linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "gem/i915_gem_context.h"
 199#include "gt/intel_engine_pm.h"
 200#include "gt/intel_engine_user.h"
 201#include "gt/intel_execlists_submission.h"
 202#include "gt/intel_gpu_commands.h"
 203#include "gt/intel_gt.h"
 204#include "gt/intel_gt_clock_utils.h"
 205#include "gt/intel_lrc.h"
 206#include "gt/intel_ring.h"
 207
 208#include "i915_drv.h"
 209#include "i915_perf.h"
 210
 211/* HW requires this to be a power of two, between 128k and 16M, though driver
 212 * is currently generally designed assuming the largest 16M size is used such
 213 * that the overflow cases are unlikely in normal operation.
 214 */
 215#define OA_BUFFER_SIZE          SZ_16M
 216
 217#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 218
 219/**
 220 * DOC: OA Tail Pointer Race
 221 *
 222 * There's a HW race condition between OA unit tail pointer register updates and
 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 224 * been written out to the OA buffer so far (in terms of what's visible to the
 225 * CPU).
 226 *
 227 * Although this can be observed explicitly while copying reports to userspace
 228 * by checking for a zeroed report-id field in tail reports, we want to account
 229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
 230 * redundant read() attempts.
 231 *
 232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
 233 * in the OA buffer, starting from the tail reported by the HW until we find a
 234 * report with its first 2 dwords not 0 meaning its previous report is
 235 * completely in memory and ready to be read. Those dwords are also set to 0
 236 * once read and the whole buffer is cleared upon OA buffer initialization. The
 237 * first dword is the reason for this report while the second is the timestamp,
 238 * making the chances of having those 2 fields at 0 fairly unlikely. A more
 239 * detailed explanation is available in oa_buffer_check_unlocked().
 240 *
 241 * Most of the implementation details for this workaround are in
 242 * oa_buffer_check_unlocked() and _append_oa_reports()
 243 *
 244 * Note for posterity: previously the driver used to define an effective tail
 245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 247 * This was flawed considering that the OA unit may also automatically generate
 248 * non-periodic reports (such as on context switch) or the OA unit may be
 249 * enabled without any periodic sampling.
 250 */
 251#define OA_TAIL_MARGIN_NSEC     100000ULL
 252#define INVALID_TAIL_PTR        0xffffffff
 253
 254/* The default frequency for checking whether the OA unit has written new
 255 * reports to the circular OA buffer...
 256 */
 257#define DEFAULT_POLL_FREQUENCY_HZ 200
 258#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
 259
 260/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 261static u32 i915_perf_stream_paranoid = true;
 262
 263/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 264 * of the 64bit timestamp bits to trigger reports from) but there's currently
 265 * no known use case for sampling as infrequently as once per 47 thousand years.
 266 *
 267 * Since the timestamps included in OA reports are only 32bits it seems
 268 * reasonable to limit the OA exponent where it's still possible to account for
 269 * overflow in OA report timestamps.
 270 */
 271#define OA_EXPONENT_MAX 31
 272
 273#define INVALID_CTX_ID 0xffffffff
 274
 275/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 276#define OAREPORT_REASON_MASK           0x3f
 277#define OAREPORT_REASON_MASK_EXTENDED  0x7f
 278#define OAREPORT_REASON_SHIFT          19
 279#define OAREPORT_REASON_TIMER          (1<<0)
 280#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 281#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 282
 283
 284/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 285 *
 286 * The highest sampling frequency we can theoretically program the OA unit
 287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 288 *
 289 * Initialized just before we register the sysctl parameter.
 290 */
 291static int oa_sample_rate_hard_limit;
 292
 293/* Theoretically we can program the OA unit to sample every 160ns but don't
 294 * allow that by default unless root...
 295 *
 296 * The default threshold of 100000Hz is based on perf's similar
 297 * kernel.perf_event_max_sample_rate sysctl parameter.
 298 */
 299static u32 i915_oa_max_sample_rate = 100000;
 300
 301/* XXX: beware if future OA HW adds new report formats that the current
 302 * code assumes all reports have a power-of-two size and ~(size - 1) can
 303 * be used as a mask to align the OA tail pointer.
 304 */
 305static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
 306        [I915_OA_FORMAT_A13]        = { 0, 64 },
 307        [I915_OA_FORMAT_A29]        = { 1, 128 },
 308        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 309        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 310        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 311        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 312        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 313        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 314        [I915_OA_FORMAT_A12]                = { 0, 64 },
 315        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 316        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 317};
 318
 319#define SAMPLE_OA_REPORT      (1<<0)
 320
 321/**
 322 * struct perf_open_properties - for validated properties given to open a stream
 323 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 324 * @single_context: Whether a single or all gpu contexts should be monitored
 325 * @hold_preemption: Whether the preemption is disabled for the filtered
 326 *                   context
 327 * @ctx_handle: A gem ctx handle for use with @single_context
 328 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 329 * @oa_format: An OA unit HW report format
 330 * @oa_periodic: Whether to enable periodic OA unit sampling
 331 * @oa_period_exponent: The OA unit sampling period is derived from this
 332 * @engine: The engine (typically rcs0) being monitored by the OA unit
 333 * @has_sseu: Whether @sseu was specified by userspace
 334 * @sseu: internal SSEU configuration computed either from the userspace
 335 *        specified configuration in the opening parameters or a default value
 336 *        (see get_default_sseu_config())
 337 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
 338 * data availability
 339 *
 340 * As read_properties_unlocked() enumerates and validates the properties given
 341 * to open a stream of metrics the configuration is built up in the structure
 342 * which starts out zero initialized.
 343 */
 344struct perf_open_properties {
 345        u32 sample_flags;
 346
 347        u64 single_context:1;
 348        u64 hold_preemption:1;
 349        u64 ctx_handle;
 350
 351        /* OA sampling state */
 352        int metrics_set;
 353        int oa_format;
 354        bool oa_periodic;
 355        int oa_period_exponent;
 356
 357        struct intel_engine_cs *engine;
 358
 359        bool has_sseu;
 360        struct intel_sseu sseu;
 361
 362        u64 poll_oa_period;
 363};
 364
 365struct i915_oa_config_bo {
 366        struct llist_node node;
 367
 368        struct i915_oa_config *oa_config;
 369        struct i915_vma *vma;
 370};
 371
 372static struct ctl_table_header *sysctl_header;
 373
 374static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
 375
 376void i915_oa_config_release(struct kref *ref)
 377{
 378        struct i915_oa_config *oa_config =
 379                container_of(ref, typeof(*oa_config), ref);
 380
 381        kfree(oa_config->flex_regs);
 382        kfree(oa_config->b_counter_regs);
 383        kfree(oa_config->mux_regs);
 384
 385        kfree_rcu(oa_config, rcu);
 386}
 387
 388struct i915_oa_config *
 389i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
 390{
 391        struct i915_oa_config *oa_config;
 392
 393        rcu_read_lock();
 394        oa_config = idr_find(&perf->metrics_idr, metrics_set);
 395        if (oa_config)
 396                oa_config = i915_oa_config_get(oa_config);
 397        rcu_read_unlock();
 398
 399        return oa_config;
 400}
 401
 402static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
 403{
 404        i915_oa_config_put(oa_bo->oa_config);
 405        i915_vma_put(oa_bo->vma);
 406        kfree(oa_bo);
 407}
 408
 409static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
 410{
 411        struct intel_uncore *uncore = stream->uncore;
 412
 413        return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
 414               GEN12_OAG_OATAILPTR_MASK;
 415}
 416
 417static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
 418{
 419        struct intel_uncore *uncore = stream->uncore;
 420
 421        return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 422}
 423
 424static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
 425{
 426        struct intel_uncore *uncore = stream->uncore;
 427        u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
 428
 429        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 430}
 431
 432/**
 433 * oa_buffer_check_unlocked - check for data and update tail ptr state
 434 * @stream: i915 stream instance
 435 *
 436 * This is either called via fops (for blocking reads in user ctx) or the poll
 437 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 438 * if there is data available for userspace to read.
 439 *
 440 * This function is central to providing a workaround for the OA unit tail
 441 * pointer having a race with respect to what data is visible to the CPU.
 442 * It is responsible for reading tail pointers from the hardware and giving
 443 * the pointers time to 'age' before they are made available for reading.
 444 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 445 *
 446 * Besides returning true when there is data available to read() this function
 447 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
 448 * object.
 449 *
 450 * Note: It's safe to read OA config state here unlocked, assuming that this is
 451 * only called while the stream is enabled, while the global OA configuration
 452 * can't be modified.
 453 *
 454 * Returns: %true if the OA buffer contains data, else %false
 455 */
 456static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
 457{
 458        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 459        int report_size = stream->oa_buffer.format_size;
 460        unsigned long flags;
 461        bool pollin;
 462        u32 hw_tail;
 463        u64 now;
 464
 465        /* We have to consider the (unlikely) possibility that read() errors
 466         * could result in an OA buffer reset which might reset the head and
 467         * tail state.
 468         */
 469        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 470
 471        hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
 472
 473        /* The tail pointer increases in 64 byte increments,
 474         * not in report_size steps...
 475         */
 476        hw_tail &= ~(report_size - 1);
 477
 478        now = ktime_get_mono_fast_ns();
 479
 480        if (hw_tail == stream->oa_buffer.aging_tail &&
 481            (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
 482                /* If the HW tail hasn't move since the last check and the HW
 483                 * tail has been aging for long enough, declare it the new
 484                 * tail.
 485                 */
 486                stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
 487        } else {
 488                u32 head, tail, aged_tail;
 489
 490                /* NB: The head we observe here might effectively be a little
 491                 * out of date. If a read() is in progress, the head could be
 492                 * anywhere between this head and stream->oa_buffer.tail.
 493                 */
 494                head = stream->oa_buffer.head - gtt_offset;
 495                aged_tail = stream->oa_buffer.tail - gtt_offset;
 496
 497                hw_tail -= gtt_offset;
 498                tail = hw_tail;
 499
 500                /* Walk the stream backward until we find a report with dword 0
 501                 * & 1 not at 0. Since the circular buffer pointers progress by
 502                 * increments of 64 bytes and that reports can be up to 256
 503                 * bytes long, we can't tell whether a report has fully landed
 504                 * in memory before the first 2 dwords of the following report
 505                 * have effectively landed.
 506                 *
 507                 * This is assuming that the writes of the OA unit land in
 508                 * memory in the order they were written to.
 509                 * If not : (╯°□°)╯︵ ┻━┻
 510                 */
 511                while (OA_TAKEN(tail, aged_tail) >= report_size) {
 512                        u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
 513
 514                        if (report32[0] != 0 || report32[1] != 0)
 515                                break;
 516
 517                        tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
 518                }
 519
 520                if (OA_TAKEN(hw_tail, tail) > report_size &&
 521                    __ratelimit(&stream->perf->tail_pointer_race))
 522                        DRM_NOTE("unlanded report(s) head=0x%x "
 523                                 "tail=0x%x hw_tail=0x%x\n",
 524                                 head, tail, hw_tail);
 525
 526                stream->oa_buffer.tail = gtt_offset + tail;
 527                stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
 528                stream->oa_buffer.aging_timestamp = now;
 529        }
 530
 531        pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
 532                          stream->oa_buffer.head - gtt_offset) >= report_size;
 533
 534        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 535
 536        return pollin;
 537}
 538
 539/**
 540 * append_oa_status - Appends a status record to a userspace read() buffer.
 541 * @stream: An i915-perf stream opened for OA metrics
 542 * @buf: destination buffer given by userspace
 543 * @count: the number of bytes userspace wants to read
 544 * @offset: (inout): the current position for writing into @buf
 545 * @type: The kind of status to report to userspace
 546 *
 547 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 548 * into the userspace read() buffer.
 549 *
 550 * The @buf @offset will only be updated on success.
 551 *
 552 * Returns: 0 on success, negative error code on failure.
 553 */
 554static int append_oa_status(struct i915_perf_stream *stream,
 555                            char __user *buf,
 556                            size_t count,
 557                            size_t *offset,
 558                            enum drm_i915_perf_record_type type)
 559{
 560        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 561
 562        if ((count - *offset) < header.size)
 563                return -ENOSPC;
 564
 565        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 566                return -EFAULT;
 567
 568        (*offset) += header.size;
 569
 570        return 0;
 571}
 572
 573/**
 574 * append_oa_sample - Copies single OA report into userspace read() buffer.
 575 * @stream: An i915-perf stream opened for OA metrics
 576 * @buf: destination buffer given by userspace
 577 * @count: the number of bytes userspace wants to read
 578 * @offset: (inout): the current position for writing into @buf
 579 * @report: A single OA report to (optionally) include as part of the sample
 580 *
 581 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 582 * properties when opening a stream, tracked as `stream->sample_flags`. This
 583 * function copies the requested components of a single sample to the given
 584 * read() @buf.
 585 *
 586 * The @buf @offset will only be updated on success.
 587 *
 588 * Returns: 0 on success, negative error code on failure.
 589 */
 590static int append_oa_sample(struct i915_perf_stream *stream,
 591                            char __user *buf,
 592                            size_t count,
 593                            size_t *offset,
 594                            const u8 *report)
 595{
 596        int report_size = stream->oa_buffer.format_size;
 597        struct drm_i915_perf_record_header header;
 598
 599        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 600        header.pad = 0;
 601        header.size = stream->sample_size;
 602
 603        if ((count - *offset) < header.size)
 604                return -ENOSPC;
 605
 606        buf += *offset;
 607        if (copy_to_user(buf, &header, sizeof(header)))
 608                return -EFAULT;
 609        buf += sizeof(header);
 610
 611        if (copy_to_user(buf, report, report_size))
 612                return -EFAULT;
 613
 614        (*offset) += header.size;
 615
 616        return 0;
 617}
 618
 619/**
 620 * gen8_append_oa_reports - Copies all buffered OA reports into
 621 *                          userspace read() buffer.
 622 * @stream: An i915-perf stream opened for OA metrics
 623 * @buf: destination buffer given by userspace
 624 * @count: the number of bytes userspace wants to read
 625 * @offset: (inout): the current position for writing into @buf
 626 *
 627 * Notably any error condition resulting in a short read (-%ENOSPC or
 628 * -%EFAULT) will be returned even though one or more records may
 629 * have been successfully copied. In this case it's up to the caller
 630 * to decide if the error should be squashed before returning to
 631 * userspace.
 632 *
 633 * Note: reports are consumed from the head, and appended to the
 634 * tail, so the tail chases the head?... If you think that's mad
 635 * and back-to-front you're not alone, but this follows the
 636 * Gen PRM naming convention.
 637 *
 638 * Returns: 0 on success, negative error code on failure.
 639 */
 640static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 641                                  char __user *buf,
 642                                  size_t count,
 643                                  size_t *offset)
 644{
 645        struct intel_uncore *uncore = stream->uncore;
 646        int report_size = stream->oa_buffer.format_size;
 647        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 648        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 649        u32 mask = (OA_BUFFER_SIZE - 1);
 650        size_t start_offset = *offset;
 651        unsigned long flags;
 652        u32 head, tail;
 653        u32 taken;
 654        int ret = 0;
 655
 656        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 657                return -EIO;
 658
 659        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 660
 661        head = stream->oa_buffer.head;
 662        tail = stream->oa_buffer.tail;
 663
 664        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 665
 666        /*
 667         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 668         * while indexing relative to oa_buf_base.
 669         */
 670        head -= gtt_offset;
 671        tail -= gtt_offset;
 672
 673        /*
 674         * An out of bounds or misaligned head or tail pointer implies a driver
 675         * bug since we validate + align the tail pointers we read from the
 676         * hardware and we are in full control of the head pointer which should
 677         * only be incremented by multiples of the report size (notably also
 678         * all a power of two).
 679         */
 680        if (drm_WARN_ONCE(&uncore->i915->drm,
 681                          head > OA_BUFFER_SIZE || head % report_size ||
 682                          tail > OA_BUFFER_SIZE || tail % report_size,
 683                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 684                          head, tail))
 685                return -EIO;
 686
 687
 688        for (/* none */;
 689             (taken = OA_TAKEN(tail, head));
 690             head = (head + report_size) & mask) {
 691                u8 *report = oa_buf_base + head;
 692                u32 *report32 = (void *)report;
 693                u32 ctx_id;
 694                u32 reason;
 695
 696                /*
 697                 * All the report sizes factor neatly into the buffer
 698                 * size so we never expect to see a report split
 699                 * between the beginning and end of the buffer.
 700                 *
 701                 * Given the initial alignment check a misalignment
 702                 * here would imply a driver bug that would result
 703                 * in an overrun.
 704                 */
 705                if (drm_WARN_ON(&uncore->i915->drm,
 706                                (OA_BUFFER_SIZE - head) < report_size)) {
 707                        drm_err(&uncore->i915->drm,
 708                                "Spurious OA head ptr: non-integral report offset\n");
 709                        break;
 710                }
 711
 712                /*
 713                 * The reason field includes flags identifying what
 714                 * triggered this specific report (mostly timer
 715                 * triggered or e.g. due to a context switch).
 716                 *
 717                 * This field is never expected to be zero so we can
 718                 * check that the report isn't invalid before copying
 719                 * it to userspace...
 720                 */
 721                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 722                          (GRAPHICS_VER(stream->perf->i915) == 12 ?
 723                           OAREPORT_REASON_MASK_EXTENDED :
 724                           OAREPORT_REASON_MASK));
 725
 726                ctx_id = report32[2] & stream->specific_ctx_id_mask;
 727
 728                /*
 729                 * Squash whatever is in the CTX_ID field if it's marked as
 730                 * invalid to be sure we avoid false-positive, single-context
 731                 * filtering below...
 732                 *
 733                 * Note: that we don't clear the valid_ctx_bit so userspace can
 734                 * understand that the ID has been squashed by the kernel.
 735                 */
 736                if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
 737                    GRAPHICS_VER(stream->perf->i915) <= 11)
 738                        ctx_id = report32[2] = INVALID_CTX_ID;
 739
 740                /*
 741                 * NB: For Gen 8 the OA unit no longer supports clock gating
 742                 * off for a specific context and the kernel can't securely
 743                 * stop the counters from updating as system-wide / global
 744                 * values.
 745                 *
 746                 * Automatic reports now include a context ID so reports can be
 747                 * filtered on the cpu but it's not worth trying to
 748                 * automatically subtract/hide counter progress for other
 749                 * contexts while filtering since we can't stop userspace
 750                 * issuing MI_REPORT_PERF_COUNT commands which would still
 751                 * provide a side-band view of the real values.
 752                 *
 753                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 754                 * to normalize counters for a single filtered context then it
 755                 * needs be forwarded bookend context-switch reports so that it
 756                 * can track switches in between MI_REPORT_PERF_COUNT commands
 757                 * and can itself subtract/ignore the progress of counters
 758                 * associated with other contexts. Note that the hardware
 759                 * automatically triggers reports when switching to a new
 760                 * context which are tagged with the ID of the newly active
 761                 * context. To avoid the complexity (and likely fragility) of
 762                 * reading ahead while parsing reports to try and minimize
 763                 * forwarding redundant context switch reports (i.e. between
 764                 * other, unrelated contexts) we simply elect to forward them
 765                 * all.
 766                 *
 767                 * We don't rely solely on the reason field to identify context
 768                 * switches since it's not-uncommon for periodic samples to
 769                 * identify a switch before any 'context switch' report.
 770                 */
 771                if (!stream->perf->exclusive_stream->ctx ||
 772                    stream->specific_ctx_id == ctx_id ||
 773                    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
 774                    reason & OAREPORT_REASON_CTX_SWITCH) {
 775
 776                        /*
 777                         * While filtering for a single context we avoid
 778                         * leaking the IDs of other contexts.
 779                         */
 780                        if (stream->perf->exclusive_stream->ctx &&
 781                            stream->specific_ctx_id != ctx_id) {
 782                                report32[2] = INVALID_CTX_ID;
 783                        }
 784
 785                        ret = append_oa_sample(stream, buf, count, offset,
 786                                               report);
 787                        if (ret)
 788                                break;
 789
 790                        stream->oa_buffer.last_ctx_id = ctx_id;
 791                }
 792
 793                /*
 794                 * Clear out the first 2 dword as a mean to detect unlanded
 795                 * reports.
 796                 */
 797                report32[0] = 0;
 798                report32[1] = 0;
 799        }
 800
 801        if (start_offset != *offset) {
 802                i915_reg_t oaheadptr;
 803
 804                oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
 805                            GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
 806
 807                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 808
 809                /*
 810                 * We removed the gtt_offset for the copy loop above, indexing
 811                 * relative to oa_buf_base so put back here...
 812                 */
 813                head += gtt_offset;
 814                intel_uncore_write(uncore, oaheadptr,
 815                                   head & GEN12_OAG_OAHEADPTR_MASK);
 816                stream->oa_buffer.head = head;
 817
 818                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 819        }
 820
 821        return ret;
 822}
 823
 824/**
 825 * gen8_oa_read - copy status records then buffered OA reports
 826 * @stream: An i915-perf stream opened for OA metrics
 827 * @buf: destination buffer given by userspace
 828 * @count: the number of bytes userspace wants to read
 829 * @offset: (inout): the current position for writing into @buf
 830 *
 831 * Checks OA unit status registers and if necessary appends corresponding
 832 * status records for userspace (such as for a buffer full condition) and then
 833 * initiate appending any buffered OA reports.
 834 *
 835 * Updates @offset according to the number of bytes successfully copied into
 836 * the userspace buffer.
 837 *
 838 * NB: some data may be successfully copied to the userspace buffer
 839 * even if an error is returned, and this is reflected in the
 840 * updated @offset.
 841 *
 842 * Returns: zero on success or a negative error code
 843 */
 844static int gen8_oa_read(struct i915_perf_stream *stream,
 845                        char __user *buf,
 846                        size_t count,
 847                        size_t *offset)
 848{
 849        struct intel_uncore *uncore = stream->uncore;
 850        u32 oastatus;
 851        i915_reg_t oastatus_reg;
 852        int ret;
 853
 854        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
 855                return -EIO;
 856
 857        oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
 858                       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
 859
 860        oastatus = intel_uncore_read(uncore, oastatus_reg);
 861
 862        /*
 863         * We treat OABUFFER_OVERFLOW as a significant error:
 864         *
 865         * Although theoretically we could handle this more gracefully
 866         * sometimes, some Gens don't correctly suppress certain
 867         * automatically triggered reports in this condition and so we
 868         * have to assume that old reports are now being trampled
 869         * over.
 870         *
 871         * Considering how we don't currently give userspace control
 872         * over the OA buffer size and always configure a large 16MB
 873         * buffer, then a buffer overflow does anyway likely indicate
 874         * that something has gone quite badly wrong.
 875         */
 876        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 877                ret = append_oa_status(stream, buf, count, offset,
 878                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 879                if (ret)
 880                        return ret;
 881
 882                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 883                          stream->period_exponent);
 884
 885                stream->perf->ops.oa_disable(stream);
 886                stream->perf->ops.oa_enable(stream);
 887
 888                /*
 889                 * Note: .oa_enable() is expected to re-init the oabuffer and
 890                 * reset GEN8_OASTATUS for us
 891                 */
 892                oastatus = intel_uncore_read(uncore, oastatus_reg);
 893        }
 894
 895        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 896                ret = append_oa_status(stream, buf, count, offset,
 897                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 898                if (ret)
 899                        return ret;
 900
 901                intel_uncore_rmw(uncore, oastatus_reg,
 902                                 GEN8_OASTATUS_COUNTER_OVERFLOW |
 903                                 GEN8_OASTATUS_REPORT_LOST,
 904                                 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
 905                                 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
 906                                  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
 907        }
 908
 909        return gen8_append_oa_reports(stream, buf, count, offset);
 910}
 911
 912/**
 913 * gen7_append_oa_reports - Copies all buffered OA reports into
 914 *                          userspace read() buffer.
 915 * @stream: An i915-perf stream opened for OA metrics
 916 * @buf: destination buffer given by userspace
 917 * @count: the number of bytes userspace wants to read
 918 * @offset: (inout): the current position for writing into @buf
 919 *
 920 * Notably any error condition resulting in a short read (-%ENOSPC or
 921 * -%EFAULT) will be returned even though one or more records may
 922 * have been successfully copied. In this case it's up to the caller
 923 * to decide if the error should be squashed before returning to
 924 * userspace.
 925 *
 926 * Note: reports are consumed from the head, and appended to the
 927 * tail, so the tail chases the head?... If you think that's mad
 928 * and back-to-front you're not alone, but this follows the
 929 * Gen PRM naming convention.
 930 *
 931 * Returns: 0 on success, negative error code on failure.
 932 */
 933static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 934                                  char __user *buf,
 935                                  size_t count,
 936                                  size_t *offset)
 937{
 938        struct intel_uncore *uncore = stream->uncore;
 939        int report_size = stream->oa_buffer.format_size;
 940        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 941        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 942        u32 mask = (OA_BUFFER_SIZE - 1);
 943        size_t start_offset = *offset;
 944        unsigned long flags;
 945        u32 head, tail;
 946        u32 taken;
 947        int ret = 0;
 948
 949        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 950                return -EIO;
 951
 952        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 953
 954        head = stream->oa_buffer.head;
 955        tail = stream->oa_buffer.tail;
 956
 957        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 958
 959        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 960         * while indexing relative to oa_buf_base.
 961         */
 962        head -= gtt_offset;
 963        tail -= gtt_offset;
 964
 965        /* An out of bounds or misaligned head or tail pointer implies a driver
 966         * bug since we validate + align the tail pointers we read from the
 967         * hardware and we are in full control of the head pointer which should
 968         * only be incremented by multiples of the report size (notably also
 969         * all a power of two).
 970         */
 971        if (drm_WARN_ONCE(&uncore->i915->drm,
 972                          head > OA_BUFFER_SIZE || head % report_size ||
 973                          tail > OA_BUFFER_SIZE || tail % report_size,
 974                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 975                          head, tail))
 976                return -EIO;
 977
 978
 979        for (/* none */;
 980             (taken = OA_TAKEN(tail, head));
 981             head = (head + report_size) & mask) {
 982                u8 *report = oa_buf_base + head;
 983                u32 *report32 = (void *)report;
 984
 985                /* All the report sizes factor neatly into the buffer
 986                 * size so we never expect to see a report split
 987                 * between the beginning and end of the buffer.
 988                 *
 989                 * Given the initial alignment check a misalignment
 990                 * here would imply a driver bug that would result
 991                 * in an overrun.
 992                 */
 993                if (drm_WARN_ON(&uncore->i915->drm,
 994                                (OA_BUFFER_SIZE - head) < report_size)) {
 995                        drm_err(&uncore->i915->drm,
 996                                "Spurious OA head ptr: non-integral report offset\n");
 997                        break;
 998                }
 999
1000                /* The report-ID field for periodic samples includes
1001                 * some undocumented flags related to what triggered
1002                 * the report and is never expected to be zero so we
1003                 * can check that the report isn't invalid before
1004                 * copying it to userspace...
1005                 */
1006                if (report32[0] == 0) {
1007                        if (__ratelimit(&stream->perf->spurious_report_rs))
1008                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1009                        continue;
1010                }
1011
1012                ret = append_oa_sample(stream, buf, count, offset, report);
1013                if (ret)
1014                        break;
1015
1016                /* Clear out the first 2 dwords as a mean to detect unlanded
1017                 * reports.
1018                 */
1019                report32[0] = 0;
1020                report32[1] = 0;
1021        }
1022
1023        if (start_offset != *offset) {
1024                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1025
1026                /* We removed the gtt_offset for the copy loop above, indexing
1027                 * relative to oa_buf_base so put back here...
1028                 */
1029                head += gtt_offset;
1030
1031                intel_uncore_write(uncore, GEN7_OASTATUS2,
1032                                   (head & GEN7_OASTATUS2_HEAD_MASK) |
1033                                   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1034                stream->oa_buffer.head = head;
1035
1036                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1037        }
1038
1039        return ret;
1040}
1041
1042/**
1043 * gen7_oa_read - copy status records then buffered OA reports
1044 * @stream: An i915-perf stream opened for OA metrics
1045 * @buf: destination buffer given by userspace
1046 * @count: the number of bytes userspace wants to read
1047 * @offset: (inout): the current position for writing into @buf
1048 *
1049 * Checks Gen 7 specific OA unit status registers and if necessary appends
1050 * corresponding status records for userspace (such as for a buffer full
1051 * condition) and then initiate appending any buffered OA reports.
1052 *
1053 * Updates @offset according to the number of bytes successfully copied into
1054 * the userspace buffer.
1055 *
1056 * Returns: zero on success or a negative error code
1057 */
1058static int gen7_oa_read(struct i915_perf_stream *stream,
1059                        char __user *buf,
1060                        size_t count,
1061                        size_t *offset)
1062{
1063        struct intel_uncore *uncore = stream->uncore;
1064        u32 oastatus1;
1065        int ret;
1066
1067        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1068                return -EIO;
1069
1070        oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1071
1072        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1073         * bits while the OA unit is enabled (while the tail pointer
1074         * may be updated asynchronously) so we ignore status bits
1075         * that have already been reported to userspace.
1076         */
1077        oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1078
1079        /* We treat OABUFFER_OVERFLOW as a significant error:
1080         *
1081         * - The status can be interpreted to mean that the buffer is
1082         *   currently full (with a higher precedence than OA_TAKEN()
1083         *   which will start to report a near-empty buffer after an
1084         *   overflow) but it's awkward that we can't clear the status
1085         *   on Haswell, so without a reset we won't be able to catch
1086         *   the state again.
1087         *
1088         * - Since it also implies the HW has started overwriting old
1089         *   reports it may also affect our sanity checks for invalid
1090         *   reports when copying to userspace that assume new reports
1091         *   are being written to cleared memory.
1092         *
1093         * - In the future we may want to introduce a flight recorder
1094         *   mode where the driver will automatically maintain a safe
1095         *   guard band between head/tail, avoiding this overflow
1096         *   condition, but we avoid the added driver complexity for
1097         *   now.
1098         */
1099        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1100                ret = append_oa_status(stream, buf, count, offset,
1101                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1102                if (ret)
1103                        return ret;
1104
1105                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1106                          stream->period_exponent);
1107
1108                stream->perf->ops.oa_disable(stream);
1109                stream->perf->ops.oa_enable(stream);
1110
1111                oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1112        }
1113
1114        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1115                ret = append_oa_status(stream, buf, count, offset,
1116                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1117                if (ret)
1118                        return ret;
1119                stream->perf->gen7_latched_oastatus1 |=
1120                        GEN7_OASTATUS1_REPORT_LOST;
1121        }
1122
1123        return gen7_append_oa_reports(stream, buf, count, offset);
1124}
1125
1126/**
1127 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1128 * @stream: An i915-perf stream opened for OA metrics
1129 *
1130 * Called when userspace tries to read() from a blocking stream FD opened
1131 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1132 * OA buffer and wakes us.
1133 *
1134 * Note: it's acceptable to have this return with some false positives
1135 * since any subsequent read handling will return -EAGAIN if there isn't
1136 * really data ready for userspace yet.
1137 *
1138 * Returns: zero on success or a negative error code
1139 */
1140static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1141{
1142        /* We would wait indefinitely if periodic sampling is not enabled */
1143        if (!stream->periodic)
1144                return -EIO;
1145
1146        return wait_event_interruptible(stream->poll_wq,
1147                                        oa_buffer_check_unlocked(stream));
1148}
1149
1150/**
1151 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1152 * @stream: An i915-perf stream opened for OA metrics
1153 * @file: An i915 perf stream file
1154 * @wait: poll() state table
1155 *
1156 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1157 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1158 * when it sees data ready to read in the circular OA buffer.
1159 */
1160static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1161                              struct file *file,
1162                              poll_table *wait)
1163{
1164        poll_wait(file, &stream->poll_wq, wait);
1165}
1166
1167/**
1168 * i915_oa_read - just calls through to &i915_oa_ops->read
1169 * @stream: An i915-perf stream opened for OA metrics
1170 * @buf: destination buffer given by userspace
1171 * @count: the number of bytes userspace wants to read
1172 * @offset: (inout): the current position for writing into @buf
1173 *
1174 * Updates @offset according to the number of bytes successfully copied into
1175 * the userspace buffer.
1176 *
1177 * Returns: zero on success or a negative error code
1178 */
1179static int i915_oa_read(struct i915_perf_stream *stream,
1180                        char __user *buf,
1181                        size_t count,
1182                        size_t *offset)
1183{
1184        return stream->perf->ops.read(stream, buf, count, offset);
1185}
1186
1187static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1188{
1189        struct i915_gem_engines_iter it;
1190        struct i915_gem_context *ctx = stream->ctx;
1191        struct intel_context *ce;
1192        struct i915_gem_ww_ctx ww;
1193        int err = -ENODEV;
1194
1195        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1196                if (ce->engine != stream->engine) /* first match! */
1197                        continue;
1198
1199                err = 0;
1200                break;
1201        }
1202        i915_gem_context_unlock_engines(ctx);
1203
1204        if (err)
1205                return ERR_PTR(err);
1206
1207        i915_gem_ww_ctx_init(&ww, true);
1208retry:
1209        /*
1210         * As the ID is the gtt offset of the context's vma we
1211         * pin the vma to ensure the ID remains fixed.
1212         */
1213        err = intel_context_pin_ww(ce, &ww);
1214        if (err == -EDEADLK) {
1215                err = i915_gem_ww_ctx_backoff(&ww);
1216                if (!err)
1217                        goto retry;
1218        }
1219        i915_gem_ww_ctx_fini(&ww);
1220
1221        if (err)
1222                return ERR_PTR(err);
1223
1224        stream->pinned_ctx = ce;
1225        return stream->pinned_ctx;
1226}
1227
1228/**
1229 * oa_get_render_ctx_id - determine and hold ctx hw id
1230 * @stream: An i915-perf stream opened for OA metrics
1231 *
1232 * Determine the render context hw id, and ensure it remains fixed for the
1233 * lifetime of the stream. This ensures that we don't have to worry about
1234 * updating the context ID in OACONTROL on the fly.
1235 *
1236 * Returns: zero on success or a negative error code
1237 */
1238static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1239{
1240        struct intel_context *ce;
1241
1242        ce = oa_pin_context(stream);
1243        if (IS_ERR(ce))
1244                return PTR_ERR(ce);
1245
1246        switch (GRAPHICS_VER(ce->engine->i915)) {
1247        case 7: {
1248                /*
1249                 * On Haswell we don't do any post processing of the reports
1250                 * and don't need to use the mask.
1251                 */
1252                stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1253                stream->specific_ctx_id_mask = 0;
1254                break;
1255        }
1256
1257        case 8:
1258        case 9:
1259        case 10:
1260                if (intel_engine_uses_guc(ce->engine)) {
1261                        /*
1262                         * When using GuC, the context descriptor we write in
1263                         * i915 is read by GuC and rewritten before it's
1264                         * actually written into the hardware. The LRCA is
1265                         * what is put into the context id field of the
1266                         * context descriptor by GuC. Because it's aligned to
1267                         * a page, the lower 12bits are always at 0 and
1268                         * dropped by GuC. They won't be part of the context
1269                         * ID in the OA reports, so squash those lower bits.
1270                         */
1271                        stream->specific_ctx_id = ce->lrc.lrca >> 12;
1272
1273                        /*
1274                         * GuC uses the top bit to signal proxy submission, so
1275                         * ignore that bit.
1276                         */
1277                        stream->specific_ctx_id_mask =
1278                                (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1279                } else {
1280                        stream->specific_ctx_id_mask =
1281                                (1U << GEN8_CTX_ID_WIDTH) - 1;
1282                        stream->specific_ctx_id = stream->specific_ctx_id_mask;
1283                }
1284                break;
1285
1286        case 11:
1287        case 12: {
1288                stream->specific_ctx_id_mask =
1289                        ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1290                /*
1291                 * Pick an unused context id
1292                 * 0 - BITS_PER_LONG are used by other contexts
1293                 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1294                 */
1295                stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1296                break;
1297        }
1298
1299        default:
1300                MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1301        }
1302
1303        ce->tag = stream->specific_ctx_id;
1304
1305        drm_dbg(&stream->perf->i915->drm,
1306                "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1307                stream->specific_ctx_id,
1308                stream->specific_ctx_id_mask);
1309
1310        return 0;
1311}
1312
1313/**
1314 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1315 * @stream: An i915-perf stream opened for OA metrics
1316 *
1317 * In case anything needed doing to ensure the context HW ID would remain valid
1318 * for the lifetime of the stream, then that can be undone here.
1319 */
1320static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1321{
1322        struct intel_context *ce;
1323
1324        ce = fetch_and_zero(&stream->pinned_ctx);
1325        if (ce) {
1326                ce->tag = 0; /* recomputed on next submission after parking */
1327                intel_context_unpin(ce);
1328        }
1329
1330        stream->specific_ctx_id = INVALID_CTX_ID;
1331        stream->specific_ctx_id_mask = 0;
1332}
1333
1334static void
1335free_oa_buffer(struct i915_perf_stream *stream)
1336{
1337        i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1338                                   I915_VMA_RELEASE_MAP);
1339
1340        stream->oa_buffer.vaddr = NULL;
1341}
1342
1343static void
1344free_oa_configs(struct i915_perf_stream *stream)
1345{
1346        struct i915_oa_config_bo *oa_bo, *tmp;
1347
1348        i915_oa_config_put(stream->oa_config);
1349        llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1350                free_oa_config_bo(oa_bo);
1351}
1352
1353static void
1354free_noa_wait(struct i915_perf_stream *stream)
1355{
1356        i915_vma_unpin_and_release(&stream->noa_wait, 0);
1357}
1358
1359static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1360{
1361        struct i915_perf *perf = stream->perf;
1362
1363        BUG_ON(stream != perf->exclusive_stream);
1364
1365        /*
1366         * Unset exclusive_stream first, it will be checked while disabling
1367         * the metric set on gen8+.
1368         *
1369         * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1370         */
1371        WRITE_ONCE(perf->exclusive_stream, NULL);
1372        perf->ops.disable_metric_set(stream);
1373
1374        free_oa_buffer(stream);
1375
1376        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1377        intel_engine_pm_put(stream->engine);
1378
1379        if (stream->ctx)
1380                oa_put_render_ctx_id(stream);
1381
1382        free_oa_configs(stream);
1383        free_noa_wait(stream);
1384
1385        if (perf->spurious_report_rs.missed) {
1386                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1387                         perf->spurious_report_rs.missed);
1388        }
1389}
1390
1391static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1392{
1393        struct intel_uncore *uncore = stream->uncore;
1394        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1395        unsigned long flags;
1396
1397        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1398
1399        /* Pre-DevBDW: OABUFFER must be set with counters off,
1400         * before OASTATUS1, but after OASTATUS2
1401         */
1402        intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1403                           gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1404        stream->oa_buffer.head = gtt_offset;
1405
1406        intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1407
1408        intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1409                           gtt_offset | OABUFFER_SIZE_16M);
1410
1411        /* Mark that we need updated tail pointers to read from... */
1412        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1413        stream->oa_buffer.tail = gtt_offset;
1414
1415        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1416
1417        /* On Haswell we have to track which OASTATUS1 flags we've
1418         * already seen since they can't be cleared while periodic
1419         * sampling is enabled.
1420         */
1421        stream->perf->gen7_latched_oastatus1 = 0;
1422
1423        /* NB: although the OA buffer will initially be allocated
1424         * zeroed via shmfs (and so this memset is redundant when
1425         * first allocating), we may re-init the OA buffer, either
1426         * when re-enabling a stream or in error/reset paths.
1427         *
1428         * The reason we clear the buffer for each re-init is for the
1429         * sanity check in gen7_append_oa_reports() that looks at the
1430         * report-id field to make sure it's non-zero which relies on
1431         * the assumption that new reports are being written to zeroed
1432         * memory...
1433         */
1434        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1435}
1436
1437static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1438{
1439        struct intel_uncore *uncore = stream->uncore;
1440        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1441        unsigned long flags;
1442
1443        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1444
1445        intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1446        intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1447        stream->oa_buffer.head = gtt_offset;
1448
1449        intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1450
1451        /*
1452         * PRM says:
1453         *
1454         *  "This MMIO must be set before the OATAILPTR
1455         *  register and after the OAHEADPTR register. This is
1456         *  to enable proper functionality of the overflow
1457         *  bit."
1458         */
1459        intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1460                   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1461        intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1462
1463        /* Mark that we need updated tail pointers to read from... */
1464        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1465        stream->oa_buffer.tail = gtt_offset;
1466
1467        /*
1468         * Reset state used to recognise context switches, affecting which
1469         * reports we will forward to userspace while filtering for a single
1470         * context.
1471         */
1472        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1473
1474        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1475
1476        /*
1477         * NB: although the OA buffer will initially be allocated
1478         * zeroed via shmfs (and so this memset is redundant when
1479         * first allocating), we may re-init the OA buffer, either
1480         * when re-enabling a stream or in error/reset paths.
1481         *
1482         * The reason we clear the buffer for each re-init is for the
1483         * sanity check in gen8_append_oa_reports() that looks at the
1484         * reason field to make sure it's non-zero which relies on
1485         * the assumption that new reports are being written to zeroed
1486         * memory...
1487         */
1488        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1489}
1490
1491static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1492{
1493        struct intel_uncore *uncore = stream->uncore;
1494        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1495        unsigned long flags;
1496
1497        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1498
1499        intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1500        intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1501                           gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1502        stream->oa_buffer.head = gtt_offset;
1503
1504        /*
1505         * PRM says:
1506         *
1507         *  "This MMIO must be set before the OATAILPTR
1508         *  register and after the OAHEADPTR register. This is
1509         *  to enable proper functionality of the overflow
1510         *  bit."
1511         */
1512        intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1513                           OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1514        intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1515                           gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1516
1517        /* Mark that we need updated tail pointers to read from... */
1518        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1519        stream->oa_buffer.tail = gtt_offset;
1520
1521        /*
1522         * Reset state used to recognise context switches, affecting which
1523         * reports we will forward to userspace while filtering for a single
1524         * context.
1525         */
1526        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1527
1528        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1529
1530        /*
1531         * NB: although the OA buffer will initially be allocated
1532         * zeroed via shmfs (and so this memset is redundant when
1533         * first allocating), we may re-init the OA buffer, either
1534         * when re-enabling a stream or in error/reset paths.
1535         *
1536         * The reason we clear the buffer for each re-init is for the
1537         * sanity check in gen8_append_oa_reports() that looks at the
1538         * reason field to make sure it's non-zero which relies on
1539         * the assumption that new reports are being written to zeroed
1540         * memory...
1541         */
1542        memset(stream->oa_buffer.vaddr, 0,
1543               stream->oa_buffer.vma->size);
1544}
1545
1546static int alloc_oa_buffer(struct i915_perf_stream *stream)
1547{
1548        struct drm_i915_private *i915 = stream->perf->i915;
1549        struct drm_i915_gem_object *bo;
1550        struct i915_vma *vma;
1551        int ret;
1552
1553        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1554                return -ENODEV;
1555
1556        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1557        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1558
1559        bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1560        if (IS_ERR(bo)) {
1561                drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1562                return PTR_ERR(bo);
1563        }
1564
1565        i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1566
1567        /* PreHSW required 512K alignment, HSW requires 16M */
1568        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1569        if (IS_ERR(vma)) {
1570                ret = PTR_ERR(vma);
1571                goto err_unref;
1572        }
1573        stream->oa_buffer.vma = vma;
1574
1575        stream->oa_buffer.vaddr =
1576                i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1577        if (IS_ERR(stream->oa_buffer.vaddr)) {
1578                ret = PTR_ERR(stream->oa_buffer.vaddr);
1579                goto err_unpin;
1580        }
1581
1582        return 0;
1583
1584err_unpin:
1585        __i915_vma_unpin(vma);
1586
1587err_unref:
1588        i915_gem_object_put(bo);
1589
1590        stream->oa_buffer.vaddr = NULL;
1591        stream->oa_buffer.vma = NULL;
1592
1593        return ret;
1594}
1595
1596static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1597                                  bool save, i915_reg_t reg, u32 offset,
1598                                  u32 dword_count)
1599{
1600        u32 cmd;
1601        u32 d;
1602
1603        cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1604        cmd |= MI_SRM_LRM_GLOBAL_GTT;
1605        if (GRAPHICS_VER(stream->perf->i915) >= 8)
1606                cmd++;
1607
1608        for (d = 0; d < dword_count; d++) {
1609                *cs++ = cmd;
1610                *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1611                *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1612                                                offset) + 4 * d;
1613                *cs++ = 0;
1614        }
1615
1616        return cs;
1617}
1618
1619static int alloc_noa_wait(struct i915_perf_stream *stream)
1620{
1621        struct drm_i915_private *i915 = stream->perf->i915;
1622        struct drm_i915_gem_object *bo;
1623        struct i915_vma *vma;
1624        const u64 delay_ticks = 0xffffffffffffffff -
1625                intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt,
1626                                              atomic64_read(&stream->perf->noa_programming_delay));
1627        const u32 base = stream->engine->mmio_base;
1628#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1629        u32 *batch, *ts0, *cs, *jump;
1630        struct i915_gem_ww_ctx ww;
1631        int ret, i;
1632        enum {
1633                START_TS,
1634                NOW_TS,
1635                DELTA_TS,
1636                JUMP_PREDICATE,
1637                DELTA_TARGET,
1638                N_CS_GPR
1639        };
1640
1641        bo = i915_gem_object_create_internal(i915, 4096);
1642        if (IS_ERR(bo)) {
1643                drm_err(&i915->drm,
1644                        "Failed to allocate NOA wait batchbuffer\n");
1645                return PTR_ERR(bo);
1646        }
1647
1648        i915_gem_ww_ctx_init(&ww, true);
1649retry:
1650        ret = i915_gem_object_lock(bo, &ww);
1651        if (ret)
1652                goto out_ww;
1653
1654        /*
1655         * We pin in GGTT because we jump into this buffer now because
1656         * multiple OA config BOs will have a jump to this address and it
1657         * needs to be fixed during the lifetime of the i915/perf stream.
1658         */
1659        vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1660        if (IS_ERR(vma)) {
1661                ret = PTR_ERR(vma);
1662                goto out_ww;
1663        }
1664
1665        batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1666        if (IS_ERR(batch)) {
1667                ret = PTR_ERR(batch);
1668                goto err_unpin;
1669        }
1670
1671        /* Save registers. */
1672        for (i = 0; i < N_CS_GPR; i++)
1673                cs = save_restore_register(
1674                        stream, cs, true /* save */, CS_GPR(i),
1675                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1676        cs = save_restore_register(
1677                stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1678                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1679
1680        /* First timestamp snapshot location. */
1681        ts0 = cs;
1682
1683        /*
1684         * Initial snapshot of the timestamp register to implement the wait.
1685         * We work with 32b values, so clear out the top 32b bits of the
1686         * register because the ALU works 64bits.
1687         */
1688        *cs++ = MI_LOAD_REGISTER_IMM(1);
1689        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1690        *cs++ = 0;
1691        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1692        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1693        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1694
1695        /*
1696         * This is the location we're going to jump back into until the
1697         * required amount of time has passed.
1698         */
1699        jump = cs;
1700
1701        /*
1702         * Take another snapshot of the timestamp register. Take care to clear
1703         * up the top 32bits of CS_GPR(1) as we're using it for other
1704         * operations below.
1705         */
1706        *cs++ = MI_LOAD_REGISTER_IMM(1);
1707        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1708        *cs++ = 0;
1709        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1710        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1711        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1712
1713        /*
1714         * Do a diff between the 2 timestamps and store the result back into
1715         * CS_GPR(1).
1716         */
1717        *cs++ = MI_MATH(5);
1718        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1719        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1720        *cs++ = MI_MATH_SUB;
1721        *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1722        *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1723
1724        /*
1725         * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1726         * timestamp have rolled over the 32bits) into the predicate register
1727         * to be used for the predicated jump.
1728         */
1729        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1731        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1732
1733        /* Restart from the beginning if we had timestamps roll over. */
1734        *cs++ = (GRAPHICS_VER(i915) < 8 ?
1735                 MI_BATCH_BUFFER_START :
1736                 MI_BATCH_BUFFER_START_GEN8) |
1737                MI_BATCH_PREDICATE;
1738        *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1739        *cs++ = 0;
1740
1741        /*
1742         * Now add the diff between to previous timestamps and add it to :
1743         *      (((1 * << 64) - 1) - delay_ns)
1744         *
1745         * When the Carry Flag contains 1 this means the elapsed time is
1746         * longer than the expected delay, and we can exit the wait loop.
1747         */
1748        *cs++ = MI_LOAD_REGISTER_IMM(2);
1749        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1750        *cs++ = lower_32_bits(delay_ticks);
1751        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1752        *cs++ = upper_32_bits(delay_ticks);
1753
1754        *cs++ = MI_MATH(4);
1755        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1756        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1757        *cs++ = MI_MATH_ADD;
1758        *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1759
1760        *cs++ = MI_ARB_CHECK;
1761
1762        /*
1763         * Transfer the result into the predicate register to be used for the
1764         * predicated jump.
1765         */
1766        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1767        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1768        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1769
1770        /* Predicate the jump.  */
1771        *cs++ = (GRAPHICS_VER(i915) < 8 ?
1772                 MI_BATCH_BUFFER_START :
1773                 MI_BATCH_BUFFER_START_GEN8) |
1774                MI_BATCH_PREDICATE;
1775        *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1776        *cs++ = 0;
1777
1778        /* Restore registers. */
1779        for (i = 0; i < N_CS_GPR; i++)
1780                cs = save_restore_register(
1781                        stream, cs, false /* restore */, CS_GPR(i),
1782                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1783        cs = save_restore_register(
1784                stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1785                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1786
1787        /* And return to the ring. */
1788        *cs++ = MI_BATCH_BUFFER_END;
1789
1790        GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1791
1792        i915_gem_object_flush_map(bo);
1793        __i915_gem_object_release_map(bo);
1794
1795        stream->noa_wait = vma;
1796        goto out_ww;
1797
1798err_unpin:
1799        i915_vma_unpin_and_release(&vma, 0);
1800out_ww:
1801        if (ret == -EDEADLK) {
1802                ret = i915_gem_ww_ctx_backoff(&ww);
1803                if (!ret)
1804                        goto retry;
1805        }
1806        i915_gem_ww_ctx_fini(&ww);
1807        if (ret)
1808                i915_gem_object_put(bo);
1809        return ret;
1810}
1811
1812static u32 *write_cs_mi_lri(u32 *cs,
1813                            const struct i915_oa_reg *reg_data,
1814                            u32 n_regs)
1815{
1816        u32 i;
1817
1818        for (i = 0; i < n_regs; i++) {
1819                if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1820                        u32 n_lri = min_t(u32,
1821                                          n_regs - i,
1822                                          MI_LOAD_REGISTER_IMM_MAX_REGS);
1823
1824                        *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1825                }
1826                *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1827                *cs++ = reg_data[i].value;
1828        }
1829
1830        return cs;
1831}
1832
1833static int num_lri_dwords(int num_regs)
1834{
1835        int count = 0;
1836
1837        if (num_regs > 0) {
1838                count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1839                count += num_regs * 2;
1840        }
1841
1842        return count;
1843}
1844
1845static struct i915_oa_config_bo *
1846alloc_oa_config_buffer(struct i915_perf_stream *stream,
1847                       struct i915_oa_config *oa_config)
1848{
1849        struct drm_i915_gem_object *obj;
1850        struct i915_oa_config_bo *oa_bo;
1851        struct i915_gem_ww_ctx ww;
1852        size_t config_length = 0;
1853        u32 *cs;
1854        int err;
1855
1856        oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1857        if (!oa_bo)
1858                return ERR_PTR(-ENOMEM);
1859
1860        config_length += num_lri_dwords(oa_config->mux_regs_len);
1861        config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1862        config_length += num_lri_dwords(oa_config->flex_regs_len);
1863        config_length += 3; /* MI_BATCH_BUFFER_START */
1864        config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1865
1866        obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1867        if (IS_ERR(obj)) {
1868                err = PTR_ERR(obj);
1869                goto err_free;
1870        }
1871
1872        i915_gem_ww_ctx_init(&ww, true);
1873retry:
1874        err = i915_gem_object_lock(obj, &ww);
1875        if (err)
1876                goto out_ww;
1877
1878        cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1879        if (IS_ERR(cs)) {
1880                err = PTR_ERR(cs);
1881                goto out_ww;
1882        }
1883
1884        cs = write_cs_mi_lri(cs,
1885                             oa_config->mux_regs,
1886                             oa_config->mux_regs_len);
1887        cs = write_cs_mi_lri(cs,
1888                             oa_config->b_counter_regs,
1889                             oa_config->b_counter_regs_len);
1890        cs = write_cs_mi_lri(cs,
1891                             oa_config->flex_regs,
1892                             oa_config->flex_regs_len);
1893
1894        /* Jump into the active wait. */
1895        *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1896                 MI_BATCH_BUFFER_START :
1897                 MI_BATCH_BUFFER_START_GEN8);
1898        *cs++ = i915_ggtt_offset(stream->noa_wait);
1899        *cs++ = 0;
1900
1901        i915_gem_object_flush_map(obj);
1902        __i915_gem_object_release_map(obj);
1903
1904        oa_bo->vma = i915_vma_instance(obj,
1905                                       &stream->engine->gt->ggtt->vm,
1906                                       NULL);
1907        if (IS_ERR(oa_bo->vma)) {
1908                err = PTR_ERR(oa_bo->vma);
1909                goto out_ww;
1910        }
1911
1912        oa_bo->oa_config = i915_oa_config_get(oa_config);
1913        llist_add(&oa_bo->node, &stream->oa_config_bos);
1914
1915out_ww:
1916        if (err == -EDEADLK) {
1917                err = i915_gem_ww_ctx_backoff(&ww);
1918                if (!err)
1919                        goto retry;
1920        }
1921        i915_gem_ww_ctx_fini(&ww);
1922
1923        if (err)
1924                i915_gem_object_put(obj);
1925err_free:
1926        if (err) {
1927                kfree(oa_bo);
1928                return ERR_PTR(err);
1929        }
1930        return oa_bo;
1931}
1932
1933static struct i915_vma *
1934get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1935{
1936        struct i915_oa_config_bo *oa_bo;
1937
1938        /*
1939         * Look for the buffer in the already allocated BOs attached
1940         * to the stream.
1941         */
1942        llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1943                if (oa_bo->oa_config == oa_config &&
1944                    memcmp(oa_bo->oa_config->uuid,
1945                           oa_config->uuid,
1946                           sizeof(oa_config->uuid)) == 0)
1947                        goto out;
1948        }
1949
1950        oa_bo = alloc_oa_config_buffer(stream, oa_config);
1951        if (IS_ERR(oa_bo))
1952                return ERR_CAST(oa_bo);
1953
1954out:
1955        return i915_vma_get(oa_bo->vma);
1956}
1957
1958static int
1959emit_oa_config(struct i915_perf_stream *stream,
1960               struct i915_oa_config *oa_config,
1961               struct intel_context *ce,
1962               struct i915_active *active)
1963{
1964        struct i915_request *rq;
1965        struct i915_vma *vma;
1966        struct i915_gem_ww_ctx ww;
1967        int err;
1968
1969        vma = get_oa_vma(stream, oa_config);
1970        if (IS_ERR(vma))
1971                return PTR_ERR(vma);
1972
1973        i915_gem_ww_ctx_init(&ww, true);
1974retry:
1975        err = i915_gem_object_lock(vma->obj, &ww);
1976        if (err)
1977                goto err;
1978
1979        err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1980        if (err)
1981                goto err;
1982
1983        intel_engine_pm_get(ce->engine);
1984        rq = i915_request_create(ce);
1985        intel_engine_pm_put(ce->engine);
1986        if (IS_ERR(rq)) {
1987                err = PTR_ERR(rq);
1988                goto err_vma_unpin;
1989        }
1990
1991        if (!IS_ERR_OR_NULL(active)) {
1992                /* After all individual context modifications */
1993                err = i915_request_await_active(rq, active,
1994                                                I915_ACTIVE_AWAIT_ACTIVE);
1995                if (err)
1996                        goto err_add_request;
1997
1998                err = i915_active_add_request(active, rq);
1999                if (err)
2000                        goto err_add_request;
2001        }
2002
2003        err = i915_request_await_object(rq, vma->obj, 0);
2004        if (!err)
2005                err = i915_vma_move_to_active(vma, rq, 0);
2006        if (err)
2007                goto err_add_request;
2008
2009        err = rq->engine->emit_bb_start(rq,
2010                                        vma->node.start, 0,
2011                                        I915_DISPATCH_SECURE);
2012        if (err)
2013                goto err_add_request;
2014
2015err_add_request:
2016        i915_request_add(rq);
2017err_vma_unpin:
2018        i915_vma_unpin(vma);
2019err:
2020        if (err == -EDEADLK) {
2021                err = i915_gem_ww_ctx_backoff(&ww);
2022                if (!err)
2023                        goto retry;
2024        }
2025
2026        i915_gem_ww_ctx_fini(&ww);
2027        i915_vma_put(vma);
2028        return err;
2029}
2030
2031static struct intel_context *oa_context(struct i915_perf_stream *stream)
2032{
2033        return stream->pinned_ctx ?: stream->engine->kernel_context;
2034}
2035
2036static int
2037hsw_enable_metric_set(struct i915_perf_stream *stream,
2038                      struct i915_active *active)
2039{
2040        struct intel_uncore *uncore = stream->uncore;
2041
2042        /*
2043         * PRM:
2044         *
2045         * OA unit is using “crclk” for its functionality. When trunk
2046         * level clock gating takes place, OA clock would be gated,
2047         * unable to count the events from non-render clock domain.
2048         * Render clock gating must be disabled when OA is enabled to
2049         * count the events from non-render domain. Unit level clock
2050         * gating for RCS should also be disabled.
2051         */
2052        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2053                         GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2054        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2055                         0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2056
2057        return emit_oa_config(stream,
2058                              stream->oa_config, oa_context(stream),
2059                              active);
2060}
2061
2062static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2063{
2064        struct intel_uncore *uncore = stream->uncore;
2065
2066        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2067                         GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2068        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2069                         0, GEN7_DOP_CLOCK_GATE_ENABLE);
2070
2071        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2072}
2073
2074static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2075                              i915_reg_t reg)
2076{
2077        u32 mmio = i915_mmio_reg_offset(reg);
2078        int i;
2079
2080        /*
2081         * This arbitrary default will select the 'EU FPU0 Pipeline
2082         * Active' event. In the future it's anticipated that there
2083         * will be an explicit 'No Event' we can select, but not yet...
2084         */
2085        if (!oa_config)
2086                return 0;
2087
2088        for (i = 0; i < oa_config->flex_regs_len; i++) {
2089                if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2090                        return oa_config->flex_regs[i].value;
2091        }
2092
2093        return 0;
2094}
2095/*
2096 * NB: It must always remain pointer safe to run this even if the OA unit
2097 * has been disabled.
2098 *
2099 * It's fine to put out-of-date values into these per-context registers
2100 * in the case that the OA unit has been disabled.
2101 */
2102static void
2103gen8_update_reg_state_unlocked(const struct intel_context *ce,
2104                               const struct i915_perf_stream *stream)
2105{
2106        u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2107        u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2108        /* The MMIO offsets for Flex EU registers aren't contiguous */
2109        i915_reg_t flex_regs[] = {
2110                EU_PERF_CNTL0,
2111                EU_PERF_CNTL1,
2112                EU_PERF_CNTL2,
2113                EU_PERF_CNTL3,
2114                EU_PERF_CNTL4,
2115                EU_PERF_CNTL5,
2116                EU_PERF_CNTL6,
2117        };
2118        u32 *reg_state = ce->lrc_reg_state;
2119        int i;
2120
2121        reg_state[ctx_oactxctrl + 1] =
2122                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2123                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2124                GEN8_OA_COUNTER_RESUME;
2125
2126        for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2127                reg_state[ctx_flexeu0 + i * 2 + 1] =
2128                        oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2129}
2130
2131struct flex {
2132        i915_reg_t reg;
2133        u32 offset;
2134        u32 value;
2135};
2136
2137static int
2138gen8_store_flex(struct i915_request *rq,
2139                struct intel_context *ce,
2140                const struct flex *flex, unsigned int count)
2141{
2142        u32 offset;
2143        u32 *cs;
2144
2145        cs = intel_ring_begin(rq, 4 * count);
2146        if (IS_ERR(cs))
2147                return PTR_ERR(cs);
2148
2149        offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2150        do {
2151                *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2152                *cs++ = offset + flex->offset * sizeof(u32);
2153                *cs++ = 0;
2154                *cs++ = flex->value;
2155        } while (flex++, --count);
2156
2157        intel_ring_advance(rq, cs);
2158
2159        return 0;
2160}
2161
2162static int
2163gen8_load_flex(struct i915_request *rq,
2164               struct intel_context *ce,
2165               const struct flex *flex, unsigned int count)
2166{
2167        u32 *cs;
2168
2169        GEM_BUG_ON(!count || count > 63);
2170
2171        cs = intel_ring_begin(rq, 2 * count + 2);
2172        if (IS_ERR(cs))
2173                return PTR_ERR(cs);
2174
2175        *cs++ = MI_LOAD_REGISTER_IMM(count);
2176        do {
2177                *cs++ = i915_mmio_reg_offset(flex->reg);
2178                *cs++ = flex->value;
2179        } while (flex++, --count);
2180        *cs++ = MI_NOOP;
2181
2182        intel_ring_advance(rq, cs);
2183
2184        return 0;
2185}
2186
2187static int gen8_modify_context(struct intel_context *ce,
2188                               const struct flex *flex, unsigned int count)
2189{
2190        struct i915_request *rq;
2191        int err;
2192
2193        rq = intel_engine_create_kernel_request(ce->engine);
2194        if (IS_ERR(rq))
2195                return PTR_ERR(rq);
2196
2197        /* Serialise with the remote context */
2198        err = intel_context_prepare_remote_request(ce, rq);
2199        if (err == 0)
2200                err = gen8_store_flex(rq, ce, flex, count);
2201
2202        i915_request_add(rq);
2203        return err;
2204}
2205
2206static int
2207gen8_modify_self(struct intel_context *ce,
2208                 const struct flex *flex, unsigned int count,
2209                 struct i915_active *active)
2210{
2211        struct i915_request *rq;
2212        int err;
2213
2214        intel_engine_pm_get(ce->engine);
2215        rq = i915_request_create(ce);
2216        intel_engine_pm_put(ce->engine);
2217        if (IS_ERR(rq))
2218                return PTR_ERR(rq);
2219
2220        if (!IS_ERR_OR_NULL(active)) {
2221                err = i915_active_add_request(active, rq);
2222                if (err)
2223                        goto err_add_request;
2224        }
2225
2226        err = gen8_load_flex(rq, ce, flex, count);
2227        if (err)
2228                goto err_add_request;
2229
2230err_add_request:
2231        i915_request_add(rq);
2232        return err;
2233}
2234
2235static int gen8_configure_context(struct i915_gem_context *ctx,
2236                                  struct flex *flex, unsigned int count)
2237{
2238        struct i915_gem_engines_iter it;
2239        struct intel_context *ce;
2240        int err = 0;
2241
2242        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2243                GEM_BUG_ON(ce == ce->engine->kernel_context);
2244
2245                if (ce->engine->class != RENDER_CLASS)
2246                        continue;
2247
2248                /* Otherwise OA settings will be set upon first use */
2249                if (!intel_context_pin_if_active(ce))
2250                        continue;
2251
2252                flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2253                err = gen8_modify_context(ce, flex, count);
2254
2255                intel_context_unpin(ce);
2256                if (err)
2257                        break;
2258        }
2259        i915_gem_context_unlock_engines(ctx);
2260
2261        return err;
2262}
2263
2264static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2265                                       struct i915_active *active)
2266{
2267        int err;
2268        struct intel_context *ce = stream->pinned_ctx;
2269        u32 format = stream->oa_buffer.format;
2270        struct flex regs_context[] = {
2271                {
2272                        GEN8_OACTXCONTROL,
2273                        stream->perf->ctx_oactxctrl_offset + 1,
2274                        active ? GEN8_OA_COUNTER_RESUME : 0,
2275                },
2276        };
2277        /* Offsets in regs_lri are not used since this configuration is only
2278         * applied using LRI. Initialize the correct offsets for posterity.
2279         */
2280#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2281        struct flex regs_lri[] = {
2282                {
2283                        GEN12_OAR_OACONTROL,
2284                        GEN12_OAR_OACONTROL_OFFSET + 1,
2285                        (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2286                        (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2287                },
2288                {
2289                        RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2290                        CTX_CONTEXT_CONTROL,
2291                        _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2292                                      active ?
2293                                      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2294                                      0)
2295                },
2296        };
2297
2298        /* Modify the context image of pinned context with regs_context*/
2299        err = intel_context_lock_pinned(ce);
2300        if (err)
2301                return err;
2302
2303        err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2304        intel_context_unlock_pinned(ce);
2305        if (err)
2306                return err;
2307
2308        /* Apply regs_lri using LRI with pinned context */
2309        return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2310}
2311
2312/*
2313 * Manages updating the per-context aspects of the OA stream
2314 * configuration across all contexts.
2315 *
2316 * The awkward consideration here is that OACTXCONTROL controls the
2317 * exponent for periodic sampling which is primarily used for system
2318 * wide profiling where we'd like a consistent sampling period even in
2319 * the face of context switches.
2320 *
2321 * Our approach of updating the register state context (as opposed to
2322 * say using a workaround batch buffer) ensures that the hardware
2323 * won't automatically reload an out-of-date timer exponent even
2324 * transiently before a WA BB could be parsed.
2325 *
2326 * This function needs to:
2327 * - Ensure the currently running context's per-context OA state is
2328 *   updated
2329 * - Ensure that all existing contexts will have the correct per-context
2330 *   OA state if they are scheduled for use.
2331 * - Ensure any new contexts will be initialized with the correct
2332 *   per-context OA state.
2333 *
2334 * Note: it's only the RCS/Render context that has any OA state.
2335 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2336 */
2337static int
2338oa_configure_all_contexts(struct i915_perf_stream *stream,
2339                          struct flex *regs,
2340                          size_t num_regs,
2341                          struct i915_active *active)
2342{
2343        struct drm_i915_private *i915 = stream->perf->i915;
2344        struct intel_engine_cs *engine;
2345        struct i915_gem_context *ctx, *cn;
2346        int err;
2347
2348        lockdep_assert_held(&stream->perf->lock);
2349
2350        /*
2351         * The OA register config is setup through the context image. This image
2352         * might be written to by the GPU on context switch (in particular on
2353         * lite-restore). This means we can't safely update a context's image,
2354         * if this context is scheduled/submitted to run on the GPU.
2355         *
2356         * We could emit the OA register config through the batch buffer but
2357         * this might leave small interval of time where the OA unit is
2358         * configured at an invalid sampling period.
2359         *
2360         * Note that since we emit all requests from a single ring, there
2361         * is still an implicit global barrier here that may cause a high
2362         * priority context to wait for an otherwise independent low priority
2363         * context. Contexts idle at the time of reconfiguration are not
2364         * trapped behind the barrier.
2365         */
2366        spin_lock(&i915->gem.contexts.lock);
2367        list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2368                if (!kref_get_unless_zero(&ctx->ref))
2369                        continue;
2370
2371                spin_unlock(&i915->gem.contexts.lock);
2372
2373                err = gen8_configure_context(ctx, regs, num_regs);
2374                if (err) {
2375                        i915_gem_context_put(ctx);
2376                        return err;
2377                }
2378
2379                spin_lock(&i915->gem.contexts.lock);
2380                list_safe_reset_next(ctx, cn, link);
2381                i915_gem_context_put(ctx);
2382        }
2383        spin_unlock(&i915->gem.contexts.lock);
2384
2385        /*
2386         * After updating all other contexts, we need to modify ourselves.
2387         * If we don't modify the kernel_context, we do not get events while
2388         * idle.
2389         */
2390        for_each_uabi_engine(engine, i915) {
2391                struct intel_context *ce = engine->kernel_context;
2392
2393                if (engine->class != RENDER_CLASS)
2394                        continue;
2395
2396                regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2397
2398                err = gen8_modify_self(ce, regs, num_regs, active);
2399                if (err)
2400                        return err;
2401        }
2402
2403        return 0;
2404}
2405
2406static int
2407gen12_configure_all_contexts(struct i915_perf_stream *stream,
2408                             const struct i915_oa_config *oa_config,
2409                             struct i915_active *active)
2410{
2411        struct flex regs[] = {
2412                {
2413                        GEN8_R_PWR_CLK_STATE,
2414                        CTX_R_PWR_CLK_STATE,
2415                },
2416        };
2417
2418        return oa_configure_all_contexts(stream,
2419                                         regs, ARRAY_SIZE(regs),
2420                                         active);
2421}
2422
2423static int
2424lrc_configure_all_contexts(struct i915_perf_stream *stream,
2425                           const struct i915_oa_config *oa_config,
2426                           struct i915_active *active)
2427{
2428        /* The MMIO offsets for Flex EU registers aren't contiguous */
2429        const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2430#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2431        struct flex regs[] = {
2432                {
2433                        GEN8_R_PWR_CLK_STATE,
2434                        CTX_R_PWR_CLK_STATE,
2435                },
2436                {
2437                        GEN8_OACTXCONTROL,
2438                        stream->perf->ctx_oactxctrl_offset + 1,
2439                },
2440                { EU_PERF_CNTL0, ctx_flexeuN(0) },
2441                { EU_PERF_CNTL1, ctx_flexeuN(1) },
2442                { EU_PERF_CNTL2, ctx_flexeuN(2) },
2443                { EU_PERF_CNTL3, ctx_flexeuN(3) },
2444                { EU_PERF_CNTL4, ctx_flexeuN(4) },
2445                { EU_PERF_CNTL5, ctx_flexeuN(5) },
2446                { EU_PERF_CNTL6, ctx_flexeuN(6) },
2447        };
2448#undef ctx_flexeuN
2449        int i;
2450
2451        regs[1].value =
2452                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2453                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2454                GEN8_OA_COUNTER_RESUME;
2455
2456        for (i = 2; i < ARRAY_SIZE(regs); i++)
2457                regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2458
2459        return oa_configure_all_contexts(stream,
2460                                         regs, ARRAY_SIZE(regs),
2461                                         active);
2462}
2463
2464static int
2465gen8_enable_metric_set(struct i915_perf_stream *stream,
2466                       struct i915_active *active)
2467{
2468        struct intel_uncore *uncore = stream->uncore;
2469        struct i915_oa_config *oa_config = stream->oa_config;
2470        int ret;
2471
2472        /*
2473         * We disable slice/unslice clock ratio change reports on SKL since
2474         * they are too noisy. The HW generates a lot of redundant reports
2475         * where the ratio hasn't really changed causing a lot of redundant
2476         * work to processes and increasing the chances we'll hit buffer
2477         * overruns.
2478         *
2479         * Although we don't currently use the 'disable overrun' OABUFFER
2480         * feature it's worth noting that clock ratio reports have to be
2481         * disabled before considering to use that feature since the HW doesn't
2482         * correctly block these reports.
2483         *
2484         * Currently none of the high-level metrics we have depend on knowing
2485         * this ratio to normalize.
2486         *
2487         * Note: This register is not power context saved and restored, but
2488         * that's OK considering that we disable RC6 while the OA unit is
2489         * enabled.
2490         *
2491         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2492         * be read back from automatically triggered reports, as part of the
2493         * RPT_ID field.
2494         */
2495        if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2496                intel_uncore_write(uncore, GEN8_OA_DEBUG,
2497                                   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2498                                                      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2499        }
2500
2501        /*
2502         * Update all contexts prior writing the mux configurations as we need
2503         * to make sure all slices/subslices are ON before writing to NOA
2504         * registers.
2505         */
2506        ret = lrc_configure_all_contexts(stream, oa_config, active);
2507        if (ret)
2508                return ret;
2509
2510        return emit_oa_config(stream,
2511                              stream->oa_config, oa_context(stream),
2512                              active);
2513}
2514
2515static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2516{
2517        return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2518                             (stream->sample_flags & SAMPLE_OA_REPORT) ?
2519                             0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2520}
2521
2522static int
2523gen12_enable_metric_set(struct i915_perf_stream *stream,
2524                        struct i915_active *active)
2525{
2526        struct intel_uncore *uncore = stream->uncore;
2527        struct i915_oa_config *oa_config = stream->oa_config;
2528        bool periodic = stream->periodic;
2529        u32 period_exponent = stream->period_exponent;
2530        int ret;
2531
2532        intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2533                           /* Disable clk ratio reports, like previous Gens. */
2534                           _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2535                                              GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2536                           /*
2537                            * If the user didn't require OA reports, instruct
2538                            * the hardware not to emit ctx switch reports.
2539                            */
2540                           oag_report_ctx_switches(stream));
2541
2542        intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2543                           (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2544                            GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2545                            (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2546                            : 0);
2547
2548        /*
2549         * Update all contexts prior writing the mux configurations as we need
2550         * to make sure all slices/subslices are ON before writing to NOA
2551         * registers.
2552         */
2553        ret = gen12_configure_all_contexts(stream, oa_config, active);
2554        if (ret)
2555                return ret;
2556
2557        /*
2558         * For Gen12, performance counters are context
2559         * saved/restored. Only enable it for the context that
2560         * requested this.
2561         */
2562        if (stream->ctx) {
2563                ret = gen12_configure_oar_context(stream, active);
2564                if (ret)
2565                        return ret;
2566        }
2567
2568        return emit_oa_config(stream,
2569                              stream->oa_config, oa_context(stream),
2570                              active);
2571}
2572
2573static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2574{
2575        struct intel_uncore *uncore = stream->uncore;
2576
2577        /* Reset all contexts' slices/subslices configurations. */
2578        lrc_configure_all_contexts(stream, NULL, NULL);
2579
2580        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2581}
2582
2583static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2584{
2585        struct intel_uncore *uncore = stream->uncore;
2586
2587        /* Reset all contexts' slices/subslices configurations. */
2588        lrc_configure_all_contexts(stream, NULL, NULL);
2589
2590        /* Make sure we disable noa to save power. */
2591        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2592}
2593
2594static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2595{
2596        struct intel_uncore *uncore = stream->uncore;
2597
2598        /* Reset all contexts' slices/subslices configurations. */
2599        gen12_configure_all_contexts(stream, NULL, NULL);
2600
2601        /* disable the context save/restore or OAR counters */
2602        if (stream->ctx)
2603                gen12_configure_oar_context(stream, NULL);
2604
2605        /* Make sure we disable noa to save power. */
2606        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2607}
2608
2609static void gen7_oa_enable(struct i915_perf_stream *stream)
2610{
2611        struct intel_uncore *uncore = stream->uncore;
2612        struct i915_gem_context *ctx = stream->ctx;
2613        u32 ctx_id = stream->specific_ctx_id;
2614        bool periodic = stream->periodic;
2615        u32 period_exponent = stream->period_exponent;
2616        u32 report_format = stream->oa_buffer.format;
2617
2618        /*
2619         * Reset buf pointers so we don't forward reports from before now.
2620         *
2621         * Think carefully if considering trying to avoid this, since it
2622         * also ensures status flags and the buffer itself are cleared
2623         * in error paths, and we have checks for invalid reports based
2624         * on the assumption that certain fields are written to zeroed
2625         * memory which this helps maintains.
2626         */
2627        gen7_init_oa_buffer(stream);
2628
2629        intel_uncore_write(uncore, GEN7_OACONTROL,
2630                           (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2631                           (period_exponent <<
2632                            GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2633                           (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2634                           (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2635                           (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2636                           GEN7_OACONTROL_ENABLE);
2637}
2638
2639static void gen8_oa_enable(struct i915_perf_stream *stream)
2640{
2641        struct intel_uncore *uncore = stream->uncore;
2642        u32 report_format = stream->oa_buffer.format;
2643
2644        /*
2645         * Reset buf pointers so we don't forward reports from before now.
2646         *
2647         * Think carefully if considering trying to avoid this, since it
2648         * also ensures status flags and the buffer itself are cleared
2649         * in error paths, and we have checks for invalid reports based
2650         * on the assumption that certain fields are written to zeroed
2651         * memory which this helps maintains.
2652         */
2653        gen8_init_oa_buffer(stream);
2654
2655        /*
2656         * Note: we don't rely on the hardware to perform single context
2657         * filtering and instead filter on the cpu based on the context-id
2658         * field of reports
2659         */
2660        intel_uncore_write(uncore, GEN8_OACONTROL,
2661                           (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2662                           GEN8_OA_COUNTER_ENABLE);
2663}
2664
2665static void gen12_oa_enable(struct i915_perf_stream *stream)
2666{
2667        struct intel_uncore *uncore = stream->uncore;
2668        u32 report_format = stream->oa_buffer.format;
2669
2670        /*
2671         * If we don't want OA reports from the OA buffer, then we don't even
2672         * need to program the OAG unit.
2673         */
2674        if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2675                return;
2676
2677        gen12_init_oa_buffer(stream);
2678
2679        intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2680                           (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2681                           GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2682}
2683
2684/**
2685 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2686 * @stream: An i915 perf stream opened for OA metrics
2687 *
2688 * [Re]enables hardware periodic sampling according to the period configured
2689 * when opening the stream. This also starts a hrtimer that will periodically
2690 * check for data in the circular OA buffer for notifying userspace (e.g.
2691 * during a read() or poll()).
2692 */
2693static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2694{
2695        stream->pollin = false;
2696
2697        stream->perf->ops.oa_enable(stream);
2698
2699        if (stream->sample_flags & SAMPLE_OA_REPORT)
2700                hrtimer_start(&stream->poll_check_timer,
2701                              ns_to_ktime(stream->poll_oa_period),
2702                              HRTIMER_MODE_REL_PINNED);
2703}
2704
2705static void gen7_oa_disable(struct i915_perf_stream *stream)
2706{
2707        struct intel_uncore *uncore = stream->uncore;
2708
2709        intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2710        if (intel_wait_for_register(uncore,
2711                                    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2712                                    50))
2713                drm_err(&stream->perf->i915->drm,
2714                        "wait for OA to be disabled timed out\n");
2715}
2716
2717static void gen8_oa_disable(struct i915_perf_stream *stream)
2718{
2719        struct intel_uncore *uncore = stream->uncore;
2720
2721        intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2722        if (intel_wait_for_register(uncore,
2723                                    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2724                                    50))
2725                drm_err(&stream->perf->i915->drm,
2726                        "wait for OA to be disabled timed out\n");
2727}
2728
2729static void gen12_oa_disable(struct i915_perf_stream *stream)
2730{
2731        struct intel_uncore *uncore = stream->uncore;
2732
2733        intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2734        if (intel_wait_for_register(uncore,
2735                                    GEN12_OAG_OACONTROL,
2736                                    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2737                                    50))
2738                drm_err(&stream->perf->i915->drm,
2739                        "wait for OA to be disabled timed out\n");
2740
2741        intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2742        if (intel_wait_for_register(uncore,
2743                                    GEN12_OA_TLB_INV_CR,
2744                                    1, 0,
2745                                    50))
2746                drm_err(&stream->perf->i915->drm,
2747                        "wait for OA tlb invalidate timed out\n");
2748}
2749
2750/**
2751 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2752 * @stream: An i915 perf stream opened for OA metrics
2753 *
2754 * Stops the OA unit from periodically writing counter reports into the
2755 * circular OA buffer. This also stops the hrtimer that periodically checks for
2756 * data in the circular OA buffer, for notifying userspace.
2757 */
2758static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2759{
2760        stream->perf->ops.oa_disable(stream);
2761
2762        if (stream->sample_flags & SAMPLE_OA_REPORT)
2763                hrtimer_cancel(&stream->poll_check_timer);
2764}
2765
2766static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2767        .destroy = i915_oa_stream_destroy,
2768        .enable = i915_oa_stream_enable,
2769        .disable = i915_oa_stream_disable,
2770        .wait_unlocked = i915_oa_wait_unlocked,
2771        .poll_wait = i915_oa_poll_wait,
2772        .read = i915_oa_read,
2773};
2774
2775static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2776{
2777        struct i915_active *active;
2778        int err;
2779
2780        active = i915_active_create();
2781        if (!active)
2782                return -ENOMEM;
2783
2784        err = stream->perf->ops.enable_metric_set(stream, active);
2785        if (err == 0)
2786                __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2787
2788        i915_active_put(active);
2789        return err;
2790}
2791
2792static void
2793get_default_sseu_config(struct intel_sseu *out_sseu,
2794                        struct intel_engine_cs *engine)
2795{
2796        const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2797
2798        *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2799
2800        if (GRAPHICS_VER(engine->i915) == 11) {
2801                /*
2802                 * We only need subslice count so it doesn't matter which ones
2803                 * we select - just turn off low bits in the amount of half of
2804                 * all available subslices per slice.
2805                 */
2806                out_sseu->subslice_mask =
2807                        ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2808                out_sseu->slice_mask = 0x1;
2809        }
2810}
2811
2812static int
2813get_sseu_config(struct intel_sseu *out_sseu,
2814                struct intel_engine_cs *engine,
2815                const struct drm_i915_gem_context_param_sseu *drm_sseu)
2816{
2817        if (drm_sseu->engine.engine_class != engine->uabi_class ||
2818            drm_sseu->engine.engine_instance != engine->uabi_instance)
2819                return -EINVAL;
2820
2821        return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2822}
2823
2824/**
2825 * i915_oa_stream_init - validate combined props for OA stream and init
2826 * @stream: An i915 perf stream
2827 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2828 * @props: The property state that configures stream (individually validated)
2829 *
2830 * While read_properties_unlocked() validates properties in isolation it
2831 * doesn't ensure that the combination necessarily makes sense.
2832 *
2833 * At this point it has been determined that userspace wants a stream of
2834 * OA metrics, but still we need to further validate the combined
2835 * properties are OK.
2836 *
2837 * If the configuration makes sense then we can allocate memory for
2838 * a circular OA buffer and apply the requested metric set configuration.
2839 *
2840 * Returns: zero on success or a negative error code.
2841 */
2842static int i915_oa_stream_init(struct i915_perf_stream *stream,
2843                               struct drm_i915_perf_open_param *param,
2844                               struct perf_open_properties *props)
2845{
2846        struct drm_i915_private *i915 = stream->perf->i915;
2847        struct i915_perf *perf = stream->perf;
2848        int format_size;
2849        int ret;
2850
2851        if (!props->engine) {
2852                DRM_DEBUG("OA engine not specified\n");
2853                return -EINVAL;
2854        }
2855
2856        /*
2857         * If the sysfs metrics/ directory wasn't registered for some
2858         * reason then don't let userspace try their luck with config
2859         * IDs
2860         */
2861        if (!perf->metrics_kobj) {
2862                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2863                return -EINVAL;
2864        }
2865
2866        if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2867            (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2868                DRM_DEBUG("Only OA report sampling supported\n");
2869                return -EINVAL;
2870        }
2871
2872        if (!perf->ops.enable_metric_set) {
2873                DRM_DEBUG("OA unit not supported\n");
2874                return -ENODEV;
2875        }
2876
2877        /*
2878         * To avoid the complexity of having to accurately filter
2879         * counter reports and marshal to the appropriate client
2880         * we currently only allow exclusive access
2881         */
2882        if (perf->exclusive_stream) {
2883                DRM_DEBUG("OA unit already in use\n");
2884                return -EBUSY;
2885        }
2886
2887        if (!props->oa_format) {
2888                DRM_DEBUG("OA report format not specified\n");
2889                return -EINVAL;
2890        }
2891
2892        stream->engine = props->engine;
2893        stream->uncore = stream->engine->gt->uncore;
2894
2895        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2896
2897        format_size = perf->oa_formats[props->oa_format].size;
2898
2899        stream->sample_flags = props->sample_flags;
2900        stream->sample_size += format_size;
2901
2902        stream->oa_buffer.format_size = format_size;
2903        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2904                return -EINVAL;
2905
2906        stream->hold_preemption = props->hold_preemption;
2907
2908        stream->oa_buffer.format =
2909                perf->oa_formats[props->oa_format].format;
2910
2911        stream->periodic = props->oa_periodic;
2912        if (stream->periodic)
2913                stream->period_exponent = props->oa_period_exponent;
2914
2915        if (stream->ctx) {
2916                ret = oa_get_render_ctx_id(stream);
2917                if (ret) {
2918                        DRM_DEBUG("Invalid context id to filter with\n");
2919                        return ret;
2920                }
2921        }
2922
2923        ret = alloc_noa_wait(stream);
2924        if (ret) {
2925                DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2926                goto err_noa_wait_alloc;
2927        }
2928
2929        stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2930        if (!stream->oa_config) {
2931                DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2932                ret = -EINVAL;
2933                goto err_config;
2934        }
2935
2936        /* PRM - observability performance counters:
2937         *
2938         *   OACONTROL, performance counter enable, note:
2939         *
2940         *   "When this bit is set, in order to have coherent counts,
2941         *   RC6 power state and trunk clock gating must be disabled.
2942         *   This can be achieved by programming MMIO registers as
2943         *   0xA094=0 and 0xA090[31]=1"
2944         *
2945         *   In our case we are expecting that taking pm + FORCEWAKE
2946         *   references will effectively disable RC6.
2947         */
2948        intel_engine_pm_get(stream->engine);
2949        intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2950
2951        ret = alloc_oa_buffer(stream);
2952        if (ret)
2953                goto err_oa_buf_alloc;
2954
2955        stream->ops = &i915_oa_stream_ops;
2956
2957        perf->sseu = props->sseu;
2958        WRITE_ONCE(perf->exclusive_stream, stream);
2959
2960        ret = i915_perf_stream_enable_sync(stream);
2961        if (ret) {
2962                DRM_DEBUG("Unable to enable metric set\n");
2963                goto err_enable;
2964        }
2965
2966        DRM_DEBUG("opening stream oa config uuid=%s\n",
2967                  stream->oa_config->uuid);
2968
2969        hrtimer_init(&stream->poll_check_timer,
2970                     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2971        stream->poll_check_timer.function = oa_poll_check_timer_cb;
2972        init_waitqueue_head(&stream->poll_wq);
2973        spin_lock_init(&stream->oa_buffer.ptr_lock);
2974
2975        return 0;
2976
2977err_enable:
2978        WRITE_ONCE(perf->exclusive_stream, NULL);
2979        perf->ops.disable_metric_set(stream);
2980
2981        free_oa_buffer(stream);
2982
2983err_oa_buf_alloc:
2984        free_oa_configs(stream);
2985
2986        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2987        intel_engine_pm_put(stream->engine);
2988
2989err_config:
2990        free_noa_wait(stream);
2991
2992err_noa_wait_alloc:
2993        if (stream->ctx)
2994                oa_put_render_ctx_id(stream);
2995
2996        return ret;
2997}
2998
2999void i915_oa_init_reg_state(const struct intel_context *ce,
3000                            const struct intel_engine_cs *engine)
3001{
3002        struct i915_perf_stream *stream;
3003
3004        if (engine->class != RENDER_CLASS)
3005                return;
3006
3007        /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3008        stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3009        if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3010                gen8_update_reg_state_unlocked(ce, stream);
3011}
3012
3013/**
3014 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3015 * @file: An i915 perf stream file
3016 * @buf: destination buffer given by userspace
3017 * @count: the number of bytes userspace wants to read
3018 * @ppos: (inout) file seek position (unused)
3019 *
3020 * The entry point for handling a read() on a stream file descriptor from
3021 * userspace. Most of the work is left to the i915_perf_read_locked() and
3022 * &i915_perf_stream_ops->read but to save having stream implementations (of
3023 * which we might have multiple later) we handle blocking read here.
3024 *
3025 * We can also consistently treat trying to read from a disabled stream
3026 * as an IO error so implementations can assume the stream is enabled
3027 * while reading.
3028 *
3029 * Returns: The number of bytes copied or a negative error code on failure.
3030 */
3031static ssize_t i915_perf_read(struct file *file,
3032                              char __user *buf,
3033                              size_t count,
3034                              loff_t *ppos)
3035{
3036        struct i915_perf_stream *stream = file->private_data;
3037        struct i915_perf *perf = stream->perf;
3038        size_t offset = 0;
3039        int ret;
3040
3041        /* To ensure it's handled consistently we simply treat all reads of a
3042         * disabled stream as an error. In particular it might otherwise lead
3043         * to a deadlock for blocking file descriptors...
3044         */
3045        if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3046                return -EIO;
3047
3048        if (!(file->f_flags & O_NONBLOCK)) {
3049                /* There's the small chance of false positives from
3050                 * stream->ops->wait_unlocked.
3051                 *
3052                 * E.g. with single context filtering since we only wait until
3053                 * oabuffer has >= 1 report we don't immediately know whether
3054                 * any reports really belong to the current context
3055                 */
3056                do {
3057                        ret = stream->ops->wait_unlocked(stream);
3058                        if (ret)
3059                                return ret;
3060
3061                        mutex_lock(&perf->lock);
3062                        ret = stream->ops->read(stream, buf, count, &offset);
3063                        mutex_unlock(&perf->lock);
3064                } while (!offset && !ret);
3065        } else {
3066                mutex_lock(&perf->lock);
3067                ret = stream->ops->read(stream, buf, count, &offset);
3068                mutex_unlock(&perf->lock);
3069        }
3070
3071        /* We allow the poll checking to sometimes report false positive EPOLLIN
3072         * events where we might actually report EAGAIN on read() if there's
3073         * not really any data available. In this situation though we don't
3074         * want to enter a busy loop between poll() reporting a EPOLLIN event
3075         * and read() returning -EAGAIN. Clearing the oa.pollin state here
3076         * effectively ensures we back off until the next hrtimer callback
3077         * before reporting another EPOLLIN event.
3078         * The exception to this is if ops->read() returned -ENOSPC which means
3079         * that more OA data is available than could fit in the user provided
3080         * buffer. In this case we want the next poll() call to not block.
3081         */
3082        if (ret != -ENOSPC)
3083                stream->pollin = false;
3084
3085        /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3086        return offset ?: (ret ?: -EAGAIN);
3087}
3088
3089static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3090{
3091        struct i915_perf_stream *stream =
3092                container_of(hrtimer, typeof(*stream), poll_check_timer);
3093
3094        if (oa_buffer_check_unlocked(stream)) {
3095                stream->pollin = true;
3096                wake_up(&stream->poll_wq);
3097        }
3098
3099        hrtimer_forward_now(hrtimer,
3100                            ns_to_ktime(stream->poll_oa_period));
3101
3102        return HRTIMER_RESTART;
3103}
3104
3105/**
3106 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3107 * @stream: An i915 perf stream
3108 * @file: An i915 perf stream file
3109 * @wait: poll() state table
3110 *
3111 * For handling userspace polling on an i915 perf stream, this calls through to
3112 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3113 * will be woken for new stream data.
3114 *
3115 * Note: The &perf->lock mutex has been taken to serialize
3116 * with any non-file-operation driver hooks.
3117 *
3118 * Returns: any poll events that are ready without sleeping
3119 */
3120static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3121                                      struct file *file,
3122                                      poll_table *wait)
3123{
3124        __poll_t events = 0;
3125
3126        stream->ops->poll_wait(stream, file, wait);
3127
3128        /* Note: we don't explicitly check whether there's something to read
3129         * here since this path may be very hot depending on what else
3130         * userspace is polling, or on the timeout in use. We rely solely on
3131         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3132         * samples to read.
3133         */
3134        if (stream->pollin)
3135                events |= EPOLLIN;
3136
3137        return events;
3138}
3139
3140/**
3141 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3142 * @file: An i915 perf stream file
3143 * @wait: poll() state table
3144 *
3145 * For handling userspace polling on an i915 perf stream, this ensures
3146 * poll_wait() gets called with a wait queue that will be woken for new stream
3147 * data.
3148 *
3149 * Note: Implementation deferred to i915_perf_poll_locked()
3150 *
3151 * Returns: any poll events that are ready without sleeping
3152 */
3153static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3154{
3155        struct i915_perf_stream *stream = file->private_data;
3156        struct i915_perf *perf = stream->perf;
3157        __poll_t ret;
3158
3159        mutex_lock(&perf->lock);
3160        ret = i915_perf_poll_locked(stream, file, wait);
3161        mutex_unlock(&perf->lock);
3162
3163        return ret;
3164}
3165
3166/**
3167 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3168 * @stream: A disabled i915 perf stream
3169 *
3170 * [Re]enables the associated capture of data for this stream.
3171 *
3172 * If a stream was previously enabled then there's currently no intention
3173 * to provide userspace any guarantee about the preservation of previously
3174 * buffered data.
3175 */
3176static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3177{
3178        if (stream->enabled)
3179                return;
3180
3181        /* Allow stream->ops->enable() to refer to this */
3182        stream->enabled = true;
3183
3184        if (stream->ops->enable)
3185                stream->ops->enable(stream);
3186
3187        if (stream->hold_preemption)
3188                intel_context_set_nopreempt(stream->pinned_ctx);
3189}
3190
3191/**
3192 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3193 * @stream: An enabled i915 perf stream
3194 *
3195 * Disables the associated capture of data for this stream.
3196 *
3197 * The intention is that disabling an re-enabling a stream will ideally be
3198 * cheaper than destroying and re-opening a stream with the same configuration,
3199 * though there are no formal guarantees about what state or buffered data
3200 * must be retained between disabling and re-enabling a stream.
3201 *
3202 * Note: while a stream is disabled it's considered an error for userspace
3203 * to attempt to read from the stream (-EIO).
3204 */
3205static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3206{
3207        if (!stream->enabled)
3208                return;
3209
3210        /* Allow stream->ops->disable() to refer to this */
3211        stream->enabled = false;
3212
3213        if (stream->hold_preemption)
3214                intel_context_clear_nopreempt(stream->pinned_ctx);
3215
3216        if (stream->ops->disable)
3217                stream->ops->disable(stream);
3218}
3219
3220static long i915_perf_config_locked(struct i915_perf_stream *stream,
3221                                    unsigned long metrics_set)
3222{
3223        struct i915_oa_config *config;
3224        long ret = stream->oa_config->id;
3225
3226        config = i915_perf_get_oa_config(stream->perf, metrics_set);
3227        if (!config)
3228                return -EINVAL;
3229
3230        if (config != stream->oa_config) {
3231                int err;
3232
3233                /*
3234                 * If OA is bound to a specific context, emit the
3235                 * reconfiguration inline from that context. The update
3236                 * will then be ordered with respect to submission on that
3237                 * context.
3238                 *
3239                 * When set globally, we use a low priority kernel context,
3240                 * so it will effectively take effect when idle.
3241                 */
3242                err = emit_oa_config(stream, config, oa_context(stream), NULL);
3243                if (!err)
3244                        config = xchg(&stream->oa_config, config);
3245                else
3246                        ret = err;
3247        }
3248
3249        i915_oa_config_put(config);
3250
3251        return ret;
3252}
3253
3254/**
3255 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3256 * @stream: An i915 perf stream
3257 * @cmd: the ioctl request
3258 * @arg: the ioctl data
3259 *
3260 * Note: The &perf->lock mutex has been taken to serialize
3261 * with any non-file-operation driver hooks.
3262 *
3263 * Returns: zero on success or a negative error code. Returns -EINVAL for
3264 * an unknown ioctl request.
3265 */
3266static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3267                                   unsigned int cmd,
3268                                   unsigned long arg)
3269{
3270        switch (cmd) {
3271        case I915_PERF_IOCTL_ENABLE:
3272                i915_perf_enable_locked(stream);
3273                return 0;
3274        case I915_PERF_IOCTL_DISABLE:
3275                i915_perf_disable_locked(stream);
3276                return 0;
3277        case I915_PERF_IOCTL_CONFIG:
3278                return i915_perf_config_locked(stream, arg);
3279        }
3280
3281        return -EINVAL;
3282}
3283
3284/**
3285 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3286 * @file: An i915 perf stream file
3287 * @cmd: the ioctl request
3288 * @arg: the ioctl data
3289 *
3290 * Implementation deferred to i915_perf_ioctl_locked().
3291 *
3292 * Returns: zero on success or a negative error code. Returns -EINVAL for
3293 * an unknown ioctl request.
3294 */
3295static long i915_perf_ioctl(struct file *file,
3296                            unsigned int cmd,
3297                            unsigned long arg)
3298{
3299        struct i915_perf_stream *stream = file->private_data;
3300        struct i915_perf *perf = stream->perf;
3301        long ret;
3302
3303        mutex_lock(&perf->lock);
3304        ret = i915_perf_ioctl_locked(stream, cmd, arg);
3305        mutex_unlock(&perf->lock);
3306
3307        return ret;
3308}
3309
3310/**
3311 * i915_perf_destroy_locked - destroy an i915 perf stream
3312 * @stream: An i915 perf stream
3313 *
3314 * Frees all resources associated with the given i915 perf @stream, disabling
3315 * any associated data capture in the process.
3316 *
3317 * Note: The &perf->lock mutex has been taken to serialize
3318 * with any non-file-operation driver hooks.
3319 */
3320static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3321{
3322        if (stream->enabled)
3323                i915_perf_disable_locked(stream);
3324
3325        if (stream->ops->destroy)
3326                stream->ops->destroy(stream);
3327
3328        if (stream->ctx)
3329                i915_gem_context_put(stream->ctx);
3330
3331        kfree(stream);
3332}
3333
3334/**
3335 * i915_perf_release - handles userspace close() of a stream file
3336 * @inode: anonymous inode associated with file
3337 * @file: An i915 perf stream file
3338 *
3339 * Cleans up any resources associated with an open i915 perf stream file.
3340 *
3341 * NB: close() can't really fail from the userspace point of view.
3342 *
3343 * Returns: zero on success or a negative error code.
3344 */
3345static int i915_perf_release(struct inode *inode, struct file *file)
3346{
3347        struct i915_perf_stream *stream = file->private_data;
3348        struct i915_perf *perf = stream->perf;
3349
3350        mutex_lock(&perf->lock);
3351        i915_perf_destroy_locked(stream);
3352        mutex_unlock(&perf->lock);
3353
3354        /* Release the reference the perf stream kept on the driver. */
3355        drm_dev_put(&perf->i915->drm);
3356
3357        return 0;
3358}
3359
3360
3361static const struct file_operations fops = {
3362        .owner          = THIS_MODULE,
3363        .llseek         = no_llseek,
3364        .release        = i915_perf_release,
3365        .poll           = i915_perf_poll,
3366        .read           = i915_perf_read,
3367        .unlocked_ioctl = i915_perf_ioctl,
3368        /* Our ioctl have no arguments, so it's safe to use the same function
3369         * to handle 32bits compatibility.
3370         */
3371        .compat_ioctl   = i915_perf_ioctl,
3372};
3373
3374
3375/**
3376 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3377 * @perf: i915 perf instance
3378 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3379 * @props: individually validated u64 property value pairs
3380 * @file: drm file
3381 *
3382 * See i915_perf_ioctl_open() for interface details.
3383 *
3384 * Implements further stream config validation and stream initialization on
3385 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3386 * taken to serialize with any non-file-operation driver hooks.
3387 *
3388 * Note: at this point the @props have only been validated in isolation and
3389 * it's still necessary to validate that the combination of properties makes
3390 * sense.
3391 *
3392 * In the case where userspace is interested in OA unit metrics then further
3393 * config validation and stream initialization details will be handled by
3394 * i915_oa_stream_init(). The code here should only validate config state that
3395 * will be relevant to all stream types / backends.
3396 *
3397 * Returns: zero on success or a negative error code.
3398 */
3399static int
3400i915_perf_open_ioctl_locked(struct i915_perf *perf,
3401                            struct drm_i915_perf_open_param *param,
3402                            struct perf_open_properties *props,
3403                            struct drm_file *file)
3404{
3405        struct i915_gem_context *specific_ctx = NULL;
3406        struct i915_perf_stream *stream = NULL;
3407        unsigned long f_flags = 0;
3408        bool privileged_op = true;
3409        int stream_fd;
3410        int ret;
3411
3412        if (props->single_context) {
3413                u32 ctx_handle = props->ctx_handle;
3414                struct drm_i915_file_private *file_priv = file->driver_priv;
3415
3416                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3417                if (!specific_ctx) {
3418                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3419                                  ctx_handle);
3420                        ret = -ENOENT;
3421                        goto err;
3422                }
3423        }
3424
3425        /*
3426         * On Haswell the OA unit supports clock gating off for a specific
3427         * context and in this mode there's no visibility of metrics for the
3428         * rest of the system, which we consider acceptable for a
3429         * non-privileged client.
3430         *
3431         * For Gen8->11 the OA unit no longer supports clock gating off for a
3432         * specific context and the kernel can't securely stop the counters
3433         * from updating as system-wide / global values. Even though we can
3434         * filter reports based on the included context ID we can't block
3435         * clients from seeing the raw / global counter values via
3436         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3437         * enable the OA unit by default.
3438         *
3439         * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3440         * per context basis. So we can relax requirements there if the user
3441         * doesn't request global stream access (i.e. query based sampling
3442         * using MI_RECORD_PERF_COUNT.
3443         */
3444        if (IS_HASWELL(perf->i915) && specific_ctx)
3445                privileged_op = false;
3446        else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3447                 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3448                privileged_op = false;
3449
3450        if (props->hold_preemption) {
3451                if (!props->single_context) {
3452                        DRM_DEBUG("preemption disable with no context\n");
3453                        ret = -EINVAL;
3454                        goto err;
3455                }
3456                privileged_op = true;
3457        }
3458
3459        /*
3460         * Asking for SSEU configuration is a priviliged operation.
3461         */
3462        if (props->has_sseu)
3463                privileged_op = true;
3464        else
3465                get_default_sseu_config(&props->sseu, props->engine);
3466
3467        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3468         * we check a dev.i915.perf_stream_paranoid sysctl option
3469         * to determine if it's ok to access system wide OA counters
3470         * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3471         */
3472        if (privileged_op &&
3473            i915_perf_stream_paranoid && !perfmon_capable()) {
3474                DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3475                ret = -EACCES;
3476                goto err_ctx;
3477        }
3478
3479        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3480        if (!stream) {
3481                ret = -ENOMEM;
3482                goto err_ctx;
3483        }
3484
3485        stream->perf = perf;
3486        stream->ctx = specific_ctx;
3487        stream->poll_oa_period = props->poll_oa_period;
3488
3489        ret = i915_oa_stream_init(stream, param, props);
3490        if (ret)
3491                goto err_alloc;
3492
3493        /* we avoid simply assigning stream->sample_flags = props->sample_flags
3494         * to have _stream_init check the combination of sample flags more
3495         * thoroughly, but still this is the expected result at this point.
3496         */
3497        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3498                ret = -ENODEV;
3499                goto err_flags;
3500        }
3501
3502        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3503                f_flags |= O_CLOEXEC;
3504        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3505                f_flags |= O_NONBLOCK;
3506
3507        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3508        if (stream_fd < 0) {
3509                ret = stream_fd;
3510                goto err_flags;
3511        }
3512
3513        if (!(param->flags & I915_PERF_FLAG_DISABLED))
3514                i915_perf_enable_locked(stream);
3515
3516        /* Take a reference on the driver that will be kept with stream_fd
3517         * until its release.
3518         */
3519        drm_dev_get(&perf->i915->drm);
3520
3521        return stream_fd;
3522
3523err_flags:
3524        if (stream->ops->destroy)
3525                stream->ops->destroy(stream);
3526err_alloc:
3527        kfree(stream);
3528err_ctx:
3529        if (specific_ctx)
3530                i915_gem_context_put(specific_ctx);
3531err:
3532        return ret;
3533}
3534
3535static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3536{
3537        return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt,
3538                                             2ULL << exponent);
3539}
3540
3541static __always_inline bool
3542oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3543{
3544        return test_bit(format, perf->format_mask);
3545}
3546
3547static __always_inline void
3548oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3549{
3550        __set_bit(format, perf->format_mask);
3551}
3552
3553/**
3554 * read_properties_unlocked - validate + copy userspace stream open properties
3555 * @perf: i915 perf instance
3556 * @uprops: The array of u64 key value pairs given by userspace
3557 * @n_props: The number of key value pairs expected in @uprops
3558 * @props: The stream configuration built up while validating properties
3559 *
3560 * Note this function only validates properties in isolation it doesn't
3561 * validate that the combination of properties makes sense or that all
3562 * properties necessary for a particular kind of stream have been set.
3563 *
3564 * Note that there currently aren't any ordering requirements for properties so
3565 * we shouldn't validate or assume anything about ordering here. This doesn't
3566 * rule out defining new properties with ordering requirements in the future.
3567 */
3568static int read_properties_unlocked(struct i915_perf *perf,
3569                                    u64 __user *uprops,
3570                                    u32 n_props,
3571                                    struct perf_open_properties *props)
3572{
3573        u64 __user *uprop = uprops;
3574        u32 i;
3575        int ret;
3576
3577        memset(props, 0, sizeof(struct perf_open_properties));
3578        props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3579
3580        if (!n_props) {
3581                DRM_DEBUG("No i915 perf properties given\n");
3582                return -EINVAL;
3583        }
3584
3585        /* At the moment we only support using i915-perf on the RCS. */
3586        props->engine = intel_engine_lookup_user(perf->i915,
3587                                                 I915_ENGINE_CLASS_RENDER,
3588                                                 0);
3589        if (!props->engine) {
3590                DRM_DEBUG("No RENDER-capable engines\n");
3591                return -EINVAL;
3592        }
3593
3594        /* Considering that ID = 0 is reserved and assuming that we don't
3595         * (currently) expect any configurations to ever specify duplicate
3596         * values for a particular property ID then the last _PROP_MAX value is
3597         * one greater than the maximum number of properties we expect to get
3598         * from userspace.
3599         */
3600        if (n_props >= DRM_I915_PERF_PROP_MAX) {
3601                DRM_DEBUG("More i915 perf properties specified than exist\n");
3602                return -EINVAL;
3603        }
3604
3605        for (i = 0; i < n_props; i++) {
3606                u64 oa_period, oa_freq_hz;
3607                u64 id, value;
3608
3609                ret = get_user(id, uprop);
3610                if (ret)
3611                        return ret;
3612
3613                ret = get_user(value, uprop + 1);
3614                if (ret)
3615                        return ret;
3616
3617                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3618                        DRM_DEBUG("Unknown i915 perf property ID\n");
3619                        return -EINVAL;
3620                }
3621
3622                switch ((enum drm_i915_perf_property_id)id) {
3623                case DRM_I915_PERF_PROP_CTX_HANDLE:
3624                        props->single_context = 1;
3625                        props->ctx_handle = value;
3626                        break;
3627                case DRM_I915_PERF_PROP_SAMPLE_OA:
3628                        if (value)
3629                                props->sample_flags |= SAMPLE_OA_REPORT;
3630                        break;
3631                case DRM_I915_PERF_PROP_OA_METRICS_SET:
3632                        if (value == 0) {
3633                                DRM_DEBUG("Unknown OA metric set ID\n");
3634                                return -EINVAL;
3635                        }
3636                        props->metrics_set = value;
3637                        break;
3638                case DRM_I915_PERF_PROP_OA_FORMAT:
3639                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3640                                DRM_DEBUG("Out-of-range OA report format %llu\n",
3641                                          value);
3642                                return -EINVAL;
3643                        }
3644                        if (!oa_format_valid(perf, value)) {
3645                                DRM_DEBUG("Unsupported OA report format %llu\n",
3646                                          value);
3647                                return -EINVAL;
3648                        }
3649                        props->oa_format = value;
3650                        break;
3651                case DRM_I915_PERF_PROP_OA_EXPONENT:
3652                        if (value > OA_EXPONENT_MAX) {
3653                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
3654                                         OA_EXPONENT_MAX);
3655                                return -EINVAL;
3656                        }
3657
3658                        /* Theoretically we can program the OA unit to sample
3659                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3660                         * for BXT. We don't allow such high sampling
3661                         * frequencies by default unless root.
3662                         */
3663
3664                        BUILD_BUG_ON(sizeof(oa_period) != 8);
3665                        oa_period = oa_exponent_to_ns(perf, value);
3666
3667                        /* This check is primarily to ensure that oa_period <=
3668                         * UINT32_MAX (before passing to do_div which only
3669                         * accepts a u32 denominator), but we can also skip
3670                         * checking anything < 1Hz which implicitly can't be
3671                         * limited via an integer oa_max_sample_rate.
3672                         */
3673                        if (oa_period <= NSEC_PER_SEC) {
3674                                u64 tmp = NSEC_PER_SEC;
3675                                do_div(tmp, oa_period);
3676                                oa_freq_hz = tmp;
3677                        } else
3678                                oa_freq_hz = 0;
3679
3680                        if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3681                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3682                                          i915_oa_max_sample_rate);
3683                                return -EACCES;
3684                        }
3685
3686                        props->oa_periodic = true;
3687                        props->oa_period_exponent = value;
3688                        break;
3689                case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3690                        props->hold_preemption = !!value;
3691                        break;
3692                case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3693                        struct drm_i915_gem_context_param_sseu user_sseu;
3694
3695                        if (copy_from_user(&user_sseu,
3696                                           u64_to_user_ptr(value),
3697                                           sizeof(user_sseu))) {
3698                                DRM_DEBUG("Unable to copy global sseu parameter\n");
3699                                return -EFAULT;
3700                        }
3701
3702                        ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3703                        if (ret) {
3704                                DRM_DEBUG("Invalid SSEU configuration\n");
3705                                return ret;
3706                        }
3707                        props->has_sseu = true;
3708                        break;
3709                }
3710                case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3711                        if (value < 100000 /* 100us */) {
3712                                DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3713                                          value);
3714                                return -EINVAL;
3715                        }
3716                        props->poll_oa_period = value;
3717                        break;
3718                case DRM_I915_PERF_PROP_MAX:
3719                        MISSING_CASE(id);
3720                        return -EINVAL;
3721                }
3722
3723                uprop += 2;
3724        }
3725
3726        return 0;
3727}
3728
3729/**
3730 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3731 * @dev: drm device
3732 * @data: ioctl data copied from userspace (unvalidated)
3733 * @file: drm file
3734 *
3735 * Validates the stream open parameters given by userspace including flags
3736 * and an array of u64 key, value pair properties.
3737 *
3738 * Very little is assumed up front about the nature of the stream being
3739 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3740 * i915-perf stream is expected to be a suitable interface for other forms of
3741 * buffered data written by the GPU besides periodic OA metrics.
3742 *
3743 * Note we copy the properties from userspace outside of the i915 perf
3744 * mutex to avoid an awkward lockdep with mmap_lock.
3745 *
3746 * Most of the implementation details are handled by
3747 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3748 * mutex for serializing with any non-file-operation driver hooks.
3749 *
3750 * Return: A newly opened i915 Perf stream file descriptor or negative
3751 * error code on failure.
3752 */
3753int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3754                         struct drm_file *file)
3755{
3756        struct i915_perf *perf = &to_i915(dev)->perf;
3757        struct drm_i915_perf_open_param *param = data;
3758        struct perf_open_properties props;
3759        u32 known_open_flags;
3760        int ret;
3761
3762        if (!perf->i915) {
3763                DRM_DEBUG("i915 perf interface not available for this system\n");
3764                return -ENOTSUPP;
3765        }
3766
3767        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3768                           I915_PERF_FLAG_FD_NONBLOCK |
3769                           I915_PERF_FLAG_DISABLED;
3770        if (param->flags & ~known_open_flags) {
3771                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3772                return -EINVAL;
3773        }
3774
3775        ret = read_properties_unlocked(perf,
3776                                       u64_to_user_ptr(param->properties_ptr),
3777                                       param->num_properties,
3778                                       &props);
3779        if (ret)
3780                return ret;
3781
3782        mutex_lock(&perf->lock);
3783        ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3784        mutex_unlock(&perf->lock);
3785
3786        return ret;
3787}
3788
3789/**
3790 * i915_perf_register - exposes i915-perf to userspace
3791 * @i915: i915 device instance
3792 *
3793 * In particular OA metric sets are advertised under a sysfs metrics/
3794 * directory allowing userspace to enumerate valid IDs that can be
3795 * used to open an i915-perf stream.
3796 */
3797void i915_perf_register(struct drm_i915_private *i915)
3798{
3799        struct i915_perf *perf = &i915->perf;
3800
3801        if (!perf->i915)
3802                return;
3803
3804        /* To be sure we're synchronized with an attempted
3805         * i915_perf_open_ioctl(); considering that we register after
3806         * being exposed to userspace.
3807         */
3808        mutex_lock(&perf->lock);
3809
3810        perf->metrics_kobj =
3811                kobject_create_and_add("metrics",
3812                                       &i915->drm.primary->kdev->kobj);
3813
3814        mutex_unlock(&perf->lock);
3815}
3816
3817/**
3818 * i915_perf_unregister - hide i915-perf from userspace
3819 * @i915: i915 device instance
3820 *
3821 * i915-perf state cleanup is split up into an 'unregister' and
3822 * 'deinit' phase where the interface is first hidden from
3823 * userspace by i915_perf_unregister() before cleaning up
3824 * remaining state in i915_perf_fini().
3825 */
3826void i915_perf_unregister(struct drm_i915_private *i915)
3827{
3828        struct i915_perf *perf = &i915->perf;
3829
3830        if (!perf->metrics_kobj)
3831                return;
3832
3833        kobject_put(perf->metrics_kobj);
3834        perf->metrics_kobj = NULL;
3835}
3836
3837static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3838{
3839        static const i915_reg_t flex_eu_regs[] = {
3840                EU_PERF_CNTL0,
3841                EU_PERF_CNTL1,
3842                EU_PERF_CNTL2,
3843                EU_PERF_CNTL3,
3844                EU_PERF_CNTL4,
3845                EU_PERF_CNTL5,
3846                EU_PERF_CNTL6,
3847        };
3848        int i;
3849
3850        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3851                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3852                        return true;
3853        }
3854        return false;
3855}
3856
3857#define ADDR_IN_RANGE(addr, start, end) \
3858        ((addr) >= (start) && \
3859         (addr) <= (end))
3860
3861#define REG_IN_RANGE(addr, start, end) \
3862        ((addr) >= i915_mmio_reg_offset(start) && \
3863         (addr) <= i915_mmio_reg_offset(end))
3864
3865#define REG_EQUAL(addr, mmio) \
3866        ((addr) == i915_mmio_reg_offset(mmio))
3867
3868static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3869{
3870        return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3871               REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3872               REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3873}
3874
3875static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3876{
3877        return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3878               REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3879               REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3880               REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3881}
3882
3883static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3884{
3885        return gen7_is_valid_mux_addr(perf, addr) ||
3886               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3887               REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3888}
3889
3890static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3891{
3892        return gen8_is_valid_mux_addr(perf, addr) ||
3893               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3894               REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3895}
3896
3897static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3898{
3899        return gen7_is_valid_mux_addr(perf, addr) ||
3900               ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3901               REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3902               REG_EQUAL(addr, HSW_MBVID2_MISR0);
3903}
3904
3905static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3906{
3907        return gen7_is_valid_mux_addr(perf, addr) ||
3908               ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3909}
3910
3911static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3912{
3913        return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3914               REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3915               REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3916               REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3917               REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3918               REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3919               REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3920}
3921
3922static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3923{
3924        return REG_EQUAL(addr, NOA_WRITE) ||
3925               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3926               REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3927               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3928               REG_EQUAL(addr, RPM_CONFIG0) ||
3929               REG_EQUAL(addr, RPM_CONFIG1) ||
3930               REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3931}
3932
3933static u32 mask_reg_value(u32 reg, u32 val)
3934{
3935        /* HALF_SLICE_CHICKEN2 is programmed with a the
3936         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3937         * programmed by userspace doesn't change this.
3938         */
3939        if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3940                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3941
3942        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3943         * indicated by its name and a bunch of selection fields used by OA
3944         * configs.
3945         */
3946        if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3947                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3948
3949        return val;
3950}
3951
3952static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3953                                         bool (*is_valid)(struct i915_perf *perf, u32 addr),
3954                                         u32 __user *regs,
3955                                         u32 n_regs)
3956{
3957        struct i915_oa_reg *oa_regs;
3958        int err;
3959        u32 i;
3960
3961        if (!n_regs)
3962                return NULL;
3963
3964        /* No is_valid function means we're not allowing any register to be programmed. */
3965        GEM_BUG_ON(!is_valid);
3966        if (!is_valid)
3967                return ERR_PTR(-EINVAL);
3968
3969        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3970        if (!oa_regs)
3971                return ERR_PTR(-ENOMEM);
3972
3973        for (i = 0; i < n_regs; i++) {
3974                u32 addr, value;
3975
3976                err = get_user(addr, regs);
3977                if (err)
3978                        goto addr_err;
3979
3980                if (!is_valid(perf, addr)) {
3981                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3982                        err = -EINVAL;
3983                        goto addr_err;
3984                }
3985
3986                err = get_user(value, regs + 1);
3987                if (err)
3988                        goto addr_err;
3989
3990                oa_regs[i].addr = _MMIO(addr);
3991                oa_regs[i].value = mask_reg_value(addr, value);
3992
3993                regs += 2;
3994        }
3995
3996        return oa_regs;
3997
3998addr_err:
3999        kfree(oa_regs);
4000        return ERR_PTR(err);
4001}
4002
4003static ssize_t show_dynamic_id(struct device *dev,
4004                               struct device_attribute *attr,
4005                               char *buf)
4006{
4007        struct i915_oa_config *oa_config =
4008                container_of(attr, typeof(*oa_config), sysfs_metric_id);
4009
4010        return sprintf(buf, "%d\n", oa_config->id);
4011}
4012
4013static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4014                                         struct i915_oa_config *oa_config)
4015{
4016        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4017        oa_config->sysfs_metric_id.attr.name = "id";
4018        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4019        oa_config->sysfs_metric_id.show = show_dynamic_id;
4020        oa_config->sysfs_metric_id.store = NULL;
4021
4022        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4023        oa_config->attrs[1] = NULL;
4024
4025        oa_config->sysfs_metric.name = oa_config->uuid;
4026        oa_config->sysfs_metric.attrs = oa_config->attrs;
4027
4028        return sysfs_create_group(perf->metrics_kobj,
4029                                  &oa_config->sysfs_metric);
4030}
4031
4032/**
4033 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4034 * @dev: drm device
4035 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4036 *        userspace (unvalidated)
4037 * @file: drm file
4038 *
4039 * Validates the submitted OA register to be saved into a new OA config that
4040 * can then be used for programming the OA unit and its NOA network.
4041 *
4042 * Returns: A new allocated config number to be used with the perf open ioctl
4043 * or a negative error code on failure.
4044 */
4045int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4046                               struct drm_file *file)
4047{
4048        struct i915_perf *perf = &to_i915(dev)->perf;
4049        struct drm_i915_perf_oa_config *args = data;
4050        struct i915_oa_config *oa_config, *tmp;
4051        struct i915_oa_reg *regs;
4052        int err, id;
4053
4054        if (!perf->i915) {
4055                DRM_DEBUG("i915 perf interface not available for this system\n");
4056                return -ENOTSUPP;
4057        }
4058
4059        if (!perf->metrics_kobj) {
4060                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4061                return -EINVAL;
4062        }
4063
4064        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4065                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4066                return -EACCES;
4067        }
4068
4069        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4070            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4071            (!args->flex_regs_ptr || !args->n_flex_regs)) {
4072                DRM_DEBUG("No OA registers given\n");
4073                return -EINVAL;
4074        }
4075
4076        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4077        if (!oa_config) {
4078                DRM_DEBUG("Failed to allocate memory for the OA config\n");
4079                return -ENOMEM;
4080        }
4081
4082        oa_config->perf = perf;
4083        kref_init(&oa_config->ref);
4084
4085        if (!uuid_is_valid(args->uuid)) {
4086                DRM_DEBUG("Invalid uuid format for OA config\n");
4087                err = -EINVAL;
4088                goto reg_err;
4089        }
4090
4091        /* Last character in oa_config->uuid will be 0 because oa_config is
4092         * kzalloc.
4093         */
4094        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4095
4096        oa_config->mux_regs_len = args->n_mux_regs;
4097        regs = alloc_oa_regs(perf,
4098                             perf->ops.is_valid_mux_reg,
4099                             u64_to_user_ptr(args->mux_regs_ptr),
4100                             args->n_mux_regs);
4101
4102        if (IS_ERR(regs)) {
4103                DRM_DEBUG("Failed to create OA config for mux_regs\n");
4104                err = PTR_ERR(regs);
4105                goto reg_err;
4106        }
4107        oa_config->mux_regs = regs;
4108
4109        oa_config->b_counter_regs_len = args->n_boolean_regs;
4110        regs = alloc_oa_regs(perf,
4111                             perf->ops.is_valid_b_counter_reg,
4112                             u64_to_user_ptr(args->boolean_regs_ptr),
4113                             args->n_boolean_regs);
4114
4115        if (IS_ERR(regs)) {
4116                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4117                err = PTR_ERR(regs);
4118                goto reg_err;
4119        }
4120        oa_config->b_counter_regs = regs;
4121
4122        if (GRAPHICS_VER(perf->i915) < 8) {
4123                if (args->n_flex_regs != 0) {
4124                        err = -EINVAL;
4125                        goto reg_err;
4126                }
4127        } else {
4128                oa_config->flex_regs_len = args->n_flex_regs;
4129                regs = alloc_oa_regs(perf,
4130                                     perf->ops.is_valid_flex_reg,
4131                                     u64_to_user_ptr(args->flex_regs_ptr),
4132                                     args->n_flex_regs);
4133
4134                if (IS_ERR(regs)) {
4135                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
4136                        err = PTR_ERR(regs);
4137                        goto reg_err;
4138                }
4139                oa_config->flex_regs = regs;
4140        }
4141
4142        err = mutex_lock_interruptible(&perf->metrics_lock);
4143        if (err)
4144                goto reg_err;
4145
4146        /* We shouldn't have too many configs, so this iteration shouldn't be
4147         * too costly.
4148         */
4149        idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4150                if (!strcmp(tmp->uuid, oa_config->uuid)) {
4151                        DRM_DEBUG("OA config already exists with this uuid\n");
4152                        err = -EADDRINUSE;
4153                        goto sysfs_err;
4154                }
4155        }
4156
4157        err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4158        if (err) {
4159                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4160                goto sysfs_err;
4161        }
4162
4163        /* Config id 0 is invalid, id 1 for kernel stored test config. */
4164        oa_config->id = idr_alloc(&perf->metrics_idr,
4165                                  oa_config, 2,
4166                                  0, GFP_KERNEL);
4167        if (oa_config->id < 0) {
4168                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4169                err = oa_config->id;
4170                goto sysfs_err;
4171        }
4172
4173        mutex_unlock(&perf->metrics_lock);
4174
4175        DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4176
4177        return oa_config->id;
4178
4179sysfs_err:
4180        mutex_unlock(&perf->metrics_lock);
4181reg_err:
4182        i915_oa_config_put(oa_config);
4183        DRM_DEBUG("Failed to add new OA config\n");
4184        return err;
4185}
4186
4187/**
4188 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4189 * @dev: drm device
4190 * @data: ioctl data (pointer to u64 integer) copied from userspace
4191 * @file: drm file
4192 *
4193 * Configs can be removed while being used, the will stop appearing in sysfs
4194 * and their content will be freed when the stream using the config is closed.
4195 *
4196 * Returns: 0 on success or a negative error code on failure.
4197 */
4198int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4199                                  struct drm_file *file)
4200{
4201        struct i915_perf *perf = &to_i915(dev)->perf;
4202        u64 *arg = data;
4203        struct i915_oa_config *oa_config;
4204        int ret;
4205
4206        if (!perf->i915) {
4207                DRM_DEBUG("i915 perf interface not available for this system\n");
4208                return -ENOTSUPP;
4209        }
4210
4211        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4212                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4213                return -EACCES;
4214        }
4215
4216        ret = mutex_lock_interruptible(&perf->metrics_lock);
4217        if (ret)
4218                return ret;
4219
4220        oa_config = idr_find(&perf->metrics_idr, *arg);
4221        if (!oa_config) {
4222                DRM_DEBUG("Failed to remove unknown OA config\n");
4223                ret = -ENOENT;
4224                goto err_unlock;
4225        }
4226
4227        GEM_BUG_ON(*arg != oa_config->id);
4228
4229        sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4230
4231        idr_remove(&perf->metrics_idr, *arg);
4232
4233        mutex_unlock(&perf->metrics_lock);
4234
4235        DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4236
4237        i915_oa_config_put(oa_config);
4238
4239        return 0;
4240
4241err_unlock:
4242        mutex_unlock(&perf->metrics_lock);
4243        return ret;
4244}
4245
4246static struct ctl_table oa_table[] = {
4247        {
4248         .procname = "perf_stream_paranoid",
4249         .data = &i915_perf_stream_paranoid,
4250         .maxlen = sizeof(i915_perf_stream_paranoid),
4251         .mode = 0644,
4252         .proc_handler = proc_dointvec_minmax,
4253         .extra1 = SYSCTL_ZERO,
4254         .extra2 = SYSCTL_ONE,
4255         },
4256        {
4257         .procname = "oa_max_sample_rate",
4258         .data = &i915_oa_max_sample_rate,
4259         .maxlen = sizeof(i915_oa_max_sample_rate),
4260         .mode = 0644,
4261         .proc_handler = proc_dointvec_minmax,
4262         .extra1 = SYSCTL_ZERO,
4263         .extra2 = &oa_sample_rate_hard_limit,
4264         },
4265        {}
4266};
4267
4268static struct ctl_table i915_root[] = {
4269        {
4270         .procname = "i915",
4271         .maxlen = 0,
4272         .mode = 0555,
4273         .child = oa_table,
4274         },
4275        {}
4276};
4277
4278static struct ctl_table dev_root[] = {
4279        {
4280         .procname = "dev",
4281         .maxlen = 0,
4282         .mode = 0555,
4283         .child = i915_root,
4284         },
4285        {}
4286};
4287
4288static void oa_init_supported_formats(struct i915_perf *perf)
4289{
4290        struct drm_i915_private *i915 = perf->i915;
4291        enum intel_platform platform = INTEL_INFO(i915)->platform;
4292
4293        switch (platform) {
4294        case INTEL_HASWELL:
4295                oa_format_add(perf, I915_OA_FORMAT_A13);
4296                oa_format_add(perf, I915_OA_FORMAT_A13);
4297                oa_format_add(perf, I915_OA_FORMAT_A29);
4298                oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4299                oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4300                oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4301                oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4302                oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4303                break;
4304
4305        case INTEL_BROADWELL:
4306        case INTEL_CHERRYVIEW:
4307        case INTEL_SKYLAKE:
4308        case INTEL_BROXTON:
4309        case INTEL_KABYLAKE:
4310        case INTEL_GEMINILAKE:
4311        case INTEL_COFFEELAKE:
4312        case INTEL_COMETLAKE:
4313        case INTEL_CANNONLAKE:
4314        case INTEL_ICELAKE:
4315        case INTEL_ELKHARTLAKE:
4316        case INTEL_JASPERLAKE:
4317        case INTEL_TIGERLAKE:
4318        case INTEL_ROCKETLAKE:
4319        case INTEL_DG1:
4320        case INTEL_ALDERLAKE_S:
4321        case INTEL_ALDERLAKE_P:
4322                oa_format_add(perf, I915_OA_FORMAT_A12);
4323                oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4324                oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4325                oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4326                break;
4327
4328        default:
4329                MISSING_CASE(platform);
4330        }
4331}
4332
4333/**
4334 * i915_perf_init - initialize i915-perf state on module bind
4335 * @i915: i915 device instance
4336 *
4337 * Initializes i915-perf state without exposing anything to userspace.
4338 *
4339 * Note: i915-perf initialization is split into an 'init' and 'register'
4340 * phase with the i915_perf_register() exposing state to userspace.
4341 */
4342void i915_perf_init(struct drm_i915_private *i915)
4343{
4344        struct i915_perf *perf = &i915->perf;
4345
4346        /* XXX const struct i915_perf_ops! */
4347
4348        perf->oa_formats = oa_formats;
4349        if (IS_HASWELL(i915)) {
4350                perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4351                perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4352                perf->ops.is_valid_flex_reg = NULL;
4353                perf->ops.enable_metric_set = hsw_enable_metric_set;
4354                perf->ops.disable_metric_set = hsw_disable_metric_set;
4355                perf->ops.oa_enable = gen7_oa_enable;
4356                perf->ops.oa_disable = gen7_oa_disable;
4357                perf->ops.read = gen7_oa_read;
4358                perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4359        } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4360                /* Note: that although we could theoretically also support the
4361                 * legacy ringbuffer mode on BDW (and earlier iterations of
4362                 * this driver, before upstreaming did this) it didn't seem
4363                 * worth the complexity to maintain now that BDW+ enable
4364                 * execlist mode by default.
4365                 */
4366                perf->ops.read = gen8_oa_read;
4367
4368                if (IS_GRAPHICS_VER(i915, 8, 9)) {
4369                        perf->ops.is_valid_b_counter_reg =
4370                                gen7_is_valid_b_counter_addr;
4371                        perf->ops.is_valid_mux_reg =
4372                                gen8_is_valid_mux_addr;
4373                        perf->ops.is_valid_flex_reg =
4374                                gen8_is_valid_flex_addr;
4375
4376                        if (IS_CHERRYVIEW(i915)) {
4377                                perf->ops.is_valid_mux_reg =
4378                                        chv_is_valid_mux_addr;
4379                        }
4380
4381                        perf->ops.oa_enable = gen8_oa_enable;
4382                        perf->ops.oa_disable = gen8_oa_disable;
4383                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4384                        perf->ops.disable_metric_set = gen8_disable_metric_set;
4385                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4386
4387                        if (GRAPHICS_VER(i915) == 8) {
4388                                perf->ctx_oactxctrl_offset = 0x120;
4389                                perf->ctx_flexeu0_offset = 0x2ce;
4390
4391                                perf->gen8_valid_ctx_bit = BIT(25);
4392                        } else {
4393                                perf->ctx_oactxctrl_offset = 0x128;
4394                                perf->ctx_flexeu0_offset = 0x3de;
4395
4396                                perf->gen8_valid_ctx_bit = BIT(16);
4397                        }
4398                } else if (IS_GRAPHICS_VER(i915, 10, 11)) {
4399                        perf->ops.is_valid_b_counter_reg =
4400                                gen7_is_valid_b_counter_addr;
4401                        perf->ops.is_valid_mux_reg =
4402                                gen10_is_valid_mux_addr;
4403                        perf->ops.is_valid_flex_reg =
4404                                gen8_is_valid_flex_addr;
4405
4406                        perf->ops.oa_enable = gen8_oa_enable;
4407                        perf->ops.oa_disable = gen8_oa_disable;
4408                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4409                        perf->ops.disable_metric_set = gen10_disable_metric_set;
4410                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4411
4412                        if (GRAPHICS_VER(i915) == 10) {
4413                                perf->ctx_oactxctrl_offset = 0x128;
4414                                perf->ctx_flexeu0_offset = 0x3de;
4415                        } else {
4416                                perf->ctx_oactxctrl_offset = 0x124;
4417                                perf->ctx_flexeu0_offset = 0x78e;
4418                        }
4419                        perf->gen8_valid_ctx_bit = BIT(16);
4420                } else if (GRAPHICS_VER(i915) == 12) {
4421                        perf->ops.is_valid_b_counter_reg =
4422                                gen12_is_valid_b_counter_addr;
4423                        perf->ops.is_valid_mux_reg =
4424                                gen12_is_valid_mux_addr;
4425                        perf->ops.is_valid_flex_reg =
4426                                gen8_is_valid_flex_addr;
4427
4428                        perf->ops.oa_enable = gen12_oa_enable;
4429                        perf->ops.oa_disable = gen12_oa_disable;
4430                        perf->ops.enable_metric_set = gen12_enable_metric_set;
4431                        perf->ops.disable_metric_set = gen12_disable_metric_set;
4432                        perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4433
4434                        perf->ctx_flexeu0_offset = 0;
4435                        perf->ctx_oactxctrl_offset = 0x144;
4436                }
4437        }
4438
4439        if (perf->ops.enable_metric_set) {
4440                mutex_init(&perf->lock);
4441
4442                /* Choose a representative limit */
4443                oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2;
4444
4445                mutex_init(&perf->metrics_lock);
4446                idr_init_base(&perf->metrics_idr, 1);
4447
4448                /* We set up some ratelimit state to potentially throttle any
4449                 * _NOTES about spurious, invalid OA reports which we don't
4450                 * forward to userspace.
4451                 *
4452                 * We print a _NOTE about any throttling when closing the
4453                 * stream instead of waiting until driver _fini which no one
4454                 * would ever see.
4455                 *
4456                 * Using the same limiting factors as printk_ratelimit()
4457                 */
4458                ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4459                /* Since we use a DRM_NOTE for spurious reports it would be
4460                 * inconsistent to let __ratelimit() automatically print a
4461                 * warning for throttling.
4462                 */
4463                ratelimit_set_flags(&perf->spurious_report_rs,
4464                                    RATELIMIT_MSG_ON_RELEASE);
4465
4466                ratelimit_state_init(&perf->tail_pointer_race,
4467                                     5 * HZ, 10);
4468                ratelimit_set_flags(&perf->tail_pointer_race,
4469                                    RATELIMIT_MSG_ON_RELEASE);
4470
4471                atomic64_set(&perf->noa_programming_delay,
4472                             500 * 1000 /* 500us */);
4473
4474                perf->i915 = i915;
4475
4476                oa_init_supported_formats(perf);
4477        }
4478}
4479
4480static int destroy_config(int id, void *p, void *data)
4481{
4482        i915_oa_config_put(p);
4483        return 0;
4484}
4485
4486void i915_perf_sysctl_register(void)
4487{
4488        sysctl_header = register_sysctl_table(dev_root);
4489}
4490
4491void i915_perf_sysctl_unregister(void)
4492{
4493        unregister_sysctl_table(sysctl_header);
4494}
4495
4496/**
4497 * i915_perf_fini - Counter part to i915_perf_init()
4498 * @i915: i915 device instance
4499 */
4500void i915_perf_fini(struct drm_i915_private *i915)
4501{
4502        struct i915_perf *perf = &i915->perf;
4503
4504        if (!perf->i915)
4505                return;
4506
4507        idr_for_each(&perf->metrics_idr, destroy_config, perf);
4508        idr_destroy(&perf->metrics_idr);
4509
4510        memset(&perf->ops, 0, sizeof(perf->ops));
4511        perf->i915 = NULL;
4512}
4513
4514/**
4515 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4516 *
4517 * This version number is used by userspace to detect available features.
4518 */
4519int i915_perf_ioctl_version(void)
4520{
4521        /*
4522         * 1: Initial version
4523         *   I915_PERF_IOCTL_ENABLE
4524         *   I915_PERF_IOCTL_DISABLE
4525         *
4526         * 2: Added runtime modification of OA config.
4527         *   I915_PERF_IOCTL_CONFIG
4528         *
4529         * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4530         *    preemption on a particular context so that performance data is
4531         *    accessible from a delta of MI_RPC reports without looking at the
4532         *    OA buffer.
4533         *
4534         * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4535         *    be run for the duration of the performance recording based on
4536         *    their SSEU configuration.
4537         *
4538         * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4539         *    interval for the hrtimer used to check for OA data.
4540         */
4541        return 5;
4542}
4543
4544#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4545#include "selftests/i915_perf.c"
4546#endif
4547