linux/drivers/mtd/chips/cfi_cmdset_0002.c
<<
>>
Prefs
   1/*
   2 * Common Flash Interface support:
   3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4 *
   5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8 *
   9 * 2_by_8 routines added by Simon Munton
  10 *
  11 * 4_by_16 work by Carolyn J. Smith
  12 *
  13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14 * by Nicolas Pitre)
  15 *
  16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17 *
  18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19 *
  20 * This code is GPL
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/sched.h>
  27#include <asm/io.h>
  28#include <asm/byteorder.h>
  29
  30#include <linux/errno.h>
  31#include <linux/slab.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/reboot.h>
  35#include <linux/of.h>
  36#include <linux/of_platform.h>
  37#include <linux/mtd/map.h>
  38#include <linux/mtd/mtd.h>
  39#include <linux/mtd/cfi.h>
  40#include <linux/mtd/xip.h>
  41
  42#define AMD_BOOTLOC_BUG
  43#define FORCE_WORD_WRITE 0
  44
  45#define MAX_RETRIES 3
  46
  47#define SST49LF004B             0x0060
  48#define SST49LF040B             0x0050
  49#define SST49LF008A             0x005a
  50#define AT49BV6416              0x00d6
  51
  52static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  53static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  54static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  55static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  56static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  57static void cfi_amdstd_sync (struct mtd_info *);
  58static int cfi_amdstd_suspend (struct mtd_info *);
  59static void cfi_amdstd_resume (struct mtd_info *);
  60static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  61static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
  62                                         size_t *, struct otp_info *);
  63static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
  64                                         size_t *, struct otp_info *);
  65static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  66static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
  67                                         size_t *, u_char *);
  68static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
  69                                         size_t *, u_char *);
  70static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
  71                                          size_t *, u_char *);
  72static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
  73
  74static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  75                                  size_t *retlen, const u_char *buf);
  76
  77static void cfi_amdstd_destroy(struct mtd_info *);
  78
  79struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  80static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  81
  82static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  83static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  84#include "fwh_lock.h"
  85
  86static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  87static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  88
  89static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  90static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  91static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  92
  93static struct mtd_chip_driver cfi_amdstd_chipdrv = {
  94        .probe          = NULL, /* Not usable directly */
  95        .destroy        = cfi_amdstd_destroy,
  96        .name           = "cfi_cmdset_0002",
  97        .module         = THIS_MODULE
  98};
  99
 100
 101/* #define DEBUG_CFI_FEATURES */
 102
 103
 104#ifdef DEBUG_CFI_FEATURES
 105static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 106{
 107        const char* erase_suspend[3] = {
 108                "Not supported", "Read only", "Read/write"
 109        };
 110        const char* top_bottom[6] = {
 111                "No WP", "8x8KiB sectors at top & bottom, no WP",
 112                "Bottom boot", "Top boot",
 113                "Uniform, Bottom WP", "Uniform, Top WP"
 114        };
 115
 116        printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 117        printk("  Address sensitive unlock: %s\n",
 118               (extp->SiliconRevision & 1) ? "Not required" : "Required");
 119
 120        if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 121                printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 122        else
 123                printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 124
 125        if (extp->BlkProt == 0)
 126                printk("  Block protection: Not supported\n");
 127        else
 128                printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 129
 130
 131        printk("  Temporary block unprotect: %s\n",
 132               extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 133        printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 134        printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 135        printk("  Burst mode: %s\n",
 136               extp->BurstMode ? "Supported" : "Not supported");
 137        if (extp->PageMode == 0)
 138                printk("  Page mode: Not supported\n");
 139        else
 140                printk("  Page mode: %d word page\n", extp->PageMode << 2);
 141
 142        printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 143               extp->VppMin >> 4, extp->VppMin & 0xf);
 144        printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 145               extp->VppMax >> 4, extp->VppMax & 0xf);
 146
 147        if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 148                printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 149        else
 150                printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 151}
 152#endif
 153
 154#ifdef AMD_BOOTLOC_BUG
 155/* Wheee. Bring me the head of someone at AMD. */
 156static void fixup_amd_bootblock(struct mtd_info *mtd)
 157{
 158        struct map_info *map = mtd->priv;
 159        struct cfi_private *cfi = map->fldrv_priv;
 160        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 161        __u8 major = extp->MajorVersion;
 162        __u8 minor = extp->MinorVersion;
 163
 164        if (((major << 8) | minor) < 0x3131) {
 165                /* CFI version 1.0 => don't trust bootloc */
 166
 167                pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 168                        map->name, cfi->mfr, cfi->id);
 169
 170                /* AFAICS all 29LV400 with a bottom boot block have a device ID
 171                 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 172                 * These were badly detected as they have the 0x80 bit set
 173                 * so treat them as a special case.
 174                 */
 175                if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 176
 177                        /* Macronix added CFI to their 2nd generation
 178                         * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 179                         * Fujitsu, Spansion, EON, ESI and older Macronix)
 180                         * has CFI.
 181                         *
 182                         * Therefore also check the manufacturer.
 183                         * This reduces the risk of false detection due to
 184                         * the 8-bit device ID.
 185                         */
 186                        (cfi->mfr == CFI_MFR_MACRONIX)) {
 187                        pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 188                                " detected\n", map->name);
 189                        extp->TopBottom = 2;    /* bottom boot */
 190                } else
 191                if (cfi->id & 0x80) {
 192                        printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 193                        extp->TopBottom = 3;    /* top boot */
 194                } else {
 195                        extp->TopBottom = 2;    /* bottom boot */
 196                }
 197
 198                pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 199                        " deduced %s from Device ID\n", map->name, major, minor,
 200                        extp->TopBottom == 2 ? "bottom" : "top");
 201        }
 202}
 203#endif
 204
 205static void fixup_use_write_buffers(struct mtd_info *mtd)
 206{
 207        struct map_info *map = mtd->priv;
 208        struct cfi_private *cfi = map->fldrv_priv;
 209        if (cfi->cfiq->BufWriteTimeoutTyp) {
 210                pr_debug("Using buffer write method\n");
 211                mtd->_write = cfi_amdstd_write_buffers;
 212        }
 213}
 214
 215/* Atmel chips don't use the same PRI format as AMD chips */
 216static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 217{
 218        struct map_info *map = mtd->priv;
 219        struct cfi_private *cfi = map->fldrv_priv;
 220        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 221        struct cfi_pri_atmel atmel_pri;
 222
 223        memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 224        memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 225
 226        if (atmel_pri.Features & 0x02)
 227                extp->EraseSuspend = 2;
 228
 229        /* Some chips got it backwards... */
 230        if (cfi->id == AT49BV6416) {
 231                if (atmel_pri.BottomBoot)
 232                        extp->TopBottom = 3;
 233                else
 234                        extp->TopBottom = 2;
 235        } else {
 236                if (atmel_pri.BottomBoot)
 237                        extp->TopBottom = 2;
 238                else
 239                        extp->TopBottom = 3;
 240        }
 241
 242        /* burst write mode not supported */
 243        cfi->cfiq->BufWriteTimeoutTyp = 0;
 244        cfi->cfiq->BufWriteTimeoutMax = 0;
 245}
 246
 247static void fixup_use_secsi(struct mtd_info *mtd)
 248{
 249        /* Setup for chips with a secsi area */
 250        mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 251        mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 252}
 253
 254static void fixup_use_erase_chip(struct mtd_info *mtd)
 255{
 256        struct map_info *map = mtd->priv;
 257        struct cfi_private *cfi = map->fldrv_priv;
 258        if ((cfi->cfiq->NumEraseRegions == 1) &&
 259                ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 260                mtd->_erase = cfi_amdstd_erase_chip;
 261        }
 262
 263}
 264
 265/*
 266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 267 * locked by default.
 268 */
 269static void fixup_use_atmel_lock(struct mtd_info *mtd)
 270{
 271        mtd->_lock = cfi_atmel_lock;
 272        mtd->_unlock = cfi_atmel_unlock;
 273        mtd->flags |= MTD_POWERUP_LOCK;
 274}
 275
 276static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 277{
 278        struct map_info *map = mtd->priv;
 279        struct cfi_private *cfi = map->fldrv_priv;
 280
 281        /*
 282         * These flashes report two separate eraseblock regions based on the
 283         * sector_erase-size and block_erase-size, although they both operate on the
 284         * same memory. This is not allowed according to CFI, so we just pick the
 285         * sector_erase-size.
 286         */
 287        cfi->cfiq->NumEraseRegions = 1;
 288}
 289
 290static void fixup_sst39vf(struct mtd_info *mtd)
 291{
 292        struct map_info *map = mtd->priv;
 293        struct cfi_private *cfi = map->fldrv_priv;
 294
 295        fixup_old_sst_eraseregion(mtd);
 296
 297        cfi->addr_unlock1 = 0x5555;
 298        cfi->addr_unlock2 = 0x2AAA;
 299}
 300
 301static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 302{
 303        struct map_info *map = mtd->priv;
 304        struct cfi_private *cfi = map->fldrv_priv;
 305
 306        fixup_old_sst_eraseregion(mtd);
 307
 308        cfi->addr_unlock1 = 0x555;
 309        cfi->addr_unlock2 = 0x2AA;
 310
 311        cfi->sector_erase_cmd = CMD(0x50);
 312}
 313
 314static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 315{
 316        struct map_info *map = mtd->priv;
 317        struct cfi_private *cfi = map->fldrv_priv;
 318
 319        fixup_sst39vf_rev_b(mtd);
 320
 321        /*
 322         * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 323         * it should report a size of 8KBytes (0x0020*256).
 324         */
 325        cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 326        pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
 327                mtd->name);
 328}
 329
 330static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 331{
 332        struct map_info *map = mtd->priv;
 333        struct cfi_private *cfi = map->fldrv_priv;
 334
 335        if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 336                cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 337                pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
 338                        mtd->name);
 339        }
 340}
 341
 342static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 343{
 344        struct map_info *map = mtd->priv;
 345        struct cfi_private *cfi = map->fldrv_priv;
 346
 347        if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 348                cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 349                pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
 350                        mtd->name);
 351        }
 352}
 353
 354static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 355{
 356        struct map_info *map = mtd->priv;
 357        struct cfi_private *cfi = map->fldrv_priv;
 358
 359        /*
 360         *  S29NS512P flash uses more than 8bits to report number of sectors,
 361         * which is not permitted by CFI.
 362         */
 363        cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 364        pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
 365                mtd->name);
 366}
 367
 368/* Used to fix CFI-Tables of chips without Extended Query Tables */
 369static struct cfi_fixup cfi_nopri_fixup_table[] = {
 370        { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 371        { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 372        { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 373        { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 374        { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 375        { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 376        { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 377        { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 378        { 0, 0, NULL }
 379};
 380
 381static struct cfi_fixup cfi_fixup_table[] = {
 382        { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 383#ifdef AMD_BOOTLOC_BUG
 384        { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 385        { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 386        { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 387#endif
 388        { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 389        { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 390        { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 391        { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 392        { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 393        { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 394        { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 395        { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 396        { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 397        { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 398        { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 399        { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 400        { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 401        { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 402        { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 403#if !FORCE_WORD_WRITE
 404        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 405#endif
 406        { 0, 0, NULL }
 407};
 408static struct cfi_fixup jedec_fixup_table[] = {
 409        { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 410        { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 411        { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 412        { 0, 0, NULL }
 413};
 414
 415static struct cfi_fixup fixup_table[] = {
 416        /* The CFI vendor ids and the JEDEC vendor IDs appear
 417         * to be common.  It is like the devices id's are as
 418         * well.  This table is to pick all cases where
 419         * we know that is the case.
 420         */
 421        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 422        { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 423        { 0, 0, NULL }
 424};
 425
 426
 427static void cfi_fixup_major_minor(struct cfi_private *cfi,
 428                                  struct cfi_pri_amdstd *extp)
 429{
 430        if (cfi->mfr == CFI_MFR_SAMSUNG) {
 431                if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 432                    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 433                        /*
 434                         * Samsung K8P2815UQB and K8D6x16UxM chips
 435                         * report major=0 / minor=0.
 436                         * K8D3x16UxC chips report major=3 / minor=3.
 437                         */
 438                        printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 439                               " Extended Query version to 1.%c\n",
 440                               extp->MinorVersion);
 441                        extp->MajorVersion = '1';
 442                }
 443        }
 444
 445        /*
 446         * SST 38VF640x chips report major=0xFF / minor=0xFF.
 447         */
 448        if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 449                extp->MajorVersion = '1';
 450                extp->MinorVersion = '0';
 451        }
 452}
 453
 454static int is_m29ew(struct cfi_private *cfi)
 455{
 456        if (cfi->mfr == CFI_MFR_INTEL &&
 457            ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 458             (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 459                return 1;
 460        return 0;
 461}
 462
 463/*
 464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
 466 * particular, it can occur when the sequence
 467 * Erase Confirm -> Suspend -> Program -> Resume
 468 * causes a lockup due to internal timing issues. The consequence is that the
 469 * erase cannot be resumed without inserting a dummy command after programming
 470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 471 * that writes an F0 command code before the RESUME command.
 472 */
 473static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 474                                          unsigned long adr)
 475{
 476        struct cfi_private *cfi = map->fldrv_priv;
 477        /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 478        if (is_m29ew(cfi))
 479                map_write(map, CMD(0xF0), adr);
 480}
 481
 482/*
 483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 484 *
 485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 487 * command is issued after an ERASE RESUME operation without waiting for a
 488 * minimum delay.  The result is that once the ERASE seems to be completed
 489 * (no bits are toggling), the contents of the Flash memory block on which
 490 * the erase was ongoing could be inconsistent with the expected values
 491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 492 * values), causing a consequent failure of the ERASE operation.
 493 * The occurrence of this issue could be high, especially when file system
 494 * operations on the Flash are intensive.  As a result, it is recommended
 495 * that a patch be applied.  Intensive file system operations can cause many
 496 * calls to the garbage routine to free Flash space (also by erasing physical
 497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 498 * commands can occur.  The problem disappears when a delay is inserted after
 499 * the RESUME command by using the udelay() function available in Linux.
 500 * The DELAY value must be tuned based on the customer's platform.
 501 * The maximum value that fixes the problem in all cases is 500us.
 502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 503 * in most cases.
 504 * We have chosen 500µs because this latency is acceptable.
 505 */
 506static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 507{
 508        /*
 509         * Resolving the Delay After Resume Issue see Micron TN-13-07
 510         * Worst case delay must be 500µs but 30-50µs should be ok as well
 511         */
 512        if (is_m29ew(cfi))
 513                cfi_udelay(500);
 514}
 515
 516struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 517{
 518        struct cfi_private *cfi = map->fldrv_priv;
 519        struct device_node __maybe_unused *np = map->device_node;
 520        struct mtd_info *mtd;
 521        int i;
 522
 523        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 524        if (!mtd)
 525                return NULL;
 526        mtd->priv = map;
 527        mtd->type = MTD_NORFLASH;
 528
 529        /* Fill in the default mtd operations */
 530        mtd->_erase   = cfi_amdstd_erase_varsize;
 531        mtd->_write   = cfi_amdstd_write_words;
 532        mtd->_read    = cfi_amdstd_read;
 533        mtd->_sync    = cfi_amdstd_sync;
 534        mtd->_suspend = cfi_amdstd_suspend;
 535        mtd->_resume  = cfi_amdstd_resume;
 536        mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 537        mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 538        mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 539        mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 540        mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 541        mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 542        mtd->flags   = MTD_CAP_NORFLASH;
 543        mtd->name    = map->name;
 544        mtd->writesize = 1;
 545        mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 546
 547        pr_debug("MTD %s(): write buffer size %d\n", __func__,
 548                        mtd->writebufsize);
 549
 550        mtd->_panic_write = cfi_amdstd_panic_write;
 551        mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 552
 553        if (cfi->cfi_mode==CFI_MODE_CFI){
 554                unsigned char bootloc;
 555                __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 556                struct cfi_pri_amdstd *extp;
 557
 558                extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 559                if (extp) {
 560                        /*
 561                         * It's a real CFI chip, not one for which the probe
 562                         * routine faked a CFI structure.
 563                         */
 564                        cfi_fixup_major_minor(cfi, extp);
 565
 566                        /*
 567                         * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 568                         * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 569                         *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 570                         *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 571                         *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 572                         */
 573                        if (extp->MajorVersion != '1' ||
 574                            (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 575                                printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 576                                       "version %c.%c (%#02x/%#02x).\n",
 577                                       extp->MajorVersion, extp->MinorVersion,
 578                                       extp->MajorVersion, extp->MinorVersion);
 579                                kfree(extp);
 580                                kfree(mtd);
 581                                return NULL;
 582                        }
 583
 584                        printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 585                               extp->MajorVersion, extp->MinorVersion);
 586
 587                        /* Install our own private info structure */
 588                        cfi->cmdset_priv = extp;
 589
 590                        /* Apply cfi device specific fixups */
 591                        cfi_fixup(mtd, cfi_fixup_table);
 592
 593#ifdef DEBUG_CFI_FEATURES
 594                        /* Tell the user about it in lots of lovely detail */
 595                        cfi_tell_features(extp);
 596#endif
 597
 598#ifdef CONFIG_OF
 599                        if (np && of_property_read_bool(
 600                                    np, "use-advanced-sector-protection")
 601                            && extp->BlkProtUnprot == 8) {
 602                                printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 603                                mtd->_lock = cfi_ppb_lock;
 604                                mtd->_unlock = cfi_ppb_unlock;
 605                                mtd->_is_locked = cfi_ppb_is_locked;
 606                        }
 607#endif
 608
 609                        bootloc = extp->TopBottom;
 610                        if ((bootloc < 2) || (bootloc > 5)) {
 611                                printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 612                                       "bank location (%d). Assuming bottom.\n",
 613                                       map->name, bootloc);
 614                                bootloc = 2;
 615                        }
 616
 617                        if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 618                                printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 619
 620                                for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 621                                        int j = (cfi->cfiq->NumEraseRegions-1)-i;
 622
 623                                        swap(cfi->cfiq->EraseRegionInfo[i],
 624                                             cfi->cfiq->EraseRegionInfo[j]);
 625                                }
 626                        }
 627                        /* Set the default CFI lock/unlock addresses */
 628                        cfi->addr_unlock1 = 0x555;
 629                        cfi->addr_unlock2 = 0x2aa;
 630                }
 631                cfi_fixup(mtd, cfi_nopri_fixup_table);
 632
 633                if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 634                        kfree(mtd);
 635                        return NULL;
 636                }
 637
 638        } /* CFI mode */
 639        else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 640                /* Apply jedec specific fixups */
 641                cfi_fixup(mtd, jedec_fixup_table);
 642        }
 643        /* Apply generic fixups */
 644        cfi_fixup(mtd, fixup_table);
 645
 646        for (i=0; i< cfi->numchips; i++) {
 647                cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 648                cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 649                cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 650                /*
 651                 * First calculate the timeout max according to timeout field
 652                 * of struct cfi_ident that probed from chip's CFI aera, if
 653                 * available. Specify a minimum of 2000us, in case the CFI data
 654                 * is wrong.
 655                 */
 656                if (cfi->cfiq->BufWriteTimeoutTyp &&
 657                    cfi->cfiq->BufWriteTimeoutMax)
 658                        cfi->chips[i].buffer_write_time_max =
 659                                1 << (cfi->cfiq->BufWriteTimeoutTyp +
 660                                      cfi->cfiq->BufWriteTimeoutMax);
 661                else
 662                        cfi->chips[i].buffer_write_time_max = 0;
 663
 664                cfi->chips[i].buffer_write_time_max =
 665                        max(cfi->chips[i].buffer_write_time_max, 2000);
 666
 667                cfi->chips[i].ref_point_counter = 0;
 668                init_waitqueue_head(&(cfi->chips[i].wq));
 669        }
 670
 671        map->fldrv = &cfi_amdstd_chipdrv;
 672
 673        return cfi_amdstd_setup(mtd);
 674}
 675struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 676struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 677EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 678EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 679EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 680
 681static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 682{
 683        struct map_info *map = mtd->priv;
 684        struct cfi_private *cfi = map->fldrv_priv;
 685        unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 686        unsigned long offset = 0;
 687        int i,j;
 688
 689        printk(KERN_NOTICE "number of %s chips: %d\n",
 690               (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 691        /* Select the correct geometry setup */
 692        mtd->size = devsize * cfi->numchips;
 693
 694        mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 695        mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
 696                                          sizeof(struct mtd_erase_region_info),
 697                                          GFP_KERNEL);
 698        if (!mtd->eraseregions)
 699                goto setup_err;
 700
 701        for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 702                unsigned long ernum, ersize;
 703                ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 704                ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 705
 706                if (mtd->erasesize < ersize) {
 707                        mtd->erasesize = ersize;
 708                }
 709                for (j=0; j<cfi->numchips; j++) {
 710                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 711                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 712                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 713                }
 714                offset += (ersize * ernum);
 715        }
 716        if (offset != devsize) {
 717                /* Argh */
 718                printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 719                goto setup_err;
 720        }
 721
 722        __module_get(THIS_MODULE);
 723        register_reboot_notifier(&mtd->reboot_notifier);
 724        return mtd;
 725
 726 setup_err:
 727        kfree(mtd->eraseregions);
 728        kfree(mtd);
 729        kfree(cfi->cmdset_priv);
 730        kfree(cfi->cfiq);
 731        return NULL;
 732}
 733
 734/*
 735 * Return true if the chip is ready.
 736 *
 737 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 738 * non-suspended sector) and is indicated by no toggle bits toggling.
 739 *
 740 * Note that anything more complicated than checking if no bits are toggling
 741 * (including checking DQ5 for an error status) is tricky to get working
 742 * correctly and is therefore not done  (particularly with interleaved chips
 743 * as each chip must be checked independently of the others).
 744 */
 745static int __xipram chip_ready(struct map_info *map, unsigned long addr)
 746{
 747        map_word d, t;
 748
 749        d = map_read(map, addr);
 750        t = map_read(map, addr);
 751
 752        return map_word_equal(map, d, t);
 753}
 754
 755/*
 756 * Return true if the chip is ready and has the correct value.
 757 *
 758 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 759 * non-suspended sector) and it is indicated by no bits toggling.
 760 *
 761 * Error are indicated by toggling bits or bits held with the wrong value,
 762 * or with bits toggling.
 763 *
 764 * Note that anything more complicated than checking if no bits are toggling
 765 * (including checking DQ5 for an error status) is tricky to get working
 766 * correctly and is therefore not done  (particularly with interleaved chips
 767 * as each chip must be checked independently of the others).
 768 *
 769 */
 770static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
 771{
 772        map_word oldd, curd;
 773
 774        oldd = map_read(map, addr);
 775        curd = map_read(map, addr);
 776
 777        return  map_word_equal(map, oldd, curd) &&
 778                map_word_equal(map, curd, expected);
 779}
 780
 781static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 782{
 783        DECLARE_WAITQUEUE(wait, current);
 784        struct cfi_private *cfi = map->fldrv_priv;
 785        unsigned long timeo;
 786        struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 787
 788 resettime:
 789        timeo = jiffies + HZ;
 790 retry:
 791        switch (chip->state) {
 792
 793        case FL_STATUS:
 794                for (;;) {
 795                        if (chip_ready(map, adr))
 796                                break;
 797
 798                        if (time_after(jiffies, timeo)) {
 799                                printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 800                                return -EIO;
 801                        }
 802                        mutex_unlock(&chip->mutex);
 803                        cfi_udelay(1);
 804                        mutex_lock(&chip->mutex);
 805                        /* Someone else might have been playing with it. */
 806                        goto retry;
 807                }
 808
 809        case FL_READY:
 810        case FL_CFI_QUERY:
 811        case FL_JEDEC_QUERY:
 812                return 0;
 813
 814        case FL_ERASING:
 815                if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 816                    !(mode == FL_READY || mode == FL_POINT ||
 817                    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 818                        goto sleep;
 819
 820                /* Do not allow suspend iff read/write to EB address */
 821                if ((adr & chip->in_progress_block_mask) ==
 822                    chip->in_progress_block_addr)
 823                        goto sleep;
 824
 825                /* Erase suspend */
 826                /* It's harmless to issue the Erase-Suspend and Erase-Resume
 827                 * commands when the erase algorithm isn't in progress. */
 828                map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 829                chip->oldstate = FL_ERASING;
 830                chip->state = FL_ERASE_SUSPENDING;
 831                chip->erase_suspended = 1;
 832                for (;;) {
 833                        if (chip_ready(map, adr))
 834                                break;
 835
 836                        if (time_after(jiffies, timeo)) {
 837                                /* Should have suspended the erase by now.
 838                                 * Send an Erase-Resume command as either
 839                                 * there was an error (so leave the erase
 840                                 * routine to recover from it) or we trying to
 841                                 * use the erase-in-progress sector. */
 842                                put_chip(map, chip, adr);
 843                                printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 844                                return -EIO;
 845                        }
 846
 847                        mutex_unlock(&chip->mutex);
 848                        cfi_udelay(1);
 849                        mutex_lock(&chip->mutex);
 850                        /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 851                           So we can just loop here. */
 852                }
 853                chip->state = FL_READY;
 854                return 0;
 855
 856        case FL_XIP_WHILE_ERASING:
 857                if (mode != FL_READY && mode != FL_POINT &&
 858                    (!cfip || !(cfip->EraseSuspend&2)))
 859                        goto sleep;
 860                chip->oldstate = chip->state;
 861                chip->state = FL_READY;
 862                return 0;
 863
 864        case FL_SHUTDOWN:
 865                /* The machine is rebooting */
 866                return -EIO;
 867
 868        case FL_POINT:
 869                /* Only if there's no operation suspended... */
 870                if (mode == FL_READY && chip->oldstate == FL_READY)
 871                        return 0;
 872
 873        default:
 874        sleep:
 875                set_current_state(TASK_UNINTERRUPTIBLE);
 876                add_wait_queue(&chip->wq, &wait);
 877                mutex_unlock(&chip->mutex);
 878                schedule();
 879                remove_wait_queue(&chip->wq, &wait);
 880                mutex_lock(&chip->mutex);
 881                goto resettime;
 882        }
 883}
 884
 885
 886static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 887{
 888        struct cfi_private *cfi = map->fldrv_priv;
 889
 890        switch(chip->oldstate) {
 891        case FL_ERASING:
 892                cfi_fixup_m29ew_erase_suspend(map,
 893                        chip->in_progress_block_addr);
 894                map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 895                cfi_fixup_m29ew_delay_after_resume(cfi);
 896                chip->oldstate = FL_READY;
 897                chip->state = FL_ERASING;
 898                break;
 899
 900        case FL_XIP_WHILE_ERASING:
 901                chip->state = chip->oldstate;
 902                chip->oldstate = FL_READY;
 903                break;
 904
 905        case FL_READY:
 906        case FL_STATUS:
 907                break;
 908        default:
 909                printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
 910        }
 911        wake_up(&chip->wq);
 912}
 913
 914#ifdef CONFIG_MTD_XIP
 915
 916/*
 917 * No interrupt what so ever can be serviced while the flash isn't in array
 918 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 919 * enclosing any code path where the flash is known not to be in array mode.
 920 * And within a XIP disabled code path, only functions marked with __xipram
 921 * may be called and nothing else (it's a good thing to inspect generated
 922 * assembly to make sure inline functions were actually inlined and that gcc
 923 * didn't emit calls to its own support functions). Also configuring MTD CFI
 924 * support to a single buswidth and a single interleave is also recommended.
 925 */
 926
 927static void xip_disable(struct map_info *map, struct flchip *chip,
 928                        unsigned long adr)
 929{
 930        /* TODO: chips with no XIP use should ignore and return */
 931        (void) map_read(map, adr); /* ensure mmu mapping is up to date */
 932        local_irq_disable();
 933}
 934
 935static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
 936                                unsigned long adr)
 937{
 938        struct cfi_private *cfi = map->fldrv_priv;
 939
 940        if (chip->state != FL_POINT && chip->state != FL_READY) {
 941                map_write(map, CMD(0xf0), adr);
 942                chip->state = FL_READY;
 943        }
 944        (void) map_read(map, adr);
 945        xip_iprefetch();
 946        local_irq_enable();
 947}
 948
 949/*
 950 * When a delay is required for the flash operation to complete, the
 951 * xip_udelay() function is polling for both the given timeout and pending
 952 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 953 * pending then the flash erase operation is suspended, array mode restored
 954 * and interrupts unmasked.  Task scheduling might also happen at that
 955 * point.  The CPU eventually returns from the interrupt or the call to
 956 * schedule() and the suspended flash operation is resumed for the remaining
 957 * of the delay period.
 958 *
 959 * Warning: this function _will_ fool interrupt latency tracing tools.
 960 */
 961
 962static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
 963                                unsigned long adr, int usec)
 964{
 965        struct cfi_private *cfi = map->fldrv_priv;
 966        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 967        map_word status, OK = CMD(0x80);
 968        unsigned long suspended, start = xip_currtime();
 969        flstate_t oldstate;
 970
 971        do {
 972                cpu_relax();
 973                if (xip_irqpending() && extp &&
 974                    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
 975                    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
 976                        /*
 977                         * Let's suspend the erase operation when supported.
 978                         * Note that we currently don't try to suspend
 979                         * interleaved chips if there is already another
 980                         * operation suspended (imagine what happens
 981                         * when one chip was already done with the current
 982                         * operation while another chip suspended it, then
 983                         * we resume the whole thing at once).  Yes, it
 984                         * can happen!
 985                         */
 986                        map_write(map, CMD(0xb0), adr);
 987                        usec -= xip_elapsed_since(start);
 988                        suspended = xip_currtime();
 989                        do {
 990                                if (xip_elapsed_since(suspended) > 100000) {
 991                                        /*
 992                                         * The chip doesn't want to suspend
 993                                         * after waiting for 100 msecs.
 994                                         * This is a critical error but there
 995                                         * is not much we can do here.
 996                                         */
 997                                        return;
 998                                }
 999                                status = map_read(map, adr);
1000                        } while (!map_word_andequal(map, status, OK, OK));
1001
1002                        /* Suspend succeeded */
1003                        oldstate = chip->state;
1004                        if (!map_word_bitsset(map, status, CMD(0x40)))
1005                                break;
1006                        chip->state = FL_XIP_WHILE_ERASING;
1007                        chip->erase_suspended = 1;
1008                        map_write(map, CMD(0xf0), adr);
1009                        (void) map_read(map, adr);
1010                        xip_iprefetch();
1011                        local_irq_enable();
1012                        mutex_unlock(&chip->mutex);
1013                        xip_iprefetch();
1014                        cond_resched();
1015
1016                        /*
1017                         * We're back.  However someone else might have
1018                         * decided to go write to the chip if we are in
1019                         * a suspended erase state.  If so let's wait
1020                         * until it's done.
1021                         */
1022                        mutex_lock(&chip->mutex);
1023                        while (chip->state != FL_XIP_WHILE_ERASING) {
1024                                DECLARE_WAITQUEUE(wait, current);
1025                                set_current_state(TASK_UNINTERRUPTIBLE);
1026                                add_wait_queue(&chip->wq, &wait);
1027                                mutex_unlock(&chip->mutex);
1028                                schedule();
1029                                remove_wait_queue(&chip->wq, &wait);
1030                                mutex_lock(&chip->mutex);
1031                        }
1032                        /* Disallow XIP again */
1033                        local_irq_disable();
1034
1035                        /* Correct Erase Suspend Hangups for M29EW */
1036                        cfi_fixup_m29ew_erase_suspend(map, adr);
1037                        /* Resume the write or erase operation */
1038                        map_write(map, cfi->sector_erase_cmd, adr);
1039                        chip->state = oldstate;
1040                        start = xip_currtime();
1041                } else if (usec >= 1000000/HZ) {
1042                        /*
1043                         * Try to save on CPU power when waiting delay
1044                         * is at least a system timer tick period.
1045                         * No need to be extremely accurate here.
1046                         */
1047                        xip_cpu_idle();
1048                }
1049                status = map_read(map, adr);
1050        } while (!map_word_andequal(map, status, OK, OK)
1051                 && xip_elapsed_since(start) < usec);
1052}
1053
1054#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1055
1056/*
1057 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1058 * the flash is actively programming or erasing since we have to poll for
1059 * the operation to complete anyway.  We can't do that in a generic way with
1060 * a XIP setup so do it before the actual flash operation in this case
1061 * and stub it out from INVALIDATE_CACHE_UDELAY.
1062 */
1063#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1064        INVALIDATE_CACHED_RANGE(map, from, size)
1065
1066#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1067        UDELAY(map, chip, adr, usec)
1068
1069/*
1070 * Extra notes:
1071 *
1072 * Activating this XIP support changes the way the code works a bit.  For
1073 * example the code to suspend the current process when concurrent access
1074 * happens is never executed because xip_udelay() will always return with the
1075 * same chip state as it was entered with.  This is why there is no care for
1076 * the presence of add_wait_queue() or schedule() calls from within a couple
1077 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1078 * The queueing and scheduling are always happening within xip_udelay().
1079 *
1080 * Similarly, get_chip() and put_chip() just happen to always be executed
1081 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1082 * is in array mode, therefore never executing many cases therein and not
1083 * causing any problem with XIP.
1084 */
1085
1086#else
1087
1088#define xip_disable(map, chip, adr)
1089#define xip_enable(map, chip, adr)
1090#define XIP_INVAL_CACHED_RANGE(x...)
1091
1092#define UDELAY(map, chip, adr, usec)  \
1093do {  \
1094        mutex_unlock(&chip->mutex);  \
1095        cfi_udelay(usec);  \
1096        mutex_lock(&chip->mutex);  \
1097} while (0)
1098
1099#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1100do {  \
1101        mutex_unlock(&chip->mutex);  \
1102        INVALIDATE_CACHED_RANGE(map, adr, len);  \
1103        cfi_udelay(usec);  \
1104        mutex_lock(&chip->mutex);  \
1105} while (0)
1106
1107#endif
1108
1109static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1110{
1111        unsigned long cmd_addr;
1112        struct cfi_private *cfi = map->fldrv_priv;
1113        int ret;
1114
1115        adr += chip->start;
1116
1117        /* Ensure cmd read/writes are aligned. */
1118        cmd_addr = adr & ~(map_bankwidth(map)-1);
1119
1120        mutex_lock(&chip->mutex);
1121        ret = get_chip(map, chip, cmd_addr, FL_READY);
1122        if (ret) {
1123                mutex_unlock(&chip->mutex);
1124                return ret;
1125        }
1126
1127        if (chip->state != FL_POINT && chip->state != FL_READY) {
1128                map_write(map, CMD(0xf0), cmd_addr);
1129                chip->state = FL_READY;
1130        }
1131
1132        map_copy_from(map, buf, adr, len);
1133
1134        put_chip(map, chip, cmd_addr);
1135
1136        mutex_unlock(&chip->mutex);
1137        return 0;
1138}
1139
1140
1141static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1142{
1143        struct map_info *map = mtd->priv;
1144        struct cfi_private *cfi = map->fldrv_priv;
1145        unsigned long ofs;
1146        int chipnum;
1147        int ret = 0;
1148
1149        /* ofs: offset within the first chip that the first read should start */
1150        chipnum = (from >> cfi->chipshift);
1151        ofs = from - (chipnum <<  cfi->chipshift);
1152
1153        while (len) {
1154                unsigned long thislen;
1155
1156                if (chipnum >= cfi->numchips)
1157                        break;
1158
1159                if ((len + ofs -1) >> cfi->chipshift)
1160                        thislen = (1<<cfi->chipshift) - ofs;
1161                else
1162                        thislen = len;
1163
1164                ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1165                if (ret)
1166                        break;
1167
1168                *retlen += thislen;
1169                len -= thislen;
1170                buf += thislen;
1171
1172                ofs = 0;
1173                chipnum++;
1174        }
1175        return ret;
1176}
1177
1178typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1179                        loff_t adr, size_t len, u_char *buf, size_t grouplen);
1180
1181static inline void otp_enter(struct map_info *map, struct flchip *chip,
1182                             loff_t adr, size_t len)
1183{
1184        struct cfi_private *cfi = map->fldrv_priv;
1185
1186        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1187                         cfi->device_type, NULL);
1188        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1189                         cfi->device_type, NULL);
1190        cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1191                         cfi->device_type, NULL);
1192
1193        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1194}
1195
1196static inline void otp_exit(struct map_info *map, struct flchip *chip,
1197                            loff_t adr, size_t len)
1198{
1199        struct cfi_private *cfi = map->fldrv_priv;
1200
1201        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1202                         cfi->device_type, NULL);
1203        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1204                         cfi->device_type, NULL);
1205        cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1206                         cfi->device_type, NULL);
1207        cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1208                         cfi->device_type, NULL);
1209
1210        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1211}
1212
1213static inline int do_read_secsi_onechip(struct map_info *map,
1214                                        struct flchip *chip, loff_t adr,
1215                                        size_t len, u_char *buf,
1216                                        size_t grouplen)
1217{
1218        DECLARE_WAITQUEUE(wait, current);
1219        unsigned long timeo = jiffies + HZ;
1220
1221 retry:
1222        mutex_lock(&chip->mutex);
1223
1224        if (chip->state != FL_READY){
1225                set_current_state(TASK_UNINTERRUPTIBLE);
1226                add_wait_queue(&chip->wq, &wait);
1227
1228                mutex_unlock(&chip->mutex);
1229
1230                schedule();
1231                remove_wait_queue(&chip->wq, &wait);
1232                timeo = jiffies + HZ;
1233
1234                goto retry;
1235        }
1236
1237        adr += chip->start;
1238
1239        chip->state = FL_READY;
1240
1241        otp_enter(map, chip, adr, len);
1242        map_copy_from(map, buf, adr, len);
1243        otp_exit(map, chip, adr, len);
1244
1245        wake_up(&chip->wq);
1246        mutex_unlock(&chip->mutex);
1247
1248        return 0;
1249}
1250
1251static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1252{
1253        struct map_info *map = mtd->priv;
1254        struct cfi_private *cfi = map->fldrv_priv;
1255        unsigned long ofs;
1256        int chipnum;
1257        int ret = 0;
1258
1259        /* ofs: offset within the first chip that the first read should start */
1260        /* 8 secsi bytes per chip */
1261        chipnum=from>>3;
1262        ofs=from & 7;
1263
1264        while (len) {
1265                unsigned long thislen;
1266
1267                if (chipnum >= cfi->numchips)
1268                        break;
1269
1270                if ((len + ofs -1) >> 3)
1271                        thislen = (1<<3) - ofs;
1272                else
1273                        thislen = len;
1274
1275                ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1276                                            thislen, buf, 0);
1277                if (ret)
1278                        break;
1279
1280                *retlen += thislen;
1281                len -= thislen;
1282                buf += thislen;
1283
1284                ofs = 0;
1285                chipnum++;
1286        }
1287        return ret;
1288}
1289
1290static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1291                                     unsigned long adr, map_word datum,
1292                                     int mode);
1293
1294static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1295                        size_t len, u_char *buf, size_t grouplen)
1296{
1297        int ret;
1298        while (len) {
1299                unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1300                int gap = adr - bus_ofs;
1301                int n = min_t(int, len, map_bankwidth(map) - gap);
1302                map_word datum = map_word_ff(map);
1303
1304                if (n != map_bankwidth(map)) {
1305                        /* partial write of a word, load old contents */
1306                        otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1307                        datum = map_read(map, bus_ofs);
1308                        otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1309                }
1310
1311                datum = map_word_load_partial(map, datum, buf, gap, n);
1312                ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1313                if (ret)
1314                        return ret;
1315
1316                adr += n;
1317                buf += n;
1318                len -= n;
1319        }
1320
1321        return 0;
1322}
1323
1324static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1325                       size_t len, u_char *buf, size_t grouplen)
1326{
1327        struct cfi_private *cfi = map->fldrv_priv;
1328        uint8_t lockreg;
1329        unsigned long timeo;
1330        int ret;
1331
1332        /* make sure area matches group boundaries */
1333        if ((adr != 0) || (len != grouplen))
1334                return -EINVAL;
1335
1336        mutex_lock(&chip->mutex);
1337        ret = get_chip(map, chip, chip->start, FL_LOCKING);
1338        if (ret) {
1339                mutex_unlock(&chip->mutex);
1340                return ret;
1341        }
1342        chip->state = FL_LOCKING;
1343
1344        /* Enter lock register command */
1345        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1346                         cfi->device_type, NULL);
1347        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1348                         cfi->device_type, NULL);
1349        cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1350                         cfi->device_type, NULL);
1351
1352        /* read lock register */
1353        lockreg = cfi_read_query(map, 0);
1354
1355        /* set bit 0 to protect extended memory block */
1356        lockreg &= ~0x01;
1357
1358        /* set bit 0 to protect extended memory block */
1359        /* write lock register */
1360        map_write(map, CMD(0xA0), chip->start);
1361        map_write(map, CMD(lockreg), chip->start);
1362
1363        /* wait for chip to become ready */
1364        timeo = jiffies + msecs_to_jiffies(2);
1365        for (;;) {
1366                if (chip_ready(map, adr))
1367                        break;
1368
1369                if (time_after(jiffies, timeo)) {
1370                        pr_err("Waiting for chip to be ready timed out.\n");
1371                        ret = -EIO;
1372                        break;
1373                }
1374                UDELAY(map, chip, 0, 1);
1375        }
1376
1377        /* exit protection commands */
1378        map_write(map, CMD(0x90), chip->start);
1379        map_write(map, CMD(0x00), chip->start);
1380
1381        chip->state = FL_READY;
1382        put_chip(map, chip, chip->start);
1383        mutex_unlock(&chip->mutex);
1384
1385        return ret;
1386}
1387
1388static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1389                               size_t *retlen, u_char *buf,
1390                               otp_op_t action, int user_regs)
1391{
1392        struct map_info *map = mtd->priv;
1393        struct cfi_private *cfi = map->fldrv_priv;
1394        int ofs_factor = cfi->interleave * cfi->device_type;
1395        unsigned long base;
1396        int chipnum;
1397        struct flchip *chip;
1398        uint8_t otp, lockreg;
1399        int ret;
1400
1401        size_t user_size, factory_size, otpsize;
1402        loff_t user_offset, factory_offset, otpoffset;
1403        int user_locked = 0, otplocked;
1404
1405        *retlen = 0;
1406
1407        for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1408                chip = &cfi->chips[chipnum];
1409                factory_size = 0;
1410                user_size = 0;
1411
1412                /* Micron M29EW family */
1413                if (is_m29ew(cfi)) {
1414                        base = chip->start;
1415
1416                        /* check whether secsi area is factory locked
1417                           or user lockable */
1418                        mutex_lock(&chip->mutex);
1419                        ret = get_chip(map, chip, base, FL_CFI_QUERY);
1420                        if (ret) {
1421                                mutex_unlock(&chip->mutex);
1422                                return ret;
1423                        }
1424                        cfi_qry_mode_on(base, map, cfi);
1425                        otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1426                        cfi_qry_mode_off(base, map, cfi);
1427                        put_chip(map, chip, base);
1428                        mutex_unlock(&chip->mutex);
1429
1430                        if (otp & 0x80) {
1431                                /* factory locked */
1432                                factory_offset = 0;
1433                                factory_size = 0x100;
1434                        } else {
1435                                /* customer lockable */
1436                                user_offset = 0;
1437                                user_size = 0x100;
1438
1439                                mutex_lock(&chip->mutex);
1440                                ret = get_chip(map, chip, base, FL_LOCKING);
1441                                if (ret) {
1442                                        mutex_unlock(&chip->mutex);
1443                                        return ret;
1444                                }
1445
1446                                /* Enter lock register command */
1447                                cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1448                                                 chip->start, map, cfi,
1449                                                 cfi->device_type, NULL);
1450                                cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1451                                                 chip->start, map, cfi,
1452                                                 cfi->device_type, NULL);
1453                                cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1454                                                 chip->start, map, cfi,
1455                                                 cfi->device_type, NULL);
1456                                /* read lock register */
1457                                lockreg = cfi_read_query(map, 0);
1458                                /* exit protection commands */
1459                                map_write(map, CMD(0x90), chip->start);
1460                                map_write(map, CMD(0x00), chip->start);
1461                                put_chip(map, chip, chip->start);
1462                                mutex_unlock(&chip->mutex);
1463
1464                                user_locked = ((lockreg & 0x01) == 0x00);
1465                        }
1466                }
1467
1468                otpsize = user_regs ? user_size : factory_size;
1469                if (!otpsize)
1470                        continue;
1471                otpoffset = user_regs ? user_offset : factory_offset;
1472                otplocked = user_regs ? user_locked : 1;
1473
1474                if (!action) {
1475                        /* return otpinfo */
1476                        struct otp_info *otpinfo;
1477                        len -= sizeof(*otpinfo);
1478                        if (len <= 0)
1479                                return -ENOSPC;
1480                        otpinfo = (struct otp_info *)buf;
1481                        otpinfo->start = from;
1482                        otpinfo->length = otpsize;
1483                        otpinfo->locked = otplocked;
1484                        buf += sizeof(*otpinfo);
1485                        *retlen += sizeof(*otpinfo);
1486                        from += otpsize;
1487                } else if ((from < otpsize) && (len > 0)) {
1488                        size_t size;
1489                        size = (len < otpsize - from) ? len : otpsize - from;
1490                        ret = action(map, chip, otpoffset + from, size, buf,
1491                                     otpsize);
1492                        if (ret < 0)
1493                                return ret;
1494
1495                        buf += size;
1496                        len -= size;
1497                        *retlen += size;
1498                        from = 0;
1499                } else {
1500                        from -= otpsize;
1501                }
1502        }
1503        return 0;
1504}
1505
1506static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1507                                         size_t *retlen, struct otp_info *buf)
1508{
1509        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1510                                   NULL, 0);
1511}
1512
1513static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1514                                         size_t *retlen, struct otp_info *buf)
1515{
1516        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1517                                   NULL, 1);
1518}
1519
1520static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1521                                         size_t len, size_t *retlen,
1522                                         u_char *buf)
1523{
1524        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1525                                   buf, do_read_secsi_onechip, 0);
1526}
1527
1528static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1529                                         size_t len, size_t *retlen,
1530                                         u_char *buf)
1531{
1532        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1533                                   buf, do_read_secsi_onechip, 1);
1534}
1535
1536static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1537                                          size_t len, size_t *retlen,
1538                                          u_char *buf)
1539{
1540        return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1541                                   do_otp_write, 1);
1542}
1543
1544static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1545                                         size_t len)
1546{
1547        size_t retlen;
1548        return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1549                                   do_otp_lock, 1);
1550}
1551
1552static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1553                                     unsigned long adr, map_word datum,
1554                                     int mode)
1555{
1556        struct cfi_private *cfi = map->fldrv_priv;
1557        unsigned long timeo = jiffies + HZ;
1558        /*
1559         * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1560         * have a max write time of a few hundreds usec). However, we should
1561         * use the maximum timeout value given by the chip at probe time
1562         * instead.  Unfortunately, struct flchip does have a field for
1563         * maximum timeout, only for typical which can be far too short
1564         * depending of the conditions.  The ' + 1' is to avoid having a
1565         * timeout of 0 jiffies if HZ is smaller than 1000.
1566         */
1567        unsigned long uWriteTimeout = (HZ / 1000) + 1;
1568        int ret = 0;
1569        map_word oldd;
1570        int retry_cnt = 0;
1571
1572        adr += chip->start;
1573
1574        mutex_lock(&chip->mutex);
1575        ret = get_chip(map, chip, adr, mode);
1576        if (ret) {
1577                mutex_unlock(&chip->mutex);
1578                return ret;
1579        }
1580
1581        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1582                 __func__, adr, datum.x[0]);
1583
1584        if (mode == FL_OTP_WRITE)
1585                otp_enter(map, chip, adr, map_bankwidth(map));
1586
1587        /*
1588         * Check for a NOP for the case when the datum to write is already
1589         * present - it saves time and works around buggy chips that corrupt
1590         * data at other locations when 0xff is written to a location that
1591         * already contains 0xff.
1592         */
1593        oldd = map_read(map, adr);
1594        if (map_word_equal(map, oldd, datum)) {
1595                pr_debug("MTD %s(): NOP\n",
1596                       __func__);
1597                goto op_done;
1598        }
1599
1600        XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1601        ENABLE_VPP(map);
1602        xip_disable(map, chip, adr);
1603
1604 retry:
1605        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1607        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1608        map_write(map, datum, adr);
1609        chip->state = mode;
1610
1611        INVALIDATE_CACHE_UDELAY(map, chip,
1612                                adr, map_bankwidth(map),
1613                                chip->word_write_time);
1614
1615        /* See comment above for timeout value. */
1616        timeo = jiffies + uWriteTimeout;
1617        for (;;) {
1618                if (chip->state != mode) {
1619                        /* Someone's suspended the write. Sleep */
1620                        DECLARE_WAITQUEUE(wait, current);
1621
1622                        set_current_state(TASK_UNINTERRUPTIBLE);
1623                        add_wait_queue(&chip->wq, &wait);
1624                        mutex_unlock(&chip->mutex);
1625                        schedule();
1626                        remove_wait_queue(&chip->wq, &wait);
1627                        timeo = jiffies + (HZ / 2); /* FIXME */
1628                        mutex_lock(&chip->mutex);
1629                        continue;
1630                }
1631
1632                if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1633                        xip_enable(map, chip, adr);
1634                        printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1635                        xip_disable(map, chip, adr);
1636                        break;
1637                }
1638
1639                if (chip_ready(map, adr))
1640                        break;
1641
1642                /* Latency issues. Drop the lock, wait a while and retry */
1643                UDELAY(map, chip, adr, 1);
1644        }
1645        /* Did we succeed? */
1646        if (!chip_good(map, adr, datum)) {
1647                /* reset on all failures. */
1648                map_write(map, CMD(0xF0), chip->start);
1649                /* FIXME - should have reset delay before continuing */
1650
1651                if (++retry_cnt <= MAX_RETRIES)
1652                        goto retry;
1653
1654                ret = -EIO;
1655        }
1656        xip_enable(map, chip, adr);
1657 op_done:
1658        if (mode == FL_OTP_WRITE)
1659                otp_exit(map, chip, adr, map_bankwidth(map));
1660        chip->state = FL_READY;
1661        DISABLE_VPP(map);
1662        put_chip(map, chip, adr);
1663        mutex_unlock(&chip->mutex);
1664
1665        return ret;
1666}
1667
1668
1669static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1670                                  size_t *retlen, const u_char *buf)
1671{
1672        struct map_info *map = mtd->priv;
1673        struct cfi_private *cfi = map->fldrv_priv;
1674        int ret = 0;
1675        int chipnum;
1676        unsigned long ofs, chipstart;
1677        DECLARE_WAITQUEUE(wait, current);
1678
1679        chipnum = to >> cfi->chipshift;
1680        ofs = to  - (chipnum << cfi->chipshift);
1681        chipstart = cfi->chips[chipnum].start;
1682
1683        /* If it's not bus-aligned, do the first byte write */
1684        if (ofs & (map_bankwidth(map)-1)) {
1685                unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1686                int i = ofs - bus_ofs;
1687                int n = 0;
1688                map_word tmp_buf;
1689
1690 retry:
1691                mutex_lock(&cfi->chips[chipnum].mutex);
1692
1693                if (cfi->chips[chipnum].state != FL_READY) {
1694                        set_current_state(TASK_UNINTERRUPTIBLE);
1695                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1696
1697                        mutex_unlock(&cfi->chips[chipnum].mutex);
1698
1699                        schedule();
1700                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1701                        goto retry;
1702                }
1703
1704                /* Load 'tmp_buf' with old contents of flash */
1705                tmp_buf = map_read(map, bus_ofs+chipstart);
1706
1707                mutex_unlock(&cfi->chips[chipnum].mutex);
1708
1709                /* Number of bytes to copy from buffer */
1710                n = min_t(int, len, map_bankwidth(map)-i);
1711
1712                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1713
1714                ret = do_write_oneword(map, &cfi->chips[chipnum],
1715                                       bus_ofs, tmp_buf, FL_WRITING);
1716                if (ret)
1717                        return ret;
1718
1719                ofs += n;
1720                buf += n;
1721                (*retlen) += n;
1722                len -= n;
1723
1724                if (ofs >> cfi->chipshift) {
1725                        chipnum ++;
1726                        ofs = 0;
1727                        if (chipnum == cfi->numchips)
1728                                return 0;
1729                }
1730        }
1731
1732        /* We are now aligned, write as much as possible */
1733        while(len >= map_bankwidth(map)) {
1734                map_word datum;
1735
1736                datum = map_word_load(map, buf);
1737
1738                ret = do_write_oneword(map, &cfi->chips[chipnum],
1739                                       ofs, datum, FL_WRITING);
1740                if (ret)
1741                        return ret;
1742
1743                ofs += map_bankwidth(map);
1744                buf += map_bankwidth(map);
1745                (*retlen) += map_bankwidth(map);
1746                len -= map_bankwidth(map);
1747
1748                if (ofs >> cfi->chipshift) {
1749                        chipnum ++;
1750                        ofs = 0;
1751                        if (chipnum == cfi->numchips)
1752                                return 0;
1753                        chipstart = cfi->chips[chipnum].start;
1754                }
1755        }
1756
1757        /* Write the trailing bytes if any */
1758        if (len & (map_bankwidth(map)-1)) {
1759                map_word tmp_buf;
1760
1761 retry1:
1762                mutex_lock(&cfi->chips[chipnum].mutex);
1763
1764                if (cfi->chips[chipnum].state != FL_READY) {
1765                        set_current_state(TASK_UNINTERRUPTIBLE);
1766                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1767
1768                        mutex_unlock(&cfi->chips[chipnum].mutex);
1769
1770                        schedule();
1771                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1772                        goto retry1;
1773                }
1774
1775                tmp_buf = map_read(map, ofs + chipstart);
1776
1777                mutex_unlock(&cfi->chips[chipnum].mutex);
1778
1779                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1780
1781                ret = do_write_oneword(map, &cfi->chips[chipnum],
1782                                       ofs, tmp_buf, FL_WRITING);
1783                if (ret)
1784                        return ret;
1785
1786                (*retlen) += len;
1787        }
1788
1789        return 0;
1790}
1791
1792
1793/*
1794 * FIXME: interleaved mode not tested, and probably not supported!
1795 */
1796static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1797                                    unsigned long adr, const u_char *buf,
1798                                    int len)
1799{
1800        struct cfi_private *cfi = map->fldrv_priv;
1801        unsigned long timeo = jiffies + HZ;
1802        /*
1803         * Timeout is calculated according to CFI data, if available.
1804         * See more comments in cfi_cmdset_0002().
1805         */
1806        unsigned long uWriteTimeout =
1807                                usecs_to_jiffies(chip->buffer_write_time_max);
1808        int ret = -EIO;
1809        unsigned long cmd_adr;
1810        int z, words;
1811        map_word datum;
1812
1813        adr += chip->start;
1814        cmd_adr = adr;
1815
1816        mutex_lock(&chip->mutex);
1817        ret = get_chip(map, chip, adr, FL_WRITING);
1818        if (ret) {
1819                mutex_unlock(&chip->mutex);
1820                return ret;
1821        }
1822
1823        datum = map_word_load(map, buf);
1824
1825        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1826                 __func__, adr, datum.x[0]);
1827
1828        XIP_INVAL_CACHED_RANGE(map, adr, len);
1829        ENABLE_VPP(map);
1830        xip_disable(map, chip, cmd_adr);
1831
1832        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1833        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1834
1835        /* Write Buffer Load */
1836        map_write(map, CMD(0x25), cmd_adr);
1837
1838        chip->state = FL_WRITING_TO_BUFFER;
1839
1840        /* Write length of data to come */
1841        words = len / map_bankwidth(map);
1842        map_write(map, CMD(words - 1), cmd_adr);
1843        /* Write data */
1844        z = 0;
1845        while(z < words * map_bankwidth(map)) {
1846                datum = map_word_load(map, buf);
1847                map_write(map, datum, adr + z);
1848
1849                z += map_bankwidth(map);
1850                buf += map_bankwidth(map);
1851        }
1852        z -= map_bankwidth(map);
1853
1854        adr += z;
1855
1856        /* Write Buffer Program Confirm: GO GO GO */
1857        map_write(map, CMD(0x29), cmd_adr);
1858        chip->state = FL_WRITING;
1859
1860        INVALIDATE_CACHE_UDELAY(map, chip,
1861                                adr, map_bankwidth(map),
1862                                chip->word_write_time);
1863
1864        timeo = jiffies + uWriteTimeout;
1865
1866        for (;;) {
1867                if (chip->state != FL_WRITING) {
1868                        /* Someone's suspended the write. Sleep */
1869                        DECLARE_WAITQUEUE(wait, current);
1870
1871                        set_current_state(TASK_UNINTERRUPTIBLE);
1872                        add_wait_queue(&chip->wq, &wait);
1873                        mutex_unlock(&chip->mutex);
1874                        schedule();
1875                        remove_wait_queue(&chip->wq, &wait);
1876                        timeo = jiffies + (HZ / 2); /* FIXME */
1877                        mutex_lock(&chip->mutex);
1878                        continue;
1879                }
1880
1881                if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1882                        break;
1883
1884                if (chip_good(map, adr, datum)) {
1885                        xip_enable(map, chip, adr);
1886                        goto op_done;
1887                }
1888
1889                /* Latency issues. Drop the lock, wait a while and retry */
1890                UDELAY(map, chip, adr, 1);
1891        }
1892
1893        /*
1894         * Recovery from write-buffer programming failures requires
1895         * the write-to-buffer-reset sequence.  Since the last part
1896         * of the sequence also works as a normal reset, we can run
1897         * the same commands regardless of why we are here.
1898         * See e.g.
1899         * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1900         */
1901        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1902                         cfi->device_type, NULL);
1903        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1904                         cfi->device_type, NULL);
1905        cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1906                         cfi->device_type, NULL);
1907        xip_enable(map, chip, adr);
1908        /* FIXME - should have reset delay before continuing */
1909
1910        printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1911               __func__, adr);
1912
1913        ret = -EIO;
1914 op_done:
1915        chip->state = FL_READY;
1916        DISABLE_VPP(map);
1917        put_chip(map, chip, adr);
1918        mutex_unlock(&chip->mutex);
1919
1920        return ret;
1921}
1922
1923
1924static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1925                                    size_t *retlen, const u_char *buf)
1926{
1927        struct map_info *map = mtd->priv;
1928        struct cfi_private *cfi = map->fldrv_priv;
1929        int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1930        int ret = 0;
1931        int chipnum;
1932        unsigned long ofs;
1933
1934        chipnum = to >> cfi->chipshift;
1935        ofs = to  - (chipnum << cfi->chipshift);
1936
1937        /* If it's not bus-aligned, do the first word write */
1938        if (ofs & (map_bankwidth(map)-1)) {
1939                size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1940                if (local_len > len)
1941                        local_len = len;
1942                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1943                                             local_len, retlen, buf);
1944                if (ret)
1945                        return ret;
1946                ofs += local_len;
1947                buf += local_len;
1948                len -= local_len;
1949
1950                if (ofs >> cfi->chipshift) {
1951                        chipnum ++;
1952                        ofs = 0;
1953                        if (chipnum == cfi->numchips)
1954                                return 0;
1955                }
1956        }
1957
1958        /* Write buffer is worth it only if more than one word to write... */
1959        while (len >= map_bankwidth(map) * 2) {
1960                /* We must not cross write block boundaries */
1961                int size = wbufsize - (ofs & (wbufsize-1));
1962
1963                if (size > len)
1964                        size = len;
1965                if (size % map_bankwidth(map))
1966                        size -= size % map_bankwidth(map);
1967
1968                ret = do_write_buffer(map, &cfi->chips[chipnum],
1969                                      ofs, buf, size);
1970                if (ret)
1971                        return ret;
1972
1973                ofs += size;
1974                buf += size;
1975                (*retlen) += size;
1976                len -= size;
1977
1978                if (ofs >> cfi->chipshift) {
1979                        chipnum ++;
1980                        ofs = 0;
1981                        if (chipnum == cfi->numchips)
1982                                return 0;
1983                }
1984        }
1985
1986        if (len) {
1987                size_t retlen_dregs = 0;
1988
1989                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1990                                             len, &retlen_dregs, buf);
1991
1992                *retlen += retlen_dregs;
1993                return ret;
1994        }
1995
1996        return 0;
1997}
1998
1999/*
2000 * Wait for the flash chip to become ready to write data
2001 *
2002 * This is only called during the panic_write() path. When panic_write()
2003 * is called, the kernel is in the process of a panic, and will soon be
2004 * dead. Therefore we don't take any locks, and attempt to get access
2005 * to the chip as soon as possible.
2006 */
2007static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2008                                 unsigned long adr)
2009{
2010        struct cfi_private *cfi = map->fldrv_priv;
2011        int retries = 10;
2012        int i;
2013
2014        /*
2015         * If the driver thinks the chip is idle, and no toggle bits
2016         * are changing, then the chip is actually idle for sure.
2017         */
2018        if (chip->state == FL_READY && chip_ready(map, adr))
2019                return 0;
2020
2021        /*
2022         * Try several times to reset the chip and then wait for it
2023         * to become idle. The upper limit of a few milliseconds of
2024         * delay isn't a big problem: the kernel is dying anyway. It
2025         * is more important to save the messages.
2026         */
2027        while (retries > 0) {
2028                const unsigned long timeo = (HZ / 1000) + 1;
2029
2030                /* send the reset command */
2031                map_write(map, CMD(0xF0), chip->start);
2032
2033                /* wait for the chip to become ready */
2034                for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2035                        if (chip_ready(map, adr))
2036                                return 0;
2037
2038                        udelay(1);
2039                }
2040
2041                retries--;
2042        }
2043
2044        /* the chip never became ready */
2045        return -EBUSY;
2046}
2047
2048/*
2049 * Write out one word of data to a single flash chip during a kernel panic
2050 *
2051 * This is only called during the panic_write() path. When panic_write()
2052 * is called, the kernel is in the process of a panic, and will soon be
2053 * dead. Therefore we don't take any locks, and attempt to get access
2054 * to the chip as soon as possible.
2055 *
2056 * The implementation of this routine is intentionally similar to
2057 * do_write_oneword(), in order to ease code maintenance.
2058 */
2059static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2060                                  unsigned long adr, map_word datum)
2061{
2062        const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2063        struct cfi_private *cfi = map->fldrv_priv;
2064        int retry_cnt = 0;
2065        map_word oldd;
2066        int ret = 0;
2067        int i;
2068
2069        adr += chip->start;
2070
2071        ret = cfi_amdstd_panic_wait(map, chip, adr);
2072        if (ret)
2073                return ret;
2074
2075        pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2076                        __func__, adr, datum.x[0]);
2077
2078        /*
2079         * Check for a NOP for the case when the datum to write is already
2080         * present - it saves time and works around buggy chips that corrupt
2081         * data at other locations when 0xff is written to a location that
2082         * already contains 0xff.
2083         */
2084        oldd = map_read(map, adr);
2085        if (map_word_equal(map, oldd, datum)) {
2086                pr_debug("MTD %s(): NOP\n", __func__);
2087                goto op_done;
2088        }
2089
2090        ENABLE_VPP(map);
2091
2092retry:
2093        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2094        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2095        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2096        map_write(map, datum, adr);
2097
2098        for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2099                if (chip_ready(map, adr))
2100                        break;
2101
2102                udelay(1);
2103        }
2104
2105        if (!chip_good(map, adr, datum)) {
2106                /* reset on all failures. */
2107                map_write(map, CMD(0xF0), chip->start);
2108                /* FIXME - should have reset delay before continuing */
2109
2110                if (++retry_cnt <= MAX_RETRIES)
2111                        goto retry;
2112
2113                ret = -EIO;
2114        }
2115
2116op_done:
2117        DISABLE_VPP(map);
2118        return ret;
2119}
2120
2121/*
2122 * Write out some data during a kernel panic
2123 *
2124 * This is used by the mtdoops driver to save the dying messages from a
2125 * kernel which has panic'd.
2126 *
2127 * This routine ignores all of the locking used throughout the rest of the
2128 * driver, in order to ensure that the data gets written out no matter what
2129 * state this driver (and the flash chip itself) was in when the kernel crashed.
2130 *
2131 * The implementation of this routine is intentionally similar to
2132 * cfi_amdstd_write_words(), in order to ease code maintenance.
2133 */
2134static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2135                                  size_t *retlen, const u_char *buf)
2136{
2137        struct map_info *map = mtd->priv;
2138        struct cfi_private *cfi = map->fldrv_priv;
2139        unsigned long ofs, chipstart;
2140        int ret = 0;
2141        int chipnum;
2142
2143        chipnum = to >> cfi->chipshift;
2144        ofs = to - (chipnum << cfi->chipshift);
2145        chipstart = cfi->chips[chipnum].start;
2146
2147        /* If it's not bus aligned, do the first byte write */
2148        if (ofs & (map_bankwidth(map) - 1)) {
2149                unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2150                int i = ofs - bus_ofs;
2151                int n = 0;
2152                map_word tmp_buf;
2153
2154                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2155                if (ret)
2156                        return ret;
2157
2158                /* Load 'tmp_buf' with old contents of flash */
2159                tmp_buf = map_read(map, bus_ofs + chipstart);
2160
2161                /* Number of bytes to copy from buffer */
2162                n = min_t(int, len, map_bankwidth(map) - i);
2163
2164                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2165
2166                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2167                                             bus_ofs, tmp_buf);
2168                if (ret)
2169                        return ret;
2170
2171                ofs += n;
2172                buf += n;
2173                (*retlen) += n;
2174                len -= n;
2175
2176                if (ofs >> cfi->chipshift) {
2177                        chipnum++;
2178                        ofs = 0;
2179                        if (chipnum == cfi->numchips)
2180                                return 0;
2181                }
2182        }
2183
2184        /* We are now aligned, write as much as possible */
2185        while (len >= map_bankwidth(map)) {
2186                map_word datum;
2187
2188                datum = map_word_load(map, buf);
2189
2190                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2191                                             ofs, datum);
2192                if (ret)
2193                        return ret;
2194
2195                ofs += map_bankwidth(map);
2196                buf += map_bankwidth(map);
2197                (*retlen) += map_bankwidth(map);
2198                len -= map_bankwidth(map);
2199
2200                if (ofs >> cfi->chipshift) {
2201                        chipnum++;
2202                        ofs = 0;
2203                        if (chipnum == cfi->numchips)
2204                                return 0;
2205
2206                        chipstart = cfi->chips[chipnum].start;
2207                }
2208        }
2209
2210        /* Write the trailing bytes if any */
2211        if (len & (map_bankwidth(map) - 1)) {
2212                map_word tmp_buf;
2213
2214                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2215                if (ret)
2216                        return ret;
2217
2218                tmp_buf = map_read(map, ofs + chipstart);
2219
2220                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2221
2222                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2223                                             ofs, tmp_buf);
2224                if (ret)
2225                        return ret;
2226
2227                (*retlen) += len;
2228        }
2229
2230        return 0;
2231}
2232
2233
2234/*
2235 * Handle devices with one erase region, that only implement
2236 * the chip erase command.
2237 */
2238static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2239{
2240        struct cfi_private *cfi = map->fldrv_priv;
2241        unsigned long timeo = jiffies + HZ;
2242        unsigned long int adr;
2243        DECLARE_WAITQUEUE(wait, current);
2244        int ret = 0;
2245        int retry_cnt = 0;
2246
2247        adr = cfi->addr_unlock1;
2248
2249        mutex_lock(&chip->mutex);
2250        ret = get_chip(map, chip, adr, FL_WRITING);
2251        if (ret) {
2252                mutex_unlock(&chip->mutex);
2253                return ret;
2254        }
2255
2256        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2257               __func__, chip->start);
2258
2259        XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2260        ENABLE_VPP(map);
2261        xip_disable(map, chip, adr);
2262
2263 retry:
2264        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2266        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2267        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2269        cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2270
2271        chip->state = FL_ERASING;
2272        chip->erase_suspended = 0;
2273        chip->in_progress_block_addr = adr;
2274        chip->in_progress_block_mask = ~(map->size - 1);
2275
2276        INVALIDATE_CACHE_UDELAY(map, chip,
2277                                adr, map->size,
2278                                chip->erase_time*500);
2279
2280        timeo = jiffies + (HZ*20);
2281
2282        for (;;) {
2283                if (chip->state != FL_ERASING) {
2284                        /* Someone's suspended the erase. Sleep */
2285                        set_current_state(TASK_UNINTERRUPTIBLE);
2286                        add_wait_queue(&chip->wq, &wait);
2287                        mutex_unlock(&chip->mutex);
2288                        schedule();
2289                        remove_wait_queue(&chip->wq, &wait);
2290                        mutex_lock(&chip->mutex);
2291                        continue;
2292                }
2293                if (chip->erase_suspended) {
2294                        /* This erase was suspended and resumed.
2295                           Adjust the timeout */
2296                        timeo = jiffies + (HZ*20); /* FIXME */
2297                        chip->erase_suspended = 0;
2298                }
2299
2300                if (chip_good(map, adr, map_word_ff(map)))
2301                        break;
2302
2303                if (time_after(jiffies, timeo)) {
2304                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2305                               __func__);
2306                        ret = -EIO;
2307                        break;
2308                }
2309
2310                /* Latency issues. Drop the lock, wait a while and retry */
2311                UDELAY(map, chip, adr, 1000000/HZ);
2312        }
2313        /* Did we succeed? */
2314        if (ret) {
2315                /* reset on all failures. */
2316                map_write(map, CMD(0xF0), chip->start);
2317                /* FIXME - should have reset delay before continuing */
2318
2319                if (++retry_cnt <= MAX_RETRIES) {
2320                        ret = 0;
2321                        goto retry;
2322                }
2323        }
2324
2325        chip->state = FL_READY;
2326        xip_enable(map, chip, adr);
2327        DISABLE_VPP(map);
2328        put_chip(map, chip, adr);
2329        mutex_unlock(&chip->mutex);
2330
2331        return ret;
2332}
2333
2334
2335static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2336{
2337        struct cfi_private *cfi = map->fldrv_priv;
2338        unsigned long timeo = jiffies + HZ;
2339        DECLARE_WAITQUEUE(wait, current);
2340        int ret = 0;
2341        int retry_cnt = 0;
2342
2343        adr += chip->start;
2344
2345        mutex_lock(&chip->mutex);
2346        ret = get_chip(map, chip, adr, FL_ERASING);
2347        if (ret) {
2348                mutex_unlock(&chip->mutex);
2349                return ret;
2350        }
2351
2352        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2353                 __func__, adr);
2354
2355        XIP_INVAL_CACHED_RANGE(map, adr, len);
2356        ENABLE_VPP(map);
2357        xip_disable(map, chip, adr);
2358
2359 retry:
2360        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2361        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2362        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2363        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2364        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2365        map_write(map, cfi->sector_erase_cmd, adr);
2366
2367        chip->state = FL_ERASING;
2368        chip->erase_suspended = 0;
2369        chip->in_progress_block_addr = adr;
2370        chip->in_progress_block_mask = ~(len - 1);
2371
2372        INVALIDATE_CACHE_UDELAY(map, chip,
2373                                adr, len,
2374                                chip->erase_time*500);
2375
2376        timeo = jiffies + (HZ*20);
2377
2378        for (;;) {
2379                if (chip->state != FL_ERASING) {
2380                        /* Someone's suspended the erase. Sleep */
2381                        set_current_state(TASK_UNINTERRUPTIBLE);
2382                        add_wait_queue(&chip->wq, &wait);
2383                        mutex_unlock(&chip->mutex);
2384                        schedule();
2385                        remove_wait_queue(&chip->wq, &wait);
2386                        mutex_lock(&chip->mutex);
2387                        continue;
2388                }
2389                if (chip->erase_suspended) {
2390                        /* This erase was suspended and resumed.
2391                           Adjust the timeout */
2392                        timeo = jiffies + (HZ*20); /* FIXME */
2393                        chip->erase_suspended = 0;
2394                }
2395
2396                if (chip_good(map, adr, map_word_ff(map)))
2397                        break;
2398
2399                if (time_after(jiffies, timeo)) {
2400                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2401                               __func__);
2402                        ret = -EIO;
2403                        break;
2404                }
2405
2406                /* Latency issues. Drop the lock, wait a while and retry */
2407                UDELAY(map, chip, adr, 1000000/HZ);
2408        }
2409        /* Did we succeed? */
2410        if (ret) {
2411                /* reset on all failures. */
2412                map_write(map, CMD(0xF0), chip->start);
2413                /* FIXME - should have reset delay before continuing */
2414
2415                if (++retry_cnt <= MAX_RETRIES) {
2416                        ret = 0;
2417                        goto retry;
2418                }
2419        }
2420
2421        chip->state = FL_READY;
2422        xip_enable(map, chip, adr);
2423        DISABLE_VPP(map);
2424        put_chip(map, chip, adr);
2425        mutex_unlock(&chip->mutex);
2426        return ret;
2427}
2428
2429
2430static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2431{
2432        return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2433                                instr->len, NULL);
2434}
2435
2436
2437static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2438{
2439        struct map_info *map = mtd->priv;
2440        struct cfi_private *cfi = map->fldrv_priv;
2441
2442        if (instr->addr != 0)
2443                return -EINVAL;
2444
2445        if (instr->len != mtd->size)
2446                return -EINVAL;
2447
2448        return do_erase_chip(map, &cfi->chips[0]);
2449}
2450
2451static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2452                         unsigned long adr, int len, void *thunk)
2453{
2454        struct cfi_private *cfi = map->fldrv_priv;
2455        int ret;
2456
2457        mutex_lock(&chip->mutex);
2458        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2459        if (ret)
2460                goto out_unlock;
2461        chip->state = FL_LOCKING;
2462
2463        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2464
2465        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2466                         cfi->device_type, NULL);
2467        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2468                         cfi->device_type, NULL);
2469        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2470                         cfi->device_type, NULL);
2471        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2472                         cfi->device_type, NULL);
2473        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2474                         cfi->device_type, NULL);
2475        map_write(map, CMD(0x40), chip->start + adr);
2476
2477        chip->state = FL_READY;
2478        put_chip(map, chip, adr + chip->start);
2479        ret = 0;
2480
2481out_unlock:
2482        mutex_unlock(&chip->mutex);
2483        return ret;
2484}
2485
2486static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2487                           unsigned long adr, int len, void *thunk)
2488{
2489        struct cfi_private *cfi = map->fldrv_priv;
2490        int ret;
2491
2492        mutex_lock(&chip->mutex);
2493        ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2494        if (ret)
2495                goto out_unlock;
2496        chip->state = FL_UNLOCKING;
2497
2498        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2499
2500        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2501                         cfi->device_type, NULL);
2502        map_write(map, CMD(0x70), adr);
2503
2504        chip->state = FL_READY;
2505        put_chip(map, chip, adr + chip->start);
2506        ret = 0;
2507
2508out_unlock:
2509        mutex_unlock(&chip->mutex);
2510        return ret;
2511}
2512
2513static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2514{
2515        return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2516}
2517
2518static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2519{
2520        return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2521}
2522
2523/*
2524 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2525 */
2526
2527struct ppb_lock {
2528        struct flchip *chip;
2529        unsigned long adr;
2530        int locked;
2531};
2532
2533#define MAX_SECTORS                     512
2534
2535#define DO_XXLOCK_ONEBLOCK_LOCK         ((void *)1)
2536#define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *)2)
2537#define DO_XXLOCK_ONEBLOCK_GETLOCK      ((void *)3)
2538
2539static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2540                                        struct flchip *chip,
2541                                        unsigned long adr, int len, void *thunk)
2542{
2543        struct cfi_private *cfi = map->fldrv_priv;
2544        unsigned long timeo;
2545        int ret;
2546
2547        adr += chip->start;
2548        mutex_lock(&chip->mutex);
2549        ret = get_chip(map, chip, adr, FL_LOCKING);
2550        if (ret) {
2551                mutex_unlock(&chip->mutex);
2552                return ret;
2553        }
2554
2555        pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2556
2557        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2558                         cfi->device_type, NULL);
2559        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2560                         cfi->device_type, NULL);
2561        /* PPB entry command */
2562        cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2563                         cfi->device_type, NULL);
2564
2565        if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2566                chip->state = FL_LOCKING;
2567                map_write(map, CMD(0xA0), adr);
2568                map_write(map, CMD(0x00), adr);
2569        } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2570                /*
2571                 * Unlocking of one specific sector is not supported, so we
2572                 * have to unlock all sectors of this device instead
2573                 */
2574                chip->state = FL_UNLOCKING;
2575                map_write(map, CMD(0x80), chip->start);
2576                map_write(map, CMD(0x30), chip->start);
2577        } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2578                chip->state = FL_JEDEC_QUERY;
2579                /* Return locked status: 0->locked, 1->unlocked */
2580                ret = !cfi_read_query(map, adr);
2581        } else
2582                BUG();
2583
2584        /*
2585         * Wait for some time as unlocking of all sectors takes quite long
2586         */
2587        timeo = jiffies + msecs_to_jiffies(2000);       /* 2s max (un)locking */
2588        for (;;) {
2589                if (chip_ready(map, adr))
2590                        break;
2591
2592                if (time_after(jiffies, timeo)) {
2593                        printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2594                        ret = -EIO;
2595                        break;
2596                }
2597
2598                UDELAY(map, chip, adr, 1);
2599        }
2600
2601        /* Exit BC commands */
2602        map_write(map, CMD(0x90), chip->start);
2603        map_write(map, CMD(0x00), chip->start);
2604
2605        chip->state = FL_READY;
2606        put_chip(map, chip, adr);
2607        mutex_unlock(&chip->mutex);
2608
2609        return ret;
2610}
2611
2612static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2613                                       uint64_t len)
2614{
2615        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2616                                DO_XXLOCK_ONEBLOCK_LOCK);
2617}
2618
2619static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2620                                         uint64_t len)
2621{
2622        struct mtd_erase_region_info *regions = mtd->eraseregions;
2623        struct map_info *map = mtd->priv;
2624        struct cfi_private *cfi = map->fldrv_priv;
2625        struct ppb_lock *sect;
2626        unsigned long adr;
2627        loff_t offset;
2628        uint64_t length;
2629        int chipnum;
2630        int i;
2631        int sectors;
2632        int ret;
2633
2634        /*
2635         * PPB unlocking always unlocks all sectors of the flash chip.
2636         * We need to re-lock all previously locked sectors. So lets
2637         * first check the locking status of all sectors and save
2638         * it for future use.
2639         */
2640        sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
2641        if (!sect)
2642                return -ENOMEM;
2643
2644        /*
2645         * This code to walk all sectors is a slightly modified version
2646         * of the cfi_varsize_frob() code.
2647         */
2648        i = 0;
2649        chipnum = 0;
2650        adr = 0;
2651        sectors = 0;
2652        offset = 0;
2653        length = mtd->size;
2654
2655        while (length) {
2656                int size = regions[i].erasesize;
2657
2658                /*
2659                 * Only test sectors that shall not be unlocked. The other
2660                 * sectors shall be unlocked, so lets keep their locking
2661                 * status at "unlocked" (locked=0) for the final re-locking.
2662                 */
2663                if ((offset < ofs) || (offset >= (ofs + len))) {
2664                        sect[sectors].chip = &cfi->chips[chipnum];
2665                        sect[sectors].adr = adr;
2666                        sect[sectors].locked = do_ppb_xxlock(
2667                                map, &cfi->chips[chipnum], adr, 0,
2668                                DO_XXLOCK_ONEBLOCK_GETLOCK);
2669                }
2670
2671                adr += size;
2672                offset += size;
2673                length -= size;
2674
2675                if (offset == regions[i].offset + size * regions[i].numblocks)
2676                        i++;
2677
2678                if (adr >> cfi->chipshift) {
2679                        if (offset >= (ofs + len))
2680                                break;
2681                        adr = 0;
2682                        chipnum++;
2683
2684                        if (chipnum >= cfi->numchips)
2685                                break;
2686                }
2687
2688                sectors++;
2689                if (sectors >= MAX_SECTORS) {
2690                        printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2691                               MAX_SECTORS);
2692                        kfree(sect);
2693                        return -EINVAL;
2694                }
2695        }
2696
2697        /* Now unlock the whole chip */
2698        ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2699                               DO_XXLOCK_ONEBLOCK_UNLOCK);
2700        if (ret) {
2701                kfree(sect);
2702                return ret;
2703        }
2704
2705        /*
2706         * PPB unlocking always unlocks all sectors of the flash chip.
2707         * We need to re-lock all previously locked sectors.
2708         */
2709        for (i = 0; i < sectors; i++) {
2710                if (sect[i].locked)
2711                        do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2712                                      DO_XXLOCK_ONEBLOCK_LOCK);
2713        }
2714
2715        kfree(sect);
2716        return ret;
2717}
2718
2719static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2720                                            uint64_t len)
2721{
2722        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2723                                DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2724}
2725
2726static void cfi_amdstd_sync (struct mtd_info *mtd)
2727{
2728        struct map_info *map = mtd->priv;
2729        struct cfi_private *cfi = map->fldrv_priv;
2730        int i;
2731        struct flchip *chip;
2732        int ret = 0;
2733        DECLARE_WAITQUEUE(wait, current);
2734
2735        for (i=0; !ret && i<cfi->numchips; i++) {
2736                chip = &cfi->chips[i];
2737
2738        retry:
2739                mutex_lock(&chip->mutex);
2740
2741                switch(chip->state) {
2742                case FL_READY:
2743                case FL_STATUS:
2744                case FL_CFI_QUERY:
2745                case FL_JEDEC_QUERY:
2746                        chip->oldstate = chip->state;
2747                        chip->state = FL_SYNCING;
2748                        /* No need to wake_up() on this state change -
2749                         * as the whole point is that nobody can do anything
2750                         * with the chip now anyway.
2751                         */
2752                case FL_SYNCING:
2753                        mutex_unlock(&chip->mutex);
2754                        break;
2755
2756                default:
2757                        /* Not an idle state */
2758                        set_current_state(TASK_UNINTERRUPTIBLE);
2759                        add_wait_queue(&chip->wq, &wait);
2760
2761                        mutex_unlock(&chip->mutex);
2762
2763                        schedule();
2764
2765                        remove_wait_queue(&chip->wq, &wait);
2766
2767                        goto retry;
2768                }
2769        }
2770
2771        /* Unlock the chips again */
2772
2773        for (i--; i >=0; i--) {
2774                chip = &cfi->chips[i];
2775
2776                mutex_lock(&chip->mutex);
2777
2778                if (chip->state == FL_SYNCING) {
2779                        chip->state = chip->oldstate;
2780                        wake_up(&chip->wq);
2781                }
2782                mutex_unlock(&chip->mutex);
2783        }
2784}
2785
2786
2787static int cfi_amdstd_suspend(struct mtd_info *mtd)
2788{
2789        struct map_info *map = mtd->priv;
2790        struct cfi_private *cfi = map->fldrv_priv;
2791        int i;
2792        struct flchip *chip;
2793        int ret = 0;
2794
2795        for (i=0; !ret && i<cfi->numchips; i++) {
2796                chip = &cfi->chips[i];
2797
2798                mutex_lock(&chip->mutex);
2799
2800                switch(chip->state) {
2801                case FL_READY:
2802                case FL_STATUS:
2803                case FL_CFI_QUERY:
2804                case FL_JEDEC_QUERY:
2805                        chip->oldstate = chip->state;
2806                        chip->state = FL_PM_SUSPENDED;
2807                        /* No need to wake_up() on this state change -
2808                         * as the whole point is that nobody can do anything
2809                         * with the chip now anyway.
2810                         */
2811                case FL_PM_SUSPENDED:
2812                        break;
2813
2814                default:
2815                        ret = -EAGAIN;
2816                        break;
2817                }
2818                mutex_unlock(&chip->mutex);
2819        }
2820
2821        /* Unlock the chips again */
2822
2823        if (ret) {
2824                for (i--; i >=0; i--) {
2825                        chip = &cfi->chips[i];
2826
2827                        mutex_lock(&chip->mutex);
2828
2829                        if (chip->state == FL_PM_SUSPENDED) {
2830                                chip->state = chip->oldstate;
2831                                wake_up(&chip->wq);
2832                        }
2833                        mutex_unlock(&chip->mutex);
2834                }
2835        }
2836
2837        return ret;
2838}
2839
2840
2841static void cfi_amdstd_resume(struct mtd_info *mtd)
2842{
2843        struct map_info *map = mtd->priv;
2844        struct cfi_private *cfi = map->fldrv_priv;
2845        int i;
2846        struct flchip *chip;
2847
2848        for (i=0; i<cfi->numchips; i++) {
2849
2850                chip = &cfi->chips[i];
2851
2852                mutex_lock(&chip->mutex);
2853
2854                if (chip->state == FL_PM_SUSPENDED) {
2855                        chip->state = FL_READY;
2856                        map_write(map, CMD(0xF0), chip->start);
2857                        wake_up(&chip->wq);
2858                }
2859                else
2860                        printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2861
2862                mutex_unlock(&chip->mutex);
2863        }
2864}
2865
2866
2867/*
2868 * Ensure that the flash device is put back into read array mode before
2869 * unloading the driver or rebooting.  On some systems, rebooting while
2870 * the flash is in query/program/erase mode will prevent the CPU from
2871 * fetching the bootloader code, requiring a hard reset or power cycle.
2872 */
2873static int cfi_amdstd_reset(struct mtd_info *mtd)
2874{
2875        struct map_info *map = mtd->priv;
2876        struct cfi_private *cfi = map->fldrv_priv;
2877        int i, ret;
2878        struct flchip *chip;
2879
2880        for (i = 0; i < cfi->numchips; i++) {
2881
2882                chip = &cfi->chips[i];
2883
2884                mutex_lock(&chip->mutex);
2885
2886                ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2887                if (!ret) {
2888                        map_write(map, CMD(0xF0), chip->start);
2889                        chip->state = FL_SHUTDOWN;
2890                        put_chip(map, chip, chip->start);
2891                }
2892
2893                mutex_unlock(&chip->mutex);
2894        }
2895
2896        return 0;
2897}
2898
2899
2900static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2901                               void *v)
2902{
2903        struct mtd_info *mtd;
2904
2905        mtd = container_of(nb, struct mtd_info, reboot_notifier);
2906        cfi_amdstd_reset(mtd);
2907        return NOTIFY_DONE;
2908}
2909
2910
2911static void cfi_amdstd_destroy(struct mtd_info *mtd)
2912{
2913        struct map_info *map = mtd->priv;
2914        struct cfi_private *cfi = map->fldrv_priv;
2915
2916        cfi_amdstd_reset(mtd);
2917        unregister_reboot_notifier(&mtd->reboot_notifier);
2918        kfree(cfi->cmdset_priv);
2919        kfree(cfi->cfiq);
2920        kfree(cfi);
2921        kfree(mtd->eraseregions);
2922}
2923
2924MODULE_LICENSE("GPL");
2925MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2926MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2927MODULE_ALIAS("cfi_cmdset_0006");
2928MODULE_ALIAS("cfi_cmdset_0701");
2929