unsigned long __clk_get_flags(struct clk *clk)
 384{
 385        return !clk ? 0 : clk->core->flags;
 386}
 387EXPORT_SYMBOL_GPL(__clk_get_flags);
 388
 389unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 390{
 391        return hw->core->flags;
 392}
 393EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 394
 395bool clk_hw_is_prepared(const struct clk_hw *hw)
 396{
 397        return clk_core_is_prepared(hw->core);
 398}
 399
 400bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 401{
 402        return clk_core_rate_is_protected(hw->core);
 403}
 404
 405bool clk_hw_is_enabled(const struct clk_hw *hw)
 406{
 407        return clk_core_is_enabled(hw->core);
 408}
 409
 410bool __clk_is_enabled(struct clk *clk)
 411{
 412        if (!clk)
 413                return false;
 414
 415        return clk_core_is_enabled(clk->core);
 416}
 417EXPORT_SYMBOL_GPL(__clk_is_enabled);
 418
 419static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 420                           unsigned long best, unsigned long flags)
 421{
 422        if (flags & CLK_MUX_ROUND_CLOSEST)
 423                return abs(now - rate) < abs(best - rate);
 424
 425        return now <= rate && now > best;
 426}
 427
 428int clk_mux_determine_rate_flags(struct clk_hw *hw,
 429                                 struct clk_rate_request *req,
 430                                 unsigned long flags)
 431{
 432        struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 433        int i, num_parents, ret;
 434        unsigned long best = 0;
 435        struct clk_rate_request parent_req = *req;
 436
 437        /* if NO_REPARENT flag set, pass through to current parent */
 438        if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 439                parent = core->parent;
 440                if (core->flags & CLK_SET_RATE_PARENT) {
 441                        ret = __clk_determine_rate(parent ? parent->hw : NULL,
 442                                                   &parent_req);
 443                        if (ret)
 444                                return ret;
 445
 446                        best = parent_req.rate;
 447                } else if (parent) {
 448                        best = clk_core_get_rate_nolock(parent);
 449                } else {
 450                        best = clk_core_get_rate_nolock(core);
 451                }
 452
 453                goto out;
 454        }
 455
 456        /* find the parent that can provide the fastest rate <= rate */
 457        num_parents = core->num_parents;
 458        for (i = 0; i < num_parents; i++) {
 459                parent = clk_core_get_parent_by_index(core, i);
 460                if (!parent)
 461                        continue;
 462
 463                if (core->flags & CLK_SET_RATE_PARENT) {
 464                        parent_req = *req;
 465                        ret = __clk_determine_rate(parent->hw, &parent_req);
 466                        if (ret)
 467                                continue;
 468                } else {
 469                        parent_req.rate = clk_core_get_rate_nolock(parent);
 470                }
 471
 472                if (mux_is_better_rate(req->rate, parent_req.rate,
 473                                       best, flags)) {
 474                        best_parent = parent;
 475                        best = parent_req.rate;
 476                }
 477        }
 478
 479        if (!best_parent)
 480                return -EINVAL;
 481
 482out:
 483        if (best_parent)
 484                req->best_parent_hw = best_parent->hw;
 485        req->best_parent_rate = best;
 486        req->rate = best;
 487
 488        return 0;
 489}
 490EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 491
 492struct clk *__clk_lookup(const char *name)
 493{
 494        struct clk_core *core = clk_core_lookup(name);
 495
 496        return !core ? NULL : core->hw->clk;
 497}
 498
 499static void clk_core_get_boundaries(struct clk_core *core,
 500                                    unsigned long *min_rate,
 501                                    unsigned long *max_rate)
 502{
 503        struct clk *clk_user;
 504
 505        *min_rate = core->min_rate;
 506        *max_rate = core->max_rate;
 507
 508        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 509                *min_rate = max(*min_rate, clk_user->min_rate);
 510
 511        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 512                *max_rate = min(*max_rate, clk_user->max_rate);
 513}
 514
 515void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 516                           unsigned long max_rate)
 517{
 518        hw->core->min_rate = min_rate;
 519        hw->core->max_rate = max_rate;
 520}
 521EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 522
 523/*
 524 * Helper for finding best parent to provide a given frequency. This can be used
 525 * directly as a determine_rate callback (e.g. for a mux), or from a more
 526 * complex clock that may combine a mux with other operations.
 527 */
 528int __clk_mux_determine_rate(struct clk_hw *hw,
 529                             struct clk_rate_request *req)
 530{
 531        return clk_mux_determine_rate_flags(hw, req, 0);
 532}
 533EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 534
 535int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 536                                     struct clk_rate_request *req)
 537{
 538        return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 539}
 540EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 541
 542/***        clk api        ***/
 543
 544static void clk_core_rate_unprotect(struct clk_core *core)
 545{
 546        lockdep_assert_held(&prepare_lock);
 547
 548        if (!core)
 549                return;
 550
 551        if (WARN(core->protect_count == 0,
 552            "%s already unprotected\n", core->name))
 553                return;
 554
 555        if (--core->protect_count > 0)
 556                return;
 557
 558        clk_core_rate_unprotect(core->parent);
 559}
 560
 561static int clk_core_rate_nuke_protect(struct clk_core *core)
 562{
 563        int ret;
 564
 565        lockdep_assert_held(&prepare_lock);
 566
 567        if (!core)
 568                return -EINVAL;
 569
 570        if (core->protect_count == 0)
 571                return 0;
 572
 573        ret = core->protect_count;
 574        core->protect_count = 1;
 575        clk_core_rate_unprotect(core);
 576
 577        return ret;
 578}
 579
 580/**
 581 * clk_rate_exclusive_put - release exclusivity over clock rate control
 582 * @clk: the clk over which the exclusivity is released
 583 *
 584 * clk_rate_exclusive_put() completes a critical section during which a clock
 585 * consumer cannot tolerate any other consumer making any operation on the
 586 * clock which could result in a rate change or rate glitch. Exclusive clocks
 587 * cannot have their rate changed, either directly or indirectly due to changes
 588 * further up the parent chain of clocks. As a result, clocks up parent chain
 589 * also get under exclusive control of the calling consumer.
 590 *
 591 * If exlusivity is claimed more than once on clock, even by the same consumer,
 592 * the rate effectively gets locked as exclusivity can't be preempted.
 593 *
 594 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 595 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 596 * error status.
 597 */
 598void clk_rate_exclusive_put(struct clk *clk)
 599{
 600        if (!clk)
 601                return;
 602
 603        clk_prepare_lock();
 604
 605        /*
 606         * if there is something wrong with this consumer protect count, stop
 607         * here before messing with the provider
 608         */
 609        if (WARN_ON(clk->exclusive_count <= 0))
 610                goto out;
 611
 612        clk_core_rate_unprotect(clk->core);
 613        clk->exclusive_count--;
 614out:
 615        clk_prepare_unlock();
 616}
 617EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 618
 619static void clk_core_rate_protect(struct clk_core *core)
 620{
 621        lockdep_assert_held(&prepare_lock);
 622
 623        if (!core)
 624                return;
 625
 626        if (core->protect_count == 0)
 627                clk_core_rate_protect(core->parent);
 628
 629        core->protect_count++;
 630}
 631
 632static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 633{
 634        lockdep_assert_held(&prepare_lock);
 635
 636        if (!core)
 637                return;
 638
 639        if (count == 0)
 640                return;
 641
 642        clk_core_rate_protect(core);
 643        core->protect_count = count;
 644}
 645
 646/**
 647 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 648 * @clk: the clk over which the exclusity of rate control is requested
 649 *
 650 * clk_rate_exlusive_get() begins a critical section during which a clock
 651 * consumer cannot tolerate any other consumer making any operation on the
 652 * clock which could result in a rate change or rate glitch. Exclusive clocks
 653 * cannot have their rate changed, either directly or indirectly due to changes
 654 * further up the parent chain of clocks. As a result, clocks up parent chain
 655 * also get under exclusive control of the calling consumer.
 656 *
 657 * If exlusivity is claimed more than once on clock, even by the same consumer,
 658 * the rate effectively gets locked as exclusivity can't be preempted.
 659 *
 660 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 661 * clk_rate_exclusive_put(). Calls to this function may sleep.
 662 * Returns 0 on success, -EERROR otherwise
 663 */
 664int clk_rate_exclusive_get(struct clk *clk)
 665{
 666        if (!clk)
 667                return 0;
 668
 669        clk_prepare_lock();
 670        clk_core_rate_protect(clk->core);
 671        clk->exclusive_count++;
 672        clk_prepare_unlock();
 673
 674        return 0;
 675}
 676EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 677
 678static void clk_core_unprepare(struct clk_core *core)
 679{
 680        lockdep_assert_held(&prepare_lock);
 681
 682        if (!core)
 683                return;
 684
 685        if (WARN(core->prepare_count == 0,
 686            "%s already unprepared\n", core->name))
 687                return;
 688
 689        if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 690            "Unpreparing critical %s\n", core->name))
 691                return;
 692
 693        if (--core->prepare_count > 0)
 694                return;
 695
 696        WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 697
 698        trace_clk_unprepare(core);
 699
 700        if (core->ops->unprepare)
 701                core->ops->unprepare(core->hw);
 702
 703        clk_pm_runtime_put(core);
 704
 705        trace_clk_unprepare_complete(core);
 706        clk_core_unprepare(core->parent);
 707}
 708
 709static void clk_core_unprepare_lock(struct clk_core *core)
 710{
 711        clk_prepare_lock();
 712        clk_core_unprepare(core);
 713        clk_prepare_unlock();
 714}
 715
 716/**
 717 * clk_unprepare - undo preparation of a clock source
 718 * @clk: the clk being unprepared
 719 *
 720 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 721 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 722 * if the operation may sleep.  One example is a clk which is accessed over
 723 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 724 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 725 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 726 */
 727void clk_unprepare(struct clk *clk)
 728{
 729        if (IS_ERR_OR_NULL(clk))
 730                return;
 731
 732        clk_core_unprepare_lock(clk->core);
 733}
 734EXPORT_SYMBOL_GPL(clk_unprepare);
 735
 736static int clk_core_prepare(struct clk_core *core)
 737{
 738        int ret = 0;
 739
 740        lockdep_assert_held(&prepare_lock);
 741
 742        if (!core)
 743                return 0;
 744
 745        if (core->prepare_count == 0) {
 746                ret = clk_pm_runtime_get(core);
 747                if (ret)
 748                        return ret;
 749
 750                ret = clk_core_prepare(core->parent);
 751                if (ret)
 752                        goto runtime_put;
 753
 754                trace_clk_prepare(core);
 755
 756                if (core->ops->prepare)
 757                        ret = core->ops->prepare(core->hw);
 758
 759                trace_clk_prepare_complete(core);
 760
 761                if (ret)
 762                        goto unprepare;
 763        }
 764
 765        core->prepare_count++;
 766
 767        return 0;
 768unprepare:
 769        clk_core_unprepare(core->parent);
 770runtime_put:
 771        clk_pm_runtime_put(core);
 772        return ret;
 773}
 774
 775static int clk_core_prepare_lock(struct clk_core *core)
 776{
 777        int ret;
 778
 779        clk_prepare_lock();
 780        ret = clk_core_prepare(core);
 781        clk_prepare_unlock();
 782
 783        return ret;
 784}
 785
 786/**
 787 * clk_prepare - prepare a clock source
 788 * @clk: the clk being prepared
 789 *
 790 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 791 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 792 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 793 * the complex case a clk ungate operation may require a fast and a slow part.
 794 * It is this reason that clk_prepare and clk_enable are not mutually
 795 * exclusive.  In fact clk_prepare must be called before clk_enable.
 796 * Returns 0 on success, -EERROR otherwise.
 797 */
 798int clk_prepare(struct clk *clk)
 799{
 800        if (!clk)
 801                return 0;
 802
 803        return clk_core_prepare_lock(clk->core);
 804}
 805EXPORT_SYMBOL_GPL(clk_prepare);
 806
 807static void clk_core_disable(struct clk_core *core)
 808{
 809        lockdep_assert_held(&enable_lock);
 810
 811        if (!core)
 812                return;
 813
 814        if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 815                return;
 816
 817        if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 818            "Disabling critical %s\n", core->name))
 819                return;
 820
 821        if (--core->enable_count > 0)
 822                return;
 823
 824        trace_clk_disable_rcuidle(core);
 825
 826        if (core->ops->disable)
 827                core->ops->disable(core->hw);
 828
 829        trace_clk_disable_complete_rcuidle(core);
 830
 831        clk_core_disable(core->parent);
 832}
 833
 834static void clk_core_disable_lock(struct clk_core *core)
 835{
 836        unsigned long flags;
 837
 838        flags = clk_enable_lock();
 839        clk_core_disable(core);
 840        clk_enable_unlock(flags);
 841}
 842
 843/**
 844 * clk_disable - gate a clock
 845 * @clk: the clk being gated
 846 *
 847 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 848 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 849 * clk if the operation is fast and will never sleep.  One example is a
 850 * SoC-internal clk which is controlled via simple register writes.  In the
 851 * complex case a clk gate operation may require a fast and a slow part.  It is
 852 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 853 * In fact clk_disable must be called before clk_unprepare.
 854 */
 855void clk_disable(struct clk *clk)
 856{
 857        if (IS_ERR_OR_NULL(clk))
 858                return;
 859
 860        clk_core_disable_lock(clk->core);
 861}
 862EXPORT_SYMBOL_GPL(clk_disable);
 863
 864static int clk_core_enable(struct clk_core *core)
 865{
 866        int ret = 0;
 867
 868        lockdep_assert_held(&enable_lock);
 869
 870        if (!core)
 871                return 0;
 872
 873        if (WARN(core->prepare_count == 0,
 874            "Enabling unprepared %s\n", core->name))
 875                return -ESHUTDOWN;
 876
 877        if (core->enable_count == 0) {
 878                ret = clk_core_enable(core->parent);
 879
 880                if (ret)
 881                        return ret;
 882
 883                trace_clk_enable_rcuidle(core);
 884
 885                if (core->ops->enable)
 886                        ret = core->ops->enable(core->hw);
 887
 888                trace_clk_enable_complete_rcuidle(core);
 889
 890                if (ret) {
 891                        clk_core_disable(core->parent);
 892                        return ret;
 893                }
 894        }
 895
 896        core->enable_count++;
 897        return 0;
 898}
 899
 900static int clk_core_enable_lock(struct clk_core *core)
 901{
 902        unsigned long flags;
 903        int ret;
 904
 905        flags = clk_enable_lock();
 906        ret = clk_core_enable(core);
 907        clk_enable_unlock(flags);
 908
 909        return ret;
 910}
 911
 912/**
 913 * clk_enable - ungate a clock
 914 * @clk: the clk being ungated
 915 *
 916 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 917 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 918 * if the operation will never sleep.  One example is a SoC-internal clk which
 919 * is controlled via simple register writes.  In the complex case a clk ungate
 920 * operation may require a fast and a slow part.  It is this reason that
 921 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 922 * must be called before clk_enable.  Returns 0 on success, -EERROR
 923 * otherwise.
 924 */
 925int clk_enable(struct clk *clk)
 926{
 927        if (!clk)
 928                return 0;
 929
 930        return clk_core_enable_lock(clk->core);
 931}
 932EXPORT_SYMBOL_GPL(clk_enable);
 933
 934static int clk_core_prepare_enable(struct clk_core *core)
 935{
 936        int ret;
 937
 938        ret = clk_core_prepare_lock(core);
 939        if (ret)
 940                return ret;
 941
 942        ret = clk_core_enable_lock(core);
 943        if (ret)
 944                clk_core_unprepare_lock(core);
 945
 946        return ret;
 947}
 948
 949static void clk_core_disable_unprepare(struct clk_core *core)
 950{
 951        clk_core_disable_lock(core);
 952        clk_core_unprepare_lock(core);
 953}
 954
 955static void clk_unprepare_unused_subtree(struct clk_core *core)
 956{
 957        struct clk_core *child;
 958
 959        lockdep_assert_held(&prepare_lock);
 960
 961        hlist_for_each_entry(child, &core->children, child_node)
 962                clk_unprepare_unused_subtree(child);
 963
 964        if (core->prepare_count)
 965                return;
 966
 967        if (core->flags & CLK_IGNORE_UNUSED)
 968                return;
 969
 970        if (clk_pm_runtime_get(core))
 971                return;
 972
 973        if (clk_core_is_prepared(core)) {
 974                trace_clk_unprepare(core);
 975                if (core->ops->unprepare_unused)
 976                        core->ops->unprepare_unused(core->hw);
 977                else if (core->ops->unprepare)
 978                        core->ops->unprepare(core->hw);
 979                trace_clk_unprepare_complete(core);
 980        }
 981
 982        clk_pm_runtime_put(core);
 983}
 984
 985static void clk_disable_unused_subtree(struct clk_core *core)
 986{
 987        struct clk_core *child;
 988        unsigned long flags;
 989
 990        lockdep_assert_held(&prepare_lock);
 991
 992        hlist_for_each_entry(child, &core->children, child_node)
 993                clk_disable_unused_subtree(child);
 994
 995        if (core->flags & CLK_OPS_PARENT_ENABLE)
 996                clk_core_prepare_enable(core->parent);
 997
 998        if (clk_pm_runtime_get(core))
 999                goto unprepare_out;
1000
1001        flags = clk_enable_lock();
1002
1003        if (core->enable_count)
1004                goto unlock_out;
1005
1006        if (core->flags & CLK_IGNORE_UNUSED)
1007                goto unlock_out;
1008
1009        /*
1010         * some gate clocks have special needs during the disable-unused
1011         * sequence.  call .disable_unused if available, otherwise fall
1012         * back to .disable
1013         */
1014        if (clk_core_is_enabled(core)) {
1015                trace_clk_disable(core);
1016                if (core->ops->disable_unused)
1017                        core->ops->disable_unused(core->hw);
1018                else if (core->ops->disable)
1019                        core->ops->disable(core->hw);
1020                trace_clk_disable_complete(core);
1021        }
1022
1023unlock_out:
1024        clk_enable_unlock(flags);
1025        clk_pm_runtime_put(core);
1026unprepare_out:
1027        if (core->flags & CLK_OPS_PARENT_ENABLE)
1028                clk_core_disable_unprepare(core->parent);
1029}
1030
1031static bool clk_ignore_unused;
1032static int __init clk_ignore_unused_setup(char *__unused)
1033{
1034        clk_ignore_unused = true;
1035        return 1;
1036}
1037__setup("clk_ignore_unused", clk_ignore_unused_setup);
1038
1039static int clk_disable_unused(void)
1040{
1041        struct clk_core *core;
1042
1043        if (clk_ignore_unused) {
1044                pr_warn("clk: Not disabling unused clocks\n");
1045                return 0;
1046        }
1047
1048        clk_prepare_lock();
1049
1050        hlist_for_each_entry(core, &clk_root_list, child_node)
1051                clk_disable_unused_subtree(core);
1052
1053        hlist_for_each_entry(core, &clk_orphan_list, child_node)
1054                clk_disable_unused_subtree(core);
1055
1056        hlist_for_each_entry(core, &clk_root_list, child_node)
1057                clk_unprepare_unused_subtree(core);
1058
1059        hlist_for_each_entry(core, &clk_orphan_list, child_node)
1060                clk_unprepare_unused_subtree(core);
1061
1062        clk_prepare_unlock();
1063
1064        return 0;
1065}
1066late_initcall_sync(clk_disable_unused);
1067
1068static int clk_core_determine_round_nolock(struct clk_core *core,
1069                                           struct clk_rate_request *req)
1070{
1071        long rate;
1072
1073        lockdep_assert_held(&prepare_lock);
1074
1075        if (!core)
1076                return 0;
1077
1078        /*
1079         * At this point, core protection will be disabled if
1080         * - if the provider is not protected at all
1081         * - if the calling consumer is the only one which has exclusivity
1082         *   over the provider
1083         */
1084        if (clk_core_rate_is_protected(core)) {
1085                req->rate = core->rate;
1086        } else if (core->ops->determine_rate) {
1087                return core->ops->determine_rate(core->hw, req);
1088        } else if (core->ops->round_rate) {
1089                rate = core->ops->round_rate(core->hw, req->rate,
1090                                             &req->best_parent_rate);
1091                if (rate < 0)
1092                        return rate;
1093
1094                req->rate = rate;
1095        } else {
1096                return -EINVAL;
1097        }
1098
1099        return 0;
1100}
1101
1102static void clk_core_init_rate_req(struct clk_core * const core,
1103                                   struct clk_rate_request *req)
1104{
1105        struct clk_core *parent;
1106
1107        if (WARN_ON(!core || !req))
1108                return;
1109
1110        parent = core->parent;
1111        if (parent) {
1112                req->best_parent_hw = parent->hw;
1113                req->best_parent_rate = parent->rate;
1114        } else {
1115                req->best_parent_hw = NULL;
1116                req->best_parent_rate = 0;
1117        }
1118}
1119
1120static bool clk_core_can_round(struct clk_core * const core)
1121{
1122        if (core->ops->determine_rate || core->ops->round_rate)
1123                return true;
1124
1125        return false;
1126}
1127
1128static int clk_core_round_rate_nolock(struct clk_core *core,
1129                                      struct clk_rate_request *req)
1130{
1131        lockdep_assert_held(&prepare_lock);
1132
1133        if (!core) {
1134                req->rate = 0;
1135                return 0;
1136        }
1137
1138        clk_core_init_rate_req(core, req);
1139
1140        if (clk_core_can_round(core))
1141                return clk_core_determine_round_nolock(core, req);
1142        else if (core->flags & CLK_SET_RATE_PARENT)
1143                return clk_core_round_rate_nolock(core->parent, req);
1144
1145        req->rate = core->rate;
1146        return 0;
1147}
1148
1149/**
1150 * __clk_determine_rate - get the closest rate actually supported by a clock
1151 * @hw: determine the rate of this clock
1152 * @req: target rate request
1153 *
1154 * Useful for clk_ops such as .set_rate and .determine_rate.
1155 */
1156int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1157{
1158        if (!hw) {
1159                req->rate = 0;
1160                return 0;
1161        }
1162
1163        return clk_core_round_rate_nolock(hw->core, req);
1164}
1165EXPORT_SYMBOL_GPL(__clk_determine_rate);
1166
1167unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1168{
1169        int ret;
1170        struct clk_rate_request req;
1171
1172        clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1173        req.rate = rate;
1174
1175        ret = clk_core_round_rate_nolock(hw->core, &req);
1176        if (ret)
1177                return 0;
1178
1179        return req.rate;
1180}
1181EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1182
1183/**
1184 * clk_round_rate - round the given rate for a clk
1185 * @clk: the clk for which we are rounding a rate
1186 * @rate: the rate which is to be rounded
1187 *
1188 * Takes in a rate as input and rounds it to a rate that the clk can actually
1189 * use which is then returned.  If clk doesn't support round_rate operation
1190 * then the parent rate is returned.
1191 */
1192long clk_round_rate(struct clk *clk, unsigned long rate)
1193{
1194        struct clk_rate_request req;
1195        int ret;
1196
1197        if (!clk)
1198                return 0;
1199
1200        clk_prepare_lock();
1201
1202        if (clk->exclusive_count)
1203                clk_core_rate_unprotect(clk->core);
1204
1205        clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1206        req.rate = rate;
1207
1208        ret = clk_core_round_rate_nolock(clk->core, &req);
1209
1210        if (clk->exclusive_count)
1211                clk_core_rate_protect(clk->core);
1212
1213        clk_prepare_unlock();
1214
1215        if (ret)
1216                return ret;
1217
1218        return req.rate;
1219}
1220EXPORT_SYMBOL_GPL(clk_round_rate);
1221
1222/**
1223 * __clk_notify - call clk notifier chain
1224 * @core: clk that is changing rate
1225 * @msg: clk notifier type (see include/linux/clk.h)
1226 * @old_rate: old clk rate
1227 * @new_rate: new clk rate
1228 *
1229 * Triggers a notifier call chain on the clk rate-change notification
1230 * for 'clk'.  Passes a pointer to the struct clk and the previous
1231 * and current rates to the notifier callback.  Intended to be called by
1232 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1233 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1234 * a driver returns that.
1235 */
1236static int __clk_notify(struct clk_core *core, unsigned long msg,
1237                unsigned long old_rate, unsigned long new_rate)
1238{
1239        struct clk_notifier *cn;
1240        struct clk_notifier_data cnd;
1241        int ret = NOTIFY_DONE;
1242
1243        cnd.old_rate = old_rate;
1244        cnd.new_rate = new_rate;
1245
1246        list_for_each_entry(cn, &clk_notifier_list, node) {
1247                if (cn->clk->core == core) {
1248                        cnd.clk = cn->clk;
1249                        ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1250                                        &cnd);
1251                        if (ret & NOTIFY_STOP_MASK)
1252                                return ret;
1253                }
1254        }
1255
1256        return ret;
1257}
1258
1259/**
1260 * __clk_recalc_accuracies
1261 * @core: first clk in the subtree
1262 *
1263 * Walks the subtree of clks starting with clk and recalculates accuracies as
1264 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1265 * callback then it is assumed that the clock will take on the accuracy of its
1266 * parent.
1267 */
1268static void __clk_recalc_accuracies(struct clk_core *core)
1269{
1270        unsigned long parent_accuracy = 0;
1271        struct clk_core *child;
1272
1273        lockdep_assert_held(&prepare_lock);
1274
1275        if (core->parent)
1276                parent_accuracy = core->parent->accuracy;
1277
1278        if (core->ops->recalc_accuracy)
1279                core->accuracy = core->ops->recalc_accuracy(core->hw,
1280                                                          parent_accuracy);
1281        else
1282                core->accuracy = parent_accuracy;
1283
1284        hlist_for_each_entry(child, &core->children, child_node)
1285                __clk_recalc_accuracies(child);
1286}
1287
1288static long clk_core_get_accuracy(struct clk_core *core)
1289{
1290        unsigned long accuracy;
1291
1292        clk_prepare_lock();
1293        if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1294                __clk_recalc_accuracies(core);
1295
1296        accuracy = __clk_get_accuracy(core);
1297        clk_prepare_unlock();
1298
1299        return accuracy;
1300}
1301
1302/**
1303 * clk_get_accuracy - return the accuracy of clk
1304 * @clk: the clk whose accuracy is being returned
1305 *
1306 * Simply returns the cached accuracy of the clk, unless
1307 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1308 * issued.
1309 * If clk is NULL then returns 0.
1310 */
1311long clk_get_accuracy(struct clk *clk)
1312{
1313        if (!clk)
1314                return 0;
1315
1316        return clk_core_get_accuracy(clk->core);
1317}
1318EXPORT_SYMBOL_GPL(clk_get_accuracy);
1319
1320static unsigned long clk_recalc(struct clk_core *core,
1321                                unsigned long parent_rate)
1322{
1323        unsigned long rate = parent_rate;
1324
1325        if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1326                rate = core->ops->recalc_rate(core->hw, parent_rate);
1327                clk_pm_runtime_put(core);
1328        }
1329        return rate;
1330}
1331
1332/**
1333 * __clk_recalc_rates
1334 * @core: first clk in the subtree
1335 * @msg: notification type (see include/linux/clk.h)
1336 *
1337 * Walks the subtree of clks starting with clk and recalculates rates as it
1338 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1339 * it is assumed that the clock will take on the rate of its parent.
1340 *
1341 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1342 * if necessary.
1343 */
1344static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1345{
1346        unsigned long old_rate;
1347        unsigned long parent_rate = 0;
1348        struct clk_core *child;
1349
1350        lockdep_assert_held(&prepare_lock);
1351
1352        old_rate = core->rate;
1353
1354        if (core->parent)
1355                parent_rate = core->parent->rate;
1356
1357        core->rate = clk_recalc(core, parent_rate);
1358
1359        /*
1360         * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1361         * & ABORT_RATE_CHANGE notifiers
1362         */
1363        if (core->notifier_count && msg)
1364                __clk_notify(core, msg, old_rate, core->rate);
1365
1366        hlist_for_each_entry(child, &core->children, child_node)
1367                __clk_recalc_rates(child, msg);
1368}
1369
1370static unsigned long clk_core_get_rate(struct clk_core *core)
1371{
1372        unsigned long rate;
1373
1374        clk_prepare_lock();
1375
1376        if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1377                __clk_recalc_rates(core, 0);
1378
1379        rate = clk_core_get_rate_nolock(core);
1380        clk_prepare_unlock();
1381
1382        return rate;
1383}
1384
1385/**
1386 * clk_get_rate - return the rate of clk
1387 * @clk: the clk whose rate is being returned
1388 *
1389 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1390 * is set, which means a recalc_rate will be issued.
1391 * If clk is NULL then returns 0.
1392 */
1393unsigned long clk_get_rate(struct clk *clk)
1394{
1395        if (!clk)
1396                return 0;
1397
1398        return clk_core_get_rate(clk->core);
1399}
1400EXPORT_SYMBOL_GPL(clk_get_rate);
1401
1402static int clk_fetch_parent_index(struct clk_core *core,
1403                                  struct clk_core *parent)
1404{
1405        int i;
1406
1407        if (!parent)
1408                return -EINVAL;
1409
1410        for (i = 0; i < core->num_parents; i++)
1411                if (clk_core_get_parent_by_index(core, i) == parent)
1412                        return i;
1413
1414        return -EINVAL;
1415}
1416
1417/*
1418 * Update the orphan status of @core and all its children.
1419 */
1420static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1421{
1422        struct clk_core *child;
1423
1424        core->orphan = is_orphan;
1425
1426        hlist_for_each_entry(child, &core->children, child_node)
1427                clk_core_update_orphan_status(child, is_orphan);
1428}
1429
1430static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1431{
1432        bool was_orphan = core->orphan;
1433
1434        hlist_del(&core->child_node);
1435
1436        if (new_parent) {
1437                bool becomes_orphan = new_parent->orphan;
1438
1439                /* avoid duplicate POST_RATE_CHANGE notifications */
1440                if (new_parent->new_child == core)
1441                        new_parent->new_child = NULL;
1442
1443                hlist_add_head(&core->child_node, &new_parent->children);
1444
1445                if (was_orphan != becomes_orphan)
1446                        clk_core_update_orphan_status(core, becomes_orphan);
1447        } else {
1448                hlist_add_head(&core->child_node, &clk_orphan_list);
1449                if (!was_orphan)
1450                        clk_core_update_orphan_status(core, true);
1451        }
1452
1453        core->parent = new_parent;
1454}
1455
1456static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1457                                           struct clk_core *parent)
1458{
1459        unsigned long flags;
1460        struct clk_core *old_parent = core->parent;
1461
1462        /*
1463         * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1464         *
1465         * 2. Migrate prepare state between parents and prevent race with
1466         * clk_enable().
1467         *
1468         * If the clock is not prepared, then a race with
1469         * clk_enable/disable() is impossible since we already have the
1470         * prepare lock (future calls to clk_enable() need to be preceded by
1471         * a clk_prepare()).
1472         *
1473         * If the clock is prepared, migrate the prepared state to the new
1474         * parent and also protect against a race with clk_enable() by
1475         * forcing the clock and the new parent on.  This ensures that all
1476         * future calls to clk_enable() are practically NOPs with respect to
1477         * hardware and software states.
1478         *
1479         * See also: Comment for clk_set_parent() below.
1480         */
1481
1482        /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1483        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1484                clk_core_prepare_enable(old_parent);
1485                clk_core_prepare_enable(parent);
1486        }
1487
1488        /* migrate prepare count if > 0 */
1489        if (core->prepare_count) {
1490                clk_core_prepare_enable(parent);
1491                clk_core_enable_lock(core);
1492        }
1493
1494        /* update the clk tree topology */
1495        flags = clk_enable_lock();
1496        clk_reparent(core, parent);
1497        clk_enable_unlock(flags);
1498
1499        return old_parent;
1500}
1501
1502static void __clk_set_parent_after(struct clk_core *core,
1503                                   struct clk_core *parent,
1504                                   struct clk_core *old_parent)
1505{
1506        /*
1507         * Finish the migration of prepare state and undo the changes done
1508         * for preventing a race with clk_enable().
1509         */
1510        if (core->prepare_count) {
1511                clk_core_disable_lock(core);
1512                clk_core_disable_unprepare(old_parent);
1513        }
1514
1515        /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1516        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1517                clk_core_disable_unprepare(parent);
1518                clk_core_disable_unprepare(old_parent);
1519        }
1520}
1521
1522static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1523                            u8 p_index)
1524{
1525        unsigned long flags;
1526        int ret = 0;
1527        struct clk_core *old_parent;
1528
1529        old_parent = __clk_set_parent_before(core, parent);
1530
1531        trace_clk_set_parent(core, parent);
1532
1533        /* change clock input source */
1534        if (parent && core->ops->set_parent)
1535                ret = core->ops->set_parent(core->hw, p_index);
1536
1537        trace_clk_set_parent_complete(core, parent);
1538
1539        if (ret) {
1540                flags = clk_enable_lock();
1541                clk_reparent(core, old_parent);
1542                clk_enable_unlock(flags);
1543                __clk_set_parent_after(core, old_parent, parent);
1544
1545                return ret;
1546        }
1547
1548        __clk_set_parent_after(core, parent, old_parent);
1549
1550        return 0;
1551}
1552
1553/**
1554 * __clk_speculate_rates
1555 * @core: first clk in the subtree
1556 * @parent_rate: the "future" rate of clk's parent
1557 *
1558 * Walks the subtree of clks starting with clk, speculating rates as it
1559 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1560 *
1561 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1562 * pre-rate change notifications and returns early if no clks in the
1563 * subtree have subscribed to the notifications.  Note that if a clk does not
1564 * implement the .recalc_rate callback then it is assumed that the clock will
1565 * take on the rate of its parent.
1566 */
1567static int __clk_speculate_rates(struct clk_core *core,
1568                                 unsigned long parent_rate)
1569{
1570        struct clk_core *child;
1571        unsigned long new_rate;
1572        int ret = NOTIFY_DONE;
1573
1574        lockdep_assert_held(&prepare_lock);
1575
1576        new_rate = clk_recalc(core, parent_rate);
1577
1578        /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1579        if (core->notifier_count)
1580                ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1581
1582        if (ret & NOTIFY_STOP_MASK) {
1583                pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1584                                __func__, core->name, ret);
1585                goto out;
1586        }
1587
1588        hlist_for_each_entry(child, &core->children, child_node) {
1589                ret = __clk_speculate_rates(child, new_rate);
1590                if (ret & NOTIFY_STOP_MASK)
1591                        break;
1592        }
1593
1594out:
1595        return ret;
1596}
1597
1598static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1599                             struct clk_core *new_parent, u8 p_index)
1600{
1601        struct clk_core *child;
1602
1603        core->new_rate = new_rate;
1604        core->new_parent = new_parent;
1605        core->new_parent_index = p_index;
1606        /* include clk in new parent's PRE_RATE_CHANGE notifications */
1607        core->new_child = NULL;
1608        if (new_parent && new_parent != core->parent)
1609                new_parent->new_child = core;
1610
1611        hlist_for_each_entry(child, &core->children, child_node) {
1612                child->new_rate = clk_recalc(child, new_rate);
1613                clk_calc_subtree(child, child->new_rate, NULL, 0);
1614        }
1615}
1616
1617/*
1618 * calculate the new rates returning the topmost clock that has to be
1619 * changed.
1620 */
1621static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1622                                           unsigned long rate)
1623{
1624        struct clk_core *top = core;
1625        struct clk_core *old_parent, *parent;
1626        unsigned long best_parent_rate = 0;
1627        unsigned long new_rate;
1628        unsigned long min_rate;
1629        unsigned long max_rate;
1630        int p_index = 0;
1631        long ret;
1632
1633        /* sanity */
1634        if (IS_ERR_OR_NULL(core))
1635                return NULL;
1636
1637        /* save parent rate, if it exists */
1638        parent = old_parent = core->parent;
1639        if (parent)
1640                best_parent_rate = parent->rate;
1641
1642        clk_core_get_boundaries(core, &min_rate, &max_rate);
1643
1644        /* find the closest rate and parent clk/rate */
1645        if (clk_core_can_round(core)) {
1646                struct clk_rate_request req;
1647
1648                req.rate = rate;
1649                req.min_rate = min_rate;
1650                req.max_rate = max_rate;
1651
1652                clk_core_init_rate_req(core, &req);
1653
1654                ret = clk_core_determine_round_nolock(core, &req);
1655                if (ret < 0)
1656                        return NULL;
1657
1658                best_parent_rate = req.best_parent_rate;
1659                new_rate = req.rate;
1660                parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1661
1662                if (new_rate < min_rate || new_rate > max_rate)
1663                        return NULL;
1664        } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1665                /* pass-through clock without adjustable parent */
1666                core->new_rate = core->rate;
1667                return NULL;
1668        } else {
1669                /* pass-through clock with adjustable parent */
1670                top = clk_calc_new_rates(parent, rate);
1671                new_rate = parent->new_rate;
1672                goto out;
1673        }
1674
1675        /* some clocks must be gated to change parent */
1676        if (parent != old_parent &&
1677            (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1678                pr_debug("%s: %s not gated but wants to reparent\n",
1679                         __func__, core->name);
1680                return NULL;
1681        }
1682
1683        /* try finding the new parent index */
1684        if (parent && core->num_parents > 1) {
1685                p_index = clk_fetch_parent_index(core, parent);
1686                if (p_index < 0) {
1687                        pr_debug("%s: clk %s can not be parent of clk %s\n",
1688                                 __func__, parent->name, core->name);
1689                        return NULL;
1690                }
1691        }
1692
1693        if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1694            best_parent_rate != parent->rate)
1695                top = clk_calc_new_rates(parent, best_parent_rate);
1696
1697out:
1698        clk_calc_subtree(core, new_rate, parent, p_index);
1699
1700        return top;
1701}
1702
1703/*
1704 * Notify about rate changes in a subtree. Always walk down the whole tree
1705 * so that in case of an error we can walk down the whole tree again and
1706 * abort the change.
1707 */
1708static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1709                                                  unsigned long event)
1710{
1711        struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1712        int ret = NOTIFY_DONE;
1713
1714        if (core->rate == core->new_rate)
1715                return NULL;
1716
1717        if (core->notifier_count) {
1718                ret = __clk_notify(core, event, core->rate, core->new_rate);
1719                if (ret & NOTIFY_STOP_MASK)
1720                        fail_clk = core;
1721        }
1722
1723        hlist_for_each_entry(child, &core->children, child_node) {
1724                /* Skip children who will be reparented to another clock */
1725                if (child->new_parent && child->new_parent != core)
1726                        continue;
1727                tmp_clk = clk_propagate_rate_change(child, event);
1728                if (tmp_clk)
1729                        fail_clk = tmp_clk;
1730        }
1731
1732        /* handle the new child who might not be in core->children yet */
1733        if (core->new_child) {
1734                tmp_clk = clk_propagate_rate_change(core->new_child, event);
1735                if (tmp_clk)
1736                        fail_clk = tmp_clk;
1737        }
1738
1739        return fail_clk;
1740}
1741
1742/*
1743 * walk down a subtree and set the new rates notifying the rate
1744 * change on the way
1745 */
1746static void clk_change_rate(struct clk_core *core)
1747{
1748        struct clk_core *child;
1749        struct hlist_node *tmp;
1750        unsigned long old_rate;
1751        unsigned long best_parent_rate = 0;
1752        bool skip_set_rate = false;
1753        struct clk_core *old_parent;
1754        struct clk_core *parent = NULL;
1755
1756        old_rate = core->rate;
1757
1758        if (core->new_parent) {
1759                parent = core->new_parent;
1760                best_parent_rate = core->new_parent->rate;
1761        } else if (core->parent) {
1762                parent = core->parent;
1763                best_parent_rate = core->parent->rate;
1764        }
1765
1766        if (clk_pm_runtime_get(core))
1767                return;
1768
1769        if (core->flags & CLK_SET_RATE_UNGATE) {
1770                unsigned long flags;
1771
1772                clk_core_prepare(core);
1773                flags = clk_enable_lock();
1774                clk_core_enable(core);
1775                clk_enable_unlock(flags);
1776        }
1777
1778        if (core->new_parent && core->new_parent != core->parent) {
1779                old_parent = __clk_set_parent_before(core, core->new_parent);
1780                trace_clk_set_parent(core, core->new_parent);
1781
1782                if (core->ops->set_rate_and_parent) {
1783                        skip_set_rate = true;
1784                        core->ops->set_rate_and_parent(core->hw, core->new_rate,
1785                                        best_parent_rate,
1786                                        core->new_parent_index);
1787                } else if (core->ops->set_parent) {
1788                        core->ops->set_parent(core->hw, core->new_parent_index);
1789                }
1790
1791                trace_clk_set_parent_complete(core, core->new_parent);
1792                __clk_set_parent_after(core, core->new_parent, old_parent);
1793        }
1794
1795        if (core->flags & CLK_OPS_PARENT_ENABLE)
1796                clk_core_prepare_enable(parent);
1797
1798        trace_clk_set_rate(core, core->new_rate);
1799
1800        if (!skip_set_rate && core->ops->set_rate)
1801                core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1802
1803        trace_clk_set_rate_complete(core, core->new_rate);
1804
1805        core->rate = clk_recalc(core, best_parent_rate);
1806
1807        if (core->flags & CLK_SET_RATE_UNGATE) {
1808                unsigned long flags;
1809
1810                flags = clk_enable_lock();
1811                clk_core_disable(core);
1812                clk_enable_unlock(flags);
1813                clk_core_unprepare(core);
1814        }
1815
1816        if (core->flags & CLK_OPS_PARENT_ENABLE)
1817                clk_core_disable_unprepare(parent);
1818
1819        if (core->notifier_count && old_rate != core->rate)
1820                __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1821
1822        if (core->flags & CLK_RECALC_NEW_RATES)
1823                (void)clk_calc_new_rates(core, core->new_rate);
1824
1825        /*
1826         * Use safe iteration, as change_rate can actually swap parents
1827         * for certain clock types.
1828         */
1829        hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1830                /* Skip children who will be reparented to another clock */
1831                if (child->new_parent && child->new_parent != core)
1832                        continue;
1833                clk_change_rate(child);
1834        }
1835
1836        /* handle the new child who might not be in core->children yet */
1837        if (core->new_child)
1838                clk_change_rate(core->new_child);
1839
1840        clk_pm_runtime_put(core);
1841}
1842
1843static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1844                                                     unsigned long req_rate)
1845{
1846        int ret, cnt;
1847        struct clk_rate_request req;
1848
1849        lockdep_assert_held(&prepare_lock);
1850
1851        if (!core)
1852                return 0;
1853
1854        /* simulate what the rate would be if it could be freely set */
1855        cnt = clk_core_rate_nuke_protect(core);
1856        if (cnt < 0)
1857                return cnt;
1858
1859        clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1860        req.rate = req_rate;
1861
1862        ret = clk_core_round_rate_nolock(core, &req);
1863
1864        /* restore the protection */
1865        clk_core_rate_restore_protect(core, cnt);
1866
1867        return ret ? 0 : req.rate;
1868}
1869
1870static int clk_core_set_rate_nolock(struct clk_core *core,
1871                                    unsigned long req_rate)
1872{
1873        struct clk_core *top, *fail_clk;
1874        unsigned long rate;
1875        int ret = 0;
1876
1877        if (!core)
1878                return 0;
1879
1880        rate = clk_core_req_round_rate_nolock(core, req_rate);
1881
1882        /* bail early if nothing to do */
1883        if (rate == clk_core_get_rate_nolock(core))
1884                return 0;
1885
1886        /* fail on a direct rate set of a protected provider */
1887        if (clk_core_rate_is_protected(core))
1888                return -EBUSY;
1889
1890        if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1891                return -EBUSY;
1892
1893        /* calculate new rates and get the topmost changed clock */
1894        top = clk_calc_new_rates(core, req_rate);
1895        if (!top)
1896                return -EINVAL;
1897
1898        ret = clk_pm_runtime_get(core);
1899        if (ret)
1900                return ret;
1901
1902        /* notify that we are about to change rates */
1903        fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1904        if (fail_clk) {
1905                pr_debug("%s: failed to set %s rate\n", __func__,
1906                                fail_clk->name);
1907                clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1908                ret = -EBUSY;
1909                goto err;
1910        }
1911
1912        /* change the rates */
1913        clk_change_rate(top);
1914
1915        core->req_rate = req_rate;
1916err:
1917        clk_pm_runtime_put(core);
1918
1919        return ret;
1920}
1921
1922/**
1923 * clk_set_rate - specify a new rate for clk
1924 * @clk: the clk whose rate is being changed
1925 * @rate: the new rate for clk
1926 *
1927 * In the simplest case clk_set_rate will only adjust the rate of clk.
1928 *
1929 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1930 * propagate up to clk's parent; whether or not this happens depends on the
1931 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1932 * after calling .round_rate then upstream parent propagation is ignored.  If
1933 * *parent_rate comes back with a new rate for clk's parent then we propagate
1934 * up to clk's parent and set its rate.  Upward propagation will continue
1935 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1936 * .round_rate stops requesting changes to clk's parent_rate.
1937 *
1938 * Rate changes are accomplished via tree traversal that also recalculates the
1939 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1940 *
1941 * Returns 0 on success, -EERROR otherwise.
1942 */
1943int clk_set_rate(struct clk *clk, unsigned long rate)
1944{
1945        int ret;
1946
1947        if (!clk)
1948                return 0;
1949
1950        /* prevent racing with updates to the clock topology */
1951        clk_prepare_lock();
1952
1953        if (clk->exclusive_count)
1954                clk_core_rate_unprotect(clk->core);
1955
1956        ret = clk_core_set_rate_nolock(clk->core, rate);
1957
1958        if (clk->exclusive_count)
1959                clk_core_rate_protect(clk->core);
1960
1961        clk_prepare_unlock();
1962
1963        return ret;
1964}
1965EXPORT_SYMBOL_GPL(clk_set_rate);
1966
1967/**
1968 * clk_set_rate_exclusive - specify a new rate get exclusive control
1969 * @clk: the clk whose rate is being changed
1970 * @rate: the new rate for clk
1971 *
1972 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1973 * within a critical section
1974 *
1975 * This can be used initially to ensure that at least 1 consumer is
1976 * statisfied when several consumers are competing for exclusivity over the
1977 * same clock provider.
1978 *
1979 * The exclusivity is not applied if setting the rate failed.
1980 *
1981 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1982 * clk_rate_exclusive_put().
1983 *
1984 * Returns 0 on success, -EERROR otherwise.
1985 */
1986int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1987{
1988        int ret;
1989
1990        if (!clk)
1991                return 0;
1992
1993        /* prevent racing with updates to the clock topology */
1994        clk_prepare_lock();
1995
1996        /*
1997         * The temporary protection removal is not here, on purpose
1998         * This function is meant to be used instead of clk_rate_protect,
1999         * so before the consumer code path protect the clock provider
2000         */
2001
2002        ret = clk_core_set_rate_nolock(clk->core, rate);
2003        if (!ret) {
2004                clk_core_rate_protect(clk->core);
2005                clk->exclusive_count++;
2006        }
2007
2008        clk_prepare_unlock();
2009
2010        return ret;
2011}
2012EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2013
2014/**
2015 * clk_set_rate_range - set a rate range for a clock source
2016 * @clk: clock source
2017 * @min: desired minimum clock rate in Hz, inclusive
2018 * @max: desired maximum clock rate in Hz, inclusive
2019 *
2020 * Returns success (0) or negative errno.
2021 */
2022int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2023{
2024        int ret = 0;
2025        unsigned long old_min, old_max, rate;
2026
2027        if (!clk)
2028                return 0;
2029
2030        if (min > max) {
2031                pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2032                       __func__, clk->core->name, clk->dev_id, clk->con_id,
2033                       min, max);
2034                return -EINVAL;
2035        }
2036
2037        clk_prepare_lock();
2038
2039        if (clk->exclusive_count)
2040                clk_core_rate_unprotect(clk->core);
2041
2042        /* Save the current values in case we need to rollback the change */
2043        old_min = clk->min_rate;
2044        old_max = clk->max_rate;
2045        clk->min_rate = min;
2046        clk->max_rate = max;
2047
2048        rate = clk_core_get_rate_nolock(clk->core);
2049        if (rate < min || rate > max) {
2050                /*
2051                 * FIXME:
2052                 * We are in bit of trouble here, current rate is outside the
2053                 * the requested range. We are going try to request appropriate
2054                 * range boundary but there is a catch. It may fail for the
2055                 * usual reason (clock broken, clock protected, etc) but also
2056                 * because:
2057                 * - round_rate() was not favorable and fell on the wrong
2058                 *   side of the boundary
2059                 * - the determine_rate() callback does not really check for
2060                 *   this corner case when determining the rate
2061                 */
2062
2063                if (rate < min)
2064                        rate = min;
2065                else
2066                        rate = max;
2067
2068                ret = clk_core_set_rate_nolock(clk->core, rate);
2069                if (ret) {
2070                        /* rollback the changes */
2071                        clk->min_rate = old_min;
2072                        clk->max_rate = old_max;
2073                }
2074        }
2075
2076        if (clk->exclusive_count)
2077                clk_core_rate_protect(clk->core);
2078
2079        clk_prepare_unlock();
2080
2081        return ret;
2082}
2083EXPORT_SYMBOL_GPL(clk_set_rate_range);
2084
2085/**
2086 * clk_set_min_rate - set a minimum clock rate for a clock source
2087 * @clk: clock source
2088 * @rate: desired minimum clock rate in Hz, inclusive
2089 *
2090 * Returns success (0) or negative errno.
2091 */
2092int clk_set_min_rate(struct clk *clk, unsigned long rate)
2093{
2094        if (!clk)
2095                return 0;
2096
2097        return clk_set_rate_range(clk, rate, clk->max_rate);
2098}
2099EXPORT_SYMBOL_GPL(clk_set_min_rate);
2100
2101/**
2102 * clk_set_max_rate - set a maximum clock rate for a clock source
2103 * @clk: clock source
2104 * @rate: desired maximum clock rate in Hz, inclusive
2105 *
2106 * Returns success (0) or negative errno.
2107 */
2108int clk_set_max_rate(struct clk *clk, unsigned long rate)
2109{
2110        if (!clk)
2111                return 0;
2112
2113        return clk_set_rate_range(clk, clk->min_rate, rate);
2114}
2115EXPORT_SYMBOL_GPL(clk_set_max_rate);
2116
2117/**
2118 * clk_get_parent - return the parent of a clk
2119 * @clk: the clk whose parent gets returned
2120 *
2121 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2122 */
2123struct clk *clk_get_parent(struct clk *clk)
2124{
2125        struct clk *parent;
2126
2127        if (!clk)
2128                return NULL;
2129
2130        clk_prepare_lock();
2131        /* TODO: Create a per-user clk and change callers to call clk_put */
2132        parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2133        clk_prepare_unlock();
2134
2135        return parent;
2136}
2137EXPORT_SYMBOL_GPL(clk_get_parent);
2138
2139static struct clk_core *__clk_init_parent(struct clk_core *core)
2140{
2141        u8 index = 0;
2142
2143        if (core->num_parents > 1 && core->ops->get_parent)
2144                index = core->ops->get_parent(core->hw);
2145
2146        return clk_core_get_parent_by_index(core, index);
2147}
2148
2149static void clk_core_reparent(struct clk_core *core,
2150                                  struct clk_core *new_parent)
2151{
2152        clk_reparent(core, new_parent);
2153        __clk_recalc_accuracies(core);
2154        __clk_recalc_rates(core, POST_RATE_CHANGE);
2155}
2156
2157void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2158{
2159        if (!hw)
2160                return;
2161
2162        clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2163}
2164
2165/**
2166 * clk_has_parent - check if a clock is a possible parent for another
2167 * @clk: clock source
2168 * @parent: parent clock source
2169 *
2170 * This function can be used in drivers that need to check that a clock can be
2171 * the parent of another without actually changing the parent.
2172 *
2173 * Returns true if @parent is a possible parent for @clk, false otherwise.
2174 */
2175bool clk_has_parent(struct clk *clk, struct clk *parent)
2176{
2177        struct clk_core *core, *parent_core;
2178
2179        /* NULL clocks should be nops, so return success if either is NULL. */
2180        if (!clk || !parent)
2181                return true;
2182
2183        core = clk->core;
2184        parent_core = parent->core;
2185
2186        /* Optimize for the case where the parent is already the parent. */
2187        if (core->parent == parent_core)
2188                return true;
2189
2190        return match_string(core->parent_names, core->num_parents,
2191                            parent_core->name) >= 0;
2192}
2193EXPORT_SYMBOL_GPL(clk_has_parent);
2194
2195static int clk_core_set_parent_nolock(struct clk_core *core,
2196                                      struct clk_core *parent)
2197{
2198        int ret = 0;
2199        int p_index = 0;
2200        unsigned long p_rate = 0;
2201
2202        lockdep_assert_held(&prepare_lock);
2203
2204        if (!core)
2205                return 0;
2206
2207        if (core->parent == parent)
2208                return 0;
2209
2210        /* verify ops for for multi-parent clks */
2211        if (core->num_parents > 1 && !core->ops->set_parent)
2212                return -EPERM;
2213
2214        /* check that we are allowed to re-parent if the clock is in use */
2215        if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2216                return -EBUSY;
2217
2218        if (clk_core_rate_is_protected(core))
2219                return -EBUSY;
2220
2221        /* try finding the new parent index */
2222        if (parent) {
2223                p_index = clk_fetch_parent_index(core, parent);
2224                if (p_index < 0) {
2225                        pr_debug("%s: clk %s can not be parent of clk %s\n",
2226                                        __func__, parent->name, core->name);
2227                        return p_index;
2228                }
2229                p_rate = parent->rate;
2230        }
2231
2232        ret = clk_pm_runtime_get(core);
2233        if (ret)
2234                return ret;
2235
2236        /* propagate PRE_RATE_CHANGE notifications */
2237        ret = __clk_speculate_rates(core, p_rate);
2238
2239        /* abort if a driver objects */
2240        if (ret & NOTIFY_STOP_MASK)
2241                goto runtime_put;
2242
2243        /* do the re-parent */
2244        ret = __clk_set_parent(core, parent, p_index);
2245
2246        /* propagate rate an accuracy recalculation accordingly */
2247        if (ret) {
2248                __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2249        } else {
2250                __clk_recalc_rates(core, POST_RATE_CHANGE);
2251                __clk_recalc_accuracies(core);
2252        }
2253
2254runtime_put:
2255        clk_pm_runtime_put(core);
2256
2257        return ret;
2258}
2259
2260/**
2261 * clk_set_parent - switch the parent of a mux clk
2262 * @clk: the mux clk whose input we are switching
2263 * @parent: the new input to clk
2264 *
2265 * Re-parent clk to use parent as its new input source.  If clk is in
2266 * prepared state, the clk will get enabled for the duration of this call. If
2267 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2268 * that, the reparenting is glitchy in hardware, etc), use the
2269 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2270 *
2271 * After successfully changing clk's parent clk_set_parent will update the
2272 * clk topology, sysfs topology and propagate rate recalculation via
2273 * __clk_recalc_rates.
2274 *
2275 * Returns 0 on success, -EERROR otherwise.
2276 */
2277int clk_set_parent(struct clk *clk, struct clk *parent)
2278{
2279        int ret;
2280
2281        if (!clk)
2282                return 0;
2283
2284        clk_prepare_lock();
2285
2286        if (clk->exclusive_count)
2287                clk_core_rate_unprotect(clk->core);
2288
2289        ret = clk_core_set_parent_nolock(clk->core,
2290                                         parent ? parent->core : NULL);
2291
2292        if (clk->exclusive_count)
2293                clk_core_rate_protect(clk->core);
2294
2295        clk_prepare_unlock();
2296
2297        return ret;
2298}
2299EXPORT_SYMBOL_GPL(clk_set_parent);
2300
2301static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2302{
2303        int ret = -EINVAL;
2304
2305        lockdep_assert_held(&prepare_lock);
2306
2307        if (!core)
2308                return 0;
2309
2310        if (clk_core_rate_is_protected(core))
2311                return -EBUSY;
2312
2313        trace_clk_set_phase(core, degrees);
2314
2315        if (core->ops->set_phase) {
2316                ret = core->ops->set_phase(core->hw, degrees);
2317                if (!ret)
2318                        core->phase = degrees;
2319        }
2320
2321        trace_clk_set_phase_complete(core, degrees);
2322
2323        return ret;
2324}
2325
2326/**
2327 * clk_set_phase - adjust the phase shift of a clock signal
2328 * @clk: clock signal source
2329 * @degrees: number of degrees the signal is shifted
2330 *
2331 * Shifts the phase of a clock signal by the specified
2332 * degrees. Returns 0 on success, -EERROR otherwise.
2333 *
2334 * This function makes no distinction about the input or reference
2335 * signal that we adjust the clock signal phase against. For example
2336 * phase locked-loop clock signal generators we may shift phase with
2337 * respect to feedback clock signal input, but for other cases the
2338 * clock phase may be shifted with respect to some other, unspecified
2339 * signal.
2340 *
2341 * Additionally the concept of phase shift does not propagate through
2342 * the clock tree hierarchy, which sets it apart from clock rates and
2343 * clock accuracy. A parent clock phase attribute does not have an
2344 * impact on the phase attribute of a child clock.
2345 */
2346int clk_set_phase(struct clk *clk, int degrees)
2347{
2348        int ret;
2349
2350        if (!clk)
2351                return 0;
2352
2353        /* sanity check degrees */
2354        degrees %= 360;
2355        if (degrees < 0)
2356                degrees += 360;
2357
2358        clk_prepare_lock();
2359
2360        if (clk->exclusive_count)
2361                clk_core_rate_unprotect(clk->core);
2362
2363        ret = clk_core_set_phase_nolock(clk->core, degrees);
2364
2365        if (clk->exclusive_count)
2366                clk_core_rate_protect(clk->core);
2367
2368        clk_prepare_unlock();
2369
2370        return ret;
2371}
2372EXPORT_SYMBOL_GPL(clk_set_phase);
2373
2374static int clk_core_get_phase(struct clk_core *core)
2375{
2376        int ret;
2377
2378        clk_prepare_lock();
2379        /* Always try to update cached phase if possible */
2380        if (core->ops->get_phase)
2381                core->phase = core->ops->get_phase(core->hw);
2382        ret = core->phase;
2383        clk_prepare_unlock();
2384
2385        return ret;
2386}
2387
2388/**
2389 * clk_get_phase - return the phase shift of a clock signal
2390 * @clk: clock signal source
2391 *
2392 * Returns the phase shift of a clock node in degrees, otherwise returns
2393 * -EERROR.
2394 */
2395int clk_get_phase(struct clk *clk)
2396{
2397        if (!clk)
2398                return 0;
2399
2400        return clk_core_get_phase(clk->core);
2401}
2402EXPORT_SYMBOL_GPL(clk_get_phase);
2403
2404/**
2405 * clk_is_match - check if two clk's point to the same hardware clock
2406 * @p: clk compared against q
2407 * @q: clk compared against p
2408 *
2409 * Returns true if the two struct clk pointers both point to the same hardware
2410 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2411 * share the same struct clk_core object.
2412 *
2413 * Returns false otherwise. Note that two NULL clks are treated as matching.
2414 */
2415bool clk_is_match(const struct clk *p, const struct clk *q)
2416{
2417        /* trivial case: identical struct clk's or both NULL */
2418        if (p == q)
2419                return true;
2420
2421        /* true if clk->core pointers match. Avoid dereferencing garbage */
2422        if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2423                if (p->core == q->core)
2424                        return true;
2425
2426        return false;
2427}
2428EXPORT_SYMBOL_GPL(clk_is_match);
2429
2430/***        debugfs support        ***/
2431
2432#ifdef CONFIG_DEBUG_FS
2433#include <linux/debugfs.h>
2434
2435static struct dentry *rootdir;
2436static int inited = 0;
2437static DEFINE_MUTEX(clk_debug_lock);
2438static HLIST_HEAD(clk_debug_list);
2439
2440static struct hlist_head *all_lists[] = {
2441        &clk_root_list,
2442        &clk_orphan_list,
2443        NULL,
2444};
2445
2446static struct hlist_head *orphan_list[] = {
2447        &clk_orphan_list,
2448        NULL,
2449};
2450
2451static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2452                                 int level)
2453{
2454        if (!c)
2455                return;
2456
2457        seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2458                   level * 3 + 1, "",
2459                   30 - level * 3, c->name,
2460                   c->enable_count, c->prepare_count, c->protect_count,
2461                   clk_core_get_rate(c), clk_core_get_accuracy(c),
2462                   clk_core_get_phase(c));
2463}
2464
2465static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2466                                     int level)
2467{
2468        struct clk_core *child;
2469
2470        if (!c)
2471                return;
2472
2473        clk_summary_show_one(s, c, level);
2474
2475        hlist_for_each_entry(child, &c->children, child_node)
2476                clk_summary_show_subtree(s, child, level + 1);
2477}
2478
2479static int clk_summary_show(struct seq_file *s, void *data)
2480{
2481        struct clk_core *c;
2482        struct hlist_head **lists = (struct hlist_head **)s->private;
2483
2484        seq_puts(s, "                                 enable  prepare  protect                               \n");
2485        seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2486        seq_puts(s, "----------------------------------------------------------------------------------------\n");
2487
2488        clk_prepare_lock();
2489
2490        for (; *lists; lists++)
2491                hlist_for_each_entry(c, *lists, child_node)
2492                        clk_summary_show_subtree(s, c, 0);
2493
2494        clk_prepare_unlock();
2495
2496        return 0;
2497}
2498DEFINE_SHOW_ATTRIBUTE(clk_summary);
2499
2500static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2501{
2502        if (!c)
2503                return;
2504
2505        /* This should be JSON format, i.e. elements separated with a comma */
2506        seq_printf(s, "\"%s\": { ", c->name);
2507        seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2508        seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2509        seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2510        seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2511        seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2512        seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2513}
2514
2515static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2516{
2517        struct clk_core *child;
2518
2519        if (!c)
2520                return;
2521
2522        clk_dump_one(s, c, level);
2523
2524        hlist_for_each_entry(child, &c->children, child_node) {
2525                seq_putc(s, ',');
2526                clk_dump_subtree(s, child, level + 1);
2527        }
2528
2529        seq_putc(s, '}');
2530}
2531
2532static int clk_dump_show(struct seq_file *s, void *data)
2533{
2534        struct clk_core *c;
2535        bool first_node = true;
2536        struct hlist_head **lists = (struct hlist_head **)s->private;
2537
2538        seq_putc(s, '{');
2539        clk_prepare_lock();
2540
2541        for (; *lists; lists++) {
2542                hlist_for_each_entry(c, *lists, child_node) {
2543                        if (!first_node)
2544                                seq_putc(s, ',');
2545                        first_node = false;
2546                        clk_dump_subtree(s, c, 0);
2547                }
2548        }
2549
2550        clk_prepare_unlock();
2551
2552        seq_puts(s, "}\n");
2553        return 0;
2554}
2555DEFINE_SHOW_ATTRIBUTE(clk_dump);
2556
2557static const struct {
2558        unsigned long flag;
2559        const char *name;
2560} clk_flags[] = {
2561#define ENTRY(f) { f, #f }
2562        ENTRY(CLK_SET_RATE_GATE),
2563        ENTRY(CLK_SET_PARENT_GATE),
2564        ENTRY(CLK_SET_RATE_PARENT),
2565        ENTRY(CLK_IGNORE_UNUSED),
2566        ENTRY(CLK_IS_BASIC),
2567        ENTRY(CLK_GET_RATE_NOCACHE),
2568        ENTRY(CLK_SET_RATE_NO_REPARENT),
2569        ENTRY(CLK_GET_ACCURACY_NOCACHE),
2570        ENTRY(CLK_RECALC_NEW_RATES),
2571        ENTRY(CLK_SET_RATE_UNGATE),
2572        ENTRY(CLK_IS_CRITICAL),
2573        ENTRY(CLK_OPS_PARENT_ENABLE),
2574#undef ENTRY
2575};
2576
2577static int clk_flags_show(struct seq_file *s, void *data)
2578{
2579        struct clk_core *core = s->private;
2580        unsigned long flags = core->flags;
2581        unsigned int i;
2582
2583        for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2584                if (flags & clk_flags[i].flag) {
2585                        seq_printf(s, "%s\n", clk_flags[i].name);
2586                        flags &= ~clk_flags[i].flag;
2587                }
2588        }
2589        if (flags) {
2590                /* Unknown flags */
2591                seq_printf(s, "0x%lx\n", flags);
2592        }
2593
2594        return 0;
2595}
2596DEFINE_SHOW_ATTRIBUTE(clk_flags);
2597
2598static int possible_parents_show(struct seq_file *s, void *data)
2599{
2600        struct clk_core *core = s->private;
2601        int i;
2602
2603        for (i = 0; i < core->num_parents - 1; i++)
2604                seq_printf(s, "%s ", core->parent_names[i]);
2605
2606        seq_printf(s, "%s\n", core->parent_names[i]);
2607
2608        return 0;
2609}
2610DEFINE_SHOW_ATTRIBUTE(possible_parents);
2611
2612static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2613{
2614        struct dentry *root;
2615
2616        if (!core || !pdentry)
2617                return;
2618
2619        root = debugfs_create_dir(core->name, pdentry);
2620        core->dentry = root;
2621
2622        debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2623        debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2624        debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2625        debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2626        debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2627        debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2628        debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2629        debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2630
2631        if (core->num_parents > 1)
2632                debugfs_create_file("clk_possible_parents", 0444, root, core,
2633                                    &possible_parents_fops);
2634
2635        if (core->ops->debug_init)
2636                core->ops->debug_init(core->hw, core->dentry);
2637}
2638
2639/**
2640 * clk_debug_register - add a clk node to the debugfs clk directory
2641 * @core: the clk being added to the debugfs clk directory
2642 *
2643 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2644 * initialized.  Otherwise it bails out early since the debugfs clk directory
2645 * will be created lazily by clk_debug_init as part of a late_initcall.
2646 */
2647static void clk_debug_register(struct clk_core *core)
2648{
2649        mutex_lock(&clk_debug_lock);
2650        hlist_add_head(&core->debug_node, &clk_debug_list);
2651        if (inited)
2652                clk_debug_create_one(core, rootdir);
2653        mutex_unlock(&clk_debug_lock);
2654}
2655
2656 /**
2657 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2658 * @core: the clk being removed from the debugfs clk directory
2659 *
2660 * Dynamically removes a clk and all its child nodes from the
2661 * debugfs clk directory if clk->dentry points to debugfs created by
2662 * clk_debug_register in __clk_core_init.
2663 */
2664static void clk_debug_unregister(struct clk_core *core)
2665{
2666        mutex_lock(&clk_debug_lock);
2667        hlist_del_init(&core->debug_node);
2668        debugfs_remove_recursive(core->dentry);
2669        core->dentry = NULL;
2670        mutex_unlock(&clk_debug_lock);
2671}
2672
2673/**
2674 * clk_debug_init - lazily populate the debugfs clk directory
2675 *
2676 * clks are often initialized very early during boot before memory can be
2677 * dynamically allocated and well before debugfs is setup. This function
2678 * populates the debugfs clk directory once at boot-time when we know that
2679 * debugfs is setup. It should only be called once at boot-time, all other clks
2680 * added dynamically will be done so with clk_debug_register.
2681 */
2682static int __init clk_debug_init(void)
2683{
2684        struct clk_core *core;
2685
2686        rootdir = debugfs_create_dir("clk", NULL);
2687
2688        debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2689                            &clk_summary_fops);
2690        debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2691                            &clk_dump_fops);
2692        debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2693                            &clk_summary_fops);
2694        debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2695                            &clk_dump_fops);
2696
2697        mutex_lock(&clk_debug_lock);
2698        hlist_for_each_entry(core, &clk_debug_list, debug_node)
2699                clk_debug_create_one(core, rootdir);
2700
2701        inited = 1;
2702        mutex_unlock(&clk_debug_lock);
2703
2704        return 0;
2705}
2706late_initcall(clk_debug_init);
2707#else
2708static inline void clk_debug_register(struct clk_core *core) { }
2709static inline void clk_debug_reparent(struct clk_core *core,
2710                                      struct clk_core *new_parent)
2711{
2712}
2713static inline void clk_debug_unregister(struct clk_core *core)
2714{
2715}
2716#endif
2717
2718/**
2719 * __clk_core_init - initialize the data structures in a struct clk_core
2720 * @core:       clk_core being initialized
2721 *
2722 * Initializes the lists in struct clk_core, queries the hardware for the
2723 * parent and rate and sets them both.
2724 */
2725static int __clk_core_init(struct clk_core *core)
2726{
2727        int i, ret;
2728        struct clk_core *orphan;
2729        struct hlist_node *tmp2;
2730        unsigned long rate;
2731
2732        if (!core)
2733                return -EINVAL;
2734
2735        clk_prepare_lock();
2736
2737        ret = clk_pm_runtime_get(core);
2738        if (ret)
2739                goto unlock;
2740
2741        /* check to see if a clock with this name is already registered */
2742        if (clk_core_lookup(core->name)) {
2743                pr_debug("%s: clk %s already initialized\n",
2744                                __func__, core->name);
2745                ret = -EEXIST;
2746                goto out;
2747        }
2748
2749        /* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
2750        if (core->ops->set_rate &&
2751            !((core->ops->round_rate || core->ops->determine_rate) &&
2752              core->ops->recalc_rate)) {
2753                pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2754                       __func__, core->name);
2755                ret = -EINVAL;
2756                goto out;
2757        }
2758
2759        if (core->ops->set_parent && !core->ops->get_parent) {
2760                pr_err("%s: %s must implement .get_parent & .set_parent\n",
2761                       __func__, core->name);
2762                ret = -EINVAL;
2763                goto out;
2764        }
2765
2766        if (core->num_parents > 1 && !core->ops->get_parent) {
2767                pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2768                       __func__, core->name);
2769                ret = -EINVAL;
2770                goto out;
2771        }
2772
2773        if (core->ops->set_rate_and_parent &&
2774                        !(core->ops->set_parent && core->ops->set_rate)) {
2775                pr_err("%s: %s must implement .set_parent & .set_rate\n",
2776                                __func__, core->name);
2777                ret = -EINVAL;
2778                goto out;
2779        }
2780
2781        /* throw a WARN if any entries in parent_names are NULL */
2782        for (i = 0; i < core->num_parents; i++)
2783                WARN(!core->parent_names[i],
2784                                "%s: invalid NULL in %s's .parent_names\n",
2785                                __func__, core->name);
2786
2787        core->parent = __clk_init_parent(core);
2788
2789        /*
2790         * Populate core->parent if parent has already been clk_core_init'd. If
2791         * parent has not yet been clk_core_init'd then place clk in the orphan
2792         * list.  If clk doesn't have any parents then place it in the root
2793         * clk list.
2794         *
2795         * Every time a new clk is clk_init'd then we walk the list of orphan
2796         * clocks and re-parent any that are children of the clock currently
2797         * being clk_init'd.
2798         */
2799        if (core->parent) {
2800                hlist_add_head(&core->child_node,
2801                                &core->parent->children);
2802                core->orphan = core->parent->orphan;
2803        } else if (!core->num_parents) {
2804                hlist_add_head(&core->child_node, &clk_root_list);
2805                core->orphan = false;
2806        } else {
2807                hlist_add_head(&core->child_node, &clk_orphan_list);
2808                core->orphan = true;
2809        }
2810
2811        /*
2812         * optional platform-specific magic
2813         *
2814         * The .init callback is not used by any of the basic clock types, but
2815         * exists for weird hardware that must perform initialization magic.
2816         * Please consider other ways of solving initialization problems before
2817         * using this callback, as its use is discouraged.
2818         */
2819        if (core->ops->init)
2820                core->ops->init(core->hw);
2821
2822        /*
2823         * Set clk's accuracy.  The preferred method is to use
2824         * .recalc_accuracy. For simple clocks and lazy developers the default
2825         * fallback is to use the parent's accuracy.  If a clock doesn't have a
2826         * parent (or is orphaned) then accuracy is set to zero (perfect
2827         * clock).
2828         */
2829        if (core->ops->recalc_accuracy)
2830                core->accuracy = core->ops->recalc_accuracy(core->hw,
2831                                        __clk_get_accuracy(core->parent));
2832        else if (core->parent)
2833                core->accuracy = core->parent->accuracy;
2834        else
2835                core->accuracy = 0;
2836
2837        /*
2838         * Set clk's phase.
2839         * Since a phase is by definition relative to its parent, just
2840         * query the current clock phase, or just assume it's in phase.
2841         */
2842        if (core->ops->get_phase)
2843                core->phase = core->ops->get_phase(core->hw);
2844        else
2845                core->phase = 0;
2846
2847        /*
2848         * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2849         * simple clocks and lazy developers the default fallback is to use the
2850         * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2851         * then rate is set to zero.
2852         */
2853        if (core->ops->recalc_rate)
2854                rate = core->ops->recalc_rate(core->hw,
2855                                clk_core_get_rate_nolock(core->parent));
2856        else if (core->parent)
2857                rate = core->parent->rate;
2858        else
2859                rate = 0;
2860        core->rate = core->req_rate = rate;
2861
2862        /*
2863         * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2864         * don't get accidentally disabled when walking the orphan tree and
2865         * reparenting clocks
2866         */
2867        if (core->flags & CLK_IS_CRITICAL) {
2868                unsigned long flags;
2869
2870                clk_core_prepare(core);
2871
2872                flags = clk_enable_lock();
2873                clk_core_enable(core);
2874                clk_enable_unlock(flags);
2875        }
2876
2877        /*
2878         * walk the list of orphan clocks and reparent any that newly finds a
2879         * parent.
2880         */
2881        hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2882                struct clk_core *parent = __clk_init_parent(orphan);
2883
2884                /*
2885                 * We need to use __clk_set_parent_before() and _after() to
2886                 * to properly migrate any prepare/enable count of the orphan
2887                 * clock. This is important for CLK_IS_CRITICAL clocks, which
2888                 * are enabled during init but might not have a parent yet.
2889                 */
2890                if (parent) {
2891                        /* update the clk tree topology */
2892                        __clk_set_parent_before(orphan, parent);
2893                        __clk_set_parent_after(orphan, parent, NULL);
2894                        __clk_recalc_accuracies(orphan);
2895                        __clk_recalc_rates(orphan, 0);
2896                }
2897        }
2898
2899        kref_init(&core->ref);
2900out:
2901        clk_pm_runtime_put(core);
2902unlock:
2903        clk_prepare_unlock();
2904
2905        if (!ret)
2906                clk_debug_register(core);
2907
2908        return ret;
2909}
2910
2911struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2912                             const char *con_id)
2913{
2914        struct clk *clk;
2915
2916        /* This is to allow this function to be chained to others */
2917        if (IS_ERR_OR_NULL(hw))
2918                return ERR_CAST(hw);
2919
2920        clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2921        if (!clk)
2922                return ERR_PTR(-ENOMEM);
2923
2924        clk->core = hw->core;
2925        clk->dev_id = dev_id;
2926        clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2927        clk->max_rate = ULONG_MAX;
2928
2929        clk_prepare_lock();
2930        hlist_add_head(&clk->clks_node, &hw->core->clks);
2931        clk_prepare_unlock();
2932
2933        return clk;
2934}
2935
2936void __clk_free_clk(struct clk *clk)
2937{
2938        clk_prepare_lock();
2939        hlist_del(&clk->clks_node);
2940        clk_prepare_unlock();
2941
2942        kfree_const(clk->con_id);
2943        kfree(clk);
2944}
2945
2946/**
2947 * clk_register - allocate a new clock, register it and return an opaque cookie
2948 * @dev: device that is registering this clock
2949 * @hw: link to hardware-specific clock data
2950 *
2951 * clk_register is the primary interface for populating the clock tree with new
2952 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2953 * cannot be dereferenced by driver code but may be used in conjunction with the
2954 * rest of the clock API.  In the event of an error clk_register will return an
2955 * error code; drivers must test for an error code after calling clk_register.
2956 */
2957struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2958{
2959        int i, ret;
2960        struct clk_core *core;
2961
2962        core = kzalloc(sizeof(*core), GFP_KERNEL);
2963        if (!core) {
2964                ret = -ENOMEM;
2965                goto fail_out;
2966        }
2967
2968        core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2969        if (!core->name) {
2970                ret = -ENOMEM;
2971                goto fail_name;
2972        }
2973
2974        if (WARN_ON(!hw->init->ops)) {
2975                ret = -EINVAL;
2976                goto fail_ops;
2977        }
2978        core->ops = hw->init->ops;
2979
2980        if (dev && pm_runtime_enabled(dev))
2981                core->dev = dev;
2982        if (dev && dev->driver)
2983                core->owner = dev->driver->owner;
2984        core->hw = hw;
2985        core->flags = hw->init->flags;
2986        core->num_parents = hw->init->num_parents;
2987        core->min_rate = 0;
2988        core->max_rate = ULONG_MAX;
2989        hw->core = core;
2990
2991        /* allocate local copy in case parent_names is __initdata */
2992        core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2993                                        GFP_KERNEL);
2994
2995        if (!core->parent_names) {
2996                ret = -ENOMEM;
2997                goto fail_parent_names;
2998        }
2999
3000
3001        /* copy each string name in case parent_names is __initdata */
3002        for (i = 0; i < core->num_parents; i++) {
3003                core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3004                                                GFP_KERNEL);
3005                if (!core->parent_names[i]) {
3006                        ret = -ENOMEM;
3007                        goto fail_parent_names_copy;
3008                }
3009        }
3010
3011        /* avoid unnecessary string look-ups of clk_core's possible parents. */
3012        core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3013                                GFP_KERNEL);
3014        if (!core->parents) {
3015                ret = -ENOMEM;
3016                goto fail_parents;
3017        };
3018
3019        INIT_HLIST_HEAD(&core->clks);
3020
3021        hw->clk = __clk_create_clk(hw, NULL, NULL);
3022        if (IS_ERR(hw->clk)) {
3023                ret = PTR_ERR(hw->clk);
3024                goto fail_parents;
3025        }
3026
3027        ret = __clk_core_init(core);
3028        if (!ret)
3029                return hw->clk;
3030
3031        __clk_free_clk(hw->clk);
3032        hw->clk = NULL;
3033
3034fail_parents:
3035        kfree(core->parents);
3036fail_parent_names_copy:
3037        while (--i >= 0)
3038                kfree_const(core->parent_names[i]);
3039        kfree(core->parent_names);
3040fail_parent_names:
3041fail_ops:
3042        kfree_const(core->name);
3043fail_name:
3044        kfree(core);
3045fail_out:
3046        return ERR_PTR(ret);
3047}
3048EXPORT_SYMBOL_GPL(clk_register);
3049
3050/**
3051 * clk_hw_register - register a clk_hw and return an error code
3052 * @dev: device that is registering this clock
3053 * @hw: link to hardware-specific clock data
3054 *
3055 * clk_hw_register is the primary interface for populating the clock tree with
3056 * new clock nodes. It returns an integer equal to zero indicating success or
3057 * less than zero indicating failure. Drivers must test for an error code after
3058 * calling clk_hw_register().
3059 */
3060int clk_hw_register(struct device *dev, struct clk_hw *hw)
3061{
3062        return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3063}
3064EXPORT_SYMBOL_GPL(clk_hw_register);
3065
3066/* Free memory allocated for a clock. */
3067static void __clk_release(struct kref *ref)
3068{
3069        struct clk_core *core = container_of(ref, struct clk_core, ref);
3070        int i = core->num_parents;
3071
3072        lockdep_assert_held(&prepare_lock);
3073
3074        kfree(core->parents);
3075        while (--i >= 0)
3076                kfree_const(core->parent_names[i]);
3077
3078        kfree(core->parent_names);
3079        kfree_const(core->name);
3080        kfree(core);
3081}
3082
3083/*
3084 * Empty clk_ops for unregistered clocks. These are used temporarily
3085 * after clk_unregister() was called on a clock and until last clock
3086 * consumer calls clk_put() and the struct clk object is freed.
3087 */
3088static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3089{
3090        return -ENXIO;
3091}
3092
3093static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3094{
3095        WARN_ON_ONCE(1);
3096}
3097
3098static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3099                                        unsigned long parent_rate)
3100{
3101        return -ENXIO;
3102}
3103
3104static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3105{
3106        return -ENXIO;
3107}
3108
3109static const struct clk_ops clk_nodrv_ops = {
3110        .enable         = clk_nodrv_prepare_enable,
3111        .disable        = clk_nodrv_disable_unprepare,
3112        .prepare        = clk_nodrv_prepare_enable,
3113        .unprepare      = clk_nodrv_disable_unprepare,
3114        .set_rate       = clk_nodrv_set_rate,
3115        .set_parent     = clk_nodrv_set_parent,
3116};
3117
3118/**
3119 * clk_unregister - unregister a currently registered clock
3120 * @clk: clock to unregister
3121 */
3122void clk_unregister(struct clk *clk)
3123{
3124        unsigned long flags;
3125
3126        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3127                return;
3128
3129        clk_debug_unregister(clk->core);
3130
3131        clk_prepare_lock();
3132
3133        if (clk->core->ops == &clk_nodrv_ops) {
3134                pr_err("%s: unregistered clock: %s\n", __func__,
3135                       clk->core->name);
3136                goto unlock;
3137        }
3138        /*
3139         * Assign empty clock ops for consumers that might still hold
3140         * a reference to this clock.
3141         */
3142        flags = clk_enable_lock();
3143        clk->core->ops = &clk_nodrv_ops;
3144        clk_enable_unlock(flags);
3145
3146        if (!hlist_empty(&clk->core->children)) {
3147                struct clk_core *child;
3148                struct hlist_node *t;
3149
3150                /* Reparent all children to the orphan list. */
3151                hlist_for_each_entry_safe(child, t, &clk->core->children,
3152                                          child_node)
3153                        clk_core_set_parent_nolock(child, NULL);
3154        }
3155
3156        hlist_del_init(&clk->core->child_node);
3157
3158        if (clk->core->prepare_count)
3159                pr_warn("%s: unregistering prepared clock: %s\n",
3160                                        __func__, clk->core->name);
3161
3162        if (clk->core->protect_count)
3163                pr_warn("%s: unregistering protected clock: %s\n",
3164                                        __func__, clk->core->name);
3165
3166        kref_put(&clk->core->ref, __clk_release);
3167unlock:
3168        clk_prepare_unlock();
3169}
3170EXPORT_SYMBOL_GPL(clk_unregister);
3171
3172/**
3173 * clk_hw_unregister - unregister a currently registered clk_hw
3174 * @hw: hardware-specific clock data to unregister
3175 */
3176void clk_hw_unregister(struct clk_hw *hw)
3177{
3178        clk_unregister(hw->clk);
3179}
3180EXPORT_SYMBOL_GPL(clk_hw_unregister);
3181
3182static void devm_clk_release(struct device *dev, void *res)
3183{
3184        clk_unregister(*(struct clk **)res);
3185}
3186
3187static void devm_clk_hw_release(struct device *dev, void *res)
3188{
3189        clk_hw_unregister(*(struct clk_hw **)res);
3190}
3191
3192/**
3193 * devm_clk_register - resource managed clk_register()
3194 * @dev: device that is registering this clock
3195 * @hw: link to hardware-specific clock data
3196 *
3197 * Managed clk_register(). Clocks returned from this function are
3198 * automatically clk_unregister()ed on driver detach. See clk_register() for
3199 * more information.
3200 */
3201struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3202{
3203        struct clk *clk;
3204        struct clk **clkp;
3205
3206        clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3207        if (!clkp)
3208                return ERR_PTR(-ENOMEM);
3209
3210        clk = clk_register(dev, hw);
3211        if (!IS_ERR(clk)) {
3212                *clkp = clk;
3213                devres_add(dev, clkp);
3214        } else {
3215                devres_free(clkp);
3216        }
3217
3218        return clk;
3219}
3220EXPORT_SYMBOL_GPL(devm_clk_register);
3221
3222/**
3223 * devm_clk_hw_register - resource managed clk_hw_register()
3224 * @dev: device that is registering this clock
3225 * @hw: link to hardware-specific clock data
3226 *
3227 * Managed clk_hw_register(). Clocks registered by this function are
3228 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3229 * for more information.
3230 */
3231int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3232{
3233        struct clk_hw **hwp;
3234        int ret;
3235
3236        hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3237        if (!hwp)
3238                return -ENOMEM;
3239
3240        ret = clk_hw_register(dev, hw);
3241        if (!ret) {
3242                *hwp = hw;
3243                devres_add(dev, hwp);
3244        } else {
3245                devres_free(hwp);
3246        }
3247
3248        return ret;
3249}
3250EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3251
3252static int devm_clk_match(struct device *dev, void *res, void *data)
3253{
3254        struct clk *c = res;
3255        if (WARN_ON(!c))
3256                return 0;
3257        return c == data;
3258}
3259
3260static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3261{
3262        struct clk_hw *hw = res;
3263
3264        if (WARN_ON(!hw))
3265                return 0;
3266        return hw == data;
3267}
3268
3269/**
3270 * devm_clk_unregister - resource managed clk_unregister()
3271 * @clk: clock to unregister
3272 *
3273 * Deallocate a clock allocated with devm_clk_register(). Normally
3274 * this function will not need to be called and the resource management
3275 * code will ensure that the resource is freed.
3276 */
3277void devm_clk_unregister(struct device *dev, struct clk *clk)
3278{
3279        WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3280}
3281EXPORT_SYMBOL_GPL(devm_clk_unregister);
3282
3283/**
3284 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3285 * @dev: device that is unregistering the hardware-specific clock data
3286 * @hw: link to hardware-specific clock data
3287 *
3288 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3289 * this function will not need to be called and the resource management
3290 * code will ensure that the resource is freed.
3291 */
3292void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3293{
3294        WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3295                                hw));
3296}
3297EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3298
3299/*
3300 * clkdev helpers
3301 */
3302int __clk_get(struct clk *clk)
3303{
3304        struct clk_core *core = !clk ? NULL : clk->core;
3305
3306        if (core) {
3307                if (!try_module_get(core->owner))
3308                        return 0;
3309
3310                kref_get(&core->ref);
3311        }
3312        return 1;
3313}
3314
3315void __clk_put(struct clk *clk)
3316{
3317        struct module *owner;
3318
3319        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3320                return;
3321
3322        clk_prepare_lock();
3323
3324        /*
3325         * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3326         * given user should be balanced with calls to clk_rate_exclusive_put()
3327         * and by that same consumer
3328         */
3329        if (WARN_ON(clk->exclusive_count)) {
3330                /* We voiced our concern, let's sanitize the situation */
3331                clk->core->protect_count -= (clk->exclusive_count - 1);
3332                clk_core_rate_unprotect(clk->core);
3333                clk->exclusive_count = 0;
3334        }
3335
3336        hlist_del(&clk->clks_node);
3337        if (clk->min_rate > clk->core->req_rate ||
3338            clk->max_rate < clk->core->req_rate)
3339                clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3340
3341        owner = clk->core->owner;
3342        kref_put(&clk->core->ref, __clk_release);
3343
3344        clk_prepare_unlock();
3345
3346        module_put(owner);
3347
3348        kfree(clk);
3349}
3350
3351/***        clk rate change notifiers        ***/
3352
3353/**
3354 * clk_notifier_register - add a clk rate change notifier
3355 * @clk: struct clk * to watch
3356 * @nb: struct notifier_block * with callback info
3357 *
3358 * Request notification when clk's rate changes.  This uses an SRCU
3359 * notifier because we want it to block and notifier unregistrations are
3360 * uncommon.  The callbacks associated with the notifier must not
3361 * re-enter into the clk framework by calling any top-level clk APIs;
3362 * this will cause a nested prepare_lock mutex.
3363 *
3364 * In all notification cases (pre, post and abort rate change) the original
3365 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3366 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3367 *
3368 * clk_notifier_register() must be called from non-atomic context.
3369 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3370 * allocation failure; otherwise, passes along the return value of
3371 * srcu_notifier_chain_register().
3372 */
3373int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3374{
3375        struct clk_notifier *cn;
3376        int ret = -ENOMEM;
3377
3378        if (!clk || !nb)
3379                return -EINVAL;
3380
3381        clk_prepare_lock();
3382
3383        /* search the list of notifiers for this clk */
3384        list_for_each_entry(cn, &clk_notifier_list, node)
3385                if (cn->clk == clk)
3386                        break;
3387
3388        /* if clk wasn't in the notifier list, allocate new clk_notifier */
3389        if (cn->clk != clk) {
3390                cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3391                if (!cn)
3392                        goto out;
3393
3394                cn->clk = clk;
3395                srcu_init_notifier_head(&cn->notifier_head);
3396
3397                list_add(&cn->node, &clk_notifier_list);
3398        }
3399
3400        ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3401
3402        clk->core->notifier_count++;
3403
3404out:
3405        clk_prepare_unlock();
3406
3407        return ret;
3408}
3409EXPORT_SYMBOL_GPL(clk_notifier_register);
3410
3411/**
3412 * clk_notifier_unregister - remove a clk rate change notifier
3413 * @clk: struct clk *
3414 * @nb: struct notifier_block * with callback info
3415 *
3416 * Request no further notification for changes to 'clk' and frees memory
3417 * allocated in clk_notifier_register.
3418 *
3419 * Returns -EINVAL if called with null arguments; otherwise, passes
3420 * along the return value of srcu_notifier_chain_unregister().
3421 */
3422int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3423{
3424        struct clk_notifier *cn = NULL;
3425        int ret = -EINVAL;
3426
3427        if (!clk || !nb)
3428                return -EINVAL;
3429
3430        clk_prepare_lock();
3431
3432        list_for_each_entry(cn, &clk_notifier_list, node)
3433                if (cn->clk == clk)
3434                        break;
3435
3436        if (cn->clk == clk) {
3437                ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3438
3439                clk->core->notifier_count--;
3440
3441                /* XXX the notifier code should handle this better */
3442                if (!cn->notifier_head.head) {
3443                        srcu_cleanup_notifier_head(&cn->notifier_head);
3444                        list_del(&cn->node);
3445                        kfree(cn);
3446                }
3447
3448        } else {
3449                ret = -ENOENT;
3450        }
3451
3452        clk_prepare_unlock();
3453
3454        return ret;
3455}
3456EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3457
3458#ifdef CONFIG_OF
3459/**
3460 * struct of_clk_provider - Clock provider registration structure
3461 * @link: Entry in global list of clock providers
3462 * @node: Pointer to device tree node of clock provider
3463 * @get: Get clock callback.  Returns NULL or a struct clk for the
3464 *       given clock specifier
3465 * @data: context pointer to be passed into @get callback
3466 */
3467struct of_clk_provider {
3468        struct list_head link;
3469
3470        struct device_node *node;
3471        struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3472        struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3473        void *data;
3474};
3475
3476static const struct of_device_id __clk_of_table_sentinel
3477        __used __section(__clk_of_table_end);
3478
3479static LIST_HEAD(of_clk_providers);
3480static DEFINE_MUTEX(of_clk_mutex);
3481
3482struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3483                                     void *data)
3484{
3485        return data;
3486}
3487EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3488
3489struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3490{
3491        return data;
3492}
3493EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3494
3495struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3496{
3497        struct clk_onecell_data *clk_data = data;
3498        unsigned int idx = clkspec->args[0];
3499
3500        if (idx >= clk_data->clk_num) {
3501                pr_err("%s: invalid clock index %u\n", __func__, idx);
3502                return ERR_PTR(-EINVAL);
3503        }
3504
3505        return clk_data->clks[idx];
3506}
3507EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3508
3509struct clk_hw *
3510of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3511{
3512        struct clk_hw_onecell_data *hw_data = data;
3513        unsigned int idx = clkspec->args[0];
3514
3515        if (idx >= hw_data->num) {
3516                pr_err("%s: invalid index %u\n", __func__, idx);
3517                return ERR_PTR(-EINVAL);
3518        }
3519
3520        return hw_data->hws[idx];
3521}
3522EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3523
3524/**
3525 * of_clk_add_provider() - Register a clock provider for a node
3526 * @np: Device node pointer associated with clock provider
3527 * @clk_src_get: callback for decoding clock
3528 * @data: context pointer for @clk_src_get callback.
3529 */
3530int of_clk_add_provider(struct device_node *np,
3531                        struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3532                                                   void *data),
3533                        void *data)
3534{
3535        struct of_clk_provider *cp;
3536        int ret;
3537
3538        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3539        if (!cp)
3540                return -ENOMEM;
3541
3542        cp->node = of_node_get(np);
3543        cp->data = data;
3544        cp->get = clk_src_get;
3545
3546        mutex_lock(&of_clk_mutex);
3547        list_add(&cp->link, &of_clk_providers);
3548        mutex_unlock(&of_clk_mutex);
3549        pr_debug("Added clock from %pOF\n", np);
3550
3551        ret = of_clk_set_defaults(np, true);
3552        if (ret < 0)
3553                of_clk_del_provider(np);
3554
3555        return ret;
3556}
3557EXPORT_SYMBOL_GPL(of_clk_add_provider);
3558
3559/**
3560 * of_clk_add_hw_provider() - Register a clock provider for a node
3561 * @np: Device node pointer associated with clock provider
3562 * @get: callback for decoding clk_hw
3563 * @data: context pointer for @get callback.
3564 */
3565int of_clk_add_hw_provider(struct device_node *np,
3566                           struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3567                                                 void *data),
3568                           void *data)
3569{
3570        struct of_clk_provider *cp;
3571        int ret;
3572
3573        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3574        if (!cp)
3575                return -ENOMEM;
3576
3577        cp->node = of_node_get(np);
3578        cp->data = data;
3579        cp->get_hw = get;
3580
3581        mutex_lock(&of_clk_mutex);
3582        list_add(&cp->link, &of_clk_providers);
3583        mutex_unlock(&of_clk_mutex);
3584        pr_debug("Added clk_hw provider from %pOF\n", np);
3585
3586        ret = of_clk_set_defaults(np, true);
3587        if (ret < 0)
3588                of_clk_del_provider(np);
3589
3590        return ret;
3591}
3592EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3593
3594static void devm_of_clk_release_provider(struct device *dev, void *res)
3595{
3596        of_clk_del_provider(*(struct device_node **)res);
3597}
3598
3599int devm_of_clk_add_hw_provider(struct device *dev,
3600                        struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3601                                              void *data),
3602                        void *data)
3603{
3604        struct device_node **ptr, *np;
3605        int ret;
3606
3607        ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3608                           GFP_KERNEL);
3609        if (!ptr)
3610                return -ENOMEM;
3611
3612        np = dev->of_node;
3613        ret = of_clk_add_hw_provider(np, get, data);
3614        if (!ret) {
3615                *ptr = np;
3616                devres_add(dev, ptr);
3617        } else {
3618                devres_free(ptr);
3619        }
3620
3621        return ret;
3622}
3623EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3624
3625/**
3626 * of_clk_del_provider() - Remove a previously registered clock provider
3627 * @np: Device node pointer associated with clock provider
3628 */
3629void of_clk_del_provider(struct device_node *np)
3630{
3631        struct of_clk_provider *cp;
3632
3633        mutex_lock(&of_clk_mutex);
3634        list_for_each_entry(cp, &of_clk_providers, link) {
3635                if (cp->node == np) {
3636                        list_del(&cp->link);
3637                        of_node_put(cp->node);
3638                        kfree(cp);
3639                        break;
3640                }
3641        }
3642        mutex_unlock(&of_clk_mutex);
3643}
3644EXPORT_SYMBOL_GPL(of_clk_del_provider);
3645
3646static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3647{
3648        struct device_node **np = res;
3649
3650        if (WARN_ON(!np || !*np))
3651                return 0;
3652
3653        return *np == data;
3654}
3655
3656void devm_of_clk_del_provider(struct device *dev)
3657{
3658        int ret;
3659
3660        ret = devres_release(dev, devm_of_clk_release_provider,
3661                             devm_clk_provider_match, dev->of_node);
3662
3663        WARN_ON(ret);
3664}
3665EXPORT_SYMBOL(devm_of_clk_del_provider);
3666
3667static struct clk_hw *
3668__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3669                              struct of_phandle_args *clkspec)
3670{
3671        struct clk *clk;
3672
3673        if (provider->get_hw)
3674                return provider->get_hw(clkspec, provider->data);
3675
3676        clk = provider->get(clkspec, provider->data);
3677        if (IS_ERR(clk))
3678                return ERR_CAST(clk);
3679        return __clk_get_hw(clk);
3680}
3681
3682struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3683                                       const char *dev_id, const char *con_id)
3684{
3685        struct of_clk_provider *provider;
3686        struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3687        struct clk_hw *hw;
3688
3689        if (!clkspec)
3690                return ERR_PTR(-EINVAL);
3691
3692        /* Check if we have such a provider in our array */
3693        mutex_lock(&of_clk_mutex);
3694        list_for_each_entry(provider, &of_clk_providers, link) {
3695                if (provider->node == clkspec->np) {
3696                        hw = __of_clk_get_hw_from_provider(provider, clkspec);
3697                        clk = __clk_create_clk(hw, dev_id, con_id);
3698                }
3699
3700                if (!IS_ERR(clk)) {
3701                        if (!__clk_get(clk)) {
3702                                __clk_free_clk(clk);
3703                                clk = ERR_PTR(-ENOENT);
3704                        }
3705
3706                        break;
3707                }
3708        }
3709        mutex_unlock(&of_clk_mutex);
3710
3711        return clk;
3712}
3713
3714/**
3715 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3716 * @clkspec: pointer to a clock specifier data structure
3717 *
3718 * This function looks up a struct clk from the registered list of clock
3719 * providers, an input is a clock specifier data structure as returned
3720 * from the of_parse_phandle_with_args() function call.
3721 */
3722struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3723{
3724        return __of_clk_get_from_provider(clkspec, NULL, __func__);
3725}
3726EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3727
3728/**
3729 * of_clk_get_parent_count() - Count the number of clocks a device node has
3730 * @np: device node to count
3731 *
3732 * Returns: The number of clocks that are possible parents of this node
3733 */
3734unsigned int of_clk_get_parent_count(struct device_node *np)
3735{
3736        int count;
3737
3738        count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3739        if (count < 0)
3740                return 0;
3741
3742        return count;
3743}
3744EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3745
3746const char *of_clk_get_parent_name(struct device_node *np, int index)
3747{
3748        struct of_phandle_args clkspec;
3749        struct property *prop;
3750        const char *clk_name;
3751        const __be32 *vp;
3752        u32 pv;
3753        int rc;
3754        int count;
3755        struct clk *clk;
3756
3757        rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3758                                        &clkspec);
3759        if (rc)
3760                return NULL;
3761
3762        index = clkspec.args_count ? clkspec.args[0] : 0;
3763        count = 0;
3764
3765        /* if there is an indices property, use it to transfer the index
3766         * specified into an array offset for the clock-output-names property.
3767         */
3768        of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3769                if (index == pv) {
3770                        index = count;
3771                        break;
3772                }
3773                count++;
3774        }
3775        /* We went off the end of 'clock-indices' without finding it */
3776        if (prop && !vp)
3777                return NULL;
3778
3779        if (of_property_read_string_index(clkspec.np, "clock-output-names",
3780                                          index,
3781                                          &clk_name) < 0) {
3782                /*
3783                 * Best effort to get the name if the clock has been
3784                 * registered with the framework. If the clock isn't
3785                 * registered, we return the node name as the name of
3786                 * the clock as long as #clock-cells = 0.
3787                 */
3788                clk = of_clk_get_from_provider(&clkspec);
3789                if (IS_ERR(clk)) {
3790                        if (clkspec.args_count == 0)
3791                                clk_name = clkspec.np->name;
3792                        else
3793                                clk_name = NULL;
3794                } else {
3795                        clk_name = __clk_get_name(clk);
3796                        clk_put(clk);
3797                }
3798        }
3799
3800
3801        of_node_put(clkspec.np);
3802        return clk_name;
3803}
3804EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3805
3806/**
3807 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3808 * number of parents
3809 * @np: Device node pointer associated with clock provider
3810 * @parents: pointer to char array that hold the parents' names
3811 * @size: size of the @parents array
3812 *
3813 * Return: number of parents for the clock node.
3814 */
3815int of_clk_parent_fill(struct device_node *np, const char **parents,
3816                       unsigned int size)
3817{
3818        unsigned int i = 0;
3819
3820        while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3821                i++;
3822
3823        return i;
3824}
3825EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3826
3827struct clock_provider {
3828        void (*clk_init_cb)(struct device_node *);
3829        struct device_node *np;
3830        struct list_head node;
3831};
3832
3833/*
3834 * This function looks for a parent clock. If there is one, then it
3835 * checks that the provider for this parent clock was initialized, in
3836 * this case the parent clock will be ready.
3837 */
3838static int parent_ready(struct device_node *np)
3839{
3840        int i = 0;
3841
3842        while (true) {
3843                struct clk *clk = of_clk_get(np, i);
3844
3845                /* this parent is ready we can check the next one */
3846                if (!IS_ERR(clk)) {
3847                        clk_put(clk);
3848                        i++;
3849                        continue;
3850                }
3851
3852                /* at least one parent is not ready, we exit now */
3853                if (PTR_ERR(clk) == -EPROBE_DEFER)
3854                        return 0;
3855
3856                /*
3857                 * Here we make assumption that the device tree is
3858                 * written correctly. So an error means that there is
3859                 * no more parent. As we didn't exit yet, then the
3860                 * previous parent are ready. If there is no clock
3861                 * parent, no need to wait for them, then we can
3862                 * consider their absence as being ready
3863                 */
3864                return 1;
3865        }
3866}
3867
3868/**
3869 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3870 * @np: Device node pointer associated with clock provider
3871 * @index: clock index
3872 * @flags: pointer to top-level framework flags
3873 *
3874 * Detects if the clock-critical property exists and, if so, sets the
3875 * corresponding CLK_IS_CRITICAL flag.
3876 *
3877 * Do not use this function. It exists only for legacy Device Tree
3878 * bindings, such as the one-clock-per-node style that are outdated.
3879 * Those bindings typically put all clock data into .dts and the Linux
3880 * driver has no clock data, thus making it impossible to set this flag
3881 * correctly from the driver. Only those drivers may call
3882 * of_clk_detect_critical from their setup functions.
3883 *
3884 * Return: error code or zero on success
3885 */
3886int of_clk_detect_critical(struct device_node *np,
3887                                          int index, unsigned long *flags)
3888{
3889        struct property *prop;
3890        const __be32 *cur;
3891        uint32_t idx;
3892
3893        if (!np || !flags)
3894                return -EINVAL;
3895
3896        of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3897                if (index == idx)
3898                        *flags |= CLK_IS_CRITICAL;
3899
3900        return 0;
3901}
3902
3903/**
3904 * of_clk_init() - Scan and init clock providers from the DT
3905 * @matches: array of compatible values and init functions for providers.
3906 *
3907 * This function scans the device tree for matching clock providers
3908 * and calls their initialization functions. It also does it by trying
3909 * to follow the dependencies.
3910 */
3911void __init of_clk_init(const struct of_device_id *matches)
3912{
3913        const struct of_device_id *match;
3914        struct device_node *np;
3915        struct clock_provider *clk_provider, *next;
3916        bool is_init_done;
3917        bool force = false;
3918        LIST_HEAD(clk_provider_list);
3919
3920        if (!matches)
3921                matches = &__clk_of_table;
3922
3923        /* First prepare the list of the clocks providers */
3924        for_each_matching_node_and_match(np, matches, &match) {
3925                struct clock_provider *parent;
3926
3927                if (!of_device_is_available(np))
3928                        continue;
3929
3930                parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3931                if (!parent) {
3932                        list_for_each_entry_safe(clk_provider, next,
3933                                                 &clk_provider_list, node) {
3934                                list_del(&clk_provider->node);
3935                                of_node_put(clk_provider->np);
3936                                kfree(clk_provider);
3937                        }
3938                        of_node_put(np);
3939                        return;
3940                }
3941
3942                parent->clk_init_cb = match->data;
3943                parent->np = of_node_get(np);
3944                list_add_tail(&parent->node, &clk_provider_list);
3945        }
3946
3947        while (!list_empty(&clk_provider_list)) {
3948                is_init_done = false;
3949                list_for_each_entry_safe(clk_provider, next,
3950                                        &clk_provider_list, node) {
3951                        if (force || parent_ready(clk_provider->np)) {
3952
3953                                /* Don't populate platform devices */
3954                                of_node_set_flag(clk_provider->np,
3955                                                 OF_POPULATED);
3956
3957                                clk_provider->clk_init_cb(clk_provider->np);
3958                                of_clk_set_defaults(clk_provider->np, true);
3959
3960                                list_del(&clk_provider->node);
3961                                of_node_put(clk_provider->np);
3962                                kfree(clk_provider);
3963                                is_init_done = true;
3964                        }
3965                }
3966
3967                /*
3968                 * We didn't manage to initialize any of the
3969                 * remaining providers during the last loop, so now we
3970                 * initialize all the remaining ones unconditionally
3971                 * in case the clock parent was not mandatory
3972                 */
3973                if (!is_init_done)
3974                        force = true;
3975        }
3976}
3977#endif
3978