linux/drivers/cpufreq/cppc_cpufreq.c
<<
>>
Prefs
   1/*
   2 * CPPC (Collaborative Processor Performance Control) driver for
   3 * interfacing with the CPUfreq layer and governors. See
   4 * cppc_acpi.c for CPPC specific methods.
   5 *
   6 * (C) Copyright 2014, 2015 Linaro Ltd.
   7 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/delay.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/dmi.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25
  26#include <asm/unaligned.h>
  27
  28#include <acpi/cppc_acpi.h>
  29
  30/* Minimum struct length needed for the DMI processor entry we want */
  31#define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
  32
  33/* Offest in the DMI processor structure for the max frequency */
  34#define DMI_PROCESSOR_MAX_SPEED  0x14
  35
  36/*
  37 * These structs contain information parsed from per CPU
  38 * ACPI _CPC structures.
  39 * e.g. For each CPU the highest, lowest supported
  40 * performance capabilities, desired performance level
  41 * requested etc.
  42 */
  43static struct cppc_cpudata **all_cpu_data;
  44
  45struct cppc_workaround_oem_info {
  46        char oem_id[ACPI_OEM_ID_SIZE + 1];
  47        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
  48        u32 oem_revision;
  49};
  50
  51static bool apply_hisi_workaround;
  52
  53static struct cppc_workaround_oem_info wa_info[] = {
  54        {
  55                .oem_id         = "HISI  ",
  56                .oem_table_id   = "HIP07   ",
  57                .oem_revision   = 0,
  58        }, {
  59                .oem_id         = "HISI  ",
  60                .oem_table_id   = "HIP08   ",
  61                .oem_revision   = 0,
  62        }
  63};
  64
  65static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
  66                                        unsigned int perf);
  67
  68/*
  69 * HISI platform does not support delivered performance counter and
  70 * reference performance counter. It can calculate the performance using the
  71 * platform specific mechanism. We reuse the desired performance register to
  72 * store the real performance calculated by the platform.
  73 */
  74static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
  75{
  76        struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
  77        u64 desired_perf;
  78        int ret;
  79
  80        ret = cppc_get_desired_perf(cpunum, &desired_perf);
  81        if (ret < 0)
  82                return -EIO;
  83
  84        return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
  85}
  86
  87static void cppc_check_hisi_workaround(void)
  88{
  89        struct acpi_table_header *tbl;
  90        acpi_status status = AE_OK;
  91        int i;
  92
  93        status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
  94        if (ACPI_FAILURE(status) || !tbl)
  95                return;
  96
  97        for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
  98                if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
  99                    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 100                    wa_info[i].oem_revision == tbl->oem_revision) {
 101                        apply_hisi_workaround = true;
 102                        break;
 103                }
 104        }
 105
 106        acpi_put_table(tbl);
 107}
 108
 109/* Callback function used to retrieve the max frequency from DMI */
 110static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
 111{
 112        const u8 *dmi_data = (const u8 *)dm;
 113        u16 *mhz = (u16 *)private;
 114
 115        if (dm->type == DMI_ENTRY_PROCESSOR &&
 116            dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
 117                u16 val = (u16)get_unaligned((const u16 *)
 118                                (dmi_data + DMI_PROCESSOR_MAX_SPEED));
 119                *mhz = val > *mhz ? val : *mhz;
 120        }
 121}
 122
 123/* Look up the max frequency in DMI */
 124static u64 cppc_get_dmi_max_khz(void)
 125{
 126        u16 mhz = 0;
 127
 128        dmi_walk(cppc_find_dmi_mhz, &mhz);
 129
 130        /*
 131         * Real stupid fallback value, just in case there is no
 132         * actual value set.
 133         */
 134        mhz = mhz ? mhz : 1;
 135
 136        return (1000 * mhz);
 137}
 138
 139/*
 140 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
 141 * use them to convert perf to freq and vice versa
 142 *
 143 * If the perf/freq point lies between Nominal and Lowest, we can treat
 144 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
 145 * and extrapolate the rest
 146 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
 147 */
 148static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
 149                                        unsigned int perf)
 150{
 151        static u64 max_khz;
 152        struct cppc_perf_caps *caps = &cpu->perf_caps;
 153        u64 mul, div;
 154
 155        if (caps->lowest_freq && caps->nominal_freq) {
 156                if (perf >= caps->nominal_perf) {
 157                        mul = caps->nominal_freq;
 158                        div = caps->nominal_perf;
 159                } else {
 160                        mul = caps->nominal_freq - caps->lowest_freq;
 161                        div = caps->nominal_perf - caps->lowest_perf;
 162                }
 163        } else {
 164                if (!max_khz)
 165                        max_khz = cppc_get_dmi_max_khz();
 166                mul = max_khz;
 167                div = cpu->perf_caps.highest_perf;
 168        }
 169        return (u64)perf * mul / div;
 170}
 171
 172static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
 173                                        unsigned int freq)
 174{
 175        static u64 max_khz;
 176        struct cppc_perf_caps *caps = &cpu->perf_caps;
 177        u64  mul, div;
 178
 179        if (caps->lowest_freq && caps->nominal_freq) {
 180                if (freq >= caps->nominal_freq) {
 181                        mul = caps->nominal_perf;
 182                        div = caps->nominal_freq;
 183                } else {
 184                        mul = caps->lowest_perf;
 185                        div = caps->lowest_freq;
 186                }
 187        } else {
 188                if (!max_khz)
 189                        max_khz = cppc_get_dmi_max_khz();
 190                mul = cpu->perf_caps.highest_perf;
 191                div = max_khz;
 192        }
 193
 194        return (u64)freq * mul / div;
 195}
 196
 197static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
 198                unsigned int target_freq,
 199                unsigned int relation)
 200{
 201        struct cppc_cpudata *cpu;
 202        struct cpufreq_freqs freqs;
 203        u32 desired_perf;
 204        int ret = 0;
 205
 206        cpu = all_cpu_data[policy->cpu];
 207
 208        desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
 209        /* Return if it is exactly the same perf */
 210        if (desired_perf == cpu->perf_ctrls.desired_perf)
 211                return ret;
 212
 213        cpu->perf_ctrls.desired_perf = desired_perf;
 214        freqs.old = policy->cur;
 215        freqs.new = target_freq;
 216
 217        cpufreq_freq_transition_begin(policy, &freqs);
 218        ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
 219        cpufreq_freq_transition_end(policy, &freqs, ret != 0);
 220
 221        if (ret)
 222                pr_debug("Failed to set target on CPU:%d. ret:%d\n",
 223                                cpu->cpu, ret);
 224
 225        return ret;
 226}
 227
 228static int cppc_verify_policy(struct cpufreq_policy_data *policy)
 229{
 230        cpufreq_verify_within_cpu_limits(policy);
 231        return 0;
 232}
 233
 234static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
 235{
 236        int cpu_num = policy->cpu;
 237        struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
 238        int ret;
 239
 240        cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
 241
 242        ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
 243        if (ret)
 244                pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 245                                cpu->perf_caps.lowest_perf, cpu_num, ret);
 246}
 247
 248/*
 249 * The PCC subspace describes the rate at which platform can accept commands
 250 * on the shared PCC channel (including READs which do not count towards freq
 251 * trasition requests), so ideally we need to use the PCC values as a fallback
 252 * if we don't have a platform specific transition_delay_us
 253 */
 254#ifdef CONFIG_ARM64
 255#include <asm/cputype.h>
 256
 257static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
 258{
 259        unsigned long implementor = read_cpuid_implementor();
 260        unsigned long part_num = read_cpuid_part_number();
 261        unsigned int delay_us = 0;
 262
 263        switch (implementor) {
 264        case ARM_CPU_IMP_QCOM:
 265                switch (part_num) {
 266                case QCOM_CPU_PART_FALKOR_V1:
 267                case QCOM_CPU_PART_FALKOR:
 268                        delay_us = 10000;
 269                        break;
 270                default:
 271                        delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 272                        break;
 273                }
 274                break;
 275        default:
 276                delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 277                break;
 278        }
 279
 280        return delay_us;
 281}
 282
 283#else
 284
 285static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
 286{
 287        return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 288}
 289#endif
 290
 291static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
 292{
 293        struct cppc_cpudata *cpu;
 294        unsigned int cpu_num = policy->cpu;
 295        int ret = 0;
 296
 297        cpu = all_cpu_data[policy->cpu];
 298
 299        cpu->cpu = cpu_num;
 300        ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
 301
 302        if (ret) {
 303                pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
 304                                cpu_num, ret);
 305                return ret;
 306        }
 307
 308        /* Convert the lowest and nominal freq from MHz to KHz */
 309        cpu->perf_caps.lowest_freq *= 1000;
 310        cpu->perf_caps.nominal_freq *= 1000;
 311
 312        /*
 313         * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
 314         * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
 315         */
 316        policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
 317        policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
 318
 319        /*
 320         * Set cpuinfo.min_freq to Lowest to make the full range of performance
 321         * available if userspace wants to use any perf between lowest & lowest
 322         * nonlinear perf
 323         */
 324        policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
 325        policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
 326
 327        policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
 328        policy->shared_type = cpu->shared_type;
 329
 330        if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 331                int i;
 332
 333                cpumask_copy(policy->cpus, cpu->shared_cpu_map);
 334
 335                for_each_cpu(i, policy->cpus) {
 336                        if (unlikely(i == policy->cpu))
 337                                continue;
 338
 339                        memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
 340                               sizeof(cpu->perf_caps));
 341                }
 342        } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
 343                /* Support only SW_ANY for now. */
 344                pr_debug("Unsupported CPU co-ord type\n");
 345                return -EFAULT;
 346        }
 347
 348        cpu->cur_policy = policy;
 349
 350        /* Set policy->cur to max now. The governors will adjust later. */
 351        policy->cur = cppc_cpufreq_perf_to_khz(cpu,
 352                                        cpu->perf_caps.highest_perf);
 353        cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
 354
 355        ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
 356        if (ret)
 357                pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 358                                cpu->perf_caps.highest_perf, cpu_num, ret);
 359
 360        return ret;
 361}
 362
 363static inline u64 get_delta(u64 t1, u64 t0)
 364{
 365        if (t1 > t0 || t0 > ~(u32)0)
 366                return t1 - t0;
 367
 368        return (u32)t1 - (u32)t0;
 369}
 370
 371static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
 372                                     struct cppc_perf_fb_ctrs fb_ctrs_t0,
 373                                     struct cppc_perf_fb_ctrs fb_ctrs_t1)
 374{
 375        u64 delta_reference, delta_delivered;
 376        u64 reference_perf, delivered_perf;
 377
 378        reference_perf = fb_ctrs_t0.reference_perf;
 379
 380        delta_reference = get_delta(fb_ctrs_t1.reference,
 381                                    fb_ctrs_t0.reference);
 382        delta_delivered = get_delta(fb_ctrs_t1.delivered,
 383                                    fb_ctrs_t0.delivered);
 384
 385        /* Check to avoid divide-by zero */
 386        if (delta_reference || delta_delivered)
 387                delivered_perf = (reference_perf * delta_delivered) /
 388                                        delta_reference;
 389        else
 390                delivered_perf = cpu->perf_ctrls.desired_perf;
 391
 392        return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
 393}
 394
 395static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
 396{
 397        struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
 398        struct cppc_cpudata *cpu = all_cpu_data[cpunum];
 399        int ret;
 400
 401        if (apply_hisi_workaround)
 402                return hisi_cppc_cpufreq_get_rate(cpunum);
 403
 404        ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
 405        if (ret)
 406                return ret;
 407
 408        udelay(2); /* 2usec delay between sampling */
 409
 410        ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
 411        if (ret)
 412                return ret;
 413
 414        return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
 415}
 416
 417static struct cpufreq_driver cppc_cpufreq_driver = {
 418        .flags = CPUFREQ_CONST_LOOPS,
 419        .verify = cppc_verify_policy,
 420        .target = cppc_cpufreq_set_target,
 421        .get = cppc_cpufreq_get_rate,
 422        .init = cppc_cpufreq_cpu_init,
 423        .stop_cpu = cppc_cpufreq_stop_cpu,
 424        .name = "cppc_cpufreq",
 425};
 426
 427static int __init cppc_cpufreq_init(void)
 428{
 429        int i, ret = 0;
 430        struct cppc_cpudata *cpu;
 431
 432        if (acpi_disabled)
 433                return -ENODEV;
 434
 435        all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
 436                               GFP_KERNEL);
 437        if (!all_cpu_data)
 438                return -ENOMEM;
 439
 440        for_each_possible_cpu(i) {
 441                all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
 442                if (!all_cpu_data[i])
 443                        goto out;
 444
 445                cpu = all_cpu_data[i];
 446                if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
 447                        goto out;
 448        }
 449
 450        ret = acpi_get_psd_map(all_cpu_data);
 451        if (ret) {
 452                pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
 453                goto out;
 454        }
 455
 456        cppc_check_hisi_workaround();
 457
 458        ret = cpufreq_register_driver(&cppc_cpufreq_driver);
 459        if (ret)
 460                goto out;
 461
 462        return ret;
 463
 464out:
 465        for_each_possible_cpu(i) {
 466                cpu = all_cpu_data[i];
 467                if (!cpu)
 468                        break;
 469                free_cpumask_var(cpu->shared_cpu_map);
 470                kfree(cpu);
 471        }
 472
 473        kfree(all_cpu_data);
 474        return -ENODEV;
 475}
 476
 477static void __exit cppc_cpufreq_exit(void)
 478{
 479        struct cppc_cpudata *cpu;
 480        int i;
 481
 482        cpufreq_unregister_driver(&cppc_cpufreq_driver);
 483
 484        for_each_possible_cpu(i) {
 485                cpu = all_cpu_data[i];
 486                free_cpumask_var(cpu->shared_cpu_map);
 487                kfree(cpu);
 488        }
 489
 490        kfree(all_cpu_data);
 491}
 492
 493module_exit(cppc_cpufreq_exit);
 494MODULE_AUTHOR("Ashwin Chaugule");
 495MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
 496MODULE_LICENSE("GPL");
 497
 498late_initcall(cppc_cpufreq_init);
 499
 500static const struct acpi_device_id cppc_acpi_ids[] __used = {
 501        {ACPI_PROCESSOR_DEVICE_HID, },
 502        {}
 503};
 504
 505MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
 506