linux/drivers/net/ethernet/freescale/fec_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/platform_device.h>
  52#include <linux/mdio.h>
  53#include <linux/phy.h>
  54#include <linux/fec.h>
  55#include <linux/of.h>
  56#include <linux/of_device.h>
  57#include <linux/of_gpio.h>
  58#include <linux/of_mdio.h>
  59#include <linux/of_net.h>
  60#include <linux/regulator/consumer.h>
  61#include <linux/if_vlan.h>
  62#include <linux/pinctrl/consumer.h>
  63#include <linux/prefetch.h>
  64#include <soc/imx/cpuidle.h>
  65
  66#include <asm/cacheflush.h>
  67
  68#include "fec.h"
  69
  70static void set_multicast_list(struct net_device *ndev);
  71static void fec_enet_itr_coal_init(struct net_device *ndev);
  72
  73#define DRIVER_NAME     "fec"
  74
  75#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  76
  77/* Pause frame feild and FIFO threshold */
  78#define FEC_ENET_FCE    (1 << 5)
  79#define FEC_ENET_RSEM_V 0x84
  80#define FEC_ENET_RSFL_V 16
  81#define FEC_ENET_RAEM_V 0x8
  82#define FEC_ENET_RAFL_V 0x8
  83#define FEC_ENET_OPD_V  0xFFF0
  84#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  85
  86static struct platform_device_id fec_devtype[] = {
  87        {
  88                /* keep it for coldfire */
  89                .name = DRIVER_NAME,
  90                .driver_data = 0,
  91        }, {
  92                .name = "imx25-fec",
  93                .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
  94        }, {
  95                .name = "imx27-fec",
  96                .driver_data = FEC_QUIRK_MIB_CLEAR,
  97        }, {
  98                .name = "imx28-fec",
  99                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 100                                FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
 101        }, {
 102                .name = "imx6q-fec",
 103                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 104                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 105                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 106                                FEC_QUIRK_HAS_RACC,
 107        }, {
 108                .name = "mvf600-fec",
 109                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 110        }, {
 111                .name = "imx6sx-fec",
 112                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 113                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 114                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 115                                FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 116                                FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 117        }, {
 118                .name = "imx6ul-fec",
 119                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 120                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 121                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 122                                FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 123                                FEC_QUIRK_HAS_COALESCE,
 124        }, {
 125                /* sentinel */
 126        }
 127};
 128MODULE_DEVICE_TABLE(platform, fec_devtype);
 129
 130enum imx_fec_type {
 131        IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 132        IMX27_FEC,      /* runs on i.mx27/35/51 */
 133        IMX28_FEC,
 134        IMX6Q_FEC,
 135        MVF600_FEC,
 136        IMX6SX_FEC,
 137        IMX6UL_FEC,
 138};
 139
 140static const struct of_device_id fec_dt_ids[] = {
 141        { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 142        { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 143        { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 144        { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 145        { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 146        { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 147        { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 148        { /* sentinel */ }
 149};
 150MODULE_DEVICE_TABLE(of, fec_dt_ids);
 151
 152static unsigned char macaddr[ETH_ALEN];
 153module_param_array(macaddr, byte, NULL, 0);
 154MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 155
 156#if defined(CONFIG_M5272)
 157/*
 158 * Some hardware gets it MAC address out of local flash memory.
 159 * if this is non-zero then assume it is the address to get MAC from.
 160 */
 161#if defined(CONFIG_NETtel)
 162#define FEC_FLASHMAC    0xf0006006
 163#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 164#define FEC_FLASHMAC    0xf0006000
 165#elif defined(CONFIG_CANCam)
 166#define FEC_FLASHMAC    0xf0020000
 167#elif defined (CONFIG_M5272C3)
 168#define FEC_FLASHMAC    (0xffe04000 + 4)
 169#elif defined(CONFIG_MOD5272)
 170#define FEC_FLASHMAC    0xffc0406b
 171#else
 172#define FEC_FLASHMAC    0
 173#endif
 174#endif /* CONFIG_M5272 */
 175
 176/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 177 *
 178 * 2048 byte skbufs are allocated. However, alignment requirements
 179 * varies between FEC variants. Worst case is 64, so round down by 64.
 180 */
 181#define PKT_MAXBUF_SIZE         (round_down(2048 - 64, 64))
 182#define PKT_MINBUF_SIZE         64
 183
 184/* FEC receive acceleration */
 185#define FEC_RACC_IPDIS          (1 << 1)
 186#define FEC_RACC_PRODIS         (1 << 2)
 187#define FEC_RACC_SHIFT16        BIT(7)
 188#define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 189
 190/* MIB Control Register */
 191#define FEC_MIB_CTRLSTAT_DISABLE        BIT(31)
 192
 193/*
 194 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 195 * size bits. Other FEC hardware does not, so we need to take that into
 196 * account when setting it.
 197 */
 198#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 199    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 200    defined(CONFIG_ARM64)
 201#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 202#else
 203#define OPT_FRAME_SIZE  0
 204#endif
 205
 206/* FEC MII MMFR bits definition */
 207#define FEC_MMFR_ST             (1 << 30)
 208#define FEC_MMFR_OP_READ        (2 << 28)
 209#define FEC_MMFR_OP_WRITE       (1 << 28)
 210#define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 211#define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 212#define FEC_MMFR_TA             (2 << 16)
 213#define FEC_MMFR_DATA(v)        (v & 0xffff)
 214/* FEC ECR bits definition */
 215#define FEC_ECR_MAGICEN         (1 << 2)
 216#define FEC_ECR_SLEEP           (1 << 3)
 217
 218#define FEC_MII_TIMEOUT         30000 /* us */
 219
 220/* Transmitter timeout */
 221#define TX_TIMEOUT (2 * HZ)
 222
 223#define FEC_PAUSE_FLAG_AUTONEG  0x1
 224#define FEC_PAUSE_FLAG_ENABLE   0x2
 225#define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 226#define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 227#define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 228
 229#define COPYBREAK_DEFAULT       256
 230
 231/* Max number of allowed TCP segments for software TSO */
 232#define FEC_MAX_TSO_SEGS        100
 233#define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 234
 235#define IS_TSO_HEADER(txq, addr) \
 236        ((addr >= txq->tso_hdrs_dma) && \
 237        (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 238
 239static int mii_cnt;
 240
 241static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 242                                             struct bufdesc_prop *bd)
 243{
 244        return (bdp >= bd->last) ? bd->base
 245                        : (struct bufdesc *)(((void *)bdp) + bd->dsize);
 246}
 247
 248static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 249                                             struct bufdesc_prop *bd)
 250{
 251        return (bdp <= bd->base) ? bd->last
 252                        : (struct bufdesc *)(((void *)bdp) - bd->dsize);
 253}
 254
 255static int fec_enet_get_bd_index(struct bufdesc *bdp,
 256                                 struct bufdesc_prop *bd)
 257{
 258        return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 259}
 260
 261static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 262{
 263        int entries;
 264
 265        entries = (((const char *)txq->dirty_tx -
 266                        (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 267
 268        return entries >= 0 ? entries : entries + txq->bd.ring_size;
 269}
 270
 271static void swap_buffer(void *bufaddr, int len)
 272{
 273        int i;
 274        unsigned int *buf = bufaddr;
 275
 276        for (i = 0; i < len; i += 4, buf++)
 277                swab32s(buf);
 278}
 279
 280static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 281{
 282        int i;
 283        unsigned int *src = src_buf;
 284        unsigned int *dst = dst_buf;
 285
 286        for (i = 0; i < len; i += 4, src++, dst++)
 287                *dst = swab32p(src);
 288}
 289
 290static void fec_dump(struct net_device *ndev)
 291{
 292        struct fec_enet_private *fep = netdev_priv(ndev);
 293        struct bufdesc *bdp;
 294        struct fec_enet_priv_tx_q *txq;
 295        int index = 0;
 296
 297        netdev_info(ndev, "TX ring dump\n");
 298        pr_info("Nr     SC     addr       len  SKB\n");
 299
 300        txq = fep->tx_queue[0];
 301        bdp = txq->bd.base;
 302
 303        do {
 304                pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 305                        index,
 306                        bdp == txq->bd.cur ? 'S' : ' ',
 307                        bdp == txq->dirty_tx ? 'H' : ' ',
 308                        fec16_to_cpu(bdp->cbd_sc),
 309                        fec32_to_cpu(bdp->cbd_bufaddr),
 310                        fec16_to_cpu(bdp->cbd_datlen),
 311                        txq->tx_skbuff[index]);
 312                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 313                index++;
 314        } while (bdp != txq->bd.base);
 315}
 316
 317static inline bool is_ipv4_pkt(struct sk_buff *skb)
 318{
 319        return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 320}
 321
 322static int
 323fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 324{
 325        /* Only run for packets requiring a checksum. */
 326        if (skb->ip_summed != CHECKSUM_PARTIAL)
 327                return 0;
 328
 329        if (unlikely(skb_cow_head(skb, 0)))
 330                return -1;
 331
 332        if (is_ipv4_pkt(skb))
 333                ip_hdr(skb)->check = 0;
 334        *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 335
 336        return 0;
 337}
 338
 339static struct bufdesc *
 340fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 341                             struct sk_buff *skb,
 342                             struct net_device *ndev)
 343{
 344        struct fec_enet_private *fep = netdev_priv(ndev);
 345        struct bufdesc *bdp = txq->bd.cur;
 346        struct bufdesc_ex *ebdp;
 347        int nr_frags = skb_shinfo(skb)->nr_frags;
 348        int frag, frag_len;
 349        unsigned short status;
 350        unsigned int estatus = 0;
 351        skb_frag_t *this_frag;
 352        unsigned int index;
 353        void *bufaddr;
 354        dma_addr_t addr;
 355        int i;
 356
 357        for (frag = 0; frag < nr_frags; frag++) {
 358                this_frag = &skb_shinfo(skb)->frags[frag];
 359                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 360                ebdp = (struct bufdesc_ex *)bdp;
 361
 362                status = fec16_to_cpu(bdp->cbd_sc);
 363                status &= ~BD_ENET_TX_STATS;
 364                status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 365                frag_len = skb_shinfo(skb)->frags[frag].size;
 366
 367                /* Handle the last BD specially */
 368                if (frag == nr_frags - 1) {
 369                        status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 370                        if (fep->bufdesc_ex) {
 371                                estatus |= BD_ENET_TX_INT;
 372                                if (unlikely(skb_shinfo(skb)->tx_flags &
 373                                        SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 374                                        estatus |= BD_ENET_TX_TS;
 375                        }
 376                }
 377
 378                if (fep->bufdesc_ex) {
 379                        if (fep->quirks & FEC_QUIRK_HAS_AVB)
 380                                estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 381                        if (skb->ip_summed == CHECKSUM_PARTIAL)
 382                                estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 383                        ebdp->cbd_bdu = 0;
 384                        ebdp->cbd_esc = cpu_to_fec32(estatus);
 385                }
 386
 387                bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 388
 389                index = fec_enet_get_bd_index(bdp, &txq->bd);
 390                if (((unsigned long) bufaddr) & fep->tx_align ||
 391                        fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 392                        memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 393                        bufaddr = txq->tx_bounce[index];
 394
 395                        if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 396                                swap_buffer(bufaddr, frag_len);
 397                }
 398
 399                addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 400                                      DMA_TO_DEVICE);
 401                if (dma_mapping_error(&fep->pdev->dev, addr)) {
 402                        if (net_ratelimit())
 403                                netdev_err(ndev, "Tx DMA memory map failed\n");
 404                        goto dma_mapping_error;
 405                }
 406
 407                bdp->cbd_bufaddr = cpu_to_fec32(addr);
 408                bdp->cbd_datlen = cpu_to_fec16(frag_len);
 409                /* Make sure the updates to rest of the descriptor are
 410                 * performed before transferring ownership.
 411                 */
 412                wmb();
 413                bdp->cbd_sc = cpu_to_fec16(status);
 414        }
 415
 416        return bdp;
 417dma_mapping_error:
 418        bdp = txq->bd.cur;
 419        for (i = 0; i < frag; i++) {
 420                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 421                dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 422                                 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 423        }
 424        return ERR_PTR(-ENOMEM);
 425}
 426
 427static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 428                                   struct sk_buff *skb, struct net_device *ndev)
 429{
 430        struct fec_enet_private *fep = netdev_priv(ndev);
 431        int nr_frags = skb_shinfo(skb)->nr_frags;
 432        struct bufdesc *bdp, *last_bdp;
 433        void *bufaddr;
 434        dma_addr_t addr;
 435        unsigned short status;
 436        unsigned short buflen;
 437        unsigned int estatus = 0;
 438        unsigned int index;
 439        int entries_free;
 440
 441        entries_free = fec_enet_get_free_txdesc_num(txq);
 442        if (entries_free < MAX_SKB_FRAGS + 1) {
 443                dev_kfree_skb_any(skb);
 444                if (net_ratelimit())
 445                        netdev_err(ndev, "NOT enough BD for SG!\n");
 446                return NETDEV_TX_OK;
 447        }
 448
 449        /* Protocol checksum off-load for TCP and UDP. */
 450        if (fec_enet_clear_csum(skb, ndev)) {
 451                dev_kfree_skb_any(skb);
 452                return NETDEV_TX_OK;
 453        }
 454
 455        /* Fill in a Tx ring entry */
 456        bdp = txq->bd.cur;
 457        last_bdp = bdp;
 458        status = fec16_to_cpu(bdp->cbd_sc);
 459        status &= ~BD_ENET_TX_STATS;
 460
 461        /* Set buffer length and buffer pointer */
 462        bufaddr = skb->data;
 463        buflen = skb_headlen(skb);
 464
 465        index = fec_enet_get_bd_index(bdp, &txq->bd);
 466        if (((unsigned long) bufaddr) & fep->tx_align ||
 467                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 468                memcpy(txq->tx_bounce[index], skb->data, buflen);
 469                bufaddr = txq->tx_bounce[index];
 470
 471                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 472                        swap_buffer(bufaddr, buflen);
 473        }
 474
 475        /* Push the data cache so the CPM does not get stale memory data. */
 476        addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 477        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 478                dev_kfree_skb_any(skb);
 479                if (net_ratelimit())
 480                        netdev_err(ndev, "Tx DMA memory map failed\n");
 481                return NETDEV_TX_OK;
 482        }
 483
 484        if (nr_frags) {
 485                last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 486                if (IS_ERR(last_bdp)) {
 487                        dma_unmap_single(&fep->pdev->dev, addr,
 488                                         buflen, DMA_TO_DEVICE);
 489                        dev_kfree_skb_any(skb);
 490                        return NETDEV_TX_OK;
 491                }
 492        } else {
 493                status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 494                if (fep->bufdesc_ex) {
 495                        estatus = BD_ENET_TX_INT;
 496                        if (unlikely(skb_shinfo(skb)->tx_flags &
 497                                SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 498                                estatus |= BD_ENET_TX_TS;
 499                }
 500        }
 501        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 502        bdp->cbd_datlen = cpu_to_fec16(buflen);
 503
 504        if (fep->bufdesc_ex) {
 505
 506                struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 507
 508                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 509                        fep->hwts_tx_en))
 510                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 511
 512                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 513                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 514
 515                if (skb->ip_summed == CHECKSUM_PARTIAL)
 516                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 517
 518                ebdp->cbd_bdu = 0;
 519                ebdp->cbd_esc = cpu_to_fec32(estatus);
 520        }
 521
 522        index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 523        /* Save skb pointer */
 524        txq->tx_skbuff[index] = skb;
 525
 526        /* Make sure the updates to rest of the descriptor are performed before
 527         * transferring ownership.
 528         */
 529        wmb();
 530
 531        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 532         * it's the last BD of the frame, and to put the CRC on the end.
 533         */
 534        status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 535        bdp->cbd_sc = cpu_to_fec16(status);
 536
 537        /* If this was the last BD in the ring, start at the beginning again. */
 538        bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 539
 540        skb_tx_timestamp(skb);
 541
 542        /* Make sure the update to bdp and tx_skbuff are performed before
 543         * txq->bd.cur.
 544         */
 545        wmb();
 546        txq->bd.cur = bdp;
 547
 548        /* Trigger transmission start */
 549        writel(0, txq->bd.reg_desc_active);
 550
 551        return 0;
 552}
 553
 554static int
 555fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 556                          struct net_device *ndev,
 557                          struct bufdesc *bdp, int index, char *data,
 558                          int size, bool last_tcp, bool is_last)
 559{
 560        struct fec_enet_private *fep = netdev_priv(ndev);
 561        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 562        unsigned short status;
 563        unsigned int estatus = 0;
 564        dma_addr_t addr;
 565
 566        status = fec16_to_cpu(bdp->cbd_sc);
 567        status &= ~BD_ENET_TX_STATS;
 568
 569        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 570
 571        if (((unsigned long) data) & fep->tx_align ||
 572                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 573                memcpy(txq->tx_bounce[index], data, size);
 574                data = txq->tx_bounce[index];
 575
 576                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 577                        swap_buffer(data, size);
 578        }
 579
 580        addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 581        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 582                dev_kfree_skb_any(skb);
 583                if (net_ratelimit())
 584                        netdev_err(ndev, "Tx DMA memory map failed\n");
 585                return NETDEV_TX_BUSY;
 586        }
 587
 588        bdp->cbd_datlen = cpu_to_fec16(size);
 589        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 590
 591        if (fep->bufdesc_ex) {
 592                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 593                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 594                if (skb->ip_summed == CHECKSUM_PARTIAL)
 595                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 596                ebdp->cbd_bdu = 0;
 597                ebdp->cbd_esc = cpu_to_fec32(estatus);
 598        }
 599
 600        /* Handle the last BD specially */
 601        if (last_tcp)
 602                status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 603        if (is_last) {
 604                status |= BD_ENET_TX_INTR;
 605                if (fep->bufdesc_ex)
 606                        ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 607        }
 608
 609        bdp->cbd_sc = cpu_to_fec16(status);
 610
 611        return 0;
 612}
 613
 614static int
 615fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 616                         struct sk_buff *skb, struct net_device *ndev,
 617                         struct bufdesc *bdp, int index)
 618{
 619        struct fec_enet_private *fep = netdev_priv(ndev);
 620        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 621        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 622        void *bufaddr;
 623        unsigned long dmabuf;
 624        unsigned short status;
 625        unsigned int estatus = 0;
 626
 627        status = fec16_to_cpu(bdp->cbd_sc);
 628        status &= ~BD_ENET_TX_STATS;
 629        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 630
 631        bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 632        dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 633        if (((unsigned long)bufaddr) & fep->tx_align ||
 634                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 635                memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 636                bufaddr = txq->tx_bounce[index];
 637
 638                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 639                        swap_buffer(bufaddr, hdr_len);
 640
 641                dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 642                                        hdr_len, DMA_TO_DEVICE);
 643                if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 644                        dev_kfree_skb_any(skb);
 645                        if (net_ratelimit())
 646                                netdev_err(ndev, "Tx DMA memory map failed\n");
 647                        return NETDEV_TX_BUSY;
 648                }
 649        }
 650
 651        bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 652        bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 653
 654        if (fep->bufdesc_ex) {
 655                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 656                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 657                if (skb->ip_summed == CHECKSUM_PARTIAL)
 658                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 659                ebdp->cbd_bdu = 0;
 660                ebdp->cbd_esc = cpu_to_fec32(estatus);
 661        }
 662
 663        bdp->cbd_sc = cpu_to_fec16(status);
 664
 665        return 0;
 666}
 667
 668static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 669                                   struct sk_buff *skb,
 670                                   struct net_device *ndev)
 671{
 672        struct fec_enet_private *fep = netdev_priv(ndev);
 673        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 674        int total_len, data_left;
 675        struct bufdesc *bdp = txq->bd.cur;
 676        struct tso_t tso;
 677        unsigned int index = 0;
 678        int ret;
 679
 680        if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 681                dev_kfree_skb_any(skb);
 682                if (net_ratelimit())
 683                        netdev_err(ndev, "NOT enough BD for TSO!\n");
 684                return NETDEV_TX_OK;
 685        }
 686
 687        /* Protocol checksum off-load for TCP and UDP. */
 688        if (fec_enet_clear_csum(skb, ndev)) {
 689                dev_kfree_skb_any(skb);
 690                return NETDEV_TX_OK;
 691        }
 692
 693        /* Initialize the TSO handler, and prepare the first payload */
 694        tso_start(skb, &tso);
 695
 696        total_len = skb->len - hdr_len;
 697        while (total_len > 0) {
 698                char *hdr;
 699
 700                index = fec_enet_get_bd_index(bdp, &txq->bd);
 701                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 702                total_len -= data_left;
 703
 704                /* prepare packet headers: MAC + IP + TCP */
 705                hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 706                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 707                ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 708                if (ret)
 709                        goto err_release;
 710
 711                while (data_left > 0) {
 712                        int size;
 713
 714                        size = min_t(int, tso.size, data_left);
 715                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 716                        index = fec_enet_get_bd_index(bdp, &txq->bd);
 717                        ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 718                                                        bdp, index,
 719                                                        tso.data, size,
 720                                                        size == data_left,
 721                                                        total_len == 0);
 722                        if (ret)
 723                                goto err_release;
 724
 725                        data_left -= size;
 726                        tso_build_data(skb, &tso, size);
 727                }
 728
 729                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 730        }
 731
 732        /* Save skb pointer */
 733        txq->tx_skbuff[index] = skb;
 734
 735        skb_tx_timestamp(skb);
 736        txq->bd.cur = bdp;
 737
 738        /* Trigger transmission start */
 739        if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 740            !readl(txq->bd.reg_desc_active) ||
 741            !readl(txq->bd.reg_desc_active) ||
 742            !readl(txq->bd.reg_desc_active) ||
 743            !readl(txq->bd.reg_desc_active))
 744                writel(0, txq->bd.reg_desc_active);
 745
 746        return 0;
 747
 748err_release:
 749        /* TODO: Release all used data descriptors for TSO */
 750        return ret;
 751}
 752
 753static netdev_tx_t
 754fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 755{
 756        struct fec_enet_private *fep = netdev_priv(ndev);
 757        int entries_free;
 758        unsigned short queue;
 759        struct fec_enet_priv_tx_q *txq;
 760        struct netdev_queue *nq;
 761        int ret;
 762
 763        queue = skb_get_queue_mapping(skb);
 764        txq = fep->tx_queue[queue];
 765        nq = netdev_get_tx_queue(ndev, queue);
 766
 767        if (skb_is_gso(skb))
 768                ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 769        else
 770                ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 771        if (ret)
 772                return ret;
 773
 774        entries_free = fec_enet_get_free_txdesc_num(txq);
 775        if (entries_free <= txq->tx_stop_threshold)
 776                netif_tx_stop_queue(nq);
 777
 778        return NETDEV_TX_OK;
 779}
 780
 781/* Init RX & TX buffer descriptors
 782 */
 783static void fec_enet_bd_init(struct net_device *dev)
 784{
 785        struct fec_enet_private *fep = netdev_priv(dev);
 786        struct fec_enet_priv_tx_q *txq;
 787        struct fec_enet_priv_rx_q *rxq;
 788        struct bufdesc *bdp;
 789        unsigned int i;
 790        unsigned int q;
 791
 792        for (q = 0; q < fep->num_rx_queues; q++) {
 793                /* Initialize the receive buffer descriptors. */
 794                rxq = fep->rx_queue[q];
 795                bdp = rxq->bd.base;
 796
 797                for (i = 0; i < rxq->bd.ring_size; i++) {
 798
 799                        /* Initialize the BD for every fragment in the page. */
 800                        if (bdp->cbd_bufaddr)
 801                                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 802                        else
 803                                bdp->cbd_sc = cpu_to_fec16(0);
 804                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 805                }
 806
 807                /* Set the last buffer to wrap */
 808                bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 809                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 810
 811                rxq->bd.cur = rxq->bd.base;
 812        }
 813
 814        for (q = 0; q < fep->num_tx_queues; q++) {
 815                /* ...and the same for transmit */
 816                txq = fep->tx_queue[q];
 817                bdp = txq->bd.base;
 818                txq->bd.cur = bdp;
 819
 820                for (i = 0; i < txq->bd.ring_size; i++) {
 821                        /* Initialize the BD for every fragment in the page. */
 822                        bdp->cbd_sc = cpu_to_fec16(0);
 823                        if (bdp->cbd_bufaddr &&
 824                            !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 825                                dma_unmap_single(&fep->pdev->dev,
 826                                                 fec32_to_cpu(bdp->cbd_bufaddr),
 827                                                 fec16_to_cpu(bdp->cbd_datlen),
 828                                                 DMA_TO_DEVICE);
 829                        if (txq->tx_skbuff[i]) {
 830                                dev_kfree_skb_any(txq->tx_skbuff[i]);
 831                                txq->tx_skbuff[i] = NULL;
 832                        }
 833                        bdp->cbd_bufaddr = cpu_to_fec32(0);
 834                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 835                }
 836
 837                /* Set the last buffer to wrap */
 838                bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 839                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 840                txq->dirty_tx = bdp;
 841        }
 842}
 843
 844static void fec_enet_active_rxring(struct net_device *ndev)
 845{
 846        struct fec_enet_private *fep = netdev_priv(ndev);
 847        int i;
 848
 849        for (i = 0; i < fep->num_rx_queues; i++)
 850                writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 851}
 852
 853static void fec_enet_enable_ring(struct net_device *ndev)
 854{
 855        struct fec_enet_private *fep = netdev_priv(ndev);
 856        struct fec_enet_priv_tx_q *txq;
 857        struct fec_enet_priv_rx_q *rxq;
 858        int i;
 859
 860        for (i = 0; i < fep->num_rx_queues; i++) {
 861                rxq = fep->rx_queue[i];
 862                writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 863                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 864
 865                /* enable DMA1/2 */
 866                if (i)
 867                        writel(RCMR_MATCHEN | RCMR_CMP(i),
 868                               fep->hwp + FEC_RCMR(i));
 869        }
 870
 871        for (i = 0; i < fep->num_tx_queues; i++) {
 872                txq = fep->tx_queue[i];
 873                writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 874
 875                /* enable DMA1/2 */
 876                if (i)
 877                        writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 878                               fep->hwp + FEC_DMA_CFG(i));
 879        }
 880}
 881
 882static void fec_enet_reset_skb(struct net_device *ndev)
 883{
 884        struct fec_enet_private *fep = netdev_priv(ndev);
 885        struct fec_enet_priv_tx_q *txq;
 886        int i, j;
 887
 888        for (i = 0; i < fep->num_tx_queues; i++) {
 889                txq = fep->tx_queue[i];
 890
 891                for (j = 0; j < txq->bd.ring_size; j++) {
 892                        if (txq->tx_skbuff[j]) {
 893                                dev_kfree_skb_any(txq->tx_skbuff[j]);
 894                                txq->tx_skbuff[j] = NULL;
 895                        }
 896                }
 897        }
 898}
 899
 900/*
 901 * This function is called to start or restart the FEC during a link
 902 * change, transmit timeout, or to reconfigure the FEC.  The network
 903 * packet processing for this device must be stopped before this call.
 904 */
 905static void
 906fec_restart(struct net_device *ndev)
 907{
 908        struct fec_enet_private *fep = netdev_priv(ndev);
 909        u32 val;
 910        u32 temp_mac[2];
 911        u32 rcntl = OPT_FRAME_SIZE | 0x04;
 912        u32 ecntl = 0x2; /* ETHEREN */
 913
 914        /* Whack a reset.  We should wait for this.
 915         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 916         * instead of reset MAC itself.
 917         */
 918        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 919                writel(0, fep->hwp + FEC_ECNTRL);
 920        } else {
 921                writel(1, fep->hwp + FEC_ECNTRL);
 922                udelay(10);
 923        }
 924
 925        /*
 926         * enet-mac reset will reset mac address registers too,
 927         * so need to reconfigure it.
 928         */
 929        memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 930        writel((__force u32)cpu_to_be32(temp_mac[0]),
 931               fep->hwp + FEC_ADDR_LOW);
 932        writel((__force u32)cpu_to_be32(temp_mac[1]),
 933               fep->hwp + FEC_ADDR_HIGH);
 934
 935        /* Clear any outstanding interrupt. */
 936        writel(0xffffffff, fep->hwp + FEC_IEVENT);
 937
 938        fec_enet_bd_init(ndev);
 939
 940        fec_enet_enable_ring(ndev);
 941
 942        /* Reset tx SKB buffers. */
 943        fec_enet_reset_skb(ndev);
 944
 945        /* Enable MII mode */
 946        if (fep->full_duplex == DUPLEX_FULL) {
 947                /* FD enable */
 948                writel(0x04, fep->hwp + FEC_X_CNTRL);
 949        } else {
 950                /* No Rcv on Xmit */
 951                rcntl |= 0x02;
 952                writel(0x0, fep->hwp + FEC_X_CNTRL);
 953        }
 954
 955        /* Set MII speed */
 956        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 957
 958#if !defined(CONFIG_M5272)
 959        if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 960                val = readl(fep->hwp + FEC_RACC);
 961                /* align IP header */
 962                val |= FEC_RACC_SHIFT16;
 963                if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 964                        /* set RX checksum */
 965                        val |= FEC_RACC_OPTIONS;
 966                else
 967                        val &= ~FEC_RACC_OPTIONS;
 968                writel(val, fep->hwp + FEC_RACC);
 969                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 970        }
 971#endif
 972
 973        /*
 974         * The phy interface and speed need to get configured
 975         * differently on enet-mac.
 976         */
 977        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 978                /* Enable flow control and length check */
 979                rcntl |= 0x40000000 | 0x00000020;
 980
 981                /* RGMII, RMII or MII */
 982                if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 983                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 984                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 985                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 986                        rcntl |= (1 << 6);
 987                else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 988                        rcntl |= (1 << 8);
 989                else
 990                        rcntl &= ~(1 << 8);
 991
 992                /* 1G, 100M or 10M */
 993                if (ndev->phydev) {
 994                        if (ndev->phydev->speed == SPEED_1000)
 995                                ecntl |= (1 << 5);
 996                        else if (ndev->phydev->speed == SPEED_100)
 997                                rcntl &= ~(1 << 9);
 998                        else
 999                                rcntl |= (1 << 9);
1000                }
1001        } else {
1002#ifdef FEC_MIIGSK_ENR
1003                if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004                        u32 cfgr;
1005                        /* disable the gasket and wait */
1006                        writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007                        while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008                                udelay(1);
1009
1010                        /*
1011                         * configure the gasket:
1012                         *   RMII, 50 MHz, no loopback, no echo
1013                         *   MII, 25 MHz, no loopback, no echo
1014                         */
1015                        cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016                                ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017                        if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018                                cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019                        writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020
1021                        /* re-enable the gasket */
1022                        writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023                }
1024#endif
1025        }
1026
1027#if !defined(CONFIG_M5272)
1028        /* enable pause frame*/
1029        if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030            ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031             ndev->phydev && ndev->phydev->pause)) {
1032                rcntl |= FEC_ENET_FCE;
1033
1034                /* set FIFO threshold parameter to reduce overrun */
1035                writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036                writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037                writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038                writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039
1040                /* OPD */
1041                writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042        } else {
1043                rcntl &= ~FEC_ENET_FCE;
1044        }
1045#endif /* !defined(CONFIG_M5272) */
1046
1047        writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048
1049        /* Setup multicast filter. */
1050        set_multicast_list(ndev);
1051#ifndef CONFIG_M5272
1052        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054#endif
1055
1056        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057                /* enable ENET endian swap */
1058                ecntl |= (1 << 8);
1059                /* enable ENET store and forward mode */
1060                writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061        }
1062
1063        if (fep->bufdesc_ex)
1064                ecntl |= (1 << 4);
1065
1066#ifndef CONFIG_M5272
1067        /* Enable the MIB statistic event counters */
1068        writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069#endif
1070
1071        /* And last, enable the transmit and receive processing */
1072        writel(ecntl, fep->hwp + FEC_ECNTRL);
1073        fec_enet_active_rxring(ndev);
1074
1075        if (fep->bufdesc_ex)
1076                fec_ptp_start_cyclecounter(ndev);
1077
1078        /* Enable interrupts we wish to service */
1079        if (fep->link)
1080                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081        else
1082                writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083
1084        /* Init the interrupt coalescing */
1085        fec_enet_itr_coal_init(ndev);
1086
1087}
1088
1089static void
1090fec_stop(struct net_device *ndev)
1091{
1092        struct fec_enet_private *fep = netdev_priv(ndev);
1093        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1094        u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095        u32 val;
1096
1097        /* We cannot expect a graceful transmit stop without link !!! */
1098        if (fep->link) {
1099                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100                udelay(10);
1101                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102                        netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1103        }
1104
1105        /* Whack a reset.  We should wait for this.
1106         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107         * instead of reset MAC itself.
1108         */
1109        if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110                if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111                        writel(0, fep->hwp + FEC_ECNTRL);
1112                } else {
1113                        writel(1, fep->hwp + FEC_ECNTRL);
1114                        udelay(10);
1115                }
1116                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117        } else {
1118                writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119                val = readl(fep->hwp + FEC_ECNTRL);
1120                val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121                writel(val, fep->hwp + FEC_ECNTRL);
1122
1123                if (pdata && pdata->sleep_mode_enable)
1124                        pdata->sleep_mode_enable(true);
1125        }
1126        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1127
1128        /* We have to keep ENET enabled to have MII interrupt stay working */
1129        if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130                !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131                writel(2, fep->hwp + FEC_ECNTRL);
1132                writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1133        }
1134}
1135
1136
1137static void
1138fec_timeout(struct net_device *ndev, unsigned int txqueue)
1139{
1140        struct fec_enet_private *fep = netdev_priv(ndev);
1141
1142        fec_dump(ndev);
1143
1144        ndev->stats.tx_errors++;
1145
1146        schedule_work(&fep->tx_timeout_work);
1147}
1148
1149static void fec_enet_timeout_work(struct work_struct *work)
1150{
1151        struct fec_enet_private *fep =
1152                container_of(work, struct fec_enet_private, tx_timeout_work);
1153        struct net_device *ndev = fep->netdev;
1154
1155        rtnl_lock();
1156        if (netif_device_present(ndev) || netif_running(ndev)) {
1157                napi_disable(&fep->napi);
1158                netif_tx_lock_bh(ndev);
1159                fec_restart(ndev);
1160                netif_wake_queue(ndev);
1161                netif_tx_unlock_bh(ndev);
1162                napi_enable(&fep->napi);
1163        }
1164        rtnl_unlock();
1165}
1166
1167static void
1168fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169        struct skb_shared_hwtstamps *hwtstamps)
1170{
1171        unsigned long flags;
1172        u64 ns;
1173
1174        spin_lock_irqsave(&fep->tmreg_lock, flags);
1175        ns = timecounter_cyc2time(&fep->tc, ts);
1176        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177
1178        memset(hwtstamps, 0, sizeof(*hwtstamps));
1179        hwtstamps->hwtstamp = ns_to_ktime(ns);
1180}
1181
1182static void
1183fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184{
1185        struct  fec_enet_private *fep;
1186        struct bufdesc *bdp;
1187        unsigned short status;
1188        struct  sk_buff *skb;
1189        struct fec_enet_priv_tx_q *txq;
1190        struct netdev_queue *nq;
1191        int     index = 0;
1192        int     entries_free;
1193
1194        fep = netdev_priv(ndev);
1195
1196        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197
1198        txq = fep->tx_queue[queue_id];
1199        /* get next bdp of dirty_tx */
1200        nq = netdev_get_tx_queue(ndev, queue_id);
1201        bdp = txq->dirty_tx;
1202
1203        /* get next bdp of dirty_tx */
1204        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205
1206        while (bdp != READ_ONCE(txq->bd.cur)) {
1207                /* Order the load of bd.cur and cbd_sc */
1208                rmb();
1209                status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210                if (status & BD_ENET_TX_READY)
1211                        break;
1212
1213                index = fec_enet_get_bd_index(bdp, &txq->bd);
1214
1215                skb = txq->tx_skbuff[index];
1216                txq->tx_skbuff[index] = NULL;
1217                if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218                        dma_unmap_single(&fep->pdev->dev,
1219                                         fec32_to_cpu(bdp->cbd_bufaddr),
1220                                         fec16_to_cpu(bdp->cbd_datlen),
1221                                         DMA_TO_DEVICE);
1222                bdp->cbd_bufaddr = cpu_to_fec32(0);
1223                if (!skb)
1224                        goto skb_done;
1225
1226                /* Check for errors. */
1227                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229                                   BD_ENET_TX_CSL)) {
1230                        ndev->stats.tx_errors++;
1231                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232                                ndev->stats.tx_heartbeat_errors++;
1233                        if (status & BD_ENET_TX_LC)  /* Late collision */
1234                                ndev->stats.tx_window_errors++;
1235                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236                                ndev->stats.tx_aborted_errors++;
1237                        if (status & BD_ENET_TX_UN)  /* Underrun */
1238                                ndev->stats.tx_fifo_errors++;
1239                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240                                ndev->stats.tx_carrier_errors++;
1241                } else {
1242                        ndev->stats.tx_packets++;
1243                        ndev->stats.tx_bytes += skb->len;
1244                }
1245
1246                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247                        fep->bufdesc_ex) {
1248                        struct skb_shared_hwtstamps shhwtstamps;
1249                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250
1251                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1252                        skb_tstamp_tx(skb, &shhwtstamps);
1253                }
1254
1255                /* Deferred means some collisions occurred during transmit,
1256                 * but we eventually sent the packet OK.
1257                 */
1258                if (status & BD_ENET_TX_DEF)
1259                        ndev->stats.collisions++;
1260
1261                /* Free the sk buffer associated with this last transmit */
1262                dev_kfree_skb_any(skb);
1263skb_done:
1264                /* Make sure the update to bdp and tx_skbuff are performed
1265                 * before dirty_tx
1266                 */
1267                wmb();
1268                txq->dirty_tx = bdp;
1269
1270                /* Update pointer to next buffer descriptor to be transmitted */
1271                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272
1273                /* Since we have freed up a buffer, the ring is no longer full
1274                 */
1275                if (netif_queue_stopped(ndev)) {
1276                        entries_free = fec_enet_get_free_txdesc_num(txq);
1277                        if (entries_free >= txq->tx_wake_threshold)
1278                                netif_tx_wake_queue(nq);
1279                }
1280        }
1281
1282        /* ERR006358: Keep the transmitter going */
1283        if (bdp != txq->bd.cur &&
1284            readl(txq->bd.reg_desc_active) == 0)
1285                writel(0, txq->bd.reg_desc_active);
1286}
1287
1288static void
1289fec_enet_tx(struct net_device *ndev)
1290{
1291        struct fec_enet_private *fep = netdev_priv(ndev);
1292        u16 queue_id;
1293        /* First process class A queue, then Class B and Best Effort queue */
1294        for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295                clear_bit(queue_id, &fep->work_tx);
1296                fec_enet_tx_queue(ndev, queue_id);
1297        }
1298        return;
1299}
1300
1301static int
1302fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303{
1304        struct  fec_enet_private *fep = netdev_priv(ndev);
1305        int off;
1306
1307        off = ((unsigned long)skb->data) & fep->rx_align;
1308        if (off)
1309                skb_reserve(skb, fep->rx_align + 1 - off);
1310
1311        bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312        if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313                if (net_ratelimit())
1314                        netdev_err(ndev, "Rx DMA memory map failed\n");
1315                return -ENOMEM;
1316        }
1317
1318        return 0;
1319}
1320
1321static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322                               struct bufdesc *bdp, u32 length, bool swap)
1323{
1324        struct  fec_enet_private *fep = netdev_priv(ndev);
1325        struct sk_buff *new_skb;
1326
1327        if (length > fep->rx_copybreak)
1328                return false;
1329
1330        new_skb = netdev_alloc_skb(ndev, length);
1331        if (!new_skb)
1332                return false;
1333
1334        dma_sync_single_for_cpu(&fep->pdev->dev,
1335                                fec32_to_cpu(bdp->cbd_bufaddr),
1336                                FEC_ENET_RX_FRSIZE - fep->rx_align,
1337                                DMA_FROM_DEVICE);
1338        if (!swap)
1339                memcpy(new_skb->data, (*skb)->data, length);
1340        else
1341                swap_buffer2(new_skb->data, (*skb)->data, length);
1342        *skb = new_skb;
1343
1344        return true;
1345}
1346
1347/* During a receive, the bd_rx.cur points to the current incoming buffer.
1348 * When we update through the ring, if the next incoming buffer has
1349 * not been given to the system, we just set the empty indicator,
1350 * effectively tossing the packet.
1351 */
1352static int
1353fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354{
1355        struct fec_enet_private *fep = netdev_priv(ndev);
1356        struct fec_enet_priv_rx_q *rxq;
1357        struct bufdesc *bdp;
1358        unsigned short status;
1359        struct  sk_buff *skb_new = NULL;
1360        struct  sk_buff *skb;
1361        ushort  pkt_len;
1362        __u8 *data;
1363        int     pkt_received = 0;
1364        struct  bufdesc_ex *ebdp = NULL;
1365        bool    vlan_packet_rcvd = false;
1366        u16     vlan_tag;
1367        int     index = 0;
1368        bool    is_copybreak;
1369        bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1370
1371#ifdef CONFIG_M532x
1372        flush_cache_all();
1373#endif
1374        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375        rxq = fep->rx_queue[queue_id];
1376
1377        /* First, grab all of the stats for the incoming packet.
1378         * These get messed up if we get called due to a busy condition.
1379         */
1380        bdp = rxq->bd.cur;
1381
1382        while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383
1384                if (pkt_received >= budget)
1385                        break;
1386                pkt_received++;
1387
1388                writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1389
1390                /* Check for errors. */
1391                status ^= BD_ENET_RX_LAST;
1392                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393                           BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394                           BD_ENET_RX_CL)) {
1395                        ndev->stats.rx_errors++;
1396                        if (status & BD_ENET_RX_OV) {
1397                                /* FIFO overrun */
1398                                ndev->stats.rx_fifo_errors++;
1399                                goto rx_processing_done;
1400                        }
1401                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402                                                | BD_ENET_RX_LAST)) {
1403                                /* Frame too long or too short. */
1404                                ndev->stats.rx_length_errors++;
1405                                if (status & BD_ENET_RX_LAST)
1406                                        netdev_err(ndev, "rcv is not +last\n");
1407                        }
1408                        if (status & BD_ENET_RX_CR)     /* CRC Error */
1409                                ndev->stats.rx_crc_errors++;
1410                        /* Report late collisions as a frame error. */
1411                        if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412                                ndev->stats.rx_frame_errors++;
1413                        goto rx_processing_done;
1414                }
1415
1416                /* Process the incoming frame. */
1417                ndev->stats.rx_packets++;
1418                pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419                ndev->stats.rx_bytes += pkt_len;
1420
1421                index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422                skb = rxq->rx_skbuff[index];
1423
1424                /* The packet length includes FCS, but we don't want to
1425                 * include that when passing upstream as it messes up
1426                 * bridging applications.
1427                 */
1428                is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429                                                  need_swap);
1430                if (!is_copybreak) {
1431                        skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432                        if (unlikely(!skb_new)) {
1433                                ndev->stats.rx_dropped++;
1434                                goto rx_processing_done;
1435                        }
1436                        dma_unmap_single(&fep->pdev->dev,
1437                                         fec32_to_cpu(bdp->cbd_bufaddr),
1438                                         FEC_ENET_RX_FRSIZE - fep->rx_align,
1439                                         DMA_FROM_DEVICE);
1440                }
1441
1442                prefetch(skb->data - NET_IP_ALIGN);
1443                skb_put(skb, pkt_len - 4);
1444                data = skb->data;
1445
1446                if (!is_copybreak && need_swap)
1447                        swap_buffer(data, pkt_len);
1448
1449#if !defined(CONFIG_M5272)
1450                if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451                        data = skb_pull_inline(skb, 2);
1452#endif
1453
1454                /* Extract the enhanced buffer descriptor */
1455                ebdp = NULL;
1456                if (fep->bufdesc_ex)
1457                        ebdp = (struct bufdesc_ex *)bdp;
1458
1459                /* If this is a VLAN packet remove the VLAN Tag */
1460                vlan_packet_rcvd = false;
1461                if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462                    fep->bufdesc_ex &&
1463                    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464                        /* Push and remove the vlan tag */
1465                        struct vlan_hdr *vlan_header =
1466                                        (struct vlan_hdr *) (data + ETH_HLEN);
1467                        vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1468
1469                        vlan_packet_rcvd = true;
1470
1471                        memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472                        skb_pull(skb, VLAN_HLEN);
1473                }
1474
1475                skb->protocol = eth_type_trans(skb, ndev);
1476
1477                /* Get receive timestamp from the skb */
1478                if (fep->hwts_rx_en && fep->bufdesc_ex)
1479                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480                                          skb_hwtstamps(skb));
1481
1482                if (fep->bufdesc_ex &&
1483                    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484                        if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485                                /* don't check it */
1486                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1487                        } else {
1488                                skb_checksum_none_assert(skb);
1489                        }
1490                }
1491
1492                /* Handle received VLAN packets */
1493                if (vlan_packet_rcvd)
1494                        __vlan_hwaccel_put_tag(skb,
1495                                               htons(ETH_P_8021Q),
1496                                               vlan_tag);
1497
1498                napi_gro_receive(&fep->napi, skb);
1499
1500                if (is_copybreak) {
1501                        dma_sync_single_for_device(&fep->pdev->dev,
1502                                                   fec32_to_cpu(bdp->cbd_bufaddr),
1503                                                   FEC_ENET_RX_FRSIZE - fep->rx_align,
1504                                                   DMA_FROM_DEVICE);
1505                } else {
1506                        rxq->rx_skbuff[index] = skb_new;
1507                        fec_enet_new_rxbdp(ndev, bdp, skb_new);
1508                }
1509
1510rx_processing_done:
1511                /* Clear the status flags for this buffer */
1512                status &= ~BD_ENET_RX_STATS;
1513
1514                /* Mark the buffer empty */
1515                status |= BD_ENET_RX_EMPTY;
1516
1517                if (fep->bufdesc_ex) {
1518                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519
1520                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521                        ebdp->cbd_prot = 0;
1522                        ebdp->cbd_bdu = 0;
1523                }
1524                /* Make sure the updates to rest of the descriptor are
1525                 * performed before transferring ownership.
1526                 */
1527                wmb();
1528                bdp->cbd_sc = cpu_to_fec16(status);
1529
1530                /* Update BD pointer to next entry */
1531                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532
1533                /* Doing this here will keep the FEC running while we process
1534                 * incoming frames.  On a heavily loaded network, we should be
1535                 * able to keep up at the expense of system resources.
1536                 */
1537                writel(0, rxq->bd.reg_desc_active);
1538        }
1539        rxq->bd.cur = bdp;
1540        return pkt_received;
1541}
1542
1543static int
1544fec_enet_rx(struct net_device *ndev, int budget)
1545{
1546        int     pkt_received = 0;
1547        u16     queue_id;
1548        struct fec_enet_private *fep = netdev_priv(ndev);
1549
1550        for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551                int ret;
1552
1553                ret = fec_enet_rx_queue(ndev,
1554                                        budget - pkt_received, queue_id);
1555
1556                if (ret < budget - pkt_received)
1557                        clear_bit(queue_id, &fep->work_rx);
1558
1559                pkt_received += ret;
1560        }
1561        return pkt_received;
1562}
1563
1564static bool
1565fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566{
1567        if (int_events == 0)
1568                return false;
1569
1570        if (int_events & FEC_ENET_RXF_0)
1571                fep->work_rx |= (1 << 2);
1572        if (int_events & FEC_ENET_RXF_1)
1573                fep->work_rx |= (1 << 0);
1574        if (int_events & FEC_ENET_RXF_2)
1575                fep->work_rx |= (1 << 1);
1576
1577        if (int_events & FEC_ENET_TXF_0)
1578                fep->work_tx |= (1 << 2);
1579        if (int_events & FEC_ENET_TXF_1)
1580                fep->work_tx |= (1 << 0);
1581        if (int_events & FEC_ENET_TXF_2)
1582                fep->work_tx |= (1 << 1);
1583
1584        return true;
1585}
1586
1587static irqreturn_t
1588fec_enet_interrupt(int irq, void *dev_id)
1589{
1590        struct net_device *ndev = dev_id;
1591        struct fec_enet_private *fep = netdev_priv(ndev);
1592        uint int_events;
1593        irqreturn_t ret = IRQ_NONE;
1594
1595        int_events = readl(fep->hwp + FEC_IEVENT);
1596        writel(int_events, fep->hwp + FEC_IEVENT);
1597        fec_enet_collect_events(fep, int_events);
1598
1599        if ((fep->work_tx || fep->work_rx) && fep->link) {
1600                ret = IRQ_HANDLED;
1601
1602                if (napi_schedule_prep(&fep->napi)) {
1603                        /* Disable the NAPI interrupts */
1604                        writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605                        __napi_schedule(&fep->napi);
1606                }
1607        }
1608
1609        if (int_events & FEC_ENET_MII) {
1610                ret = IRQ_HANDLED;
1611                complete(&fep->mdio_done);
1612        }
1613        return ret;
1614}
1615
1616static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617{
1618        struct net_device *ndev = napi->dev;
1619        struct fec_enet_private *fep = netdev_priv(ndev);
1620        int pkts;
1621
1622        pkts = fec_enet_rx(ndev, budget);
1623
1624        fec_enet_tx(ndev);
1625
1626        if (pkts < budget) {
1627                napi_complete_done(napi, pkts);
1628                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629        }
1630        return pkts;
1631}
1632
1633/* ------------------------------------------------------------------------- */
1634static void fec_get_mac(struct net_device *ndev)
1635{
1636        struct fec_enet_private *fep = netdev_priv(ndev);
1637        struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638        unsigned char *iap, tmpaddr[ETH_ALEN];
1639        int ret;
1640
1641        /*
1642         * try to get mac address in following order:
1643         *
1644         * 1) module parameter via kernel command line in form
1645         *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1646         */
1647        iap = macaddr;
1648
1649        /*
1650         * 2) from device tree data
1651         */
1652        if (!is_valid_ether_addr(iap)) {
1653                struct device_node *np = fep->pdev->dev.of_node;
1654                if (np) {
1655                        ret = of_get_mac_address(np, tmpaddr);
1656                        if (!ret)
1657                                iap = tmpaddr;
1658                }
1659        }
1660
1661        /*
1662         * 3) from flash or fuse (via platform data)
1663         */
1664        if (!is_valid_ether_addr(iap)) {
1665#ifdef CONFIG_M5272
1666                if (FEC_FLASHMAC)
1667                        iap = (unsigned char *)FEC_FLASHMAC;
1668#else
1669                if (pdata)
1670                        iap = (unsigned char *)&pdata->mac;
1671#endif
1672        }
1673
1674        /*
1675         * 4) FEC mac registers set by bootloader
1676         */
1677        if (!is_valid_ether_addr(iap)) {
1678                *((__be32 *) &tmpaddr[0]) =
1679                        cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1680                *((__be16 *) &tmpaddr[4]) =
1681                        cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1682                iap = &tmpaddr[0];
1683        }
1684
1685        /*
1686         * 5) random mac address
1687         */
1688        if (!is_valid_ether_addr(iap)) {
1689                /* Report it and use a random ethernet address instead */
1690                netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1691                eth_hw_addr_random(ndev);
1692                netdev_info(ndev, "Using random MAC address: %pM\n",
1693                            ndev->dev_addr);
1694                return;
1695        }
1696
1697        memcpy(ndev->dev_addr, iap, ETH_ALEN);
1698
1699        /* Adjust MAC if using macaddr */
1700        if (iap == macaddr)
1701                 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1702}
1703
1704/* ------------------------------------------------------------------------- */
1705
1706/*
1707 * Phy section
1708 */
1709static void fec_enet_adjust_link(struct net_device *ndev)
1710{
1711        struct fec_enet_private *fep = netdev_priv(ndev);
1712        struct phy_device *phy_dev = ndev->phydev;
1713        int status_change = 0;
1714
1715        /* Prevent a state halted on mii error */
1716        if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1717                phy_dev->state = PHY_RESUMING;
1718                return;
1719        }
1720
1721        /*
1722         * If the netdev is down, or is going down, we're not interested
1723         * in link state events, so just mark our idea of the link as down
1724         * and ignore the event.
1725         */
1726        if (!netif_running(ndev) || !netif_device_present(ndev)) {
1727                fep->link = 0;
1728        } else if (phy_dev->link) {
1729                if (!fep->link) {
1730                        fep->link = phy_dev->link;
1731                        status_change = 1;
1732                }
1733
1734                if (fep->full_duplex != phy_dev->duplex) {
1735                        fep->full_duplex = phy_dev->duplex;
1736                        status_change = 1;
1737                }
1738
1739                if (phy_dev->speed != fep->speed) {
1740                        fep->speed = phy_dev->speed;
1741                        status_change = 1;
1742                }
1743
1744                /* if any of the above changed restart the FEC */
1745                if (status_change) {
1746                        napi_disable(&fep->napi);
1747                        netif_tx_lock_bh(ndev);
1748                        fec_restart(ndev);
1749                        netif_wake_queue(ndev);
1750                        netif_tx_unlock_bh(ndev);
1751                        napi_enable(&fep->napi);
1752                }
1753        } else {
1754                if (fep->link) {
1755                        napi_disable(&fep->napi);
1756                        netif_tx_lock_bh(ndev);
1757                        fec_stop(ndev);
1758                        netif_tx_unlock_bh(ndev);
1759                        napi_enable(&fep->napi);
1760                        fep->link = phy_dev->link;
1761                        status_change = 1;
1762                }
1763        }
1764
1765        if (status_change)
1766                phy_print_status(phy_dev);
1767}
1768
1769static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1770{
1771        struct fec_enet_private *fep = bus->priv;
1772        struct device *dev = &fep->pdev->dev;
1773        unsigned long time_left;
1774        int ret = 0;
1775
1776        ret = pm_runtime_get_sync(dev);
1777        if (ret < 0)
1778                return ret;
1779
1780        fep->mii_timeout = 0;
1781        reinit_completion(&fep->mdio_done);
1782
1783        /* start a read op */
1784        writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1785                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1786                FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1787
1788        /* wait for end of transfer */
1789        time_left = wait_for_completion_timeout(&fep->mdio_done,
1790                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1791        if (time_left == 0) {
1792                fep->mii_timeout = 1;
1793                netdev_err(fep->netdev, "MDIO read timeout\n");
1794                ret = -ETIMEDOUT;
1795                goto out;
1796        }
1797
1798        ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1799
1800out:
1801        pm_runtime_mark_last_busy(dev);
1802        pm_runtime_put_autosuspend(dev);
1803
1804        return ret;
1805}
1806
1807static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1808                           u16 value)
1809{
1810        struct fec_enet_private *fep = bus->priv;
1811        struct device *dev = &fep->pdev->dev;
1812        unsigned long time_left;
1813        int ret;
1814
1815        ret = pm_runtime_get_sync(dev);
1816        if (ret < 0)
1817                return ret;
1818        else
1819                ret = 0;
1820
1821        fep->mii_timeout = 0;
1822        reinit_completion(&fep->mdio_done);
1823
1824        /* start a write op */
1825        writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1826                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1827                FEC_MMFR_TA | FEC_MMFR_DATA(value),
1828                fep->hwp + FEC_MII_DATA);
1829
1830        /* wait for end of transfer */
1831        time_left = wait_for_completion_timeout(&fep->mdio_done,
1832                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1833        if (time_left == 0) {
1834                fep->mii_timeout = 1;
1835                netdev_err(fep->netdev, "MDIO write timeout\n");
1836                ret  = -ETIMEDOUT;
1837        }
1838
1839        pm_runtime_mark_last_busy(dev);
1840        pm_runtime_put_autosuspend(dev);
1841
1842        return ret;
1843}
1844
1845static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1846{
1847        struct fec_enet_private *fep = netdev_priv(ndev);
1848        int ret;
1849
1850        if (enable) {
1851                ret = clk_prepare_enable(fep->clk_ahb);
1852                if (ret)
1853                        return ret;
1854
1855                ret = clk_prepare_enable(fep->clk_enet_out);
1856                if (ret)
1857                        goto failed_clk_enet_out;
1858
1859                if (fep->clk_ptp) {
1860                        mutex_lock(&fep->ptp_clk_mutex);
1861                        ret = clk_prepare_enable(fep->clk_ptp);
1862                        if (ret) {
1863                                mutex_unlock(&fep->ptp_clk_mutex);
1864                                goto failed_clk_ptp;
1865                        } else {
1866                                fep->ptp_clk_on = true;
1867                        }
1868                        mutex_unlock(&fep->ptp_clk_mutex);
1869                }
1870
1871                ret = clk_prepare_enable(fep->clk_ref);
1872                if (ret)
1873                        goto failed_clk_ref;
1874
1875                phy_reset_after_clk_enable(ndev->phydev);
1876        } else {
1877                clk_disable_unprepare(fep->clk_ahb);
1878                clk_disable_unprepare(fep->clk_enet_out);
1879                if (fep->clk_ptp) {
1880                        mutex_lock(&fep->ptp_clk_mutex);
1881                        clk_disable_unprepare(fep->clk_ptp);
1882                        fep->ptp_clk_on = false;
1883                        mutex_unlock(&fep->ptp_clk_mutex);
1884                }
1885                clk_disable_unprepare(fep->clk_ref);
1886        }
1887
1888        return 0;
1889
1890failed_clk_ref:
1891        if (fep->clk_ref)
1892                clk_disable_unprepare(fep->clk_ref);
1893failed_clk_ptp:
1894        if (fep->clk_enet_out)
1895                clk_disable_unprepare(fep->clk_enet_out);
1896failed_clk_enet_out:
1897                clk_disable_unprepare(fep->clk_ahb);
1898
1899        return ret;
1900}
1901
1902static int fec_enet_mii_probe(struct net_device *ndev)
1903{
1904        struct fec_enet_private *fep = netdev_priv(ndev);
1905        struct phy_device *phy_dev = NULL;
1906        char mdio_bus_id[MII_BUS_ID_SIZE];
1907        char phy_name[MII_BUS_ID_SIZE + 3];
1908        int phy_id;
1909        int dev_id = fep->dev_id;
1910
1911        if (fep->phy_node) {
1912                phy_dev = of_phy_connect(ndev, fep->phy_node,
1913                                         &fec_enet_adjust_link, 0,
1914                                         fep->phy_interface);
1915                if (!phy_dev) {
1916                        netdev_err(ndev, "Unable to connect to phy\n");
1917                        return -ENODEV;
1918                }
1919        } else {
1920                /* check for attached phy */
1921                for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1922                        if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1923                                continue;
1924                        if (dev_id--)
1925                                continue;
1926                        strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1927                        break;
1928                }
1929
1930                if (phy_id >= PHY_MAX_ADDR) {
1931                        netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1932                        strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1933                        phy_id = 0;
1934                }
1935
1936                snprintf(phy_name, sizeof(phy_name),
1937                         PHY_ID_FMT, mdio_bus_id, phy_id);
1938                phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1939                                      fep->phy_interface);
1940        }
1941
1942        if (IS_ERR(phy_dev)) {
1943                netdev_err(ndev, "could not attach to PHY\n");
1944                return PTR_ERR(phy_dev);
1945        }
1946
1947        /* mask with MAC supported features */
1948        if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1949                phy_set_max_speed(phy_dev, 1000);
1950                phy_remove_link_mode(phy_dev,
1951                                     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1952#if !defined(CONFIG_M5272)
1953                phy_support_sym_pause(phy_dev);
1954#endif
1955        }
1956        else
1957                phy_set_max_speed(phy_dev, 100);
1958
1959        fep->link = 0;
1960        fep->full_duplex = 0;
1961
1962        phy_attached_info(phy_dev);
1963
1964        return 0;
1965}
1966
1967static int fec_enet_mii_init(struct platform_device *pdev)
1968{
1969        static struct mii_bus *fec0_mii_bus;
1970        struct net_device *ndev = platform_get_drvdata(pdev);
1971        struct fec_enet_private *fep = netdev_priv(ndev);
1972        struct device_node *node;
1973        int err = -ENXIO;
1974        u32 mii_speed, holdtime;
1975
1976        /*
1977         * The i.MX28 dual fec interfaces are not equal.
1978         * Here are the differences:
1979         *
1980         *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1981         *  - fec0 acts as the 1588 time master while fec1 is slave
1982         *  - external phys can only be configured by fec0
1983         *
1984         * That is to say fec1 can not work independently. It only works
1985         * when fec0 is working. The reason behind this design is that the
1986         * second interface is added primarily for Switch mode.
1987         *
1988         * Because of the last point above, both phys are attached on fec0
1989         * mdio interface in board design, and need to be configured by
1990         * fec0 mii_bus.
1991         */
1992        if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993                /* fec1 uses fec0 mii_bus */
1994                if (mii_cnt && fec0_mii_bus) {
1995                        fep->mii_bus = fec0_mii_bus;
1996                        mii_cnt++;
1997                        return 0;
1998                }
1999                return -ENOENT;
2000        }
2001
2002        fep->mii_timeout = 0;
2003
2004        /*
2005         * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006         *
2007         * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008         * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2009         * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010         * document.
2011         */
2012        mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013        if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014                mii_speed--;
2015        if (mii_speed > 63) {
2016                dev_err(&pdev->dev,
2017                        "fec clock (%lu) too fast to get right mii speed\n",
2018                        clk_get_rate(fep->clk_ipg));
2019                err = -EINVAL;
2020                goto err_out;
2021        }
2022
2023        /*
2024         * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025         * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026         * versions are RAZ there, so just ignore the difference and write the
2027         * register always.
2028         * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029         * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030         * output.
2031         * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032         * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033         * holdtime cannot result in a value greater than 3.
2034         */
2035        holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036
2037        fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038
2039        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040
2041        fep->mii_bus = mdiobus_alloc();
2042        if (fep->mii_bus == NULL) {
2043                err = -ENOMEM;
2044                goto err_out;
2045        }
2046
2047        fep->mii_bus->name = "fec_enet_mii_bus";
2048        fep->mii_bus->read = fec_enet_mdio_read;
2049        fep->mii_bus->write = fec_enet_mdio_write;
2050        snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051                pdev->name, fep->dev_id + 1);
2052        fep->mii_bus->priv = fep;
2053        fep->mii_bus->parent = &pdev->dev;
2054
2055        node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056        err = of_mdiobus_register(fep->mii_bus, node);
2057        if (node)
2058                of_node_put(node);
2059        if (err)
2060                goto err_out_free_mdiobus;
2061
2062        mii_cnt++;
2063
2064        /* save fec0 mii_bus */
2065        if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2066                fec0_mii_bus = fep->mii_bus;
2067
2068        return 0;
2069
2070err_out_free_mdiobus:
2071        mdiobus_free(fep->mii_bus);
2072err_out:
2073        return err;
2074}
2075
2076static void fec_enet_mii_remove(struct fec_enet_private *fep)
2077{
2078        if (--mii_cnt == 0) {
2079                mdiobus_unregister(fep->mii_bus);
2080                mdiobus_free(fep->mii_bus);
2081        }
2082}
2083
2084static void fec_enet_get_drvinfo(struct net_device *ndev,
2085                                 struct ethtool_drvinfo *info)
2086{
2087        struct fec_enet_private *fep = netdev_priv(ndev);
2088
2089        strlcpy(info->driver, fep->pdev->dev.driver->name,
2090                sizeof(info->driver));
2091        strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2092        strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2093}
2094
2095static int fec_enet_get_regs_len(struct net_device *ndev)
2096{
2097        struct fec_enet_private *fep = netdev_priv(ndev);
2098        struct resource *r;
2099        int s = 0;
2100
2101        r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2102        if (r)
2103                s = resource_size(r);
2104
2105        return s;
2106}
2107
2108/* List of registers that can be safety be read to dump them with ethtool */
2109#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2110        defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2111        defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2112static u32 fec_enet_register_offset[] = {
2113        FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2114        FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2115        FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2116        FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2117        FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2118        FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2119        FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2120        FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2121        FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2122        FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2123        FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2124        FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2125        RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2126        RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2127        RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2128        RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2129        RMON_T_P_GTE2048, RMON_T_OCTETS,
2130        IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2131        IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2132        IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2133        RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2134        RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2135        RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2136        RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2137        RMON_R_P_GTE2048, RMON_R_OCTETS,
2138        IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2139        IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2140};
2141#else
2142static u32 fec_enet_register_offset[] = {
2143        FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2144        FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2145        FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2146        FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2147        FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2148        FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2149        FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2150        FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2151        FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2152};
2153#endif
2154
2155static void fec_enet_get_regs(struct net_device *ndev,
2156                              struct ethtool_regs *regs, void *regbuf)
2157{
2158        struct fec_enet_private *fep = netdev_priv(ndev);
2159        u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2160        u32 *buf = (u32 *)regbuf;
2161        u32 i, off;
2162
2163        memset(buf, 0, regs->len);
2164
2165        for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2166                off = fec_enet_register_offset[i] / 4;
2167                buf[off] = readl(&theregs[off]);
2168        }
2169}
2170
2171static int fec_enet_get_ts_info(struct net_device *ndev,
2172                                struct ethtool_ts_info *info)
2173{
2174        struct fec_enet_private *fep = netdev_priv(ndev);
2175
2176        if (fep->bufdesc_ex) {
2177
2178                info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2179                                        SOF_TIMESTAMPING_RX_SOFTWARE |
2180                                        SOF_TIMESTAMPING_SOFTWARE |
2181                                        SOF_TIMESTAMPING_TX_HARDWARE |
2182                                        SOF_TIMESTAMPING_RX_HARDWARE |
2183                                        SOF_TIMESTAMPING_RAW_HARDWARE;
2184                if (fep->ptp_clock)
2185                        info->phc_index = ptp_clock_index(fep->ptp_clock);
2186                else
2187                        info->phc_index = -1;
2188
2189                info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2190                                 (1 << HWTSTAMP_TX_ON);
2191
2192                info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2193                                   (1 << HWTSTAMP_FILTER_ALL);
2194                return 0;
2195        } else {
2196                return ethtool_op_get_ts_info(ndev, info);
2197        }
2198}
2199
2200#if !defined(CONFIG_M5272)
2201
2202static void fec_enet_get_pauseparam(struct net_device *ndev,
2203                                    struct ethtool_pauseparam *pause)
2204{
2205        struct fec_enet_private *fep = netdev_priv(ndev);
2206
2207        pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2208        pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2209        pause->rx_pause = pause->tx_pause;
2210}
2211
2212static int fec_enet_set_pauseparam(struct net_device *ndev,
2213                                   struct ethtool_pauseparam *pause)
2214{
2215        struct fec_enet_private *fep = netdev_priv(ndev);
2216
2217        if (!ndev->phydev)
2218                return -ENODEV;
2219
2220        if (pause->tx_pause != pause->rx_pause) {
2221                netdev_info(ndev,
2222                        "hardware only support enable/disable both tx and rx");
2223                return -EINVAL;
2224        }
2225
2226        fep->pause_flag = 0;
2227
2228        /* tx pause must be same as rx pause */
2229        fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2230        fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2231
2232        phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2233                          pause->autoneg);
2234
2235        if (pause->autoneg) {
2236                if (netif_running(ndev))
2237                        fec_stop(ndev);
2238                phy_start_aneg(ndev->phydev);
2239        }
2240        if (netif_running(ndev)) {
2241                napi_disable(&fep->napi);
2242                netif_tx_lock_bh(ndev);
2243                fec_restart(ndev);
2244                netif_wake_queue(ndev);
2245                netif_tx_unlock_bh(ndev);
2246                napi_enable(&fep->napi);
2247        }
2248
2249        return 0;
2250}
2251
2252static const struct fec_stat {
2253        char name[ETH_GSTRING_LEN];
2254        u16 offset;
2255} fec_stats[] = {
2256        /* RMON TX */
2257        { "tx_dropped", RMON_T_DROP },
2258        { "tx_packets", RMON_T_PACKETS },
2259        { "tx_broadcast", RMON_T_BC_PKT },
2260        { "tx_multicast", RMON_T_MC_PKT },
2261        { "tx_crc_errors", RMON_T_CRC_ALIGN },
2262        { "tx_undersize", RMON_T_UNDERSIZE },
2263        { "tx_oversize", RMON_T_OVERSIZE },
2264        { "tx_fragment", RMON_T_FRAG },
2265        { "tx_jabber", RMON_T_JAB },
2266        { "tx_collision", RMON_T_COL },
2267        { "tx_64byte", RMON_T_P64 },
2268        { "tx_65to127byte", RMON_T_P65TO127 },
2269        { "tx_128to255byte", RMON_T_P128TO255 },
2270        { "tx_256to511byte", RMON_T_P256TO511 },
2271        { "tx_512to1023byte", RMON_T_P512TO1023 },
2272        { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2273        { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2274        { "tx_octets", RMON_T_OCTETS },
2275
2276        /* IEEE TX */
2277        { "IEEE_tx_drop", IEEE_T_DROP },
2278        { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2279        { "IEEE_tx_1col", IEEE_T_1COL },
2280        { "IEEE_tx_mcol", IEEE_T_MCOL },
2281        { "IEEE_tx_def", IEEE_T_DEF },
2282        { "IEEE_tx_lcol", IEEE_T_LCOL },
2283        { "IEEE_tx_excol", IEEE_T_EXCOL },
2284        { "IEEE_tx_macerr", IEEE_T_MACERR },
2285        { "IEEE_tx_cserr", IEEE_T_CSERR },
2286        { "IEEE_tx_sqe", IEEE_T_SQE },
2287        { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2288        { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2289
2290        /* RMON RX */
2291        { "rx_packets", RMON_R_PACKETS },
2292        { "rx_broadcast", RMON_R_BC_PKT },
2293        { "rx_multicast", RMON_R_MC_PKT },
2294        { "rx_crc_errors", RMON_R_CRC_ALIGN },
2295        { "rx_undersize", RMON_R_UNDERSIZE },
2296        { "rx_oversize", RMON_R_OVERSIZE },
2297        { "rx_fragment", RMON_R_FRAG },
2298        { "rx_jabber", RMON_R_JAB },
2299        { "rx_64byte", RMON_R_P64 },
2300        { "rx_65to127byte", RMON_R_P65TO127 },
2301        { "rx_128to255byte", RMON_R_P128TO255 },
2302        { "rx_256to511byte", RMON_R_P256TO511 },
2303        { "rx_512to1023byte", RMON_R_P512TO1023 },
2304        { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2305        { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2306        { "rx_octets", RMON_R_OCTETS },
2307
2308        /* IEEE RX */
2309        { "IEEE_rx_drop", IEEE_R_DROP },
2310        { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2311        { "IEEE_rx_crc", IEEE_R_CRC },
2312        { "IEEE_rx_align", IEEE_R_ALIGN },
2313        { "IEEE_rx_macerr", IEEE_R_MACERR },
2314        { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2315        { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2316};
2317
2318#define FEC_STATS_SIZE          (ARRAY_SIZE(fec_stats) * sizeof(u64))
2319
2320static void fec_enet_update_ethtool_stats(struct net_device *dev)
2321{
2322        struct fec_enet_private *fep = netdev_priv(dev);
2323        int i;
2324
2325        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2326                fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2327}
2328
2329static void fec_enet_get_ethtool_stats(struct net_device *dev,
2330                                       struct ethtool_stats *stats, u64 *data)
2331{
2332        struct fec_enet_private *fep = netdev_priv(dev);
2333
2334        if (netif_running(dev))
2335                fec_enet_update_ethtool_stats(dev);
2336
2337        memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2338}
2339
2340static void fec_enet_get_strings(struct net_device *netdev,
2341        u32 stringset, u8 *data)
2342{
2343        int i;
2344        switch (stringset) {
2345        case ETH_SS_STATS:
2346                for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2347                        memcpy(data + i * ETH_GSTRING_LEN,
2348                                fec_stats[i].name, ETH_GSTRING_LEN);
2349                break;
2350        }
2351}
2352
2353static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2354{
2355        switch (sset) {
2356        case ETH_SS_STATS:
2357                return ARRAY_SIZE(fec_stats);
2358        default:
2359                return -EOPNOTSUPP;
2360        }
2361}
2362
2363static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2364{
2365        struct fec_enet_private *fep = netdev_priv(dev);
2366        int i;
2367
2368        /* Disable MIB statistics counters */
2369        writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2370
2371        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2372                writel(0, fep->hwp + fec_stats[i].offset);
2373
2374        /* Don't disable MIB statistics counters */
2375        writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2376}
2377
2378#else   /* !defined(CONFIG_M5272) */
2379#define FEC_STATS_SIZE  0
2380static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2381{
2382}
2383
2384static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2385{
2386}
2387#endif /* !defined(CONFIG_M5272) */
2388
2389/* ITR clock source is enet system clock (clk_ahb).
2390 * TCTT unit is cycle_ns * 64 cycle
2391 * So, the ICTT value = X us / (cycle_ns * 64)
2392 */
2393static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2394{
2395        struct fec_enet_private *fep = netdev_priv(ndev);
2396
2397        return us * (fep->itr_clk_rate / 64000) / 1000;
2398}
2399
2400/* Set threshold for interrupt coalescing */
2401static void fec_enet_itr_coal_set(struct net_device *ndev)
2402{
2403        struct fec_enet_private *fep = netdev_priv(ndev);
2404        int rx_itr, tx_itr;
2405
2406        /* Must be greater than zero to avoid unpredictable behavior */
2407        if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2408            !fep->tx_time_itr || !fep->tx_pkts_itr)
2409                return;
2410
2411        /* Select enet system clock as Interrupt Coalescing
2412         * timer Clock Source
2413         */
2414        rx_itr = FEC_ITR_CLK_SEL;
2415        tx_itr = FEC_ITR_CLK_SEL;
2416
2417        /* set ICFT and ICTT */
2418        rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2419        rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2420        tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2421        tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2422
2423        rx_itr |= FEC_ITR_EN;
2424        tx_itr |= FEC_ITR_EN;
2425
2426        writel(tx_itr, fep->hwp + FEC_TXIC0);
2427        writel(rx_itr, fep->hwp + FEC_RXIC0);
2428        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2429                writel(tx_itr, fep->hwp + FEC_TXIC1);
2430                writel(rx_itr, fep->hwp + FEC_RXIC1);
2431                writel(tx_itr, fep->hwp + FEC_TXIC2);
2432                writel(rx_itr, fep->hwp + FEC_RXIC2);
2433        }
2434}
2435
2436static int fec_enet_get_coalesce(struct net_device *ndev,
2437                                 struct ethtool_coalesce *ec,
2438                                 struct kernel_ethtool_coalesce *kernel_coal,
2439                                 struct netlink_ext_ack *extack)
2440{
2441        struct fec_enet_private *fep = netdev_priv(ndev);
2442
2443        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2444                return -EOPNOTSUPP;
2445
2446        ec->rx_coalesce_usecs = fep->rx_time_itr;
2447        ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2448
2449        ec->tx_coalesce_usecs = fep->tx_time_itr;
2450        ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2451
2452        return 0;
2453}
2454
2455static int fec_enet_set_coalesce(struct net_device *ndev,
2456                                 struct ethtool_coalesce *ec,
2457                                 struct kernel_ethtool_coalesce *kernel_coal,
2458                                 struct netlink_ext_ack *extack)
2459{
2460        struct fec_enet_private *fep = netdev_priv(ndev);
2461        unsigned int cycle;
2462
2463        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2464                return -EOPNOTSUPP;
2465
2466        if (ec->rx_max_coalesced_frames > 255) {
2467                pr_err("Rx coalesced frames exceed hardware limitation\n");
2468                return -EINVAL;
2469        }
2470
2471        if (ec->tx_max_coalesced_frames > 255) {
2472                pr_err("Tx coalesced frame exceed hardware limitation\n");
2473                return -EINVAL;
2474        }
2475
2476        cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2477        if (cycle > 0xFFFF) {
2478                pr_err("Rx coalesced usec exceed hardware limitation\n");
2479                return -EINVAL;
2480        }
2481
2482        cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2483        if (cycle > 0xFFFF) {
2484                pr_err("Rx coalesced usec exceed hardware limitation\n");
2485                return -EINVAL;
2486        }
2487
2488        fep->rx_time_itr = ec->rx_coalesce_usecs;
2489        fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2490
2491        fep->tx_time_itr = ec->tx_coalesce_usecs;
2492        fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2493
2494        fec_enet_itr_coal_set(ndev);
2495
2496        return 0;
2497}
2498
2499static void fec_enet_itr_coal_init(struct net_device *ndev)
2500{
2501        struct ethtool_coalesce ec;
2502
2503        ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2504        ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2505
2506        ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2507        ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2508
2509        fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2510}
2511
2512static int fec_enet_get_tunable(struct net_device *netdev,
2513                                const struct ethtool_tunable *tuna,
2514                                void *data)
2515{
2516        struct fec_enet_private *fep = netdev_priv(netdev);
2517        int ret = 0;
2518
2519        switch (tuna->id) {
2520        case ETHTOOL_RX_COPYBREAK:
2521                *(u32 *)data = fep->rx_copybreak;
2522                break;
2523        default:
2524                ret = -EINVAL;
2525                break;
2526        }
2527
2528        return ret;
2529}
2530
2531static int fec_enet_set_tunable(struct net_device *netdev,
2532                                const struct ethtool_tunable *tuna,
2533                                const void *data)
2534{
2535        struct fec_enet_private *fep = netdev_priv(netdev);
2536        int ret = 0;
2537
2538        switch (tuna->id) {
2539        case ETHTOOL_RX_COPYBREAK:
2540                fep->rx_copybreak = *(u32 *)data;
2541                break;
2542        default:
2543                ret = -EINVAL;
2544                break;
2545        }
2546
2547        return ret;
2548}
2549
2550static void
2551fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2552{
2553        struct fec_enet_private *fep = netdev_priv(ndev);
2554
2555        if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2556                wol->supported = WAKE_MAGIC;
2557                wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2558        } else {
2559                wol->supported = wol->wolopts = 0;
2560        }
2561}
2562
2563static int
2564fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2565{
2566        struct fec_enet_private *fep = netdev_priv(ndev);
2567
2568        if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2569                return -EINVAL;
2570
2571        if (wol->wolopts & ~WAKE_MAGIC)
2572                return -EINVAL;
2573
2574        device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2575        if (device_may_wakeup(&ndev->dev)) {
2576                fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2577                if (fep->irq[0] > 0)
2578                        enable_irq_wake(fep->irq[0]);
2579        } else {
2580                fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2581                if (fep->irq[0] > 0)
2582                        disable_irq_wake(fep->irq[0]);
2583        }
2584
2585        return 0;
2586}
2587
2588static const struct ethtool_ops fec_enet_ethtool_ops = {
2589        .get_drvinfo            = fec_enet_get_drvinfo,
2590        .get_regs_len           = fec_enet_get_regs_len,
2591        .get_regs               = fec_enet_get_regs,
2592        .nway_reset             = phy_ethtool_nway_reset,
2593        .get_link               = ethtool_op_get_link,
2594        .get_coalesce           = fec_enet_get_coalesce,
2595        .set_coalesce           = fec_enet_set_coalesce,
2596#ifndef CONFIG_M5272
2597        .get_pauseparam         = fec_enet_get_pauseparam,
2598        .set_pauseparam         = fec_enet_set_pauseparam,
2599        .get_strings            = fec_enet_get_strings,
2600        .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2601        .get_sset_count         = fec_enet_get_sset_count,
2602#endif
2603        .get_ts_info            = fec_enet_get_ts_info,
2604        .get_tunable            = fec_enet_get_tunable,
2605        .set_tunable            = fec_enet_set_tunable,
2606        .get_wol                = fec_enet_get_wol,
2607        .set_wol                = fec_enet_set_wol,
2608        .get_link_ksettings     = phy_ethtool_get_link_ksettings,
2609        .set_link_ksettings     = phy_ethtool_set_link_ksettings,
2610};
2611
2612static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2613{
2614        struct fec_enet_private *fep = netdev_priv(ndev);
2615        struct phy_device *phydev = ndev->phydev;
2616
2617        if (!netif_running(ndev))
2618                return -EINVAL;
2619
2620        if (!phydev)
2621                return -ENODEV;
2622
2623        if (fep->bufdesc_ex) {
2624                if (cmd == SIOCSHWTSTAMP)
2625                        return fec_ptp_set(ndev, rq);
2626                if (cmd == SIOCGHWTSTAMP)
2627                        return fec_ptp_get(ndev, rq);
2628        }
2629
2630        return phy_mii_ioctl(phydev, rq, cmd);
2631}
2632
2633static void fec_enet_free_buffers(struct net_device *ndev)
2634{
2635        struct fec_enet_private *fep = netdev_priv(ndev);
2636        unsigned int i;
2637        struct sk_buff *skb;
2638        struct bufdesc  *bdp;
2639        struct fec_enet_priv_tx_q *txq;
2640        struct fec_enet_priv_rx_q *rxq;
2641        unsigned int q;
2642
2643        for (q = 0; q < fep->num_rx_queues; q++) {
2644                rxq = fep->rx_queue[q];
2645                bdp = rxq->bd.base;
2646                for (i = 0; i < rxq->bd.ring_size; i++) {
2647                        skb = rxq->rx_skbuff[i];
2648                        rxq->rx_skbuff[i] = NULL;
2649                        if (skb) {
2650                                dma_unmap_single(&fep->pdev->dev,
2651                                                 fec32_to_cpu(bdp->cbd_bufaddr),
2652                                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
2653                                                 DMA_FROM_DEVICE);
2654                                dev_kfree_skb(skb);
2655                        }
2656                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2657                }
2658        }
2659
2660        for (q = 0; q < fep->num_tx_queues; q++) {
2661                txq = fep->tx_queue[q];
2662                bdp = txq->bd.base;
2663                for (i = 0; i < txq->bd.ring_size; i++) {
2664                        kfree(txq->tx_bounce[i]);
2665                        txq->tx_bounce[i] = NULL;
2666                        skb = txq->tx_skbuff[i];
2667                        txq->tx_skbuff[i] = NULL;
2668                        dev_kfree_skb(skb);
2669                }
2670        }
2671}
2672
2673static void fec_enet_free_queue(struct net_device *ndev)
2674{
2675        struct fec_enet_private *fep = netdev_priv(ndev);
2676        int i;
2677        struct fec_enet_priv_tx_q *txq;
2678
2679        for (i = 0; i < fep->num_tx_queues; i++)
2680                if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2681                        txq = fep->tx_queue[i];
2682                        dma_free_coherent(&fep->pdev->dev,
2683                                          txq->bd.ring_size * TSO_HEADER_SIZE,
2684                                          txq->tso_hdrs,
2685                                          txq->tso_hdrs_dma);
2686                }
2687
2688        for (i = 0; i < fep->num_rx_queues; i++)
2689                kfree(fep->rx_queue[i]);
2690        for (i = 0; i < fep->num_tx_queues; i++)
2691                kfree(fep->tx_queue[i]);
2692}
2693
2694static int fec_enet_alloc_queue(struct net_device *ndev)
2695{
2696        struct fec_enet_private *fep = netdev_priv(ndev);
2697        int i;
2698        int ret = 0;
2699        struct fec_enet_priv_tx_q *txq;
2700
2701        for (i = 0; i < fep->num_tx_queues; i++) {
2702                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2703                if (!txq) {
2704                        ret = -ENOMEM;
2705                        goto alloc_failed;
2706                }
2707
2708                fep->tx_queue[i] = txq;
2709                txq->bd.ring_size = TX_RING_SIZE;
2710                fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2711
2712                txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2713                txq->tx_wake_threshold =
2714                        (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2715
2716                txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2717                                        txq->bd.ring_size * TSO_HEADER_SIZE,
2718                                        &txq->tso_hdrs_dma,
2719                                        GFP_KERNEL);
2720                if (!txq->tso_hdrs) {
2721                        ret = -ENOMEM;
2722                        goto alloc_failed;
2723                }
2724        }
2725
2726        for (i = 0; i < fep->num_rx_queues; i++) {
2727                fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2728                                           GFP_KERNEL);
2729                if (!fep->rx_queue[i]) {
2730                        ret = -ENOMEM;
2731                        goto alloc_failed;
2732                }
2733
2734                fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2735                fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2736        }
2737        return ret;
2738
2739alloc_failed:
2740        fec_enet_free_queue(ndev);
2741        return ret;
2742}
2743
2744static int
2745fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2746{
2747        struct fec_enet_private *fep = netdev_priv(ndev);
2748        unsigned int i;
2749        struct sk_buff *skb;
2750        struct bufdesc  *bdp;
2751        struct fec_enet_priv_rx_q *rxq;
2752
2753        rxq = fep->rx_queue[queue];
2754        bdp = rxq->bd.base;
2755        for (i = 0; i < rxq->bd.ring_size; i++) {
2756                skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2757                if (!skb)
2758                        goto err_alloc;
2759
2760                if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2761                        dev_kfree_skb(skb);
2762                        goto err_alloc;
2763                }
2764
2765                rxq->rx_skbuff[i] = skb;
2766                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2767
2768                if (fep->bufdesc_ex) {
2769                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2770                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2771                }
2772
2773                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2774        }
2775
2776        /* Set the last buffer to wrap. */
2777        bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2778        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2779        return 0;
2780
2781 err_alloc:
2782        fec_enet_free_buffers(ndev);
2783        return -ENOMEM;
2784}
2785
2786static int
2787fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2788{
2789        struct fec_enet_private *fep = netdev_priv(ndev);
2790        unsigned int i;
2791        struct bufdesc  *bdp;
2792        struct fec_enet_priv_tx_q *txq;
2793
2794        txq = fep->tx_queue[queue];
2795        bdp = txq->bd.base;
2796        for (i = 0; i < txq->bd.ring_size; i++) {
2797                txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2798                if (!txq->tx_bounce[i])
2799                        goto err_alloc;
2800
2801                bdp->cbd_sc = cpu_to_fec16(0);
2802                bdp->cbd_bufaddr = cpu_to_fec32(0);
2803
2804                if (fep->bufdesc_ex) {
2805                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2806                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2807                }
2808
2809                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2810        }
2811
2812        /* Set the last buffer to wrap. */
2813        bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2814        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2815
2816        return 0;
2817
2818 err_alloc:
2819        fec_enet_free_buffers(ndev);
2820        return -ENOMEM;
2821}
2822
2823static int fec_enet_alloc_buffers(struct net_device *ndev)
2824{
2825        struct fec_enet_private *fep = netdev_priv(ndev);
2826        unsigned int i;
2827
2828        for (i = 0; i < fep->num_rx_queues; i++)
2829                if (fec_enet_alloc_rxq_buffers(ndev, i))
2830                        return -ENOMEM;
2831
2832        for (i = 0; i < fep->num_tx_queues; i++)
2833                if (fec_enet_alloc_txq_buffers(ndev, i))
2834                        return -ENOMEM;
2835        return 0;
2836}
2837
2838static int
2839fec_enet_open(struct net_device *ndev)
2840{
2841        struct fec_enet_private *fep = netdev_priv(ndev);
2842        int ret;
2843        bool reset_again;
2844
2845        ret = pm_runtime_get_sync(&fep->pdev->dev);
2846        if (ret < 0)
2847                return ret;
2848
2849        pinctrl_pm_select_default_state(&fep->pdev->dev);
2850        ret = fec_enet_clk_enable(ndev, true);
2851        if (ret)
2852                goto clk_enable;
2853
2854        /* During the first fec_enet_open call the PHY isn't probed at this
2855         * point. Therefore the phy_reset_after_clk_enable() call within
2856         * fec_enet_clk_enable() fails. As we need this reset in order to be
2857         * sure the PHY is working correctly we check if we need to reset again
2858         * later when the PHY is probed
2859         */
2860        if (ndev->phydev && ndev->phydev->drv)
2861                reset_again = false;
2862        else
2863                reset_again = true;
2864
2865        /* I should reset the ring buffers here, but I don't yet know
2866         * a simple way to do that.
2867         */
2868
2869        ret = fec_enet_alloc_buffers(ndev);
2870        if (ret)
2871                goto err_enet_alloc;
2872
2873        /* Init MAC prior to mii bus probe */
2874        fec_restart(ndev);
2875
2876        /* Probe and connect to PHY when open the interface */
2877        ret = fec_enet_mii_probe(ndev);
2878        if (ret)
2879                goto err_enet_mii_probe;
2880
2881        /* Call phy_reset_after_clk_enable() again if it failed during
2882         * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2883         */
2884        if (reset_again)
2885                phy_reset_after_clk_enable(ndev->phydev);
2886
2887        if (fep->quirks & FEC_QUIRK_ERR006687)
2888                imx6q_cpuidle_fec_irqs_used();
2889
2890        napi_enable(&fep->napi);
2891        phy_start(ndev->phydev);
2892        netif_tx_start_all_queues(ndev);
2893
2894        device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2895                                 FEC_WOL_FLAG_ENABLE);
2896
2897        return 0;
2898
2899err_enet_mii_probe:
2900        fec_enet_free_buffers(ndev);
2901err_enet_alloc:
2902        fec_enet_clk_enable(ndev, false);
2903clk_enable:
2904        pm_runtime_mark_last_busy(&fep->pdev->dev);
2905        pm_runtime_put_autosuspend(&fep->pdev->dev);
2906        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2907        return ret;
2908}
2909
2910static int
2911fec_enet_close(struct net_device *ndev)
2912{
2913        struct fec_enet_private *fep = netdev_priv(ndev);
2914
2915        phy_stop(ndev->phydev);
2916
2917        if (netif_device_present(ndev)) {
2918                napi_disable(&fep->napi);
2919                netif_tx_disable(ndev);
2920                fec_stop(ndev);
2921        }
2922
2923        phy_disconnect(ndev->phydev);
2924
2925        if (fep->quirks & FEC_QUIRK_ERR006687)
2926                imx6q_cpuidle_fec_irqs_unused();
2927
2928        fec_enet_update_ethtool_stats(ndev);
2929
2930        fec_enet_clk_enable(ndev, false);
2931        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2932        pm_runtime_mark_last_busy(&fep->pdev->dev);
2933        pm_runtime_put_autosuspend(&fep->pdev->dev);
2934
2935        fec_enet_free_buffers(ndev);
2936
2937        return 0;
2938}
2939
2940/* Set or clear the multicast filter for this adaptor.
2941 * Skeleton taken from sunlance driver.
2942 * The CPM Ethernet implementation allows Multicast as well as individual
2943 * MAC address filtering.  Some of the drivers check to make sure it is
2944 * a group multicast address, and discard those that are not.  I guess I
2945 * will do the same for now, but just remove the test if you want
2946 * individual filtering as well (do the upper net layers want or support
2947 * this kind of feature?).
2948 */
2949
2950#define FEC_HASH_BITS   6               /* #bits in hash */
2951#define CRC32_POLY      0xEDB88320
2952
2953static void set_multicast_list(struct net_device *ndev)
2954{
2955        struct fec_enet_private *fep = netdev_priv(ndev);
2956        struct netdev_hw_addr *ha;
2957        unsigned int i, bit, data, crc, tmp;
2958        unsigned char hash;
2959        unsigned int hash_high = 0, hash_low = 0;
2960
2961        if (ndev->flags & IFF_PROMISC) {
2962                tmp = readl(fep->hwp + FEC_R_CNTRL);
2963                tmp |= 0x8;
2964                writel(tmp, fep->hwp + FEC_R_CNTRL);
2965                return;
2966        }
2967
2968        tmp = readl(fep->hwp + FEC_R_CNTRL);
2969        tmp &= ~0x8;
2970        writel(tmp, fep->hwp + FEC_R_CNTRL);
2971
2972        if (ndev->flags & IFF_ALLMULTI) {
2973                /* Catch all multicast addresses, so set the
2974                 * filter to all 1's
2975                 */
2976                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2977                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2978
2979                return;
2980        }
2981
2982        /* Add the addresses in hash register */
2983        netdev_for_each_mc_addr(ha, ndev) {
2984                /* calculate crc32 value of mac address */
2985                crc = 0xffffffff;
2986
2987                for (i = 0; i < ndev->addr_len; i++) {
2988                        data = ha->addr[i];
2989                        for (bit = 0; bit < 8; bit++, data >>= 1) {
2990                                crc = (crc >> 1) ^
2991                                (((crc ^ data) & 1) ? CRC32_POLY : 0);
2992                        }
2993                }
2994
2995                /* only upper 6 bits (FEC_HASH_BITS) are used
2996                 * which point to specific bit in the hash registers
2997                 */
2998                hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2999
3000                if (hash > 31)
3001                        hash_high |= 1 << (hash - 32);
3002                else
3003                        hash_low |= 1 << hash;
3004        }
3005
3006        writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3007        writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3008}
3009
3010/* Set a MAC change in hardware. */
3011static int
3012fec_set_mac_address(struct net_device *ndev, void *p)
3013{
3014        struct fec_enet_private *fep = netdev_priv(ndev);
3015        struct sockaddr *addr = p;
3016
3017        if (addr) {
3018                if (!is_valid_ether_addr(addr->sa_data))
3019                        return -EADDRNOTAVAIL;
3020                memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3021        }
3022
3023        /* Add netif status check here to avoid system hang in below case:
3024         * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3025         * After ethx down, fec all clocks are gated off and then register
3026         * access causes system hang.
3027         */
3028        if (!netif_running(ndev))
3029                return 0;
3030
3031        writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3032                (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3033                fep->hwp + FEC_ADDR_LOW);
3034        writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3035                fep->hwp + FEC_ADDR_HIGH);
3036        return 0;
3037}
3038
3039#ifdef CONFIG_NET_POLL_CONTROLLER
3040/**
3041 * fec_poll_controller - FEC Poll controller function
3042 * @dev: The FEC network adapter
3043 *
3044 * Polled functionality used by netconsole and others in non interrupt mode
3045 *
3046 */
3047static void fec_poll_controller(struct net_device *dev)
3048{
3049        int i;
3050        struct fec_enet_private *fep = netdev_priv(dev);
3051
3052        for (i = 0; i < FEC_IRQ_NUM; i++) {
3053                if (fep->irq[i] > 0) {
3054                        disable_irq(fep->irq[i]);
3055                        fec_enet_interrupt(fep->irq[i], dev);
3056                        enable_irq(fep->irq[i]);
3057                }
3058        }
3059}
3060#endif
3061
3062static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3063        netdev_features_t features)
3064{
3065        struct fec_enet_private *fep = netdev_priv(netdev);
3066        netdev_features_t changed = features ^ netdev->features;
3067
3068        netdev->features = features;
3069
3070        /* Receive checksum has been changed */
3071        if (changed & NETIF_F_RXCSUM) {
3072                if (features & NETIF_F_RXCSUM)
3073                        fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3074                else
3075                        fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3076        }
3077}
3078
3079static int fec_set_features(struct net_device *netdev,
3080        netdev_features_t features)
3081{
3082        struct fec_enet_private *fep = netdev_priv(netdev);
3083        netdev_features_t changed = features ^ netdev->features;
3084
3085        if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3086                napi_disable(&fep->napi);
3087                netif_tx_lock_bh(netdev);
3088                fec_stop(netdev);
3089                fec_enet_set_netdev_features(netdev, features);
3090                fec_restart(netdev);
3091                netif_tx_wake_all_queues(netdev);
3092                netif_tx_unlock_bh(netdev);
3093                napi_enable(&fep->napi);
3094        } else {
3095                fec_enet_set_netdev_features(netdev, features);
3096        }
3097
3098        return 0;
3099}
3100
3101static const struct net_device_ops fec_netdev_ops = {
3102        .ndo_open               = fec_enet_open,
3103        .ndo_stop               = fec_enet_close,
3104        .ndo_start_xmit         = fec_enet_start_xmit,
3105        .ndo_set_rx_mode        = set_multicast_list,
3106        .ndo_validate_addr      = eth_validate_addr,
3107        .ndo_tx_timeout         = fec_timeout,
3108        .ndo_set_mac_address    = fec_set_mac_address,
3109        .ndo_do_ioctl           = fec_enet_ioctl,
3110#ifdef CONFIG_NET_POLL_CONTROLLER
3111        .ndo_poll_controller    = fec_poll_controller,
3112#endif
3113        .ndo_set_features       = fec_set_features,
3114};
3115
3116static const unsigned short offset_des_active_rxq[] = {
3117        FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3118};
3119
3120static const unsigned short offset_des_active_txq[] = {
3121        FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3122};
3123
3124 /*
3125  * XXX:  We need to clean up on failure exits here.
3126  *
3127  */
3128static int fec_enet_init(struct net_device *ndev)
3129{
3130        struct fec_enet_private *fep = netdev_priv(ndev);
3131        struct bufdesc *cbd_base;
3132        dma_addr_t bd_dma;
3133        int bd_size;
3134        unsigned int i;
3135        unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3136                        sizeof(struct bufdesc);
3137        unsigned dsize_log2 = __fls(dsize);
3138
3139        WARN_ON(dsize != (1 << dsize_log2));
3140#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3141        fep->rx_align = 0xf;
3142        fep->tx_align = 0xf;
3143#else
3144        fep->rx_align = 0x3;
3145        fep->tx_align = 0x3;
3146#endif
3147
3148        fec_enet_alloc_queue(ndev);
3149
3150        bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3151
3152        /* Allocate memory for buffer descriptors. */
3153        cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3154                                       GFP_KERNEL);
3155        if (!cbd_base) {
3156                return -ENOMEM;
3157        }
3158
3159        memset(cbd_base, 0, bd_size);
3160
3161        /* Get the Ethernet address */
3162        fec_get_mac(ndev);
3163        /* make sure MAC we just acquired is programmed into the hw */
3164        fec_set_mac_address(ndev, NULL);
3165
3166        /* Set receive and transmit descriptor base. */
3167        for (i = 0; i < fep->num_rx_queues; i++) {
3168                struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3169                unsigned size = dsize * rxq->bd.ring_size;
3170
3171                rxq->bd.qid = i;
3172                rxq->bd.base = cbd_base;
3173                rxq->bd.cur = cbd_base;
3174                rxq->bd.dma = bd_dma;
3175                rxq->bd.dsize = dsize;
3176                rxq->bd.dsize_log2 = dsize_log2;
3177                rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3178                bd_dma += size;
3179                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3180                rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3181        }
3182
3183        for (i = 0; i < fep->num_tx_queues; i++) {
3184                struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3185                unsigned size = dsize * txq->bd.ring_size;
3186
3187                txq->bd.qid = i;
3188                txq->bd.base = cbd_base;
3189                txq->bd.cur = cbd_base;
3190                txq->bd.dma = bd_dma;
3191                txq->bd.dsize = dsize;
3192                txq->bd.dsize_log2 = dsize_log2;
3193                txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3194                bd_dma += size;
3195                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3196                txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3197        }
3198
3199
3200        /* The FEC Ethernet specific entries in the device structure */
3201        ndev->watchdog_timeo = TX_TIMEOUT;
3202        ndev->netdev_ops = &fec_netdev_ops;
3203        ndev->ethtool_ops = &fec_enet_ethtool_ops;
3204
3205        writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3206        netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3207
3208        if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3209                /* enable hw VLAN support */
3210                ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3211
3212        if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3213                ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3214
3215                /* enable hw accelerator */
3216                ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3217                                | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3218                fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3219        }
3220
3221        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3222                fep->tx_align = 0;
3223                fep->rx_align = 0x3f;
3224        }
3225
3226        ndev->hw_features = ndev->features;
3227
3228        fec_restart(ndev);
3229
3230        if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3231                fec_enet_clear_ethtool_stats(ndev);
3232        else
3233                fec_enet_update_ethtool_stats(ndev);
3234
3235        return 0;
3236}
3237
3238#ifdef CONFIG_OF
3239static int fec_reset_phy(struct platform_device *pdev)
3240{
3241        int err, phy_reset;
3242        bool active_high = false;
3243        int msec = 1, phy_post_delay = 0;
3244        struct device_node *np = pdev->dev.of_node;
3245
3246        if (!np)
3247                return 0;
3248
3249        err = of_property_read_u32(np, "phy-reset-duration", &msec);
3250        /* A sane reset duration should not be longer than 1s */
3251        if (!err && msec > 1000)
3252                msec = 1;
3253
3254        phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3255        if (phy_reset == -EPROBE_DEFER)
3256                return phy_reset;
3257        else if (!gpio_is_valid(phy_reset))
3258                return 0;
3259
3260        err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3261        /* valid reset duration should be less than 1s */
3262        if (!err && phy_post_delay > 1000)
3263                return -EINVAL;
3264
3265        active_high = of_property_read_bool(np, "phy-reset-active-high");
3266
3267        err = devm_gpio_request_one(&pdev->dev, phy_reset,
3268                        active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3269                        "phy-reset");
3270        if (err) {
3271                dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3272                return err;
3273        }
3274
3275        if (msec > 20)
3276                msleep(msec);
3277        else
3278                usleep_range(msec * 1000, msec * 1000 + 1000);
3279
3280        gpio_set_value_cansleep(phy_reset, !active_high);
3281
3282        if (!phy_post_delay)
3283                return 0;
3284
3285        if (phy_post_delay > 20)
3286                msleep(phy_post_delay);
3287        else
3288                usleep_range(phy_post_delay * 1000,
3289                             phy_post_delay * 1000 + 1000);
3290
3291        return 0;
3292}
3293#else /* CONFIG_OF */
3294static int fec_reset_phy(struct platform_device *pdev)
3295{
3296        /*
3297         * In case of platform probe, the reset has been done
3298         * by machine code.
3299         */
3300        return 0;
3301}
3302#endif /* CONFIG_OF */
3303
3304static void
3305fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3306{
3307        struct device_node *np = pdev->dev.of_node;
3308
3309        *num_tx = *num_rx = 1;
3310
3311        if (!np || !of_device_is_available(np))
3312                return;
3313
3314        /* parse the num of tx and rx queues */
3315        of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3316
3317        of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3318
3319        if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3320                dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3321                         *num_tx);
3322                *num_tx = 1;
3323                return;
3324        }
3325
3326        if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3327                dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3328                         *num_rx);
3329                *num_rx = 1;
3330                return;
3331        }
3332
3333}
3334
3335static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3336{
3337        int irq_cnt = platform_irq_count(pdev);
3338
3339        if (irq_cnt > FEC_IRQ_NUM)
3340                irq_cnt = FEC_IRQ_NUM;  /* last for pps */
3341        else if (irq_cnt == 2)
3342                irq_cnt = 1;    /* last for pps */
3343        else if (irq_cnt <= 0)
3344                irq_cnt = 1;    /* At least 1 irq is needed */
3345        return irq_cnt;
3346}
3347
3348static int
3349fec_probe(struct platform_device *pdev)
3350{
3351        struct fec_enet_private *fep;
3352        struct fec_platform_data *pdata;
3353        struct net_device *ndev;
3354        int i, irq, ret = 0;
3355        struct resource *r;
3356        const struct of_device_id *of_id;
3357        static int dev_id;
3358        struct device_node *np = pdev->dev.of_node, *phy_node;
3359        int num_tx_qs;
3360        int num_rx_qs;
3361        char irq_name[8];
3362        int irq_cnt;
3363
3364        fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3365
3366        /* Init network device */
3367        ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3368                                  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3369        if (!ndev)
3370                return -ENOMEM;
3371
3372        SET_NETDEV_DEV(ndev, &pdev->dev);
3373
3374        /* setup board info structure */
3375        fep = netdev_priv(ndev);
3376
3377        of_id = of_match_device(fec_dt_ids, &pdev->dev);
3378        if (of_id)
3379                pdev->id_entry = of_id->data;
3380        fep->quirks = pdev->id_entry->driver_data;
3381
3382        fep->netdev = ndev;
3383        fep->num_rx_queues = num_rx_qs;
3384        fep->num_tx_queues = num_tx_qs;
3385
3386#if !defined(CONFIG_M5272)
3387        /* default enable pause frame auto negotiation */
3388        if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3389                fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3390#endif
3391
3392        /* Select default pin state */
3393        pinctrl_pm_select_default_state(&pdev->dev);
3394
3395        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3396        fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3397        if (IS_ERR(fep->hwp)) {
3398                ret = PTR_ERR(fep->hwp);
3399                goto failed_ioremap;
3400        }
3401
3402        fep->pdev = pdev;
3403        fep->dev_id = dev_id++;
3404
3405        platform_set_drvdata(pdev, ndev);
3406
3407        if ((of_machine_is_compatible("fsl,imx6q") ||
3408             of_machine_is_compatible("fsl,imx6dl")) &&
3409            !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3410                fep->quirks |= FEC_QUIRK_ERR006687;
3411
3412        if (of_get_property(np, "fsl,magic-packet", NULL))
3413                fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3414
3415        phy_node = of_parse_phandle(np, "phy-handle", 0);
3416        if (!phy_node && of_phy_is_fixed_link(np)) {
3417                ret = of_phy_register_fixed_link(np);
3418                if (ret < 0) {
3419                        dev_err(&pdev->dev,
3420                                "broken fixed-link specification\n");
3421                        goto failed_phy;
3422                }
3423                phy_node = of_node_get(np);
3424        }
3425        fep->phy_node = phy_node;
3426
3427        ret = of_get_phy_mode(pdev->dev.of_node);
3428        if (ret < 0) {
3429                pdata = dev_get_platdata(&pdev->dev);
3430                if (pdata)
3431                        fep->phy_interface = pdata->phy;
3432                else
3433                        fep->phy_interface = PHY_INTERFACE_MODE_MII;
3434        } else {
3435                fep->phy_interface = ret;
3436        }
3437
3438        fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3439        if (IS_ERR(fep->clk_ipg)) {
3440                ret = PTR_ERR(fep->clk_ipg);
3441                goto failed_clk;
3442        }
3443
3444        fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3445        if (IS_ERR(fep->clk_ahb)) {
3446                ret = PTR_ERR(fep->clk_ahb);
3447                goto failed_clk;
3448        }
3449
3450        fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3451
3452        /* enet_out is optional, depends on board */
3453        fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3454        if (IS_ERR(fep->clk_enet_out))
3455                fep->clk_enet_out = NULL;
3456
3457        fep->ptp_clk_on = false;
3458        mutex_init(&fep->ptp_clk_mutex);
3459
3460        /* clk_ref is optional, depends on board */
3461        fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3462        if (IS_ERR(fep->clk_ref))
3463                fep->clk_ref = NULL;
3464
3465        fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3466        fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3467        if (IS_ERR(fep->clk_ptp)) {
3468                fep->clk_ptp = NULL;
3469                fep->bufdesc_ex = false;
3470        }
3471
3472        ret = fec_enet_clk_enable(ndev, true);
3473        if (ret)
3474                goto failed_clk;
3475
3476        ret = clk_prepare_enable(fep->clk_ipg);
3477        if (ret)
3478                goto failed_clk_ipg;
3479
3480        fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3481        if (!IS_ERR(fep->reg_phy)) {
3482                ret = regulator_enable(fep->reg_phy);
3483                if (ret) {
3484                        dev_err(&pdev->dev,
3485                                "Failed to enable phy regulator: %d\n", ret);
3486                        clk_disable_unprepare(fep->clk_ipg);
3487                        goto failed_regulator;
3488                }
3489        } else {
3490                if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3491                        ret = -EPROBE_DEFER;
3492                        goto failed_regulator;
3493                }
3494                fep->reg_phy = NULL;
3495        }
3496
3497        pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3498        pm_runtime_use_autosuspend(&pdev->dev);
3499        pm_runtime_get_noresume(&pdev->dev);
3500        pm_runtime_set_active(&pdev->dev);
3501        pm_runtime_enable(&pdev->dev);
3502
3503        ret = fec_reset_phy(pdev);
3504        if (ret)
3505                goto failed_reset;
3506
3507        irq_cnt = fec_enet_get_irq_cnt(pdev);
3508        if (fep->bufdesc_ex)
3509                fec_ptp_init(pdev, irq_cnt);
3510
3511        ret = fec_enet_init(ndev);
3512        if (ret)
3513                goto failed_init;
3514
3515        for (i = 0; i < irq_cnt; i++) {
3516                snprintf(irq_name, sizeof(irq_name), "int%d", i);
3517                irq = platform_get_irq_byname(pdev, irq_name);
3518                if (irq < 0)
3519                        irq = platform_get_irq(pdev, i);
3520                if (irq < 0) {
3521                        ret = irq;
3522                        goto failed_irq;
3523                }
3524                ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3525                                       0, pdev->name, ndev);
3526                if (ret)
3527                        goto failed_irq;
3528
3529                fep->irq[i] = irq;
3530        }
3531
3532        init_completion(&fep->mdio_done);
3533        ret = fec_enet_mii_init(pdev);
3534        if (ret)
3535                goto failed_mii_init;
3536
3537        /* Carrier starts down, phylib will bring it up */
3538        netif_carrier_off(ndev);
3539        fec_enet_clk_enable(ndev, false);
3540        pinctrl_pm_select_sleep_state(&pdev->dev);
3541
3542        ret = register_netdev(ndev);
3543        if (ret)
3544                goto failed_register;
3545
3546        device_init_wakeup(&ndev->dev, fep->wol_flag &
3547                           FEC_WOL_HAS_MAGIC_PACKET);
3548
3549        if (fep->bufdesc_ex && fep->ptp_clock)
3550                netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3551
3552        fep->rx_copybreak = COPYBREAK_DEFAULT;
3553        INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3554
3555        pm_runtime_mark_last_busy(&pdev->dev);
3556        pm_runtime_put_autosuspend(&pdev->dev);
3557
3558        return 0;
3559
3560failed_register:
3561        fec_enet_mii_remove(fep);
3562failed_mii_init:
3563failed_irq:
3564failed_init:
3565        fec_ptp_stop(pdev);
3566        if (fep->reg_phy)
3567                regulator_disable(fep->reg_phy);
3568failed_reset:
3569        pm_runtime_put(&pdev->dev);
3570        pm_runtime_disable(&pdev->dev);
3571failed_regulator:
3572failed_clk_ipg:
3573        fec_enet_clk_enable(ndev, false);
3574failed_clk:
3575        if (of_phy_is_fixed_link(np))
3576                of_phy_deregister_fixed_link(np);
3577        of_node_put(phy_node);
3578failed_phy:
3579        dev_id--;
3580failed_ioremap:
3581        free_netdev(ndev);
3582
3583        return ret;
3584}
3585
3586static int
3587fec_drv_remove(struct platform_device *pdev)
3588{
3589        struct net_device *ndev = platform_get_drvdata(pdev);
3590        struct fec_enet_private *fep = netdev_priv(ndev);
3591        struct device_node *np = pdev->dev.of_node;
3592
3593        cancel_work_sync(&fep->tx_timeout_work);
3594        fec_ptp_stop(pdev);
3595        unregister_netdev(ndev);
3596        fec_enet_mii_remove(fep);
3597        if (fep->reg_phy)
3598                regulator_disable(fep->reg_phy);
3599        pm_runtime_put(&pdev->dev);
3600        pm_runtime_disable(&pdev->dev);
3601        if (of_phy_is_fixed_link(np))
3602                of_phy_deregister_fixed_link(np);
3603        of_node_put(fep->phy_node);
3604        free_netdev(ndev);
3605
3606        return 0;
3607}
3608
3609static int __maybe_unused fec_suspend(struct device *dev)
3610{
3611        struct net_device *ndev = dev_get_drvdata(dev);
3612        struct fec_enet_private *fep = netdev_priv(ndev);
3613
3614        rtnl_lock();
3615        if (netif_running(ndev)) {
3616                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3617                        fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3618                phy_stop(ndev->phydev);
3619                napi_disable(&fep->napi);
3620                netif_tx_lock_bh(ndev);
3621                netif_device_detach(ndev);
3622                netif_tx_unlock_bh(ndev);
3623                fec_stop(ndev);
3624                fec_enet_clk_enable(ndev, false);
3625                if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3626                        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3627        }
3628        rtnl_unlock();
3629
3630        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3631                regulator_disable(fep->reg_phy);
3632
3633        /* SOC supply clock to phy, when clock is disabled, phy link down
3634         * SOC control phy regulator, when regulator is disabled, phy link down
3635         */
3636        if (fep->clk_enet_out || fep->reg_phy)
3637                fep->link = 0;
3638
3639        return 0;
3640}
3641
3642static int __maybe_unused fec_resume(struct device *dev)
3643{
3644        struct net_device *ndev = dev_get_drvdata(dev);
3645        struct fec_enet_private *fep = netdev_priv(ndev);
3646        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3647        int ret;
3648        int val;
3649
3650        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3651                ret = regulator_enable(fep->reg_phy);
3652                if (ret)
3653                        return ret;
3654        }
3655
3656        rtnl_lock();
3657        if (netif_running(ndev)) {
3658                ret = fec_enet_clk_enable(ndev, true);
3659                if (ret) {
3660                        rtnl_unlock();
3661                        goto failed_clk;
3662                }
3663                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3664                        if (pdata && pdata->sleep_mode_enable)
3665                                pdata->sleep_mode_enable(false);
3666                        val = readl(fep->hwp + FEC_ECNTRL);
3667                        val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3668                        writel(val, fep->hwp + FEC_ECNTRL);
3669                        fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3670                } else {
3671                        pinctrl_pm_select_default_state(&fep->pdev->dev);
3672                }
3673                fec_restart(ndev);
3674                netif_tx_lock_bh(ndev);
3675                netif_device_attach(ndev);
3676                netif_tx_unlock_bh(ndev);
3677                napi_enable(&fep->napi);
3678                phy_start(ndev->phydev);
3679        }
3680        rtnl_unlock();
3681
3682        return 0;
3683
3684failed_clk:
3685        if (fep->reg_phy)
3686                regulator_disable(fep->reg_phy);
3687        return ret;
3688}
3689
3690static int __maybe_unused fec_runtime_suspend(struct device *dev)
3691{
3692        struct net_device *ndev = dev_get_drvdata(dev);
3693        struct fec_enet_private *fep = netdev_priv(ndev);
3694
3695        clk_disable_unprepare(fep->clk_ipg);
3696
3697        return 0;
3698}
3699
3700static int __maybe_unused fec_runtime_resume(struct device *dev)
3701{
3702        struct net_device *ndev = dev_get_drvdata(dev);
3703        struct fec_enet_private *fep = netdev_priv(ndev);
3704
3705        return clk_prepare_enable(fep->clk_ipg);
3706}
3707
3708static const struct dev_pm_ops fec_pm_ops = {
3709        SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3710        SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3711};
3712
3713static struct platform_driver fec_driver = {
3714        .driver = {
3715                .name   = DRIVER_NAME,
3716                .pm     = &fec_pm_ops,
3717                .of_match_table = fec_dt_ids,
3718        },
3719        .id_table = fec_devtype,
3720        .probe  = fec_probe,
3721        .remove = fec_drv_remove,
3722};
3723
3724module_platform_driver(fec_driver);
3725
3726MODULE_ALIAS("platform:"DRIVER_NAME);
3727MODULE_LICENSE("GPL");
3728