linux/drivers/net/hyperv/netvsc_drv.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2009, Microsoft Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * Authors:
  17 *   Haiyang Zhang <haiyangz@microsoft.com>
  18 *   Hank Janssen  <hjanssen@microsoft.com>
  19 */
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/init.h>
  23#include <linux/atomic.h>
  24#include <linux/module.h>
  25#include <linux/highmem.h>
  26#include <linux/device.h>
  27#include <linux/io.h>
  28#include <linux/delay.h>
  29#include <linux/netdevice.h>
  30#include <linux/inetdevice.h>
  31#include <linux/etherdevice.h>
  32#include <linux/pci.h>
  33#include <linux/skbuff.h>
  34#include <linux/if_vlan.h>
  35#include <linux/in.h>
  36#include <linux/slab.h>
  37#include <linux/rtnetlink.h>
  38#include <linux/netpoll.h>
  39#include <linux/bpf.h>
  40
  41#include <net/arp.h>
  42#include <net/route.h>
  43#include <net/sock.h>
  44#include <net/pkt_sched.h>
  45#include <net/checksum.h>
  46#include <net/ip6_checksum.h>
  47
  48#include "hyperv_net.h"
  49
  50#define RING_SIZE_MIN   64
  51
  52#define LINKCHANGE_INT (2 * HZ)
  53#define VF_TAKEOVER_INT (HZ / 10)
  54
  55static unsigned int ring_size __ro_after_init = 128;
  56module_param(ring_size, uint, 0444);
  57MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  58unsigned int netvsc_ring_bytes __ro_after_init;
  59
  60static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  61                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  62                                NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  63                                NETIF_MSG_TX_ERR;
  64
  65static int debug = -1;
  66module_param(debug, int, 0444);
  67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  68
  69static LIST_HEAD(netvsc_dev_list);
  70
  71static void netvsc_change_rx_flags(struct net_device *net, int change)
  72{
  73        struct net_device_context *ndev_ctx = netdev_priv(net);
  74        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  75        int inc;
  76
  77        if (!vf_netdev)
  78                return;
  79
  80        if (change & IFF_PROMISC) {
  81                inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  82                dev_set_promiscuity(vf_netdev, inc);
  83        }
  84
  85        if (change & IFF_ALLMULTI) {
  86                inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  87                dev_set_allmulti(vf_netdev, inc);
  88        }
  89}
  90
  91static void netvsc_set_rx_mode(struct net_device *net)
  92{
  93        struct net_device_context *ndev_ctx = netdev_priv(net);
  94        struct net_device *vf_netdev;
  95        struct netvsc_device *nvdev;
  96
  97        rcu_read_lock();
  98        vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  99        if (vf_netdev) {
 100                dev_uc_sync(vf_netdev, net);
 101                dev_mc_sync(vf_netdev, net);
 102        }
 103
 104        nvdev = rcu_dereference(ndev_ctx->nvdev);
 105        if (nvdev)
 106                rndis_filter_update(nvdev);
 107        rcu_read_unlock();
 108}
 109
 110static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 111                             struct net_device *ndev)
 112{
 113        nvscdev->tx_disable = false;
 114        virt_wmb(); /* ensure queue wake up mechanism is on */
 115
 116        netif_tx_wake_all_queues(ndev);
 117}
 118
 119static int netvsc_open(struct net_device *net)
 120{
 121        struct net_device_context *ndev_ctx = netdev_priv(net);
 122        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 123        struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 124        struct rndis_device *rdev;
 125        int ret = 0;
 126
 127        netif_carrier_off(net);
 128
 129        /* Open up the device */
 130        ret = rndis_filter_open(nvdev);
 131        if (ret != 0) {
 132                netdev_err(net, "unable to open device (ret %d).\n", ret);
 133                return ret;
 134        }
 135
 136        rdev = nvdev->extension;
 137        if (!rdev->link_state) {
 138                netif_carrier_on(net);
 139                netvsc_tx_enable(nvdev, net);
 140        }
 141
 142        if (vf_netdev) {
 143                /* Setting synthetic device up transparently sets
 144                 * slave as up. If open fails, then slave will be
 145                 * still be offline (and not used).
 146                 */
 147                ret = dev_open(vf_netdev, NULL);
 148                if (ret)
 149                        netdev_warn(net,
 150                                    "unable to open slave: %s: %d\n",
 151                                    vf_netdev->name, ret);
 152        }
 153        return 0;
 154}
 155
 156static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 157{
 158        unsigned int retry = 0;
 159        int i;
 160
 161        /* Ensure pending bytes in ring are read */
 162        for (;;) {
 163                u32 aread = 0;
 164
 165                for (i = 0; i < nvdev->num_chn; i++) {
 166                        struct vmbus_channel *chn
 167                                = nvdev->chan_table[i].channel;
 168
 169                        if (!chn)
 170                                continue;
 171
 172                        /* make sure receive not running now */
 173                        napi_synchronize(&nvdev->chan_table[i].napi);
 174
 175                        aread = hv_get_bytes_to_read(&chn->inbound);
 176                        if (aread)
 177                                break;
 178
 179                        aread = hv_get_bytes_to_read(&chn->outbound);
 180                        if (aread)
 181                                break;
 182                }
 183
 184                if (aread == 0)
 185                        return 0;
 186
 187                if (++retry > RETRY_MAX)
 188                        return -ETIMEDOUT;
 189
 190                usleep_range(RETRY_US_LO, RETRY_US_HI);
 191        }
 192}
 193
 194static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 195                              struct net_device *ndev)
 196{
 197        if (nvscdev) {
 198                nvscdev->tx_disable = true;
 199                virt_wmb(); /* ensure txq will not wake up after stop */
 200        }
 201
 202        netif_tx_disable(ndev);
 203}
 204
 205static int netvsc_close(struct net_device *net)
 206{
 207        struct net_device_context *net_device_ctx = netdev_priv(net);
 208        struct net_device *vf_netdev
 209                = rtnl_dereference(net_device_ctx->vf_netdev);
 210        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 211        int ret;
 212
 213        netvsc_tx_disable(nvdev, net);
 214
 215        /* No need to close rndis filter if it is removed already */
 216        if (!nvdev)
 217                return 0;
 218
 219        ret = rndis_filter_close(nvdev);
 220        if (ret != 0) {
 221                netdev_err(net, "unable to close device (ret %d).\n", ret);
 222                return ret;
 223        }
 224
 225        ret = netvsc_wait_until_empty(nvdev);
 226        if (ret)
 227                netdev_err(net, "Ring buffer not empty after closing rndis\n");
 228
 229        if (vf_netdev)
 230                dev_close(vf_netdev);
 231
 232        return ret;
 233}
 234
 235static inline void *init_ppi_data(struct rndis_message *msg,
 236                                  u32 ppi_size, u32 pkt_type)
 237{
 238        struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 239        struct rndis_per_packet_info *ppi;
 240
 241        rndis_pkt->data_offset += ppi_size;
 242        ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 243                + rndis_pkt->per_pkt_info_len;
 244
 245        ppi->size = ppi_size;
 246        ppi->type = pkt_type;
 247        ppi->internal = 0;
 248        ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 249
 250        rndis_pkt->per_pkt_info_len += ppi_size;
 251
 252        return ppi + 1;
 253}
 254
 255/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 256 * packets. We can use ethtool to change UDP hash level when necessary.
 257 */
 258static inline u32 netvsc_get_hash(
 259        struct sk_buff *skb,
 260        const struct net_device_context *ndc)
 261{
 262        struct flow_keys flow;
 263        u32 hash, pkt_proto = 0;
 264        static u32 hashrnd __read_mostly;
 265
 266        net_get_random_once(&hashrnd, sizeof(hashrnd));
 267
 268        if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 269                return 0;
 270
 271        switch (flow.basic.ip_proto) {
 272        case IPPROTO_TCP:
 273                if (flow.basic.n_proto == htons(ETH_P_IP))
 274                        pkt_proto = HV_TCP4_L4HASH;
 275                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 276                        pkt_proto = HV_TCP6_L4HASH;
 277
 278                break;
 279
 280        case IPPROTO_UDP:
 281                if (flow.basic.n_proto == htons(ETH_P_IP))
 282                        pkt_proto = HV_UDP4_L4HASH;
 283                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 284                        pkt_proto = HV_UDP6_L4HASH;
 285
 286                break;
 287        }
 288
 289        if (pkt_proto & ndc->l4_hash) {
 290                return skb_get_hash(skb);
 291        } else {
 292                if (flow.basic.n_proto == htons(ETH_P_IP))
 293                        hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 294                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 295                        hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 296                else
 297                        return 0;
 298
 299                __skb_set_sw_hash(skb, hash, false);
 300        }
 301
 302        return hash;
 303}
 304
 305static inline int netvsc_get_tx_queue(struct net_device *ndev,
 306                                      struct sk_buff *skb, int old_idx)
 307{
 308        const struct net_device_context *ndc = netdev_priv(ndev);
 309        struct sock *sk = skb->sk;
 310        int q_idx;
 311
 312        q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 313                              (VRSS_SEND_TAB_SIZE - 1)];
 314
 315        /* If queue index changed record the new value */
 316        if (q_idx != old_idx &&
 317            sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 318                sk_tx_queue_set(sk, q_idx);
 319
 320        return q_idx;
 321}
 322
 323/*
 324 * Select queue for transmit.
 325 *
 326 * If a valid queue has already been assigned, then use that.
 327 * Otherwise compute tx queue based on hash and the send table.
 328 *
 329 * This is basically similar to default (__netdev_pick_tx) with the added step
 330 * of using the host send_table when no other queue has been assigned.
 331 *
 332 * TODO support XPS - but get_xps_queue not exported
 333 */
 334static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 335{
 336        int q_idx = sk_tx_queue_get(skb->sk);
 337
 338        if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 339                /* If forwarding a packet, we use the recorded queue when
 340                 * available for better cache locality.
 341                 */
 342                if (skb_rx_queue_recorded(skb))
 343                        q_idx = skb_get_rx_queue(skb);
 344                else
 345                        q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 346        }
 347
 348        return q_idx;
 349}
 350
 351static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 352                               struct net_device *sb_dev,
 353                               select_queue_fallback_t fallback)
 354{
 355        struct net_device_context *ndc = netdev_priv(ndev);
 356        struct net_device *vf_netdev;
 357        u16 txq;
 358
 359        rcu_read_lock();
 360        vf_netdev = rcu_dereference(ndc->vf_netdev);
 361        if (vf_netdev) {
 362                const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 363
 364                if (vf_ops->ndo_select_queue)
 365                        txq = vf_ops->ndo_select_queue(vf_netdev, skb,
 366                                                       sb_dev, fallback);
 367                else
 368                        txq = fallback(vf_netdev, skb, NULL);
 369
 370                /* Record the queue selected by VF so that it can be
 371                 * used for common case where VF has more queues than
 372                 * the synthetic device.
 373                 */
 374                qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 375        } else {
 376                txq = netvsc_pick_tx(ndev, skb);
 377        }
 378        rcu_read_unlock();
 379
 380        while (txq >= ndev->real_num_tx_queues)
 381                txq -= ndev->real_num_tx_queues;
 382
 383        return txq;
 384}
 385
 386static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 387                       struct hv_page_buffer *pb)
 388{
 389        int j = 0;
 390
 391        hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 392        offset = offset & ~HV_HYP_PAGE_MASK;
 393
 394        while (len > 0) {
 395                unsigned long bytes;
 396
 397                bytes = HV_HYP_PAGE_SIZE - offset;
 398                if (bytes > len)
 399                        bytes = len;
 400                pb[j].pfn = hvpfn;
 401                pb[j].offset = offset;
 402                pb[j].len = bytes;
 403
 404                offset += bytes;
 405                len -= bytes;
 406
 407                if (offset == HV_HYP_PAGE_SIZE && len) {
 408                        hvpfn++;
 409                        offset = 0;
 410                        j++;
 411                }
 412        }
 413
 414        return j + 1;
 415}
 416
 417static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 418                           struct hv_netvsc_packet *packet,
 419                           struct hv_page_buffer *pb)
 420{
 421        u32 slots_used = 0;
 422        char *data = skb->data;
 423        int frags = skb_shinfo(skb)->nr_frags;
 424        int i;
 425
 426        /* The packet is laid out thus:
 427         * 1. hdr: RNDIS header and PPI
 428         * 2. skb linear data
 429         * 3. skb fragment data
 430         */
 431        slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 432                                  offset_in_hvpage(hdr),
 433                                  len,
 434                                  &pb[slots_used]);
 435
 436        packet->rmsg_size = len;
 437        packet->rmsg_pgcnt = slots_used;
 438
 439        slots_used += fill_pg_buf(virt_to_hvpfn(data),
 440                                  offset_in_hvpage(data),
 441                                  skb_headlen(skb),
 442                                  &pb[slots_used]);
 443
 444        for (i = 0; i < frags; i++) {
 445                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 446
 447                slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 448                                          frag->page_offset,
 449                                          skb_frag_size(frag),
 450                                          &pb[slots_used]);
 451        }
 452        return slots_used;
 453}
 454
 455static int count_skb_frag_slots(struct sk_buff *skb)
 456{
 457        int i, frags = skb_shinfo(skb)->nr_frags;
 458        int pages = 0;
 459
 460        for (i = 0; i < frags; i++) {
 461                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 462                unsigned long size = skb_frag_size(frag);
 463                unsigned long offset = frag->page_offset;
 464
 465                /* Skip unused frames from start of page */
 466                offset &= ~HV_HYP_PAGE_MASK;
 467                pages += HVPFN_UP(offset + size);
 468        }
 469        return pages;
 470}
 471
 472static int netvsc_get_slots(struct sk_buff *skb)
 473{
 474        char *data = skb->data;
 475        unsigned int offset = offset_in_hvpage(data);
 476        unsigned int len = skb_headlen(skb);
 477        int slots;
 478        int frag_slots;
 479
 480        slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 481        frag_slots = count_skb_frag_slots(skb);
 482        return slots + frag_slots;
 483}
 484
 485static u32 net_checksum_info(struct sk_buff *skb)
 486{
 487        if (skb->protocol == htons(ETH_P_IP)) {
 488                struct iphdr *ip = ip_hdr(skb);
 489
 490                if (ip->protocol == IPPROTO_TCP)
 491                        return TRANSPORT_INFO_IPV4_TCP;
 492                else if (ip->protocol == IPPROTO_UDP)
 493                        return TRANSPORT_INFO_IPV4_UDP;
 494        } else {
 495                struct ipv6hdr *ip6 = ipv6_hdr(skb);
 496
 497                if (ip6->nexthdr == IPPROTO_TCP)
 498                        return TRANSPORT_INFO_IPV6_TCP;
 499                else if (ip6->nexthdr == IPPROTO_UDP)
 500                        return TRANSPORT_INFO_IPV6_UDP;
 501        }
 502
 503        return TRANSPORT_INFO_NOT_IP;
 504}
 505
 506/* Send skb on the slave VF device. */
 507static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 508                          struct sk_buff *skb)
 509{
 510        struct net_device_context *ndev_ctx = netdev_priv(net);
 511        unsigned int len = skb->len;
 512        int rc;
 513
 514        skb->dev = vf_netdev;
 515        skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 516
 517        rc = dev_queue_xmit(skb);
 518        if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 519                struct netvsc_vf_pcpu_stats *pcpu_stats
 520                        = this_cpu_ptr(ndev_ctx->vf_stats);
 521
 522                u64_stats_update_begin(&pcpu_stats->syncp);
 523                pcpu_stats->tx_packets++;
 524                pcpu_stats->tx_bytes += len;
 525                u64_stats_update_end(&pcpu_stats->syncp);
 526        } else {
 527                this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 528        }
 529
 530        return rc;
 531}
 532
 533static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 534{
 535        struct net_device_context *net_device_ctx = netdev_priv(net);
 536        struct hv_netvsc_packet *packet = NULL;
 537        int ret;
 538        unsigned int num_data_pgs;
 539        struct rndis_message *rndis_msg;
 540        struct net_device *vf_netdev;
 541        u32 rndis_msg_size;
 542        u32 hash;
 543        struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 544
 545        /* If VF is present and up then redirect packets to it.
 546         * Skip the VF if it is marked down or has no carrier.
 547         * If netpoll is in uses, then VF can not be used either.
 548         */
 549        vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 550        if (vf_netdev && netif_running(vf_netdev) &&
 551            netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 552            net_device_ctx->data_path_is_vf)
 553                return netvsc_vf_xmit(net, vf_netdev, skb);
 554
 555        /* We will atmost need two pages to describe the rndis
 556         * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 557         * of pages in a single packet. If skb is scattered around
 558         * more pages we try linearizing it.
 559         */
 560
 561        num_data_pgs = netvsc_get_slots(skb) + 2;
 562
 563        if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 564                ++net_device_ctx->eth_stats.tx_scattered;
 565
 566                if (skb_linearize(skb))
 567                        goto no_memory;
 568
 569                num_data_pgs = netvsc_get_slots(skb) + 2;
 570                if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 571                        ++net_device_ctx->eth_stats.tx_too_big;
 572                        goto drop;
 573                }
 574        }
 575
 576        /*
 577         * Place the rndis header in the skb head room and
 578         * the skb->cb will be used for hv_netvsc_packet
 579         * structure.
 580         */
 581        ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 582        if (ret)
 583                goto no_memory;
 584
 585        /* Use the skb control buffer for building up the packet */
 586        BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 587                        FIELD_SIZEOF(struct sk_buff, cb));
 588        packet = (struct hv_netvsc_packet *)skb->cb;
 589
 590        packet->q_idx = skb_get_queue_mapping(skb);
 591
 592        packet->total_data_buflen = skb->len;
 593        packet->total_bytes = skb->len;
 594        packet->total_packets = 1;
 595
 596        rndis_msg = (struct rndis_message *)skb->head;
 597
 598        /* Add the rndis header */
 599        rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 600        rndis_msg->msg_len = packet->total_data_buflen;
 601
 602        rndis_msg->msg.pkt = (struct rndis_packet) {
 603                .data_offset = sizeof(struct rndis_packet),
 604                .data_len = packet->total_data_buflen,
 605                .per_pkt_info_offset = sizeof(struct rndis_packet),
 606        };
 607
 608        rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 609
 610        hash = skb_get_hash_raw(skb);
 611        if (hash != 0 && net->real_num_tx_queues > 1) {
 612                u32 *hash_info;
 613
 614                rndis_msg_size += NDIS_HASH_PPI_SIZE;
 615                hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 616                                          NBL_HASH_VALUE);
 617                *hash_info = hash;
 618        }
 619
 620        /* When using AF_PACKET we need to drop VLAN header from
 621         * the frame and update the SKB to allow the HOST OS
 622         * to transmit the 802.1Q packet
 623         */
 624        if (skb->protocol == htons(ETH_P_8021Q)) {
 625                u16 vlan_tci;
 626
 627                skb_reset_mac_header(skb);
 628                if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 629                        if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 630                                ++net_device_ctx->eth_stats.vlan_error;
 631                                goto drop;
 632                        }
 633
 634                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 635                        /* Update the NDIS header pkt lengths */
 636                        packet->total_data_buflen -= VLAN_HLEN;
 637                        packet->total_bytes -= VLAN_HLEN;
 638                        rndis_msg->msg_len = packet->total_data_buflen;
 639                        rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 640                }
 641        }
 642
 643        if (skb_vlan_tag_present(skb)) {
 644                struct ndis_pkt_8021q_info *vlan;
 645
 646                rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 647                vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 648                                     IEEE_8021Q_INFO);
 649
 650                vlan->value = 0;
 651                vlan->vlanid = skb_vlan_tag_get_id(skb);
 652                vlan->cfi = skb_vlan_tag_get_cfi(skb);
 653                vlan->pri = skb_vlan_tag_get_prio(skb);
 654        }
 655
 656        if (skb_is_gso(skb)) {
 657                struct ndis_tcp_lso_info *lso_info;
 658
 659                rndis_msg_size += NDIS_LSO_PPI_SIZE;
 660                lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 661                                         TCP_LARGESEND_PKTINFO);
 662
 663                lso_info->value = 0;
 664                lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 665                if (skb->protocol == htons(ETH_P_IP)) {
 666                        lso_info->lso_v2_transmit.ip_version =
 667                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 668                        ip_hdr(skb)->tot_len = 0;
 669                        ip_hdr(skb)->check = 0;
 670                        tcp_hdr(skb)->check =
 671                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 672                                                   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 673                } else {
 674                        lso_info->lso_v2_transmit.ip_version =
 675                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 676                        tcp_v6_gso_csum_prep(skb);
 677                }
 678                lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 679                lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 680        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 681                if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 682                        struct ndis_tcp_ip_checksum_info *csum_info;
 683
 684                        rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 685                        csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 686                                                  TCPIP_CHKSUM_PKTINFO);
 687
 688                        csum_info->value = 0;
 689                        csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 690
 691                        if (skb->protocol == htons(ETH_P_IP)) {
 692                                csum_info->transmit.is_ipv4 = 1;
 693
 694                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 695                                        csum_info->transmit.tcp_checksum = 1;
 696                                else
 697                                        csum_info->transmit.udp_checksum = 1;
 698                        } else {
 699                                csum_info->transmit.is_ipv6 = 1;
 700
 701                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 702                                        csum_info->transmit.tcp_checksum = 1;
 703                                else
 704                                        csum_info->transmit.udp_checksum = 1;
 705                        }
 706                } else {
 707                        /* Can't do offload of this type of checksum */
 708                        if (skb_checksum_help(skb))
 709                                goto drop;
 710                }
 711        }
 712
 713        /* Start filling in the page buffers with the rndis hdr */
 714        rndis_msg->msg_len += rndis_msg_size;
 715        packet->total_data_buflen = rndis_msg->msg_len;
 716        packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 717                                               skb, packet, pb);
 718
 719        /* timestamp packet in software */
 720        skb_tx_timestamp(skb);
 721
 722        ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 723        if (likely(ret == 0))
 724                return NETDEV_TX_OK;
 725
 726        if (ret == -EAGAIN) {
 727                ++net_device_ctx->eth_stats.tx_busy;
 728                return NETDEV_TX_BUSY;
 729        }
 730
 731        if (ret == -ENOSPC)
 732                ++net_device_ctx->eth_stats.tx_no_space;
 733
 734drop:
 735        dev_kfree_skb_any(skb);
 736        net->stats.tx_dropped++;
 737
 738        return NETDEV_TX_OK;
 739
 740no_memory:
 741        ++net_device_ctx->eth_stats.tx_no_memory;
 742        goto drop;
 743}
 744
 745static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 746                                     struct net_device *ndev)
 747{
 748        return netvsc_xmit(skb, ndev, false);
 749}
 750
 751/*
 752 * netvsc_linkstatus_callback - Link up/down notification
 753 */
 754void netvsc_linkstatus_callback(struct net_device *net,
 755                                struct rndis_message *resp,
 756                                void *data, u32 data_buflen)
 757{
 758        struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 759        struct net_device_context *ndev_ctx = netdev_priv(net);
 760        struct netvsc_reconfig *event;
 761        unsigned long flags;
 762
 763        /* Ensure the packet is big enough to access its fields */
 764        if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 765                netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 766                           resp->msg_len);
 767                return;
 768        }
 769
 770        /* Copy the RNDIS indicate status into nvchan->recv_buf */
 771        memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 772
 773        /* Update the physical link speed when changing to another vSwitch */
 774        if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 775                u32 speed;
 776
 777                /* Validate status_buf_offset and status_buflen.
 778                 *
 779                 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 780                 * for the status buffer field in resp->msg_len; perform the validation
 781                 * using data_buflen (>= resp->msg_len).
 782                 */
 783                if (indicate->status_buflen < sizeof(speed) ||
 784                    indicate->status_buf_offset < sizeof(*indicate) ||
 785                    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 786                    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 787                                < indicate->status_buflen) {
 788                        netdev_err(net, "invalid rndis_indicate_status packet\n");
 789                        return;
 790                }
 791
 792                speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 793                ndev_ctx->speed = speed;
 794                return;
 795        }
 796
 797        /* Handle these link change statuses below */
 798        if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 799            indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 800            indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 801                return;
 802
 803        if (net->reg_state != NETREG_REGISTERED)
 804                return;
 805
 806        event = kzalloc(sizeof(*event), GFP_ATOMIC);
 807        if (!event)
 808                return;
 809        event->event = indicate->status;
 810
 811        spin_lock_irqsave(&ndev_ctx->lock, flags);
 812        list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 813        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 814
 815        schedule_delayed_work(&ndev_ctx->dwork, 0);
 816}
 817
 818/* This function should only be called after skb_record_rx_queue() */
 819static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 820{
 821        int rc;
 822
 823        skb->queue_mapping = skb_get_rx_queue(skb);
 824        __skb_push(skb, ETH_HLEN);
 825
 826        rc = netvsc_xmit(skb, ndev, true);
 827
 828        if (dev_xmit_complete(rc))
 829                return;
 830
 831        dev_kfree_skb_any(skb);
 832        ndev->stats.tx_dropped++;
 833}
 834
 835static void netvsc_comp_ipcsum(struct sk_buff *skb)
 836{
 837        struct iphdr *iph = (struct iphdr *)skb->data;
 838
 839        iph->check = 0;
 840        iph->check = ip_fast_csum(iph, iph->ihl);
 841}
 842
 843static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 844                                             struct netvsc_channel *nvchan,
 845                                             struct xdp_buff *xdp)
 846{
 847        struct napi_struct *napi = &nvchan->napi;
 848        const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 849        const struct ndis_tcp_ip_checksum_info *csum_info =
 850                                                &nvchan->rsc.csum_info;
 851        const u32 *hash_info = &nvchan->rsc.hash_info;
 852        u8 ppi_flags = nvchan->rsc.ppi_flags;
 853        struct sk_buff *skb;
 854        void *xbuf = xdp->data_hard_start;
 855        int i;
 856
 857        if (xbuf) {
 858                unsigned int hdroom = xdp->data - xdp->data_hard_start;
 859                unsigned int xlen = xdp->data_end - xdp->data;
 860                unsigned int frag_size = xdp->frame_sz;
 861
 862                skb = build_skb(xbuf, frag_size);
 863
 864                if (!skb) {
 865                        __free_page(virt_to_page(xbuf));
 866                        return NULL;
 867                }
 868
 869                skb_reserve(skb, hdroom);
 870                skb_put(skb, xlen);
 871                skb->dev = napi->dev;
 872        } else {
 873                skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 874
 875                if (!skb)
 876                        return NULL;
 877
 878                /* Copy to skb. This copy is needed here since the memory
 879                 * pointed by hv_netvsc_packet cannot be deallocated.
 880                 */
 881                for (i = 0; i < nvchan->rsc.cnt; i++)
 882                        skb_put_data(skb, nvchan->rsc.data[i],
 883                                     nvchan->rsc.len[i]);
 884        }
 885
 886        skb->protocol = eth_type_trans(skb, net);
 887
 888        /* skb is already created with CHECKSUM_NONE */
 889        skb_checksum_none_assert(skb);
 890
 891        /* Incoming packets may have IP header checksum verified by the host.
 892         * They may not have IP header checksum computed after coalescing.
 893         * We compute it here if the flags are set, because on Linux, the IP
 894         * checksum is always checked.
 895         */
 896        if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 897            csum_info->receive.ip_checksum_succeeded &&
 898            skb->protocol == htons(ETH_P_IP)) {
 899                /* Check that there is enough space to hold the IP header. */
 900                if (skb_headlen(skb) < sizeof(struct iphdr)) {
 901                        kfree_skb(skb);
 902                        return NULL;
 903                }
 904                netvsc_comp_ipcsum(skb);
 905        }
 906
 907        /* Do L4 checksum offload if enabled and present. */
 908        if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 909                if (csum_info->receive.tcp_checksum_succeeded ||
 910                    csum_info->receive.udp_checksum_succeeded)
 911                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 912        }
 913
 914        if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 915                skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 916
 917        if (ppi_flags & NVSC_RSC_VLAN) {
 918                u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 919                        (vlan->cfi ? VLAN_CFI_MASK : 0);
 920
 921                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 922                                       vlan_tci);
 923        }
 924
 925        return skb;
 926}
 927
 928/*
 929 * netvsc_recv_callback -  Callback when we receive a packet from the
 930 * "wire" on the specified device.
 931 */
 932int netvsc_recv_callback(struct net_device *net,
 933                         struct netvsc_device *net_device,
 934                         struct netvsc_channel *nvchan)
 935{
 936        struct net_device_context *net_device_ctx = netdev_priv(net);
 937        struct vmbus_channel *channel = nvchan->channel;
 938        u16 q_idx = channel->offermsg.offer.sub_channel_index;
 939        struct sk_buff *skb;
 940        struct netvsc_stats *rx_stats = &nvchan->rx_stats;
 941        struct xdp_buff xdp;
 942        u32 act;
 943
 944        if (net->reg_state != NETREG_REGISTERED)
 945                return NVSP_STAT_FAIL;
 946
 947        act = netvsc_run_xdp(net, nvchan, &xdp);
 948
 949        if (act != XDP_PASS && act != XDP_TX) {
 950                u64_stats_update_begin(&rx_stats->syncp);
 951                rx_stats->xdp_drop++;
 952                u64_stats_update_end(&rx_stats->syncp);
 953
 954                return NVSP_STAT_SUCCESS; /* consumed by XDP */
 955        }
 956
 957        /* Allocate a skb - TODO direct I/O to pages? */
 958        skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 959
 960        if (unlikely(!skb)) {
 961                ++net_device_ctx->eth_stats.rx_no_memory;
 962                return NVSP_STAT_FAIL;
 963        }
 964
 965        skb_record_rx_queue(skb, q_idx);
 966
 967        /*
 968         * Even if injecting the packet, record the statistics
 969         * on the synthetic device because modifying the VF device
 970         * statistics will not work correctly.
 971         */
 972        u64_stats_update_begin(&rx_stats->syncp);
 973        rx_stats->packets++;
 974        rx_stats->bytes += nvchan->rsc.pktlen;
 975
 976        if (skb->pkt_type == PACKET_BROADCAST)
 977                ++rx_stats->broadcast;
 978        else if (skb->pkt_type == PACKET_MULTICAST)
 979                ++rx_stats->multicast;
 980        u64_stats_update_end(&rx_stats->syncp);
 981
 982        if (act == XDP_TX) {
 983                netvsc_xdp_xmit(skb, net);
 984                return NVSP_STAT_SUCCESS;
 985        }
 986
 987        napi_gro_receive(&nvchan->napi, skb);
 988        return NVSP_STAT_SUCCESS;
 989}
 990
 991static void netvsc_get_drvinfo(struct net_device *net,
 992                               struct ethtool_drvinfo *info)
 993{
 994        strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 995        strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 996}
 997
 998static void netvsc_get_channels(struct net_device *net,
 999                                struct ethtool_channels *channel)
1000{
1001        struct net_device_context *net_device_ctx = netdev_priv(net);
1002        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1003
1004        if (nvdev) {
1005                channel->max_combined   = nvdev->max_chn;
1006                channel->combined_count = nvdev->num_chn;
1007        }
1008}
1009
1010/* Alloc struct netvsc_device_info, and initialize it from either existing
1011 * struct netvsc_device, or from default values.
1012 */
1013static
1014struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1015{
1016        struct netvsc_device_info *dev_info;
1017        struct bpf_prog *prog;
1018
1019        dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1020
1021        if (!dev_info)
1022                return NULL;
1023
1024        if (nvdev) {
1025                ASSERT_RTNL();
1026
1027                dev_info->num_chn = nvdev->num_chn;
1028                dev_info->send_sections = nvdev->send_section_cnt;
1029                dev_info->send_section_size = nvdev->send_section_size;
1030                dev_info->recv_sections = nvdev->recv_section_cnt;
1031                dev_info->recv_section_size = nvdev->recv_section_size;
1032
1033                memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1034                       NETVSC_HASH_KEYLEN);
1035
1036                prog = netvsc_xdp_get(nvdev);
1037                if (prog) {
1038                        bpf_prog_inc(prog);
1039                        dev_info->bprog = prog;
1040                }
1041        } else {
1042                dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1043                dev_info->send_sections = NETVSC_DEFAULT_TX;
1044                dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1045                dev_info->recv_sections = NETVSC_DEFAULT_RX;
1046                dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1047        }
1048
1049        return dev_info;
1050}
1051
1052/* Free struct netvsc_device_info */
1053static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1054{
1055        if (dev_info->bprog) {
1056                ASSERT_RTNL();
1057                bpf_prog_put(dev_info->bprog);
1058        }
1059
1060        kfree(dev_info);
1061}
1062
1063static int netvsc_detach(struct net_device *ndev,
1064                         struct netvsc_device *nvdev)
1065{
1066        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1067        struct hv_device *hdev = ndev_ctx->device_ctx;
1068        int ret;
1069
1070        /* Don't try continuing to try and setup sub channels */
1071        if (cancel_work_sync(&nvdev->subchan_work))
1072                nvdev->num_chn = 1;
1073
1074        netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1075
1076        /* If device was up (receiving) then shutdown */
1077        if (netif_running(ndev)) {
1078                netvsc_tx_disable(nvdev, ndev);
1079
1080                ret = rndis_filter_close(nvdev);
1081                if (ret) {
1082                        netdev_err(ndev,
1083                                   "unable to close device (ret %d).\n", ret);
1084                        return ret;
1085                }
1086
1087                ret = netvsc_wait_until_empty(nvdev);
1088                if (ret) {
1089                        netdev_err(ndev,
1090                                   "Ring buffer not empty after closing rndis\n");
1091                        return ret;
1092                }
1093        }
1094
1095        netif_device_detach(ndev);
1096
1097        rndis_filter_device_remove(hdev, nvdev);
1098
1099        return 0;
1100}
1101
1102static int netvsc_attach(struct net_device *ndev,
1103                         struct netvsc_device_info *dev_info)
1104{
1105        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1106        struct hv_device *hdev = ndev_ctx->device_ctx;
1107        struct netvsc_device *nvdev;
1108        struct rndis_device *rdev;
1109        struct bpf_prog *prog;
1110        int ret = 0;
1111
1112        nvdev = rndis_filter_device_add(hdev, dev_info);
1113        if (IS_ERR(nvdev))
1114                return PTR_ERR(nvdev);
1115
1116        if (nvdev->num_chn > 1) {
1117                ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1118
1119                /* if unavailable, just proceed with one queue */
1120                if (ret) {
1121                        nvdev->max_chn = 1;
1122                        nvdev->num_chn = 1;
1123                }
1124        }
1125
1126        prog = dev_info->bprog;
1127        if (prog) {
1128                bpf_prog_inc(prog);
1129                ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1130                if (ret) {
1131                        bpf_prog_put(prog);
1132                        goto err1;
1133                }
1134        }
1135
1136        /* In any case device is now ready */
1137        nvdev->tx_disable = false;
1138        netif_device_attach(ndev);
1139
1140        /* Note: enable and attach happen when sub-channels setup */
1141        netif_carrier_off(ndev);
1142
1143        if (netif_running(ndev)) {
1144                ret = rndis_filter_open(nvdev);
1145                if (ret)
1146                        goto err2;
1147
1148                rdev = nvdev->extension;
1149                if (!rdev->link_state)
1150                        netif_carrier_on(ndev);
1151        }
1152
1153        return 0;
1154
1155err2:
1156        netif_device_detach(ndev);
1157
1158err1:
1159        rndis_filter_device_remove(hdev, nvdev);
1160
1161        return ret;
1162}
1163
1164static int netvsc_set_channels(struct net_device *net,
1165                               struct ethtool_channels *channels)
1166{
1167        struct net_device_context *net_device_ctx = netdev_priv(net);
1168        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1169        unsigned int orig, count = channels->combined_count;
1170        struct netvsc_device_info *device_info;
1171        int ret;
1172
1173        /* We do not support separate count for rx, tx, or other */
1174        if (count == 0 ||
1175            channels->rx_count || channels->tx_count || channels->other_count)
1176                return -EINVAL;
1177
1178        if (!nvdev || nvdev->destroy)
1179                return -ENODEV;
1180
1181        if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1182                return -EINVAL;
1183
1184        if (count > nvdev->max_chn)
1185                return -EINVAL;
1186
1187        orig = nvdev->num_chn;
1188
1189        device_info = netvsc_devinfo_get(nvdev);
1190
1191        if (!device_info)
1192                return -ENOMEM;
1193
1194        device_info->num_chn = count;
1195
1196        ret = netvsc_detach(net, nvdev);
1197        if (ret)
1198                goto out;
1199
1200        ret = netvsc_attach(net, device_info);
1201        if (ret) {
1202                device_info->num_chn = orig;
1203                if (netvsc_attach(net, device_info))
1204                        netdev_err(net, "restoring channel setting failed\n");
1205        }
1206
1207out:
1208        netvsc_devinfo_put(device_info);
1209        return ret;
1210}
1211
1212static bool
1213netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1214{
1215        struct ethtool_link_ksettings diff1 = *cmd;
1216        struct ethtool_link_ksettings diff2 = {};
1217
1218        diff1.base.speed = 0;
1219        diff1.base.duplex = 0;
1220        /* advertising and cmd are usually set */
1221        ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1222        diff1.base.cmd = 0;
1223        /* We set port to PORT_OTHER */
1224        diff2.base.port = PORT_OTHER;
1225
1226        return !memcmp(&diff1, &diff2, sizeof(diff1));
1227}
1228
1229static void netvsc_init_settings(struct net_device *dev)
1230{
1231        struct net_device_context *ndc = netdev_priv(dev);
1232
1233        ndc->l4_hash = HV_DEFAULT_L4HASH;
1234
1235        ndc->speed = SPEED_UNKNOWN;
1236        ndc->duplex = DUPLEX_FULL;
1237
1238        dev->features = NETIF_F_LRO;
1239}
1240
1241static int netvsc_get_link_ksettings(struct net_device *dev,
1242                                     struct ethtool_link_ksettings *cmd)
1243{
1244        struct net_device_context *ndc = netdev_priv(dev);
1245
1246        cmd->base.speed = ndc->speed;
1247        cmd->base.duplex = ndc->duplex;
1248        cmd->base.port = PORT_OTHER;
1249
1250        return 0;
1251}
1252
1253static int netvsc_set_link_ksettings(struct net_device *dev,
1254                                     const struct ethtool_link_ksettings *cmd)
1255{
1256        struct net_device_context *ndc = netdev_priv(dev);
1257        u32 speed;
1258
1259        speed = cmd->base.speed;
1260        if (!ethtool_validate_speed(speed) ||
1261            !ethtool_validate_duplex(cmd->base.duplex) ||
1262            !netvsc_validate_ethtool_ss_cmd(cmd))
1263                return -EINVAL;
1264
1265        ndc->speed = speed;
1266        ndc->duplex = cmd->base.duplex;
1267
1268        return 0;
1269}
1270
1271static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1272{
1273        struct net_device_context *ndevctx = netdev_priv(ndev);
1274        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1275        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1276        int orig_mtu = ndev->mtu;
1277        struct netvsc_device_info *device_info;
1278        int ret = 0;
1279
1280        if (!nvdev || nvdev->destroy)
1281                return -ENODEV;
1282
1283        device_info = netvsc_devinfo_get(nvdev);
1284
1285        if (!device_info)
1286                return -ENOMEM;
1287
1288        /* Change MTU of underlying VF netdev first. */
1289        if (vf_netdev) {
1290                ret = dev_set_mtu(vf_netdev, mtu);
1291                if (ret)
1292                        goto out;
1293        }
1294
1295        ret = netvsc_detach(ndev, nvdev);
1296        if (ret)
1297                goto rollback_vf;
1298
1299        ndev->mtu = mtu;
1300
1301        ret = netvsc_attach(ndev, device_info);
1302        if (!ret)
1303                goto out;
1304
1305        /* Attempt rollback to original MTU */
1306        ndev->mtu = orig_mtu;
1307
1308        if (netvsc_attach(ndev, device_info))
1309                netdev_err(ndev, "restoring mtu failed\n");
1310rollback_vf:
1311        if (vf_netdev)
1312                dev_set_mtu(vf_netdev, orig_mtu);
1313
1314out:
1315        netvsc_devinfo_put(device_info);
1316        return ret;
1317}
1318
1319static void netvsc_get_vf_stats(struct net_device *net,
1320                                struct netvsc_vf_pcpu_stats *tot)
1321{
1322        struct net_device_context *ndev_ctx = netdev_priv(net);
1323        int i;
1324
1325        memset(tot, 0, sizeof(*tot));
1326
1327        for_each_possible_cpu(i) {
1328                const struct netvsc_vf_pcpu_stats *stats
1329                        = per_cpu_ptr(ndev_ctx->vf_stats, i);
1330                u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1331                unsigned int start;
1332
1333                do {
1334                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1335                        rx_packets = stats->rx_packets;
1336                        tx_packets = stats->tx_packets;
1337                        rx_bytes = stats->rx_bytes;
1338                        tx_bytes = stats->tx_bytes;
1339                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1340
1341                tot->rx_packets += rx_packets;
1342                tot->tx_packets += tx_packets;
1343                tot->rx_bytes   += rx_bytes;
1344                tot->tx_bytes   += tx_bytes;
1345                tot->tx_dropped += stats->tx_dropped;
1346        }
1347}
1348
1349static void netvsc_get_pcpu_stats(struct net_device *net,
1350                                  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1351{
1352        struct net_device_context *ndev_ctx = netdev_priv(net);
1353        struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1354        int i;
1355
1356        /* fetch percpu stats of vf */
1357        for_each_possible_cpu(i) {
1358                const struct netvsc_vf_pcpu_stats *stats =
1359                        per_cpu_ptr(ndev_ctx->vf_stats, i);
1360                struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1361                unsigned int start;
1362
1363                do {
1364                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1365                        this_tot->vf_rx_packets = stats->rx_packets;
1366                        this_tot->vf_tx_packets = stats->tx_packets;
1367                        this_tot->vf_rx_bytes = stats->rx_bytes;
1368                        this_tot->vf_tx_bytes = stats->tx_bytes;
1369                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1370                this_tot->rx_packets = this_tot->vf_rx_packets;
1371                this_tot->tx_packets = this_tot->vf_tx_packets;
1372                this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1373                this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1374        }
1375
1376        /* fetch percpu stats of netvsc */
1377        for (i = 0; i < nvdev->num_chn; i++) {
1378                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1379                const struct netvsc_stats *stats;
1380                struct netvsc_ethtool_pcpu_stats *this_tot =
1381                        &pcpu_tot[nvchan->channel->target_cpu];
1382                u64 packets, bytes;
1383                unsigned int start;
1384
1385                stats = &nvchan->tx_stats;
1386                do {
1387                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1388                        packets = stats->packets;
1389                        bytes = stats->bytes;
1390                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1391
1392                this_tot->tx_bytes      += bytes;
1393                this_tot->tx_packets    += packets;
1394
1395                stats = &nvchan->rx_stats;
1396                do {
1397                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1398                        packets = stats->packets;
1399                        bytes = stats->bytes;
1400                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1401
1402                this_tot->rx_bytes      += bytes;
1403                this_tot->rx_packets    += packets;
1404        }
1405}
1406
1407static void netvsc_get_stats64(struct net_device *net,
1408                               struct rtnl_link_stats64 *t)
1409{
1410        struct net_device_context *ndev_ctx = netdev_priv(net);
1411        struct netvsc_device *nvdev;
1412        struct netvsc_vf_pcpu_stats vf_tot;
1413        int i;
1414
1415        rcu_read_lock();
1416
1417        nvdev = rcu_dereference(ndev_ctx->nvdev);
1418        if (!nvdev)
1419                goto out;
1420
1421        netdev_stats_to_stats64(t, &net->stats);
1422
1423        netvsc_get_vf_stats(net, &vf_tot);
1424        t->rx_packets += vf_tot.rx_packets;
1425        t->tx_packets += vf_tot.tx_packets;
1426        t->rx_bytes   += vf_tot.rx_bytes;
1427        t->tx_bytes   += vf_tot.tx_bytes;
1428        t->tx_dropped += vf_tot.tx_dropped;
1429
1430        for (i = 0; i < nvdev->num_chn; i++) {
1431                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1432                const struct netvsc_stats *stats;
1433                u64 packets, bytes, multicast;
1434                unsigned int start;
1435
1436                stats = &nvchan->tx_stats;
1437                do {
1438                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1439                        packets = stats->packets;
1440                        bytes = stats->bytes;
1441                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1442
1443                t->tx_bytes     += bytes;
1444                t->tx_packets   += packets;
1445
1446                stats = &nvchan->rx_stats;
1447                do {
1448                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1449                        packets = stats->packets;
1450                        bytes = stats->bytes;
1451                        multicast = stats->multicast + stats->broadcast;
1452                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1453
1454                t->rx_bytes     += bytes;
1455                t->rx_packets   += packets;
1456                t->multicast    += multicast;
1457        }
1458out:
1459        rcu_read_unlock();
1460}
1461
1462static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1463{
1464        struct net_device_context *ndc = netdev_priv(ndev);
1465        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1466        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1467        struct sockaddr *addr = p;
1468        int err;
1469
1470        err = eth_prepare_mac_addr_change(ndev, p);
1471        if (err)
1472                return err;
1473
1474        if (!nvdev)
1475                return -ENODEV;
1476
1477        if (vf_netdev) {
1478                err = dev_set_mac_address(vf_netdev, addr, NULL);
1479                if (err)
1480                        return err;
1481        }
1482
1483        err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1484        if (!err) {
1485                eth_commit_mac_addr_change(ndev, p);
1486        } else if (vf_netdev) {
1487                /* rollback change on VF */
1488                memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1489                dev_set_mac_address(vf_netdev, addr, NULL);
1490        }
1491
1492        return err;
1493}
1494
1495static const struct {
1496        char name[ETH_GSTRING_LEN];
1497        u16 offset;
1498} netvsc_stats[] = {
1499        { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1500        { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1501        { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1502        { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1503        { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1504        { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1505        { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1506        { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1507        { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1508        { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1509        { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1510}, pcpu_stats[] = {
1511        { "cpu%u_rx_packets",
1512                offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1513        { "cpu%u_rx_bytes",
1514                offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1515        { "cpu%u_tx_packets",
1516                offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1517        { "cpu%u_tx_bytes",
1518                offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1519        { "cpu%u_vf_rx_packets",
1520                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1521        { "cpu%u_vf_rx_bytes",
1522                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1523        { "cpu%u_vf_tx_packets",
1524                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1525        { "cpu%u_vf_tx_bytes",
1526                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1527}, vf_stats[] = {
1528        { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1529        { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1530        { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1531        { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1532        { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1533};
1534
1535#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1536#define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1537
1538/* statistics per queue (rx/tx packets/bytes) */
1539#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1540
1541/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1542#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1543
1544static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1545{
1546        struct net_device_context *ndc = netdev_priv(dev);
1547        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1548
1549        if (!nvdev)
1550                return -ENODEV;
1551
1552        switch (string_set) {
1553        case ETH_SS_STATS:
1554                return NETVSC_GLOBAL_STATS_LEN
1555                        + NETVSC_VF_STATS_LEN
1556                        + NETVSC_QUEUE_STATS_LEN(nvdev)
1557                        + NETVSC_PCPU_STATS_LEN;
1558        default:
1559                return -EINVAL;
1560        }
1561}
1562
1563static void netvsc_get_ethtool_stats(struct net_device *dev,
1564                                     struct ethtool_stats *stats, u64 *data)
1565{
1566        struct net_device_context *ndc = netdev_priv(dev);
1567        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1568        const void *nds = &ndc->eth_stats;
1569        const struct netvsc_stats *qstats;
1570        struct netvsc_vf_pcpu_stats sum;
1571        struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1572        unsigned int start;
1573        u64 packets, bytes;
1574        u64 xdp_drop;
1575        int i, j, cpu;
1576
1577        if (!nvdev)
1578                return;
1579
1580        for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1581                data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1582
1583        netvsc_get_vf_stats(dev, &sum);
1584        for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1585                data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1586
1587        for (j = 0; j < nvdev->num_chn; j++) {
1588                qstats = &nvdev->chan_table[j].tx_stats;
1589
1590                do {
1591                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1592                        packets = qstats->packets;
1593                        bytes = qstats->bytes;
1594                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1595                data[i++] = packets;
1596                data[i++] = bytes;
1597
1598                qstats = &nvdev->chan_table[j].rx_stats;
1599                do {
1600                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1601                        packets = qstats->packets;
1602                        bytes = qstats->bytes;
1603                        xdp_drop = qstats->xdp_drop;
1604                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1605                data[i++] = packets;
1606                data[i++] = bytes;
1607                data[i++] = xdp_drop;
1608        }
1609
1610        pcpu_sum = kvmalloc_array(num_possible_cpus(),
1611                                  sizeof(struct netvsc_ethtool_pcpu_stats),
1612                                  GFP_KERNEL);
1613        netvsc_get_pcpu_stats(dev, pcpu_sum);
1614        for_each_present_cpu(cpu) {
1615                struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1616
1617                for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1618                        data[i++] = *(u64 *)((void *)this_sum
1619                                             + pcpu_stats[j].offset);
1620        }
1621        kvfree(pcpu_sum);
1622}
1623
1624static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1625{
1626        struct net_device_context *ndc = netdev_priv(dev);
1627        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1628        u8 *p = data;
1629        int i, cpu;
1630
1631        if (!nvdev)
1632                return;
1633
1634        switch (stringset) {
1635        case ETH_SS_STATS:
1636                for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1637                        ethtool_sprintf(&p, netvsc_stats[i].name);
1638
1639                for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1640                        ethtool_sprintf(&p, vf_stats[i].name);
1641
1642                for (i = 0; i < nvdev->num_chn; i++) {
1643                        ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1644                        ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1645                        ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1646                        ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1647                        ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1648                }
1649
1650                for_each_present_cpu(cpu) {
1651                        for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1652                                ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1653                }
1654
1655                break;
1656        }
1657}
1658
1659static int
1660netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1661                         struct ethtool_rxnfc *info)
1662{
1663        const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1664
1665        info->data = RXH_IP_SRC | RXH_IP_DST;
1666
1667        switch (info->flow_type) {
1668        case TCP_V4_FLOW:
1669                if (ndc->l4_hash & HV_TCP4_L4HASH)
1670                        info->data |= l4_flag;
1671
1672                break;
1673
1674        case TCP_V6_FLOW:
1675                if (ndc->l4_hash & HV_TCP6_L4HASH)
1676                        info->data |= l4_flag;
1677
1678                break;
1679
1680        case UDP_V4_FLOW:
1681                if (ndc->l4_hash & HV_UDP4_L4HASH)
1682                        info->data |= l4_flag;
1683
1684                break;
1685
1686        case UDP_V6_FLOW:
1687                if (ndc->l4_hash & HV_UDP6_L4HASH)
1688                        info->data |= l4_flag;
1689
1690                break;
1691
1692        case IPV4_FLOW:
1693        case IPV6_FLOW:
1694                break;
1695        default:
1696                info->data = 0;
1697                break;
1698        }
1699
1700        return 0;
1701}
1702
1703static int
1704netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1705                 u32 *rules)
1706{
1707        struct net_device_context *ndc = netdev_priv(dev);
1708        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1709
1710        if (!nvdev)
1711                return -ENODEV;
1712
1713        switch (info->cmd) {
1714        case ETHTOOL_GRXRINGS:
1715                info->data = nvdev->num_chn;
1716                return 0;
1717
1718        case ETHTOOL_GRXFH:
1719                return netvsc_get_rss_hash_opts(ndc, info);
1720        }
1721        return -EOPNOTSUPP;
1722}
1723
1724static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1725                                    struct ethtool_rxnfc *info)
1726{
1727        if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1728                           RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1729                switch (info->flow_type) {
1730                case TCP_V4_FLOW:
1731                        ndc->l4_hash |= HV_TCP4_L4HASH;
1732                        break;
1733
1734                case TCP_V6_FLOW:
1735                        ndc->l4_hash |= HV_TCP6_L4HASH;
1736                        break;
1737
1738                case UDP_V4_FLOW:
1739                        ndc->l4_hash |= HV_UDP4_L4HASH;
1740                        break;
1741
1742                case UDP_V6_FLOW:
1743                        ndc->l4_hash |= HV_UDP6_L4HASH;
1744                        break;
1745
1746                default:
1747                        return -EOPNOTSUPP;
1748                }
1749
1750                return 0;
1751        }
1752
1753        if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1754                switch (info->flow_type) {
1755                case TCP_V4_FLOW:
1756                        ndc->l4_hash &= ~HV_TCP4_L4HASH;
1757                        break;
1758
1759                case TCP_V6_FLOW:
1760                        ndc->l4_hash &= ~HV_TCP6_L4HASH;
1761                        break;
1762
1763                case UDP_V4_FLOW:
1764                        ndc->l4_hash &= ~HV_UDP4_L4HASH;
1765                        break;
1766
1767                case UDP_V6_FLOW:
1768                        ndc->l4_hash &= ~HV_UDP6_L4HASH;
1769                        break;
1770
1771                default:
1772                        return -EOPNOTSUPP;
1773                }
1774
1775                return 0;
1776        }
1777
1778        return -EOPNOTSUPP;
1779}
1780
1781static int
1782netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1783{
1784        struct net_device_context *ndc = netdev_priv(ndev);
1785
1786        if (info->cmd == ETHTOOL_SRXFH)
1787                return netvsc_set_rss_hash_opts(ndc, info);
1788
1789        return -EOPNOTSUPP;
1790}
1791
1792static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1793{
1794        return NETVSC_HASH_KEYLEN;
1795}
1796
1797static u32 netvsc_rss_indir_size(struct net_device *dev)
1798{
1799        return ITAB_NUM;
1800}
1801
1802static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1803                           u8 *hfunc)
1804{
1805        struct net_device_context *ndc = netdev_priv(dev);
1806        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1807        struct rndis_device *rndis_dev;
1808        int i;
1809
1810        if (!ndev)
1811                return -ENODEV;
1812
1813        if (hfunc)
1814                *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1815
1816        rndis_dev = ndev->extension;
1817        if (indir) {
1818                for (i = 0; i < ITAB_NUM; i++)
1819                        indir[i] = ndc->rx_table[i];
1820        }
1821
1822        if (key)
1823                memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1824
1825        return 0;
1826}
1827
1828static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1829                           const u8 *key, const u8 hfunc)
1830{
1831        struct net_device_context *ndc = netdev_priv(dev);
1832        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1833        struct rndis_device *rndis_dev;
1834        int i;
1835
1836        if (!ndev)
1837                return -ENODEV;
1838
1839        if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1840                return -EOPNOTSUPP;
1841
1842        rndis_dev = ndev->extension;
1843        if (indir) {
1844                for (i = 0; i < ITAB_NUM; i++)
1845                        if (indir[i] >= ndev->num_chn)
1846                                return -EINVAL;
1847
1848                for (i = 0; i < ITAB_NUM; i++)
1849                        ndc->rx_table[i] = indir[i];
1850        }
1851
1852        if (!key) {
1853                if (!indir)
1854                        return 0;
1855
1856                key = rndis_dev->rss_key;
1857        }
1858
1859        return rndis_filter_set_rss_param(rndis_dev, key);
1860}
1861
1862/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1863 * It does have pre-allocated receive area which is divided into sections.
1864 */
1865static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1866                                   struct ethtool_ringparam *ring)
1867{
1868        u32 max_buf_size;
1869
1870        ring->rx_pending = nvdev->recv_section_cnt;
1871        ring->tx_pending = nvdev->send_section_cnt;
1872
1873        if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1874                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1875        else
1876                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1877
1878        ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1879        ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1880                / nvdev->send_section_size;
1881}
1882
1883static void netvsc_get_ringparam(struct net_device *ndev,
1884                                 struct ethtool_ringparam *ring)
1885{
1886        struct net_device_context *ndevctx = netdev_priv(ndev);
1887        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1888
1889        if (!nvdev)
1890                return;
1891
1892        __netvsc_get_ringparam(nvdev, ring);
1893}
1894
1895static int netvsc_set_ringparam(struct net_device *ndev,
1896                                struct ethtool_ringparam *ring)
1897{
1898        struct net_device_context *ndevctx = netdev_priv(ndev);
1899        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1900        struct netvsc_device_info *device_info;
1901        struct ethtool_ringparam orig;
1902        u32 new_tx, new_rx;
1903        int ret = 0;
1904
1905        if (!nvdev || nvdev->destroy)
1906                return -ENODEV;
1907
1908        memset(&orig, 0, sizeof(orig));
1909        __netvsc_get_ringparam(nvdev, &orig);
1910
1911        new_tx = clamp_t(u32, ring->tx_pending,
1912                         NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1913        new_rx = clamp_t(u32, ring->rx_pending,
1914                         NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1915
1916        if (new_tx == orig.tx_pending &&
1917            new_rx == orig.rx_pending)
1918                return 0;        /* no change */
1919
1920        device_info = netvsc_devinfo_get(nvdev);
1921
1922        if (!device_info)
1923                return -ENOMEM;
1924
1925        device_info->send_sections = new_tx;
1926        device_info->recv_sections = new_rx;
1927
1928        ret = netvsc_detach(ndev, nvdev);
1929        if (ret)
1930                goto out;
1931
1932        ret = netvsc_attach(ndev, device_info);
1933        if (ret) {
1934                device_info->send_sections = orig.tx_pending;
1935                device_info->recv_sections = orig.rx_pending;
1936
1937                if (netvsc_attach(ndev, device_info))
1938                        netdev_err(ndev, "restoring ringparam failed");
1939        }
1940
1941out:
1942        netvsc_devinfo_put(device_info);
1943        return ret;
1944}
1945
1946static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1947                                             netdev_features_t features)
1948{
1949        struct net_device_context *ndevctx = netdev_priv(ndev);
1950        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1951
1952        if (!nvdev || nvdev->destroy)
1953                return features;
1954
1955        if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1956                features ^= NETIF_F_LRO;
1957                netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1958        }
1959
1960        return features;
1961}
1962
1963static int netvsc_set_features(struct net_device *ndev,
1964                               netdev_features_t features)
1965{
1966        netdev_features_t change = features ^ ndev->features;
1967        struct net_device_context *ndevctx = netdev_priv(ndev);
1968        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1969        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1970        struct ndis_offload_params offloads;
1971        int ret = 0;
1972
1973        if (!nvdev || nvdev->destroy)
1974                return -ENODEV;
1975
1976        if (!(change & NETIF_F_LRO))
1977                goto syncvf;
1978
1979        memset(&offloads, 0, sizeof(struct ndis_offload_params));
1980
1981        if (features & NETIF_F_LRO) {
1982                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1983                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1984        } else {
1985                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1986                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1987        }
1988
1989        ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1990
1991        if (ret) {
1992                features ^= NETIF_F_LRO;
1993                ndev->features = features;
1994        }
1995
1996syncvf:
1997        if (!vf_netdev)
1998                return ret;
1999
2000        vf_netdev->wanted_features = features;
2001        netdev_update_features(vf_netdev);
2002
2003        return ret;
2004}
2005
2006static int netvsc_get_regs_len(struct net_device *netdev)
2007{
2008        return VRSS_SEND_TAB_SIZE * sizeof(u32);
2009}
2010
2011static void netvsc_get_regs(struct net_device *netdev,
2012                            struct ethtool_regs *regs, void *p)
2013{
2014        struct net_device_context *ndc = netdev_priv(netdev);
2015        u32 *regs_buff = p;
2016
2017        /* increase the version, if buffer format is changed. */
2018        regs->version = 1;
2019
2020        memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2021}
2022
2023static u32 netvsc_get_msglevel(struct net_device *ndev)
2024{
2025        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2026
2027        return ndev_ctx->msg_enable;
2028}
2029
2030static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2031{
2032        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2033
2034        ndev_ctx->msg_enable = val;
2035}
2036
2037static const struct ethtool_ops ethtool_ops = {
2038        .get_drvinfo    = netvsc_get_drvinfo,
2039        .get_regs_len   = netvsc_get_regs_len,
2040        .get_regs       = netvsc_get_regs,
2041        .get_msglevel   = netvsc_get_msglevel,
2042        .set_msglevel   = netvsc_set_msglevel,
2043        .get_link       = ethtool_op_get_link,
2044        .get_ethtool_stats = netvsc_get_ethtool_stats,
2045        .get_sset_count = netvsc_get_sset_count,
2046        .get_strings    = netvsc_get_strings,
2047        .get_channels   = netvsc_get_channels,
2048        .set_channels   = netvsc_set_channels,
2049        .get_ts_info    = ethtool_op_get_ts_info,
2050        .get_rxnfc      = netvsc_get_rxnfc,
2051        .set_rxnfc      = netvsc_set_rxnfc,
2052        .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2053        .get_rxfh_indir_size = netvsc_rss_indir_size,
2054        .get_rxfh       = netvsc_get_rxfh,
2055        .set_rxfh       = netvsc_set_rxfh,
2056        .get_link_ksettings = netvsc_get_link_ksettings,
2057        .set_link_ksettings = netvsc_set_link_ksettings,
2058        .get_ringparam  = netvsc_get_ringparam,
2059        .set_ringparam  = netvsc_set_ringparam,
2060};
2061
2062static const struct net_device_ops device_ops = {
2063        .ndo_open =                     netvsc_open,
2064        .ndo_stop =                     netvsc_close,
2065        .ndo_start_xmit =               netvsc_start_xmit,
2066        .ndo_change_rx_flags =          netvsc_change_rx_flags,
2067        .ndo_set_rx_mode =              netvsc_set_rx_mode,
2068        .ndo_fix_features =             netvsc_fix_features,
2069        .ndo_set_features =             netvsc_set_features,
2070        .ndo_change_mtu =               netvsc_change_mtu,
2071        .ndo_validate_addr =            eth_validate_addr,
2072        .ndo_set_mac_address =          netvsc_set_mac_addr,
2073        .ndo_select_queue =             netvsc_select_queue,
2074        .ndo_get_stats64 =              netvsc_get_stats64,
2075        .ndo_bpf =                      netvsc_bpf,
2076};
2077
2078/*
2079 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2080 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2081 * present send GARP packet to network peers with netif_notify_peers().
2082 */
2083static void netvsc_link_change(struct work_struct *w)
2084{
2085        struct net_device_context *ndev_ctx =
2086                container_of(w, struct net_device_context, dwork.work);
2087        struct hv_device *device_obj = ndev_ctx->device_ctx;
2088        struct net_device *net = hv_get_drvdata(device_obj);
2089        struct netvsc_device *net_device;
2090        struct rndis_device *rdev;
2091        struct netvsc_reconfig *event = NULL;
2092        bool notify = false, reschedule = false;
2093        unsigned long flags, next_reconfig, delay;
2094
2095        /* if changes are happening, comeback later */
2096        if (!rtnl_trylock()) {
2097                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2098                return;
2099        }
2100
2101        net_device = rtnl_dereference(ndev_ctx->nvdev);
2102        if (!net_device)
2103                goto out_unlock;
2104
2105        rdev = net_device->extension;
2106
2107        next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2108        if (time_is_after_jiffies(next_reconfig)) {
2109                /* link_watch only sends one notification with current state
2110                 * per second, avoid doing reconfig more frequently. Handle
2111                 * wrap around.
2112                 */
2113                delay = next_reconfig - jiffies;
2114                delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2115                schedule_delayed_work(&ndev_ctx->dwork, delay);
2116                goto out_unlock;
2117        }
2118        ndev_ctx->last_reconfig = jiffies;
2119
2120        spin_lock_irqsave(&ndev_ctx->lock, flags);
2121        if (!list_empty(&ndev_ctx->reconfig_events)) {
2122                event = list_first_entry(&ndev_ctx->reconfig_events,
2123                                         struct netvsc_reconfig, list);
2124                list_del(&event->list);
2125                reschedule = !list_empty(&ndev_ctx->reconfig_events);
2126        }
2127        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2128
2129        if (!event)
2130                goto out_unlock;
2131
2132        switch (event->event) {
2133                /* Only the following events are possible due to the check in
2134                 * netvsc_linkstatus_callback()
2135                 */
2136        case RNDIS_STATUS_MEDIA_CONNECT:
2137                if (rdev->link_state) {
2138                        rdev->link_state = false;
2139                        netif_carrier_on(net);
2140                        netvsc_tx_enable(net_device, net);
2141                } else {
2142                        notify = true;
2143                }
2144                kfree(event);
2145                break;
2146        case RNDIS_STATUS_MEDIA_DISCONNECT:
2147                if (!rdev->link_state) {
2148                        rdev->link_state = true;
2149                        netif_carrier_off(net);
2150                        netvsc_tx_disable(net_device, net);
2151                }
2152                kfree(event);
2153                break;
2154        case RNDIS_STATUS_NETWORK_CHANGE:
2155                /* Only makes sense if carrier is present */
2156                if (!rdev->link_state) {
2157                        rdev->link_state = true;
2158                        netif_carrier_off(net);
2159                        netvsc_tx_disable(net_device, net);
2160                        event->event = RNDIS_STATUS_MEDIA_CONNECT;
2161                        spin_lock_irqsave(&ndev_ctx->lock, flags);
2162                        list_add(&event->list, &ndev_ctx->reconfig_events);
2163                        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2164                        reschedule = true;
2165                }
2166                break;
2167        }
2168
2169        rtnl_unlock();
2170
2171        if (notify)
2172                netdev_notify_peers(net);
2173
2174        /* link_watch only sends one notification with current state per
2175         * second, handle next reconfig event in 2 seconds.
2176         */
2177        if (reschedule)
2178                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2179
2180        return;
2181
2182out_unlock:
2183        rtnl_unlock();
2184}
2185
2186static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2187{
2188        struct net_device_context *net_device_ctx;
2189        struct net_device *dev;
2190
2191        dev = netdev_master_upper_dev_get(vf_netdev);
2192        if (!dev || dev->netdev_ops != &device_ops)
2193                return NULL;    /* not a netvsc device */
2194
2195        net_device_ctx = netdev_priv(dev);
2196        if (!rtnl_dereference(net_device_ctx->nvdev))
2197                return NULL;    /* device is removed */
2198
2199        return dev;
2200}
2201
2202/* Called when VF is injecting data into network stack.
2203 * Change the associated network device from VF to netvsc.
2204 * note: already called with rcu_read_lock
2205 */
2206static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2207{
2208        struct sk_buff *skb = *pskb;
2209        struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2210        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2211        struct netvsc_vf_pcpu_stats *pcpu_stats
2212                 = this_cpu_ptr(ndev_ctx->vf_stats);
2213
2214        skb = skb_share_check(skb, GFP_ATOMIC);
2215        if (unlikely(!skb))
2216                return RX_HANDLER_CONSUMED;
2217
2218        *pskb = skb;
2219
2220        skb->dev = ndev;
2221
2222        u64_stats_update_begin(&pcpu_stats->syncp);
2223        pcpu_stats->rx_packets++;
2224        pcpu_stats->rx_bytes += skb->len;
2225        u64_stats_update_end(&pcpu_stats->syncp);
2226
2227        return RX_HANDLER_ANOTHER;
2228}
2229
2230static int netvsc_vf_join(struct net_device *vf_netdev,
2231                          struct net_device *ndev)
2232{
2233        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2234        int ret;
2235
2236        ret = netdev_rx_handler_register(vf_netdev,
2237                                         netvsc_vf_handle_frame, ndev);
2238        if (ret != 0) {
2239                netdev_err(vf_netdev,
2240                           "can not register netvsc VF receive handler (err = %d)\n",
2241                           ret);
2242                goto rx_handler_failed;
2243        }
2244
2245        ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2246                                           NULL, NULL, NULL);
2247        if (ret != 0) {
2248                netdev_err(vf_netdev,
2249                           "can not set master device %s (err = %d)\n",
2250                           ndev->name, ret);
2251                goto upper_link_failed;
2252        }
2253
2254        /* set slave flag before open to prevent IPv6 addrconf */
2255        vf_netdev->flags |= IFF_SLAVE;
2256
2257        schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2258
2259        call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2260
2261        netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2262        return 0;
2263
2264upper_link_failed:
2265        netdev_rx_handler_unregister(vf_netdev);
2266rx_handler_failed:
2267        return ret;
2268}
2269
2270static void __netvsc_vf_setup(struct net_device *ndev,
2271                              struct net_device *vf_netdev)
2272{
2273        int ret;
2274
2275        /* Align MTU of VF with master */
2276        ret = dev_set_mtu(vf_netdev, ndev->mtu);
2277        if (ret)
2278                netdev_warn(vf_netdev,
2279                            "unable to change mtu to %u\n", ndev->mtu);
2280
2281        /* set multicast etc flags on VF */
2282        dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2283
2284        /* sync address list from ndev to VF */
2285        netif_addr_lock_bh(ndev);
2286        dev_uc_sync(vf_netdev, ndev);
2287        dev_mc_sync(vf_netdev, ndev);
2288        netif_addr_unlock_bh(ndev);
2289
2290        if (netif_running(ndev)) {
2291                ret = dev_open(vf_netdev, NULL);
2292                if (ret)
2293                        netdev_warn(vf_netdev,
2294                                    "unable to open: %d\n", ret);
2295        }
2296}
2297
2298/* Setup VF as slave of the synthetic device.
2299 * Runs in workqueue to avoid recursion in netlink callbacks.
2300 */
2301static void netvsc_vf_setup(struct work_struct *w)
2302{
2303        struct net_device_context *ndev_ctx
2304                = container_of(w, struct net_device_context, vf_takeover.work);
2305        struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2306        struct net_device *vf_netdev;
2307
2308        if (!rtnl_trylock()) {
2309                schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2310                return;
2311        }
2312
2313        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2314        if (vf_netdev)
2315                __netvsc_vf_setup(ndev, vf_netdev);
2316
2317        rtnl_unlock();
2318}
2319
2320/* Find netvsc by VF serial number.
2321 * The PCI hyperv controller records the serial number as the slot kobj name.
2322 */
2323static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2324{
2325        struct device *parent = vf_netdev->dev.parent;
2326        struct net_device_context *ndev_ctx;
2327        struct net_device *ndev;
2328        struct pci_dev *pdev;
2329        u32 serial;
2330
2331        if (!parent || !dev_is_pci(parent))
2332                return NULL; /* not a PCI device */
2333
2334        pdev = to_pci_dev(parent);
2335        if (!pdev->slot) {
2336                netdev_notice(vf_netdev, "no PCI slot information\n");
2337                return NULL;
2338        }
2339
2340        if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2341                netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2342                              pci_slot_name(pdev->slot));
2343                return NULL;
2344        }
2345
2346        list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2347                if (!ndev_ctx->vf_alloc)
2348                        continue;
2349
2350                if (ndev_ctx->vf_serial != serial)
2351                        continue;
2352
2353                ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2354                if (ndev->addr_len != vf_netdev->addr_len ||
2355                    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2356                           ndev->addr_len) != 0)
2357                        continue;
2358
2359                return ndev;
2360
2361        }
2362
2363        netdev_notice(vf_netdev,
2364                      "no netdev found for vf serial:%u\n", serial);
2365        return NULL;
2366}
2367
2368static int netvsc_register_vf(struct net_device *vf_netdev)
2369{
2370        struct net_device_context *net_device_ctx;
2371        struct netvsc_device *netvsc_dev;
2372        struct bpf_prog *prog;
2373        struct net_device *ndev;
2374        int ret;
2375
2376        if (vf_netdev->addr_len != ETH_ALEN)
2377                return NOTIFY_DONE;
2378
2379        ndev = get_netvsc_byslot(vf_netdev);
2380        if (!ndev)
2381                return NOTIFY_DONE;
2382
2383        net_device_ctx = netdev_priv(ndev);
2384        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2385        if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2386                return NOTIFY_DONE;
2387
2388        /* if synthetic interface is a different namespace,
2389         * then move the VF to that namespace; join will be
2390         * done again in that context.
2391         */
2392        if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2393                ret = dev_change_net_namespace(vf_netdev,
2394                                               dev_net(ndev), "eth%d");
2395                if (ret)
2396                        netdev_err(vf_netdev,
2397                                   "could not move to same namespace as %s: %d\n",
2398                                   ndev->name, ret);
2399                else
2400                        netdev_info(vf_netdev,
2401                                    "VF moved to namespace with: %s\n",
2402                                    ndev->name);
2403                return NOTIFY_DONE;
2404        }
2405
2406        netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2407
2408        if (netvsc_vf_join(vf_netdev, ndev) != 0)
2409                return NOTIFY_DONE;
2410
2411        dev_hold(vf_netdev);
2412        rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2413
2414        if (ndev->needed_headroom < vf_netdev->needed_headroom)
2415                ndev->needed_headroom = vf_netdev->needed_headroom;
2416
2417        vf_netdev->wanted_features = ndev->features;
2418        netdev_update_features(vf_netdev);
2419
2420        prog = netvsc_xdp_get(netvsc_dev);
2421        netvsc_vf_setxdp(vf_netdev, prog);
2422
2423        return NOTIFY_OK;
2424}
2425
2426/* Change the data path when VF UP/DOWN/CHANGE are detected.
2427 *
2428 * Typically a UP or DOWN event is followed by a CHANGE event, so
2429 * net_device_ctx->data_path_is_vf is used to cache the current data path
2430 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2431 * message.
2432 *
2433 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2434 * interface, there is only the CHANGE event and no UP or DOWN event.
2435 */
2436static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2437{
2438        struct net_device_context *net_device_ctx;
2439        struct netvsc_device *netvsc_dev;
2440        struct net_device *ndev;
2441        bool vf_is_up = false;
2442        int ret;
2443
2444        if (event != NETDEV_GOING_DOWN)
2445                vf_is_up = netif_running(vf_netdev);
2446
2447        ndev = get_netvsc_byref(vf_netdev);
2448        if (!ndev)
2449                return NOTIFY_DONE;
2450
2451        net_device_ctx = netdev_priv(ndev);
2452        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2453        if (!netvsc_dev)
2454                return NOTIFY_DONE;
2455
2456        if (net_device_ctx->data_path_is_vf == vf_is_up)
2457                return NOTIFY_OK;
2458
2459        ret = netvsc_switch_datapath(ndev, vf_is_up);
2460
2461        if (ret) {
2462                netdev_err(ndev,
2463                           "Data path failed to switch %s VF: %s, err: %d\n",
2464                           vf_is_up ? "to" : "from", vf_netdev->name, ret);
2465                return NOTIFY_DONE;
2466        } else {
2467                netdev_info(ndev, "Data path switched %s VF: %s\n",
2468                            vf_is_up ? "to" : "from", vf_netdev->name);
2469        }
2470
2471        return NOTIFY_OK;
2472}
2473
2474static int netvsc_unregister_vf(struct net_device *vf_netdev)
2475{
2476        struct net_device *ndev;
2477        struct net_device_context *net_device_ctx;
2478
2479        ndev = get_netvsc_byref(vf_netdev);
2480        if (!ndev)
2481                return NOTIFY_DONE;
2482
2483        net_device_ctx = netdev_priv(ndev);
2484        cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2485
2486        netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2487
2488        netvsc_vf_setxdp(vf_netdev, NULL);
2489
2490        netdev_rx_handler_unregister(vf_netdev);
2491        netdev_upper_dev_unlink(vf_netdev, ndev);
2492        RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2493        dev_put(vf_netdev);
2494
2495        ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2496
2497        return NOTIFY_OK;
2498}
2499
2500static int netvsc_probe(struct hv_device *dev,
2501                        const struct hv_vmbus_device_id *dev_id)
2502{
2503        struct net_device *net = NULL;
2504        struct net_device_context *net_device_ctx;
2505        struct netvsc_device_info *device_info = NULL;
2506        struct netvsc_device *nvdev;
2507        int ret = -ENOMEM;
2508
2509        net = alloc_etherdev_mq(sizeof(struct net_device_context),
2510                                VRSS_CHANNEL_MAX);
2511        if (!net)
2512                goto no_net;
2513
2514        netif_carrier_off(net);
2515
2516        netvsc_init_settings(net);
2517
2518        net_device_ctx = netdev_priv(net);
2519        net_device_ctx->device_ctx = dev;
2520        net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2521        if (netif_msg_probe(net_device_ctx))
2522                netdev_dbg(net, "netvsc msg_enable: %d\n",
2523                           net_device_ctx->msg_enable);
2524
2525        hv_set_drvdata(dev, net);
2526
2527        INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2528
2529        spin_lock_init(&net_device_ctx->lock);
2530        INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2531        INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2532
2533        net_device_ctx->vf_stats
2534                = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2535        if (!net_device_ctx->vf_stats)
2536                goto no_stats;
2537
2538        net->netdev_ops = &device_ops;
2539        net->ethtool_ops = &ethtool_ops;
2540        SET_NETDEV_DEV(net, &dev->device);
2541
2542        /* We always need headroom for rndis header */
2543        net->needed_headroom = RNDIS_AND_PPI_SIZE;
2544
2545        /* Initialize the number of queues to be 1, we may change it if more
2546         * channels are offered later.
2547         */
2548        netif_set_real_num_tx_queues(net, 1);
2549        netif_set_real_num_rx_queues(net, 1);
2550
2551        /* Notify the netvsc driver of the new device */
2552        device_info = netvsc_devinfo_get(NULL);
2553
2554        if (!device_info) {
2555                ret = -ENOMEM;
2556                goto devinfo_failed;
2557        }
2558
2559        nvdev = rndis_filter_device_add(dev, device_info);
2560        if (IS_ERR(nvdev)) {
2561                ret = PTR_ERR(nvdev);
2562                netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2563                goto rndis_failed;
2564        }
2565
2566        memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2567
2568        /* We must get rtnl lock before scheduling nvdev->subchan_work,
2569         * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2570         * all subchannels to show up, but that may not happen because
2571         * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2572         * -> ... -> device_add() -> ... -> __device_attach() can't get
2573         * the device lock, so all the subchannels can't be processed --
2574         * finally netvsc_subchan_work() hangs forever.
2575         */
2576        rtnl_lock();
2577
2578        if (nvdev->num_chn > 1)
2579                schedule_work(&nvdev->subchan_work);
2580
2581        /* hw_features computed in rndis_netdev_set_hwcaps() */
2582        net->features = net->hw_features |
2583                NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2584                NETIF_F_HW_VLAN_CTAG_RX;
2585        net->vlan_features = net->features;
2586
2587        netdev_lockdep_set_classes(net);
2588
2589        /* MTU range: 68 - 1500 or 65521 */
2590        net->min_mtu = NETVSC_MTU_MIN;
2591        if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2592                net->max_mtu = NETVSC_MTU - ETH_HLEN;
2593        else
2594                net->max_mtu = ETH_DATA_LEN;
2595
2596        nvdev->tx_disable = false;
2597
2598        ret = register_netdevice(net);
2599        if (ret != 0) {
2600                pr_err("Unable to register netdev.\n");
2601                goto register_failed;
2602        }
2603
2604        list_add(&net_device_ctx->list, &netvsc_dev_list);
2605        rtnl_unlock();
2606
2607        netvsc_devinfo_put(device_info);
2608        return 0;
2609
2610register_failed:
2611        rtnl_unlock();
2612        rndis_filter_device_remove(dev, nvdev);
2613rndis_failed:
2614        netvsc_devinfo_put(device_info);
2615devinfo_failed:
2616        free_percpu(net_device_ctx->vf_stats);
2617no_stats:
2618        hv_set_drvdata(dev, NULL);
2619        free_netdev(net);
2620no_net:
2621        return ret;
2622}
2623
2624static int netvsc_remove(struct hv_device *dev)
2625{
2626        struct net_device_context *ndev_ctx;
2627        struct net_device *vf_netdev, *net;
2628        struct netvsc_device *nvdev;
2629
2630        net = hv_get_drvdata(dev);
2631        if (net == NULL) {
2632                dev_err(&dev->device, "No net device to remove\n");
2633                return 0;
2634        }
2635
2636        ndev_ctx = netdev_priv(net);
2637
2638        cancel_delayed_work_sync(&ndev_ctx->dwork);
2639
2640        rtnl_lock();
2641        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2642        if (nvdev) {
2643                cancel_work_sync(&nvdev->subchan_work);
2644                netvsc_xdp_set(net, NULL, NULL, nvdev);
2645        }
2646
2647        /*
2648         * Call to the vsc driver to let it know that the device is being
2649         * removed. Also blocks mtu and channel changes.
2650         */
2651        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2652        if (vf_netdev)
2653                netvsc_unregister_vf(vf_netdev);
2654
2655        if (nvdev)
2656                rndis_filter_device_remove(dev, nvdev);
2657
2658        unregister_netdevice(net);
2659        list_del(&ndev_ctx->list);
2660
2661        rtnl_unlock();
2662
2663        hv_set_drvdata(dev, NULL);
2664
2665        free_percpu(ndev_ctx->vf_stats);
2666        free_netdev(net);
2667        return 0;
2668}
2669
2670static int netvsc_suspend(struct hv_device *dev)
2671{
2672        struct net_device_context *ndev_ctx;
2673        struct netvsc_device *nvdev;
2674        struct net_device *net;
2675        int ret;
2676
2677        net = hv_get_drvdata(dev);
2678
2679        ndev_ctx = netdev_priv(net);
2680        cancel_delayed_work_sync(&ndev_ctx->dwork);
2681
2682        rtnl_lock();
2683
2684        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2685        if (nvdev == NULL) {
2686                ret = -ENODEV;
2687                goto out;
2688        }
2689
2690        /* Save the current config info */
2691        ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2692
2693        ret = netvsc_detach(net, nvdev);
2694out:
2695        rtnl_unlock();
2696
2697        return ret;
2698}
2699
2700static int netvsc_resume(struct hv_device *dev)
2701{
2702        struct net_device *net = hv_get_drvdata(dev);
2703        struct net_device_context *net_device_ctx;
2704        struct netvsc_device_info *device_info;
2705        int ret;
2706
2707        rtnl_lock();
2708
2709        net_device_ctx = netdev_priv(net);
2710
2711        /* Reset the data path to the netvsc NIC before re-opening the vmbus
2712         * channel. Later netvsc_netdev_event() will switch the data path to
2713         * the VF upon the UP or CHANGE event.
2714         */
2715        net_device_ctx->data_path_is_vf = false;
2716        device_info = net_device_ctx->saved_netvsc_dev_info;
2717
2718        ret = netvsc_attach(net, device_info);
2719
2720        netvsc_devinfo_put(device_info);
2721        net_device_ctx->saved_netvsc_dev_info = NULL;
2722
2723        rtnl_unlock();
2724
2725        return ret;
2726}
2727static const struct hv_vmbus_device_id id_table[] = {
2728        /* Network guid */
2729        { HV_NIC_GUID, },
2730        { },
2731};
2732
2733MODULE_DEVICE_TABLE(vmbus, id_table);
2734
2735/* The one and only one */
2736static struct  hv_driver netvsc_drv = {
2737        .name = KBUILD_MODNAME,
2738        .id_table = id_table,
2739        .probe = netvsc_probe,
2740        .remove = netvsc_remove,
2741        .suspend = netvsc_suspend,
2742        .resume = netvsc_resume,
2743        .driver = {
2744                .probe_type = PROBE_FORCE_SYNCHRONOUS,
2745        },
2746};
2747
2748/*
2749 * On Hyper-V, every VF interface is matched with a corresponding
2750 * synthetic interface. The synthetic interface is presented first
2751 * to the guest. When the corresponding VF instance is registered,
2752 * we will take care of switching the data path.
2753 */
2754static int netvsc_netdev_event(struct notifier_block *this,
2755                               unsigned long event, void *ptr)
2756{
2757        struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2758
2759        /* Skip our own events */
2760        if (event_dev->netdev_ops == &device_ops)
2761                return NOTIFY_DONE;
2762
2763        /* Avoid non-Ethernet type devices */
2764        if (event_dev->type != ARPHRD_ETHER)
2765                return NOTIFY_DONE;
2766
2767        /* Avoid Vlan dev with same MAC registering as VF */
2768        if (is_vlan_dev(event_dev))
2769                return NOTIFY_DONE;
2770
2771        /* Avoid Bonding master dev with same MAC registering as VF */
2772        if (netif_is_bond_master(event_dev))
2773                return NOTIFY_DONE;
2774
2775        switch (event) {
2776        case NETDEV_REGISTER:
2777                return netvsc_register_vf(event_dev);
2778        case NETDEV_UNREGISTER:
2779                return netvsc_unregister_vf(event_dev);
2780        case NETDEV_UP:
2781        case NETDEV_DOWN:
2782        case NETDEV_CHANGE:
2783        case NETDEV_GOING_DOWN:
2784                return netvsc_vf_changed(event_dev, event);
2785        default:
2786                return NOTIFY_DONE;
2787        }
2788}
2789
2790static struct notifier_block netvsc_netdev_notifier = {
2791        .notifier_call = netvsc_netdev_event,
2792};
2793
2794static void __exit netvsc_drv_exit(void)
2795{
2796        unregister_netdevice_notifier(&netvsc_netdev_notifier);
2797        vmbus_driver_unregister(&netvsc_drv);
2798}
2799
2800static int __init netvsc_drv_init(void)
2801{
2802        int ret;
2803
2804        if (ring_size < RING_SIZE_MIN) {
2805                ring_size = RING_SIZE_MIN;
2806                pr_info("Increased ring_size to %u (min allowed)\n",
2807                        ring_size);
2808        }
2809        netvsc_ring_bytes = ring_size * PAGE_SIZE;
2810
2811        ret = vmbus_driver_register(&netvsc_drv);
2812        if (ret)
2813                return ret;
2814
2815        register_netdevice_notifier(&netvsc_netdev_notifier);
2816        return 0;
2817}
2818
2819MODULE_LICENSE("GPL");
2820MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2821
2822module_init(netvsc_drv_init);
2823module_exit(netvsc_drv_exit);
2824