linux/drivers/hv/ring_buffer.c
<<
>>
Prefs
   1/*
   2 *
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  16 * Place - Suite 330, Boston, MA 02111-1307 USA.
  17 *
  18 * Authors:
  19 *   Haiyang Zhang <haiyangz@microsoft.com>
  20 *   Hank Janssen  <hjanssen@microsoft.com>
  21 *   K. Y. Srinivasan <kys@microsoft.com>
  22 *
  23 */
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/kernel.h>
  27#include <linux/mm.h>
  28#include <linux/hyperv.h>
  29#include <linux/uio.h>
  30#include <linux/vmalloc.h>
  31#include <linux/slab.h>
  32#include <linux/prefetch.h>
  33
  34#include "hyperv_vmbus.h"
  35
  36#define VMBUS_PKT_TRAILER       8
  37
  38/*
  39 * When we write to the ring buffer, check if the host needs to
  40 * be signaled. Here is the details of this protocol:
  41 *
  42 *      1. The host guarantees that while it is draining the
  43 *         ring buffer, it will set the interrupt_mask to
  44 *         indicate it does not need to be interrupted when
  45 *         new data is placed.
  46 *
  47 *      2. The host guarantees that it will completely drain
  48 *         the ring buffer before exiting the read loop. Further,
  49 *         once the ring buffer is empty, it will clear the
  50 *         interrupt_mask and re-check to see if new data has
  51 *         arrived.
  52 *
  53 * KYS: Oct. 30, 2016:
  54 * It looks like Windows hosts have logic to deal with DOS attacks that
  55 * can be triggered if it receives interrupts when it is not expecting
  56 * the interrupt. The host expects interrupts only when the ring
  57 * transitions from empty to non-empty (or full to non full on the guest
  58 * to host ring).
  59 * So, base the signaling decision solely on the ring state until the
  60 * host logic is fixed.
  61 */
  62
  63static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
  64{
  65        struct hv_ring_buffer_info *rbi = &channel->outbound;
  66
  67        virt_mb();
  68        if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
  69                return;
  70
  71        /* check interrupt_mask before read_index */
  72        virt_rmb();
  73        /*
  74         * This is the only case we need to signal when the
  75         * ring transitions from being empty to non-empty.
  76         */
  77        if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
  78                ++channel->intr_out_empty;
  79                vmbus_setevent(channel);
  80        }
  81}
  82
  83/* Get the next write location for the specified ring buffer. */
  84static inline u32
  85hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
  86{
  87        u32 next = ring_info->ring_buffer->write_index;
  88
  89        return next;
  90}
  91
  92/* Set the next write location for the specified ring buffer. */
  93static inline void
  94hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
  95                     u32 next_write_location)
  96{
  97        ring_info->ring_buffer->write_index = next_write_location;
  98}
  99
 100/* Get the size of the ring buffer. */
 101static inline u32
 102hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 103{
 104        return ring_info->ring_datasize;
 105}
 106
 107/* Get the read and write indices as u64 of the specified ring buffer. */
 108static inline u64
 109hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 110{
 111        return (u64)ring_info->ring_buffer->write_index << 32;
 112}
 113
 114/*
 115 * Helper routine to copy from source to ring buffer.
 116 * Assume there is enough room. Handles wrap-around in dest case only!!
 117 */
 118static u32 hv_copyto_ringbuffer(
 119        struct hv_ring_buffer_info      *ring_info,
 120        u32                             start_write_offset,
 121        const void                      *src,
 122        u32                             srclen)
 123{
 124        void *ring_buffer = hv_get_ring_buffer(ring_info);
 125        u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 126
 127        memcpy(ring_buffer + start_write_offset, src, srclen);
 128
 129        start_write_offset += srclen;
 130        if (start_write_offset >= ring_buffer_size)
 131                start_write_offset -= ring_buffer_size;
 132
 133        return start_write_offset;
 134}
 135
 136/*
 137 *
 138 * hv_get_ringbuffer_availbytes()
 139 *
 140 * Get number of bytes available to read and to write to
 141 * for the specified ring buffer
 142 */
 143static void
 144hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
 145                             u32 *read, u32 *write)
 146{
 147        u32 read_loc, write_loc, dsize;
 148
 149        /* Capture the read/write indices before they changed */
 150        read_loc = READ_ONCE(rbi->ring_buffer->read_index);
 151        write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 152        dsize = rbi->ring_datasize;
 153
 154        *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
 155                read_loc - write_loc;
 156        *read = dsize - *write;
 157}
 158
 159/* Get various debug metrics for the specified ring buffer. */
 160int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
 161                                struct hv_ring_buffer_debug_info *debug_info)
 162{
 163        u32 bytes_avail_towrite;
 164        u32 bytes_avail_toread;
 165
 166        mutex_lock(&ring_info->ring_buffer_mutex);
 167
 168        if (!ring_info->ring_buffer) {
 169                mutex_unlock(&ring_info->ring_buffer_mutex);
 170                return -EINVAL;
 171        }
 172
 173        hv_get_ringbuffer_availbytes(ring_info,
 174                                     &bytes_avail_toread,
 175                                     &bytes_avail_towrite);
 176        debug_info->bytes_avail_toread = bytes_avail_toread;
 177        debug_info->bytes_avail_towrite = bytes_avail_towrite;
 178        debug_info->current_read_index = ring_info->ring_buffer->read_index;
 179        debug_info->current_write_index = ring_info->ring_buffer->write_index;
 180        debug_info->current_interrupt_mask
 181                = ring_info->ring_buffer->interrupt_mask;
 182        mutex_unlock(&ring_info->ring_buffer_mutex);
 183
 184        return 0;
 185}
 186EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
 187
 188/* Initialize a channel's ring buffer info mutex locks */
 189void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
 190{
 191        mutex_init(&channel->inbound.ring_buffer_mutex);
 192        mutex_init(&channel->outbound.ring_buffer_mutex);
 193}
 194
 195/* Initialize the ring buffer. */
 196int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
 197                       struct page *pages, u32 page_cnt, u32 max_pkt_size)
 198{
 199        int i;
 200        struct page **pages_wraparound;
 201
 202        BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
 203
 204        /*
 205         * First page holds struct hv_ring_buffer, do wraparound mapping for
 206         * the rest.
 207         */
 208        pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
 209                                   GFP_KERNEL);
 210        if (!pages_wraparound)
 211                return -ENOMEM;
 212
 213        pages_wraparound[0] = pages;
 214        for (i = 0; i < 2 * (page_cnt - 1); i++)
 215                pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
 216
 217        ring_info->ring_buffer = (struct hv_ring_buffer *)
 218                vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
 219
 220        kfree(pages_wraparound);
 221
 222
 223        if (!ring_info->ring_buffer)
 224                return -ENOMEM;
 225
 226        ring_info->ring_buffer->read_index =
 227                ring_info->ring_buffer->write_index = 0;
 228
 229        /* Set the feature bit for enabling flow control. */
 230        ring_info->ring_buffer->feature_bits.value = 1;
 231
 232        ring_info->ring_size = page_cnt << PAGE_SHIFT;
 233        ring_info->ring_size_div10_reciprocal =
 234                reciprocal_value(ring_info->ring_size / 10);
 235        ring_info->ring_datasize = ring_info->ring_size -
 236                sizeof(struct hv_ring_buffer);
 237        ring_info->priv_read_index = 0;
 238
 239        /* Initialize buffer that holds copies of incoming packets */
 240        if (max_pkt_size) {
 241                ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
 242                if (!ring_info->pkt_buffer)
 243                        return -ENOMEM;
 244                ring_info->pkt_buffer_size = max_pkt_size;
 245        }
 246
 247        spin_lock_init(&ring_info->ring_lock);
 248
 249        return 0;
 250}
 251
 252/* Cleanup the ring buffer. */
 253void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
 254{
 255        mutex_lock(&ring_info->ring_buffer_mutex);
 256        vunmap(ring_info->ring_buffer);
 257        ring_info->ring_buffer = NULL;
 258        mutex_unlock(&ring_info->ring_buffer_mutex);
 259
 260        kfree(ring_info->pkt_buffer);
 261        ring_info->pkt_buffer = NULL;
 262        ring_info->pkt_buffer_size = 0;
 263}
 264
 265/* Write to the ring buffer. */
 266int hv_ringbuffer_write(struct vmbus_channel *channel,
 267                        const struct kvec *kv_list, u32 kv_count,
 268                        u64 requestid)
 269{
 270        int i;
 271        u32 bytes_avail_towrite;
 272        u32 totalbytes_towrite = sizeof(u64);
 273        u32 next_write_location;
 274        u32 old_write;
 275        u64 prev_indices;
 276        unsigned long flags;
 277        struct hv_ring_buffer_info *outring_info = &channel->outbound;
 278        struct vmpacket_descriptor *desc = kv_list[0].iov_base;
 279        u64 rqst_id = VMBUS_NO_RQSTOR;
 280
 281        if (channel->rescind)
 282                return -ENODEV;
 283
 284        for (i = 0; i < kv_count; i++)
 285                totalbytes_towrite += kv_list[i].iov_len;
 286
 287        spin_lock_irqsave(&outring_info->ring_lock, flags);
 288
 289        bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 290
 291        /*
 292         * If there is only room for the packet, assume it is full.
 293         * Otherwise, the next time around, we think the ring buffer
 294         * is empty since the read index == write index.
 295         */
 296        if (bytes_avail_towrite <= totalbytes_towrite) {
 297                ++channel->out_full_total;
 298
 299                if (!channel->out_full_flag) {
 300                        ++channel->out_full_first;
 301                        channel->out_full_flag = true;
 302                }
 303
 304                spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 305                return -EAGAIN;
 306        }
 307
 308        channel->out_full_flag = false;
 309
 310        /* Write to the ring buffer */
 311        next_write_location = hv_get_next_write_location(outring_info);
 312
 313        old_write = next_write_location;
 314
 315        for (i = 0; i < kv_count; i++) {
 316                next_write_location = hv_copyto_ringbuffer(outring_info,
 317                                                     next_write_location,
 318                                                     kv_list[i].iov_base,
 319                                                     kv_list[i].iov_len);
 320        }
 321
 322        /*
 323         * Allocate the request ID after the data has been copied into the
 324         * ring buffer.  Once this request ID is allocated, the completion
 325         * path could find the data and free it.
 326         */
 327
 328        if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
 329                if (channel->next_request_id_callback != NULL) {
 330                        rqst_id = channel->next_request_id_callback(channel, requestid);
 331                        if (rqst_id == VMBUS_RQST_ERROR) {
 332                                spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 333                                return -EAGAIN;
 334                        }
 335                }
 336        }
 337        desc = hv_get_ring_buffer(outring_info) + old_write;
 338        desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
 339
 340        /* Set previous packet start */
 341        prev_indices = hv_get_ring_bufferindices(outring_info);
 342
 343        next_write_location = hv_copyto_ringbuffer(outring_info,
 344                                             next_write_location,
 345                                             &prev_indices,
 346                                             sizeof(u64));
 347
 348        /* Issue a full memory barrier before updating the write index */
 349        virt_mb();
 350
 351        /* Now, update the write location */
 352        hv_set_next_write_location(outring_info, next_write_location);
 353
 354
 355        spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 356
 357        hv_signal_on_write(old_write, channel);
 358
 359        if (channel->rescind) {
 360                if (rqst_id != VMBUS_NO_RQSTOR) {
 361                        /* Reclaim request ID to avoid leak of IDs */
 362                        if (channel->request_addr_callback != NULL)
 363                                channel->request_addr_callback(channel, rqst_id);
 364                }
 365                return -ENODEV;
 366        }
 367
 368        return 0;
 369}
 370
 371int hv_ringbuffer_read(struct vmbus_channel *channel,
 372                       void *buffer, u32 buflen, u32 *buffer_actual_len,
 373                       u64 *requestid, bool raw)
 374{
 375        struct vmpacket_descriptor *desc;
 376        u32 packetlen, offset;
 377
 378        if (unlikely(buflen == 0))
 379                return -EINVAL;
 380
 381        *buffer_actual_len = 0;
 382        *requestid = 0;
 383
 384        /* Make sure there is something to read */
 385        desc = hv_pkt_iter_first(channel);
 386        if (desc == NULL) {
 387                /*
 388                 * No error is set when there is even no header, drivers are
 389                 * supposed to analyze buffer_actual_len.
 390                 */
 391                return 0;
 392        }
 393
 394        offset = raw ? 0 : (desc->offset8 << 3);
 395        packetlen = (desc->len8 << 3) - offset;
 396        *buffer_actual_len = packetlen;
 397        *requestid = desc->trans_id;
 398
 399        if (unlikely(packetlen > buflen))
 400                return -ENOBUFS;
 401
 402        /* since ring is double mapped, only one copy is necessary */
 403        memcpy(buffer, (const char *)desc + offset, packetlen);
 404
 405        /* Advance ring index to next packet descriptor */
 406        __hv_pkt_iter_next(channel, desc, true);
 407
 408        /* Notify host of update */
 409        hv_pkt_iter_close(channel);
 410
 411        return 0;
 412}
 413
 414/*
 415 * Determine number of bytes available in ring buffer after
 416 * the current iterator (priv_read_index) location.
 417 *
 418 * This is similar to hv_get_bytes_to_read but with private
 419 * read index instead.
 420 */
 421static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
 422{
 423        u32 priv_read_loc = rbi->priv_read_index;
 424        u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 425
 426        if (write_loc >= priv_read_loc)
 427                return write_loc - priv_read_loc;
 428        else
 429                return (rbi->ring_datasize - priv_read_loc) + write_loc;
 430}
 431
 432/*
 433 * Get first vmbus packet without copying it out of the ring buffer
 434 */
 435struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
 436{
 437        struct hv_ring_buffer_info *rbi = &channel->inbound;
 438
 439        hv_debug_delay_test(channel, MESSAGE_DELAY);
 440
 441        if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
 442                return NULL;
 443
 444        return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
 445}
 446EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
 447
 448/*
 449 * Get first vmbus packet from ring buffer after read_index
 450 *
 451 * If ring buffer is empty, returns NULL and no other action needed.
 452 */
 453struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
 454{
 455        struct hv_ring_buffer_info *rbi = &channel->inbound;
 456        struct vmpacket_descriptor *desc, *desc_copy;
 457        u32 bytes_avail, pkt_len, pkt_offset;
 458
 459        desc = hv_pkt_iter_first_raw(channel);
 460        if (!desc)
 461                return NULL;
 462
 463        bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
 464
 465        /*
 466         * Ensure the compiler does not use references to incoming Hyper-V values (which
 467         * could change at any moment) when reading local variables later in the code
 468         */
 469        pkt_len = READ_ONCE(desc->len8) << 3;
 470        pkt_offset = READ_ONCE(desc->offset8) << 3;
 471
 472        /*
 473         * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
 474         * rbi->pkt_buffer_size
 475         */
 476        if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
 477                pkt_len = bytes_avail;
 478
 479        /*
 480         * If pkt_offset is invalid, arbitrarily set it to
 481         * the size of vmpacket_descriptor
 482         */
 483        if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
 484                pkt_offset = sizeof(struct vmpacket_descriptor);
 485
 486        /* Copy the Hyper-V packet out of the ring buffer */
 487        desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
 488        memcpy(desc_copy, desc, pkt_len);
 489
 490        /*
 491         * Hyper-V could still change len8 and offset8 after the earlier read.
 492         * Ensure that desc_copy has legal values for len8 and offset8 that
 493         * are consistent with the copy we just made
 494         */
 495        desc_copy->len8 = pkt_len >> 3;
 496        desc_copy->offset8 = pkt_offset >> 3;
 497
 498        return desc_copy;
 499}
 500EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
 501
 502/*
 503 * Get next vmbus packet from ring buffer.
 504 *
 505 * Advances the current location (priv_read_index) and checks for more
 506 * data. If the end of the ring buffer is reached, then return NULL.
 507 */
 508struct vmpacket_descriptor *
 509__hv_pkt_iter_next(struct vmbus_channel *channel,
 510                   const struct vmpacket_descriptor *desc,
 511                   bool copy)
 512{
 513        struct hv_ring_buffer_info *rbi = &channel->inbound;
 514        u32 packetlen = desc->len8 << 3;
 515        u32 dsize = rbi->ring_datasize;
 516
 517        hv_debug_delay_test(channel, MESSAGE_DELAY);
 518        /* bump offset to next potential packet */
 519        rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
 520        if (rbi->priv_read_index >= dsize)
 521                rbi->priv_read_index -= dsize;
 522
 523        /* more data? */
 524        return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
 525}
 526EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
 527
 528/* How many bytes were read in this iterator cycle */
 529static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
 530                                        u32 start_read_index)
 531{
 532        if (rbi->priv_read_index >= start_read_index)
 533                return rbi->priv_read_index - start_read_index;
 534        else
 535                return rbi->ring_datasize - start_read_index +
 536                        rbi->priv_read_index;
 537}
 538
 539/*
 540 * Update host ring buffer after iterating over packets. If the host has
 541 * stopped queuing new entries because it found the ring buffer full, and
 542 * sufficient space is being freed up, signal the host. But be careful to
 543 * only signal the host when necessary, both for performance reasons and
 544 * because Hyper-V protects itself by throttling guests that signal
 545 * inappropriately.
 546 *
 547 * Determining when to signal is tricky. There are three key data inputs
 548 * that must be handled in this order to avoid race conditions:
 549 *
 550 * 1. Update the read_index
 551 * 2. Read the pending_send_sz
 552 * 3. Read the current write_index
 553 *
 554 * The interrupt_mask is not used to determine when to signal. The
 555 * interrupt_mask is used only on the guest->host ring buffer when
 556 * sending requests to the host. The host does not use it on the host->
 557 * guest ring buffer to indicate whether it should be signaled.
 558 */
 559void hv_pkt_iter_close(struct vmbus_channel *channel)
 560{
 561        struct hv_ring_buffer_info *rbi = &channel->inbound;
 562        u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
 563
 564        /*
 565         * Make sure all reads are done before we update the read index since
 566         * the writer may start writing to the read area once the read index
 567         * is updated.
 568         */
 569        virt_rmb();
 570        start_read_index = rbi->ring_buffer->read_index;
 571        rbi->ring_buffer->read_index = rbi->priv_read_index;
 572
 573        /*
 574         * Older versions of Hyper-V (before WS2102 and Win8) do not
 575         * implement pending_send_sz and simply poll if the host->guest
 576         * ring buffer is full.  No signaling is needed or expected.
 577         */
 578        if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
 579                return;
 580
 581        /*
 582         * Issue a full memory barrier before making the signaling decision.
 583         * If reading pending_send_sz were to be reordered and happen
 584         * before we commit the new read_index, a race could occur.  If the
 585         * host were to set the pending_send_sz after we have sampled
 586         * pending_send_sz, and the ring buffer blocks before we commit the
 587         * read index, we could miss sending the interrupt. Issue a full
 588         * memory barrier to address this.
 589         */
 590        virt_mb();
 591
 592        /*
 593         * If the pending_send_sz is zero, then the ring buffer is not
 594         * blocked and there is no need to signal.  This is far by the
 595         * most common case, so exit quickly for best performance.
 596         */
 597        pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
 598        if (!pending_sz)
 599                return;
 600
 601        /*
 602         * Ensure the read of write_index in hv_get_bytes_to_write()
 603         * happens after the read of pending_send_sz.
 604         */
 605        virt_rmb();
 606        curr_write_sz = hv_get_bytes_to_write(rbi);
 607        bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
 608
 609        /*
 610         * We want to signal the host only if we're transitioning
 611         * from a "not enough free space" state to a "enough free
 612         * space" state.  For example, it's possible that this function
 613         * could run and free up enough space to signal the host, and then
 614         * run again and free up additional space before the host has a
 615         * chance to clear the pending_send_sz.  The 2nd invocation would
 616         * be a null transition from "enough free space" to "enough free
 617         * space", which doesn't warrant a signal.
 618         *
 619         * Exactly filling the ring buffer is treated as "not enough
 620         * space". The ring buffer always must have at least one byte
 621         * empty so the empty and full conditions are distinguishable.
 622         * hv_get_bytes_to_write() doesn't fully tell the truth in
 623         * this regard.
 624         *
 625         * So first check if we were in the "enough free space" state
 626         * before we began the iteration. If so, the host was not
 627         * blocked, and there's no need to signal.
 628         */
 629        if (curr_write_sz - bytes_read > pending_sz)
 630                return;
 631
 632        /*
 633         * Similarly, if the new state is "not enough space", then
 634         * there's no need to signal.
 635         */
 636        if (curr_write_sz <= pending_sz)
 637                return;
 638
 639        ++channel->intr_in_full;
 640        vmbus_setevent(channel);
 641}
 642EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
 643