linux/drivers/nvme/host/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/blk-mq.h>
   9#include <linux/compat.h>
  10#include <linux/delay.h>
  11#include <linux/errno.h>
  12#include <linux/hdreg.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/backing-dev.h>
  16#include <linux/slab.h>
  17#include <linux/types.h>
  18#include <linux/pr.h>
  19#include <linux/ptrace.h>
  20#include <linux/nvme_ioctl.h>
  21#include <linux/pm_qos.h>
  22#include <asm/unaligned.h>
  23
  24#include "nvme.h"
  25#include "fabrics.h"
  26
  27#define CREATE_TRACE_POINTS
  28#include "trace.h"
  29
  30#define NVME_MINORS             (1U << MINORBITS)
  31
  32unsigned int admin_timeout = 60;
  33module_param(admin_timeout, uint, 0644);
  34MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  35EXPORT_SYMBOL_GPL(admin_timeout);
  36
  37unsigned int nvme_io_timeout = 30;
  38module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
  39MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  40EXPORT_SYMBOL_GPL(nvme_io_timeout);
  41
  42static unsigned char shutdown_timeout = 5;
  43module_param(shutdown_timeout, byte, 0644);
  44MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  45
  46static u8 nvme_max_retries = 5;
  47module_param_named(max_retries, nvme_max_retries, byte, 0644);
  48MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
  49
  50static unsigned long default_ps_max_latency_us = 100000;
  51module_param(default_ps_max_latency_us, ulong, 0644);
  52MODULE_PARM_DESC(default_ps_max_latency_us,
  53                 "max power saving latency for new devices; use PM QOS to change per device");
  54
  55static bool force_apst;
  56module_param(force_apst, bool, 0644);
  57MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
  58
  59static unsigned long apst_primary_timeout_ms = 100;
  60module_param(apst_primary_timeout_ms, ulong, 0644);
  61MODULE_PARM_DESC(apst_primary_timeout_ms,
  62        "primary APST timeout in ms");
  63
  64static unsigned long apst_secondary_timeout_ms = 2000;
  65module_param(apst_secondary_timeout_ms, ulong, 0644);
  66MODULE_PARM_DESC(apst_secondary_timeout_ms,
  67        "secondary APST timeout in ms");
  68
  69static unsigned long apst_primary_latency_tol_us = 15000;
  70module_param(apst_primary_latency_tol_us, ulong, 0644);
  71MODULE_PARM_DESC(apst_primary_latency_tol_us,
  72        "primary APST latency tolerance in us");
  73
  74static unsigned long apst_secondary_latency_tol_us = 100000;
  75module_param(apst_secondary_latency_tol_us, ulong, 0644);
  76MODULE_PARM_DESC(apst_secondary_latency_tol_us,
  77        "secondary APST latency tolerance in us");
  78
  79static bool streams;
  80module_param(streams, bool, 0644);
  81MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
  82
  83/*
  84 * nvme_wq - hosts nvme related works that are not reset or delete
  85 * nvme_reset_wq - hosts nvme reset works
  86 * nvme_delete_wq - hosts nvme delete works
  87 *
  88 * nvme_wq will host works such as scan, aen handling, fw activation,
  89 * keep-alive, periodic reconnects etc. nvme_reset_wq
  90 * runs reset works which also flush works hosted on nvme_wq for
  91 * serialization purposes. nvme_delete_wq host controller deletion
  92 * works which flush reset works for serialization.
  93 */
  94struct workqueue_struct *nvme_wq;
  95EXPORT_SYMBOL_GPL(nvme_wq);
  96
  97struct workqueue_struct *nvme_reset_wq;
  98EXPORT_SYMBOL_GPL(nvme_reset_wq);
  99
 100struct workqueue_struct *nvme_delete_wq;
 101EXPORT_SYMBOL_GPL(nvme_delete_wq);
 102
 103static LIST_HEAD(nvme_subsystems);
 104static DEFINE_MUTEX(nvme_subsystems_lock);
 105
 106static DEFINE_IDA(nvme_instance_ida);
 107static dev_t nvme_ctrl_base_chr_devt;
 108static struct class *nvme_class;
 109static struct class *nvme_subsys_class;
 110
 111static DEFINE_IDA(nvme_ns_chr_minor_ida);
 112static dev_t nvme_ns_chr_devt;
 113static struct class *nvme_ns_chr_class;
 114
 115static void nvme_put_subsystem(struct nvme_subsystem *subsys);
 116static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
 117                                           unsigned nsid);
 118static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
 119                                   struct nvme_command *cmd);
 120
 121static void nvme_update_bdev_size(struct gendisk *disk)
 122{
 123        struct block_device *bdev = bdget_disk(disk, 0);
 124
 125        if (bdev) {
 126                bd_set_nr_sectors(bdev, get_capacity(disk));
 127                bdput(bdev);
 128        }
 129}
 130
 131/*
 132 * Prepare a queue for teardown.
 133 *
 134 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
 135 * the capacity to 0 after that to avoid blocking dispatchers that may be
 136 * holding bd_butex.  This will end buffered writers dirtying pages that can't
 137 * be synced.
 138 */
 139static void nvme_set_queue_dying(struct nvme_ns *ns)
 140{
 141        if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
 142                return;
 143
 144        blk_set_queue_dying(ns->queue);
 145        blk_mq_unquiesce_queue(ns->queue);
 146
 147        set_capacity(ns->disk, 0);
 148        nvme_update_bdev_size(ns->disk);
 149}
 150
 151void nvme_queue_scan(struct nvme_ctrl *ctrl)
 152{
 153        /*
 154         * Only new queue scan work when admin and IO queues are both alive
 155         */
 156        if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
 157                queue_work(nvme_wq, &ctrl->scan_work);
 158}
 159
 160/*
 161 * Use this function to proceed with scheduling reset_work for a controller
 162 * that had previously been set to the resetting state. This is intended for
 163 * code paths that can't be interrupted by other reset attempts. A hot removal
 164 * may prevent this from succeeding.
 165 */
 166int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
 167{
 168        if (ctrl->state != NVME_CTRL_RESETTING)
 169                return -EBUSY;
 170        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 171                return -EBUSY;
 172        return 0;
 173}
 174EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
 175
 176static void nvme_failfast_work(struct work_struct *work)
 177{
 178        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
 179                        struct nvme_ctrl, failfast_work);
 180
 181        if (ctrl->state != NVME_CTRL_CONNECTING)
 182                return;
 183
 184        set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
 185        dev_info(ctrl->device, "failfast expired\n");
 186        nvme_kick_requeue_lists(ctrl);
 187}
 188
 189static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
 190{
 191        if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
 192                return;
 193
 194        schedule_delayed_work(&ctrl->failfast_work,
 195                              ctrl->opts->fast_io_fail_tmo * HZ);
 196}
 197
 198static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
 199{
 200        if (!ctrl->opts)
 201                return;
 202
 203        cancel_delayed_work_sync(&ctrl->failfast_work);
 204        clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
 205}
 206
 207
 208int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
 209{
 210        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
 211                return -EBUSY;
 212        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 213                return -EBUSY;
 214        return 0;
 215}
 216EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
 217
 218int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
 219{
 220        int ret;
 221
 222        ret = nvme_reset_ctrl(ctrl);
 223        if (!ret) {
 224                flush_work(&ctrl->reset_work);
 225                if (ctrl->state != NVME_CTRL_LIVE)
 226                        ret = -ENETRESET;
 227        }
 228
 229        return ret;
 230}
 231
 232static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
 233{
 234        dev_info(ctrl->device,
 235                 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
 236
 237        flush_work(&ctrl->reset_work);
 238        nvme_stop_ctrl(ctrl);
 239        nvme_remove_namespaces(ctrl);
 240        ctrl->ops->delete_ctrl(ctrl);
 241        nvme_uninit_ctrl(ctrl);
 242}
 243
 244static void nvme_delete_ctrl_work(struct work_struct *work)
 245{
 246        struct nvme_ctrl *ctrl =
 247                container_of(work, struct nvme_ctrl, delete_work);
 248
 249        nvme_do_delete_ctrl(ctrl);
 250}
 251
 252int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
 253{
 254        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 255                return -EBUSY;
 256        if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
 257                return -EBUSY;
 258        return 0;
 259}
 260EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
 261
 262static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
 263{
 264        /*
 265         * Keep a reference until nvme_do_delete_ctrl() complete,
 266         * since ->delete_ctrl can free the controller.
 267         */
 268        nvme_get_ctrl(ctrl);
 269        if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 270                nvme_do_delete_ctrl(ctrl);
 271        nvme_put_ctrl(ctrl);
 272}
 273
 274static blk_status_t nvme_error_status(u16 status)
 275{
 276        if (unlikely(status & NVME_SC_DNR))
 277                return BLK_STS_TARGET;
 278
 279        switch (status & 0x7ff) {
 280        case NVME_SC_SUCCESS:
 281                return BLK_STS_OK;
 282        case NVME_SC_CAP_EXCEEDED:
 283                return BLK_STS_NOSPC;
 284        case NVME_SC_LBA_RANGE:
 285        case NVME_SC_CMD_INTERRUPTED:
 286        case NVME_SC_NS_NOT_READY:
 287                return BLK_STS_TARGET;
 288        case NVME_SC_BAD_ATTRIBUTES:
 289        case NVME_SC_ONCS_NOT_SUPPORTED:
 290        case NVME_SC_INVALID_OPCODE:
 291        case NVME_SC_INVALID_FIELD:
 292        case NVME_SC_INVALID_NS:
 293                return BLK_STS_NOTSUPP;
 294        case NVME_SC_WRITE_FAULT:
 295        case NVME_SC_READ_ERROR:
 296        case NVME_SC_UNWRITTEN_BLOCK:
 297        case NVME_SC_ACCESS_DENIED:
 298        case NVME_SC_READ_ONLY:
 299        case NVME_SC_COMPARE_FAILED:
 300                return BLK_STS_MEDIUM;
 301        case NVME_SC_GUARD_CHECK:
 302        case NVME_SC_APPTAG_CHECK:
 303        case NVME_SC_REFTAG_CHECK:
 304        case NVME_SC_INVALID_PI:
 305                return BLK_STS_PROTECTION;
 306        case NVME_SC_RESERVATION_CONFLICT:
 307                return BLK_STS_NEXUS;
 308        case NVME_SC_HOST_PATH_ERROR:
 309                return BLK_STS_TRANSPORT;
 310        case NVME_SC_ZONE_TOO_MANY_ACTIVE:
 311                return BLK_STS_ZONE_ACTIVE_RESOURCE;
 312        case NVME_SC_ZONE_TOO_MANY_OPEN:
 313                return BLK_STS_ZONE_OPEN_RESOURCE;
 314        default:
 315                return BLK_STS_IOERR;
 316        }
 317}
 318
 319static void nvme_retry_req(struct request *req)
 320{
 321        unsigned long delay = 0;
 322        u16 crd;
 323
 324        /* The mask and shift result must be <= 3 */
 325        crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
 326        if (crd)
 327                delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
 328
 329        nvme_req(req)->retries++;
 330        blk_mq_requeue_request(req, false);
 331        blk_mq_delay_kick_requeue_list(req->q, delay);
 332}
 333
 334enum nvme_disposition {
 335        COMPLETE,
 336        RETRY,
 337        FAILOVER,
 338};
 339
 340static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
 341{
 342        if (likely(nvme_req(req)->status == 0))
 343                return COMPLETE;
 344
 345        /*
 346         * REQ_FAILFAST_TRANSPORT is set by upper layer software that
 347         * handles multipathing. Unlike SCSI, NVMe's error handling was
 348         * specifically designed to handle local retry for non-path errors.
 349         * As such, allow NVMe's local retry mechanism to be used for
 350         * requests marked with REQ_FAILFAST_TRANSPORT.
 351         */
 352        if ((req->cmd_flags & (REQ_FAILFAST_DEV | REQ_FAILFAST_DRIVER)) ||
 353            (nvme_req(req)->status & NVME_SC_DNR) ||
 354            nvme_req(req)->retries >= nvme_max_retries)
 355                return COMPLETE;
 356
 357        if (req->cmd_flags & (REQ_NVME_MPATH | REQ_FAILFAST_TRANSPORT)) {
 358                if (nvme_is_path_error(nvme_req(req)->status) ||
 359                    blk_queue_dying(req->q))
 360                        return FAILOVER;
 361        } else {
 362                if (blk_queue_dying(req->q))
 363                        return COMPLETE;
 364        }
 365
 366        return RETRY;
 367}
 368
 369static inline void __nvme_end_req(struct request *req, blk_status_t status)
 370{
 371        if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
 372                req_op(req) == REQ_OP_ZONE_APPEND) {
 373                req->__sector = nvme_lba_to_sect(req->q->queuedata,
 374                le64_to_cpu(nvme_req(req)->result.u64));
 375        }
 376        nvme_trace_bio_complete(req);
 377        blk_mq_end_request(req, status);
 378}
 379
 380static inline void nvme_end_req(struct request *req)
 381{
 382        __nvme_end_req(req, nvme_error_status(nvme_req(req)->status));
 383}
 384
 385static inline void nvme_end_req_with_failover(struct request *req)
 386{
 387        u16 nvme_status = nvme_req(req)->status;
 388        blk_status_t status = nvme_error_status(nvme_status);
 389
 390        if (unlikely(nvme_status & NVME_SC_DNR))
 391                goto out;
 392
 393        nvme_update_ana(req);
 394
 395        if (!blk_path_error(status)) {
 396                pr_debug("Request meant for failover but blk_status_t (errno=%d) was not retryable.\n",
 397                         blk_status_to_errno(status));
 398                status = BLK_STS_IOERR;
 399        }
 400out:
 401        __nvme_end_req(req, status);
 402}
 403
 404void nvme_complete_rq(struct request *req)
 405{
 406        trace_nvme_complete_rq(req);
 407        nvme_cleanup_cmd(req);
 408
 409        if (nvme_req(req)->ctrl->kas)
 410                nvme_req(req)->ctrl->comp_seen = true;
 411
 412        switch (nvme_decide_disposition(req)) {
 413        case COMPLETE:
 414                nvme_end_req(req);
 415                return;
 416        case RETRY:
 417                nvme_retry_req(req);
 418                return;
 419        case FAILOVER:
 420                if (req->cmd_flags & REQ_NVME_MPATH)
 421                        nvme_failover_req(req);
 422                else
 423                        nvme_end_req_with_failover(req);
 424                return;
 425        }
 426}
 427EXPORT_SYMBOL_GPL(nvme_complete_rq);
 428
 429/*
 430 * Called to unwind from ->queue_rq on a failed command submission so that the
 431 * multipathing code gets called to potentially failover to another path.
 432 * The caller needs to unwind all transport specific resource allocations and
 433 * must return propagate the return value.
 434 */
 435blk_status_t nvme_host_path_error(struct request *req)
 436{
 437        nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
 438        blk_mq_set_request_complete(req);
 439        nvme_complete_rq(req);
 440        return BLK_STS_OK;
 441}
 442EXPORT_SYMBOL_GPL(nvme_host_path_error);
 443
 444bool nvme_cancel_request(struct request *req, void *data, bool reserved)
 445{
 446        dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
 447                                "Cancelling I/O %d", req->tag);
 448
 449        /* don't abort one completed request */
 450        if (blk_mq_request_completed(req))
 451                return true;
 452
 453        nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
 454        nvme_req(req)->flags |= NVME_REQ_CANCELLED;
 455        blk_mq_complete_request(req);
 456        return true;
 457}
 458EXPORT_SYMBOL_GPL(nvme_cancel_request);
 459
 460void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
 461{
 462        if (ctrl->tagset) {
 463                blk_mq_tagset_busy_iter(ctrl->tagset,
 464                                nvme_cancel_request, ctrl);
 465                blk_mq_tagset_wait_completed_request(ctrl->tagset);
 466        }
 467}
 468EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
 469
 470void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
 471{
 472        if (ctrl->admin_tagset) {
 473                blk_mq_tagset_busy_iter(ctrl->admin_tagset,
 474                                nvme_cancel_request, ctrl);
 475                blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
 476        }
 477}
 478EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
 479
 480bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
 481                enum nvme_ctrl_state new_state)
 482{
 483        enum nvme_ctrl_state old_state;
 484        unsigned long flags;
 485        bool changed = false;
 486
 487        spin_lock_irqsave(&ctrl->lock, flags);
 488
 489        old_state = ctrl->state;
 490        switch (new_state) {
 491        case NVME_CTRL_LIVE:
 492                switch (old_state) {
 493                case NVME_CTRL_NEW:
 494                case NVME_CTRL_RESETTING:
 495                case NVME_CTRL_CONNECTING:
 496                        changed = true;
 497                        /* FALLTHRU */
 498                default:
 499                        break;
 500                }
 501                break;
 502        case NVME_CTRL_RESETTING:
 503                switch (old_state) {
 504                case NVME_CTRL_NEW:
 505                case NVME_CTRL_LIVE:
 506                        changed = true;
 507                        /* FALLTHRU */
 508                default:
 509                        break;
 510                }
 511                break;
 512        case NVME_CTRL_CONNECTING:
 513                switch (old_state) {
 514                case NVME_CTRL_NEW:
 515                case NVME_CTRL_RESETTING:
 516                        changed = true;
 517                        /* FALLTHRU */
 518                default:
 519                        break;
 520                }
 521                break;
 522        case NVME_CTRL_DELETING:
 523                switch (old_state) {
 524                case NVME_CTRL_LIVE:
 525                case NVME_CTRL_RESETTING:
 526                case NVME_CTRL_CONNECTING:
 527                        changed = true;
 528                        /* FALLTHRU */
 529                default:
 530                        break;
 531                }
 532                break;
 533        case NVME_CTRL_DELETING_NOIO:
 534                switch (old_state) {
 535                case NVME_CTRL_DELETING:
 536                case NVME_CTRL_DEAD:
 537                        changed = true;
 538                        /* FALLTHRU */
 539                default:
 540                        break;
 541                }
 542                break;
 543        case NVME_CTRL_DEAD:
 544                switch (old_state) {
 545                case NVME_CTRL_DELETING:
 546                        changed = true;
 547                        /* FALLTHRU */
 548                default:
 549                        break;
 550                }
 551                break;
 552        default:
 553                break;
 554        }
 555
 556        if (changed) {
 557                ctrl->state = new_state;
 558                wake_up_all(&ctrl->state_wq);
 559        }
 560
 561        spin_unlock_irqrestore(&ctrl->lock, flags);
 562        if (!changed)
 563                return false;
 564
 565        if (ctrl->state == NVME_CTRL_LIVE) {
 566                if (old_state == NVME_CTRL_CONNECTING)
 567                        nvme_stop_failfast_work(ctrl);
 568                nvme_kick_requeue_lists(ctrl);
 569        } else if (ctrl->state == NVME_CTRL_CONNECTING &&
 570                old_state == NVME_CTRL_RESETTING) {
 571                nvme_start_failfast_work(ctrl);
 572        }
 573        return changed;
 574}
 575EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
 576
 577/*
 578 * Returns true for sink states that can't ever transition back to live.
 579 */
 580static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
 581{
 582        switch (ctrl->state) {
 583        case NVME_CTRL_NEW:
 584        case NVME_CTRL_LIVE:
 585        case NVME_CTRL_RESETTING:
 586        case NVME_CTRL_CONNECTING:
 587                return false;
 588        case NVME_CTRL_DELETING:
 589        case NVME_CTRL_DELETING_NOIO:
 590        case NVME_CTRL_DEAD:
 591                return true;
 592        default:
 593                WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
 594                return true;
 595        }
 596}
 597
 598/*
 599 * Waits for the controller state to be resetting, or returns false if it is
 600 * not possible to ever transition to that state.
 601 */
 602bool nvme_wait_reset(struct nvme_ctrl *ctrl)
 603{
 604        wait_event(ctrl->state_wq,
 605                   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
 606                   nvme_state_terminal(ctrl));
 607        return ctrl->state == NVME_CTRL_RESETTING;
 608}
 609EXPORT_SYMBOL_GPL(nvme_wait_reset);
 610
 611static void nvme_free_ns_head(struct kref *ref)
 612{
 613        struct nvme_ns_head *head =
 614                container_of(ref, struct nvme_ns_head, ref);
 615
 616        nvme_mpath_remove_disk(head);
 617        ida_simple_remove(&head->subsys->ns_ida, head->instance);
 618        cleanup_srcu_struct(&head->srcu);
 619        nvme_put_subsystem(head->subsys);
 620        kfree(head);
 621}
 622
 623bool nvme_tryget_ns_head(struct nvme_ns_head *head)
 624{
 625        return kref_get_unless_zero(&head->ref);
 626}
 627
 628void nvme_put_ns_head(struct nvme_ns_head *head)
 629{
 630        kref_put(&head->ref, nvme_free_ns_head);
 631}
 632
 633static void nvme_free_ns(struct kref *kref)
 634{
 635        struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
 636
 637        if (ns->ndev)
 638                nvme_nvm_unregister(ns);
 639
 640        put_disk(ns->disk);
 641        nvme_put_ns_head(ns->head);
 642        nvme_put_ctrl(ns->ctrl);
 643        kfree(ns);
 644}
 645
 646static inline bool nvme_get_ns(struct nvme_ns *ns)
 647{
 648        return kref_get_unless_zero(&ns->kref);
 649}
 650
 651void nvme_put_ns(struct nvme_ns *ns)
 652{
 653        kref_put(&ns->kref, nvme_free_ns);
 654}
 655EXPORT_SYMBOL_GPL(nvme_put_ns);
 656
 657static inline void nvme_clear_nvme_request(struct request *req)
 658{
 659        nvme_req(req)->status = 0;
 660        nvme_req(req)->retries = 0;
 661        nvme_req(req)->flags = 0;
 662        req->rq_flags |= RQF_DONTPREP;
 663}
 664
 665static inline unsigned int nvme_req_op(struct nvme_command *cmd)
 666{
 667        return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
 668}
 669
 670static inline void nvme_init_request(struct request *req,
 671                struct nvme_command *cmd)
 672{
 673        if (req->q->queuedata)
 674                req->timeout = NVME_IO_TIMEOUT;
 675        else /* no queuedata implies admin queue */
 676                req->timeout = NVME_ADMIN_TIMEOUT;
 677
 678        /* passthru commands should let the driver set the SGL flags */
 679        cmd->common.flags &= ~NVME_CMD_SGL_ALL;
 680
 681        req->cmd_flags |= REQ_FAILFAST_DRIVER;
 682        if (req->mq_hctx->type == HCTX_TYPE_POLL)
 683                req->cmd_flags |= REQ_HIPRI;
 684        nvme_clear_nvme_request(req);
 685        memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
 686}
 687
 688struct request *nvme_alloc_request(struct request_queue *q,
 689                struct nvme_command *cmd, blk_mq_req_flags_t flags)
 690{
 691        struct request *req;
 692
 693        req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
 694        if (!IS_ERR(req))
 695                nvme_init_request(req, cmd);
 696        return req;
 697}
 698EXPORT_SYMBOL_GPL(nvme_alloc_request);
 699
 700static struct request *nvme_alloc_request_qid(struct request_queue *q,
 701                struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
 702{
 703        struct request *req;
 704
 705        req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
 706                        qid ? qid - 1 : 0);
 707        if (!IS_ERR(req))
 708                nvme_init_request(req, cmd);
 709        return req;
 710}
 711
 712/*
 713 * For something we're not in a state to send to the device the default action
 714 * is to busy it and retry it after the controller state is recovered.  However,
 715 * if the controller is deleting or if anything is marked for failfast or
 716 * nvme multipath it is immediately failed.
 717 *
 718 * Note: commands used to initialize the controller will be marked for failfast.
 719 * Note: nvme cli/ioctl commands are marked for failfast.
 720 */
 721blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
 722                struct request *rq)
 723{
 724        if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
 725            ctrl->state != NVME_CTRL_DEAD &&
 726            !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
 727            !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
 728                return BLK_STS_RESOURCE;
 729        return nvme_host_path_error(rq);
 730}
 731EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
 732
 733bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
 734                bool queue_live)
 735{
 736        struct nvme_request *req = nvme_req(rq);
 737
 738        /*
 739         * currently we have a problem sending passthru commands
 740         * on the admin_q if the controller is not LIVE because we can't
 741         * make sure that they are going out after the admin connect,
 742         * controller enable and/or other commands in the initialization
 743         * sequence. until the controller will be LIVE, fail with
 744         * BLK_STS_RESOURCE so that they will be rescheduled.
 745         */
 746        if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
 747                return false;
 748
 749        if (ctrl->ops->flags & NVME_F_FABRICS) {
 750                /*
 751                 * Only allow commands on a live queue, except for the connect
 752                 * command, which is require to set the queue live in the
 753                 * appropinquate states.
 754                 */
 755                switch (ctrl->state) {
 756                case NVME_CTRL_CONNECTING:
 757                        if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
 758                            req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
 759                                return true;
 760                        break;
 761                default:
 762                        break;
 763                case NVME_CTRL_DEAD:
 764                        return false;
 765                }
 766        }
 767
 768        return queue_live;
 769}
 770EXPORT_SYMBOL_GPL(__nvme_check_ready);
 771
 772static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
 773{
 774        struct nvme_command c = { };
 775
 776        c.directive.opcode = nvme_admin_directive_send;
 777        c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
 778        c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
 779        c.directive.dtype = NVME_DIR_IDENTIFY;
 780        c.directive.tdtype = NVME_DIR_STREAMS;
 781        c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
 782
 783        return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
 784}
 785
 786static int nvme_disable_streams(struct nvme_ctrl *ctrl)
 787{
 788        return nvme_toggle_streams(ctrl, false);
 789}
 790
 791static int nvme_enable_streams(struct nvme_ctrl *ctrl)
 792{
 793        return nvme_toggle_streams(ctrl, true);
 794}
 795
 796static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
 797                                  struct streams_directive_params *s, u32 nsid)
 798{
 799        struct nvme_command c = { };
 800
 801        memset(s, 0, sizeof(*s));
 802
 803        c.directive.opcode = nvme_admin_directive_recv;
 804        c.directive.nsid = cpu_to_le32(nsid);
 805        c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
 806        c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
 807        c.directive.dtype = NVME_DIR_STREAMS;
 808
 809        return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
 810}
 811
 812static int nvme_configure_directives(struct nvme_ctrl *ctrl)
 813{
 814        struct streams_directive_params s;
 815        int ret;
 816
 817        if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
 818                return 0;
 819        if (!streams)
 820                return 0;
 821
 822        ret = nvme_enable_streams(ctrl);
 823        if (ret)
 824                return ret;
 825
 826        ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
 827        if (ret)
 828                goto out_disable_stream;
 829
 830        ctrl->nssa = le16_to_cpu(s.nssa);
 831        if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
 832                dev_info(ctrl->device, "too few streams (%u) available\n",
 833                                        ctrl->nssa);
 834                goto out_disable_stream;
 835        }
 836
 837        ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
 838        dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
 839        return 0;
 840
 841out_disable_stream:
 842        nvme_disable_streams(ctrl);
 843        return ret;
 844}
 845
 846/*
 847 * Check if 'req' has a write hint associated with it. If it does, assign
 848 * a valid namespace stream to the write.
 849 */
 850static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
 851                                     struct request *req, u16 *control,
 852                                     u32 *dsmgmt)
 853{
 854        enum rw_hint streamid = req->write_hint;
 855
 856        if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
 857                streamid = 0;
 858        else {
 859                streamid--;
 860                if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
 861                        return;
 862
 863                *control |= NVME_RW_DTYPE_STREAMS;
 864                *dsmgmt |= streamid << 16;
 865        }
 866
 867        if (streamid < ARRAY_SIZE(req->q->write_hints))
 868                req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
 869}
 870
 871static inline void nvme_setup_flush(struct nvme_ns *ns,
 872                struct nvme_command *cmnd)
 873{
 874        cmnd->common.opcode = nvme_cmd_flush;
 875        cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
 876}
 877
 878static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
 879                struct nvme_command *cmnd)
 880{
 881        unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
 882        struct nvme_dsm_range *range;
 883        struct bio *bio;
 884
 885        /*
 886         * Some devices do not consider the DSM 'Number of Ranges' field when
 887         * determining how much data to DMA. Always allocate memory for maximum
 888         * number of segments to prevent device reading beyond end of buffer.
 889         */
 890        static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
 891
 892        range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
 893        if (!range) {
 894                /*
 895                 * If we fail allocation our range, fallback to the controller
 896                 * discard page. If that's also busy, it's safe to return
 897                 * busy, as we know we can make progress once that's freed.
 898                 */
 899                if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
 900                        return BLK_STS_RESOURCE;
 901
 902                range = page_address(ns->ctrl->discard_page);
 903        }
 904
 905        __rq_for_each_bio(bio, req) {
 906                u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
 907                u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
 908
 909                if (n < segments) {
 910                        range[n].cattr = cpu_to_le32(0);
 911                        range[n].nlb = cpu_to_le32(nlb);
 912                        range[n].slba = cpu_to_le64(slba);
 913                }
 914                n++;
 915        }
 916
 917        if (WARN_ON_ONCE(n != segments)) {
 918                if (virt_to_page(range) == ns->ctrl->discard_page)
 919                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 920                else
 921                        kfree(range);
 922                return BLK_STS_IOERR;
 923        }
 924
 925        cmnd->dsm.opcode = nvme_cmd_dsm;
 926        cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
 927        cmnd->dsm.nr = cpu_to_le32(segments - 1);
 928        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 929
 930        req->special_vec.bv_page = virt_to_page(range);
 931        req->special_vec.bv_offset = offset_in_page(range);
 932        req->special_vec.bv_len = alloc_size;
 933        req->rq_flags |= RQF_SPECIAL_PAYLOAD;
 934
 935        return BLK_STS_OK;
 936}
 937
 938static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
 939                struct request *req, struct nvme_command *cmnd)
 940{
 941        if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
 942                return nvme_setup_discard(ns, req, cmnd);
 943
 944        cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
 945        cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
 946        cmnd->write_zeroes.slba =
 947                cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 948        cmnd->write_zeroes.length =
 949                cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 950        if (nvme_ns_has_pi(ns))
 951                cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
 952        else
 953                cmnd->write_zeroes.control = 0;
 954        return BLK_STS_OK;
 955}
 956
 957static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
 958                struct request *req, struct nvme_command *cmnd,
 959                enum nvme_opcode op)
 960{
 961        struct nvme_ctrl *ctrl = ns->ctrl;
 962        u16 control = 0;
 963        u32 dsmgmt = 0;
 964
 965        if (req->cmd_flags & REQ_FUA)
 966                control |= NVME_RW_FUA;
 967        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 968                control |= NVME_RW_LR;
 969
 970        if (req->cmd_flags & REQ_RAHEAD)
 971                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 972
 973        cmnd->rw.opcode = op;
 974        cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
 975        cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 976        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 977
 978        if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
 979                nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
 980
 981        if (ns->ms) {
 982                /*
 983                 * If formated with metadata, the block layer always provides a
 984                 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
 985                 * we enable the PRACT bit for protection information or set the
 986                 * namespace capacity to zero to prevent any I/O.
 987                 */
 988                if (!blk_integrity_rq(req)) {
 989                        if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
 990                                return BLK_STS_NOTSUPP;
 991                        control |= NVME_RW_PRINFO_PRACT;
 992                }
 993
 994                switch (ns->pi_type) {
 995                case NVME_NS_DPS_PI_TYPE3:
 996                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 997                        break;
 998                case NVME_NS_DPS_PI_TYPE1:
 999                case NVME_NS_DPS_PI_TYPE2:
1000                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
1001                                        NVME_RW_PRINFO_PRCHK_REF;
1002                        if (op == nvme_cmd_zone_append)
1003                                control |= NVME_RW_APPEND_PIREMAP;
1004                        cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
1005                        break;
1006                }
1007        }
1008        cmnd->rw.control = cpu_to_le16(control);
1009        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1010        return 0;
1011}
1012
1013void nvme_cleanup_cmd(struct request *req)
1014{
1015        if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1016                struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1017                struct page *page = req->special_vec.bv_page;
1018
1019                if (page == ctrl->discard_page)
1020                        clear_bit_unlock(0, &ctrl->discard_page_busy);
1021                else
1022                        kfree(page_address(page) + req->special_vec.bv_offset);
1023        }
1024}
1025EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1026
1027blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1028{
1029        struct nvme_command *cmd = nvme_req(req)->cmd;
1030        blk_status_t ret = BLK_STS_OK;
1031
1032        if (!(req->rq_flags & RQF_DONTPREP)) {
1033                nvme_clear_nvme_request(req);
1034                memset(cmd, 0, sizeof(*cmd));
1035        }
1036
1037        switch (req_op(req)) {
1038        case REQ_OP_DRV_IN:
1039        case REQ_OP_DRV_OUT:
1040                /* these are setup prior to execution in nvme_init_request() */
1041                break;
1042        case REQ_OP_FLUSH:
1043                nvme_setup_flush(ns, cmd);
1044                break;
1045        case REQ_OP_ZONE_RESET_ALL:
1046        case REQ_OP_ZONE_RESET:
1047                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1048                break;
1049        case REQ_OP_ZONE_OPEN:
1050                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1051                break;
1052        case REQ_OP_ZONE_CLOSE:
1053                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1054                break;
1055        case REQ_OP_ZONE_FINISH:
1056                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1057                break;
1058        case REQ_OP_WRITE_ZEROES:
1059                ret = nvme_setup_write_zeroes(ns, req, cmd);
1060                break;
1061        case REQ_OP_DISCARD:
1062                ret = nvme_setup_discard(ns, req, cmd);
1063                break;
1064        case REQ_OP_READ:
1065                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1066                break;
1067        case REQ_OP_WRITE:
1068                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1069                break;
1070        case REQ_OP_ZONE_APPEND:
1071                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1072                break;
1073        default:
1074                WARN_ON_ONCE(1);
1075                return BLK_STS_IOERR;
1076        }
1077
1078        cmd->common.command_id = nvme_cid(req);
1079        trace_nvme_setup_cmd(req, cmd);
1080        return ret;
1081}
1082EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1083
1084/*
1085 * Return values:
1086 * 0:  success
1087 * >0: nvme controller's cqe status response
1088 * <0: kernel error in lieu of controller response
1089 */
1090static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1091                bool at_head)
1092{
1093        blk_status_t status;
1094
1095        status = blk_execute_rq_rh(rq->q, disk, rq, at_head);
1096        if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1097                return -EINTR;
1098        if (nvme_req(rq)->status)
1099                return nvme_req(rq)->status;
1100        return blk_status_to_errno(status);
1101}
1102
1103/*
1104 * Returns 0 on success.  If the result is negative, it's a Linux error code;
1105 * if the result is positive, it's an NVM Express status code
1106 */
1107int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1108                union nvme_result *result, void *buffer, unsigned bufflen,
1109                unsigned timeout, int qid, int at_head,
1110                blk_mq_req_flags_t flags)
1111{
1112        struct request *req;
1113        int ret;
1114
1115        if (qid == NVME_QID_ANY)
1116                req = nvme_alloc_request(q, cmd, flags);
1117        else
1118                req = nvme_alloc_request_qid(q, cmd, flags, qid);
1119        if (IS_ERR(req))
1120                return PTR_ERR(req);
1121
1122        if (timeout)
1123                req->timeout = timeout;
1124
1125        if (buffer && bufflen) {
1126                ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1127                if (ret)
1128                        goto out;
1129        }
1130
1131        ret = nvme_execute_rq(NULL, req, at_head);
1132        if (result && ret >= 0)
1133                *result = nvme_req(req)->result;
1134 out:
1135        blk_mq_free_request(req);
1136        return ret;
1137}
1138EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1139
1140int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1141                void *buffer, unsigned bufflen)
1142{
1143        return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1144                        NVME_QID_ANY, 0, 0);
1145}
1146EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1147
1148static u32 nvme_known_admin_effects(u8 opcode)
1149{
1150        switch (opcode) {
1151        case nvme_admin_format_nvm:
1152                return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1153                        NVME_CMD_EFFECTS_CSE_MASK;
1154        case nvme_admin_sanitize_nvm:
1155                return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1156        default:
1157                break;
1158        }
1159        return 0;
1160}
1161
1162u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1163{
1164        u32 effects = 0;
1165
1166        if (ns) {
1167                if (ns->head->effects)
1168                        effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1169                if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1170                        dev_warn_once(ctrl->device,
1171                                "IO command:%02x has unhandled effects:%08x\n",
1172                                opcode, effects);
1173                return 0;
1174        }
1175
1176        if (ctrl->effects)
1177                effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1178        effects |= nvme_known_admin_effects(opcode);
1179
1180        return effects;
1181}
1182EXPORT_SYMBOL_GPL(nvme_command_effects);
1183
1184static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1185                               u8 opcode)
1186{
1187        u32 effects = nvme_command_effects(ctrl, ns, opcode);
1188
1189        /*
1190         * For simplicity, IO to all namespaces is quiesced even if the command
1191         * effects say only one namespace is affected.
1192         */
1193        if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1194                mutex_lock(&ctrl->scan_lock);
1195                mutex_lock(&ctrl->subsys->lock);
1196                nvme_mpath_start_freeze(ctrl->subsys);
1197                nvme_mpath_wait_freeze(ctrl->subsys);
1198                nvme_start_freeze(ctrl);
1199                nvme_wait_freeze(ctrl);
1200        }
1201        return effects;
1202}
1203
1204static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1205                              struct nvme_command *cmd, int status)
1206{
1207        if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1208                nvme_unfreeze(ctrl);
1209                nvme_mpath_unfreeze(ctrl->subsys);
1210                mutex_unlock(&ctrl->subsys->lock);
1211                nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1212                mutex_unlock(&ctrl->scan_lock);
1213        }
1214        if (effects & NVME_CMD_EFFECTS_CCC)
1215                nvme_init_ctrl_finish(ctrl);
1216        if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1217                nvme_queue_scan(ctrl);
1218                flush_work(&ctrl->scan_work);
1219        }
1220
1221        switch (cmd->common.opcode) {
1222        case nvme_admin_set_features:
1223                switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1224                case NVME_FEAT_KATO:
1225                        /*
1226                         * Keep alive commands interval on the host should be
1227                         * updated when KATO is modified by Set Features
1228                         * commands.
1229                         */
1230                        if (!status)
1231                                nvme_update_keep_alive(ctrl, cmd);
1232                        break;
1233                default:
1234                        break;
1235                }
1236                break;
1237        default:
1238                break;
1239        }
1240}
1241
1242int nvme_execute_passthru_rq(struct request *rq)
1243{
1244        struct nvme_command *cmd = nvme_req(rq)->cmd;
1245        struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1246        struct nvme_ns *ns = rq->q->queuedata;
1247        struct gendisk *disk = ns ? ns->disk : NULL;
1248        u32 effects;
1249        int  ret;
1250
1251        effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1252        ret = nvme_execute_rq(disk, rq, false);
1253        if (effects) /* nothing to be done for zero cmd effects */
1254                nvme_passthru_end(ctrl, effects, cmd, ret);
1255
1256        return ret;
1257}
1258EXPORT_SYMBOL_GPL(nvme_execute_passthru_rq);
1259
1260/*
1261 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1262 * 
1263 *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1264 *   accounting for transport roundtrip times [..].
1265 */
1266static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1267{
1268        queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1269}
1270
1271static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1272{
1273        struct nvme_ctrl *ctrl = rq->end_io_data;
1274        unsigned long flags;
1275        bool startka = false;
1276
1277        blk_mq_free_request(rq);
1278
1279        if (status) {
1280                dev_err(ctrl->device,
1281                        "failed nvme_keep_alive_end_io error=%d\n",
1282                                status);
1283                return;
1284        }
1285
1286        ctrl->comp_seen = false;
1287        spin_lock_irqsave(&ctrl->lock, flags);
1288        if (ctrl->state == NVME_CTRL_LIVE ||
1289            ctrl->state == NVME_CTRL_CONNECTING)
1290                startka = true;
1291        spin_unlock_irqrestore(&ctrl->lock, flags);
1292        if (startka)
1293                nvme_queue_keep_alive_work(ctrl);
1294}
1295
1296static void nvme_keep_alive_work(struct work_struct *work)
1297{
1298        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1299                        struct nvme_ctrl, ka_work);
1300        bool comp_seen = ctrl->comp_seen;
1301        struct request *rq;
1302
1303        if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1304                dev_dbg(ctrl->device,
1305                        "reschedule traffic based keep-alive timer\n");
1306                ctrl->comp_seen = false;
1307                nvme_queue_keep_alive_work(ctrl);
1308                return;
1309        }
1310
1311        rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1312                                BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1313        if (IS_ERR(rq)) {
1314                /* allocation failure, reset the controller */
1315                dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1316                nvme_reset_ctrl(ctrl);
1317                return;
1318        }
1319
1320        rq->timeout = ctrl->kato * HZ;
1321        rq->end_io_data = ctrl;
1322        blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1323}
1324
1325static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1326{
1327        if (unlikely(ctrl->kato == 0))
1328                return;
1329
1330        nvme_queue_keep_alive_work(ctrl);
1331}
1332
1333void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1334{
1335        if (unlikely(ctrl->kato == 0))
1336                return;
1337
1338        cancel_delayed_work_sync(&ctrl->ka_work);
1339}
1340EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1341
1342static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1343                                   struct nvme_command *cmd)
1344{
1345        unsigned int new_kato =
1346                DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1347
1348        dev_info(ctrl->device,
1349                 "keep alive interval updated from %u ms to %u ms\n",
1350                 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1351
1352        nvme_stop_keep_alive(ctrl);
1353        ctrl->kato = new_kato;
1354        nvme_start_keep_alive(ctrl);
1355}
1356
1357/*
1358 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1359 * flag, thus sending any new CNS opcodes has a big chance of not working.
1360 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1361 * (but not for any later version).
1362 */
1363static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1364{
1365        if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1366                return ctrl->vs < NVME_VS(1, 2, 0);
1367        return ctrl->vs < NVME_VS(1, 1, 0);
1368}
1369
1370static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1371{
1372        struct nvme_command c = { };
1373        int error;
1374
1375        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1376        c.identify.opcode = nvme_admin_identify;
1377        c.identify.cns = NVME_ID_CNS_CTRL;
1378
1379        *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1380        if (!*id)
1381                return -ENOMEM;
1382
1383        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1384                        sizeof(struct nvme_id_ctrl));
1385        if (error)
1386                kfree(*id);
1387        return error;
1388}
1389
1390static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1391                struct nvme_ns_id_desc *cur, bool *csi_seen)
1392{
1393        const char *warn_str = "ctrl returned bogus length:";
1394        void *data = cur;
1395
1396        switch (cur->nidt) {
1397        case NVME_NIDT_EUI64:
1398                if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1399                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1400                                 warn_str, cur->nidl);
1401                        return -1;
1402                }
1403                memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1404                return NVME_NIDT_EUI64_LEN;
1405        case NVME_NIDT_NGUID:
1406                if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1407                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1408                                 warn_str, cur->nidl);
1409                        return -1;
1410                }
1411                memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1412                return NVME_NIDT_NGUID_LEN;
1413        case NVME_NIDT_UUID:
1414                if (cur->nidl != NVME_NIDT_UUID_LEN) {
1415                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1416                                 warn_str, cur->nidl);
1417                        return -1;
1418                }
1419                uuid_copy(&ids->uuid, data + sizeof(*cur));
1420                return NVME_NIDT_UUID_LEN;
1421        case NVME_NIDT_CSI:
1422                if (cur->nidl != NVME_NIDT_CSI_LEN) {
1423                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1424                                 warn_str, cur->nidl);
1425                        return -1;
1426                }
1427                memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1428                *csi_seen = true;
1429                return NVME_NIDT_CSI_LEN;
1430        default:
1431                /* Skip unknown types */
1432                return cur->nidl;
1433        }
1434}
1435
1436static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1437                struct nvme_ns_ids *ids)
1438{
1439        struct nvme_command c = { };
1440        bool csi_seen = false;
1441        int status, pos, len;
1442        void *data;
1443
1444        if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1445                return 0;
1446        if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1447                return 0;
1448
1449        c.identify.opcode = nvme_admin_identify;
1450        c.identify.nsid = cpu_to_le32(nsid);
1451        c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1452
1453        data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1454        if (!data)
1455                return -ENOMEM;
1456
1457        status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1458                                      NVME_IDENTIFY_DATA_SIZE);
1459        if (status) {
1460                dev_warn(ctrl->device,
1461                        "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1462                        nsid, status);
1463                goto free_data;
1464        }
1465
1466        for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1467                struct nvme_ns_id_desc *cur = data + pos;
1468
1469                if (cur->nidl == 0)
1470                        break;
1471
1472                len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1473                if (len < 0)
1474                        break;
1475
1476                len += sizeof(*cur);
1477        }
1478
1479        if (nvme_multi_css(ctrl) && !csi_seen) {
1480                dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1481                         nsid);
1482                status = -EINVAL;
1483        }
1484
1485free_data:
1486        kfree(data);
1487        return status;
1488}
1489
1490static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1491                        struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1492{
1493        struct nvme_command c = { };
1494        int error;
1495
1496        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1497        c.identify.opcode = nvme_admin_identify;
1498        c.identify.nsid = cpu_to_le32(nsid);
1499        c.identify.cns = NVME_ID_CNS_NS;
1500
1501        *id = kmalloc(sizeof(**id), GFP_KERNEL);
1502        if (!*id)
1503                return -ENOMEM;
1504
1505        error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1506        if (error) {
1507                dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1508                goto out_free_id;
1509        }
1510
1511        error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1512        if ((*id)->ncap == 0) /* namespace not allocated or attached */
1513                goto out_free_id;
1514
1515        if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1516            !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1517                memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1518        if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1519            !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1520                memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1521
1522        return 0;
1523
1524out_free_id:
1525        kfree(*id);
1526        return error;
1527}
1528
1529static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1530                unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1531{
1532        union nvme_result res = { 0 };
1533        struct nvme_command c = { };
1534        int ret;
1535
1536        c.features.opcode = op;
1537        c.features.fid = cpu_to_le32(fid);
1538        c.features.dword11 = cpu_to_le32(dword11);
1539
1540        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1541                        buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1542        if (ret >= 0 && result)
1543                *result = le32_to_cpu(res.u32);
1544        return ret;
1545}
1546
1547int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1548                      unsigned int dword11, void *buffer, size_t buflen,
1549                      u32 *result)
1550{
1551        return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1552                             buflen, result);
1553}
1554EXPORT_SYMBOL_GPL(nvme_set_features);
1555
1556int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1557                      unsigned int dword11, void *buffer, size_t buflen,
1558                      u32 *result)
1559{
1560        return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1561                             buflen, result);
1562}
1563EXPORT_SYMBOL_GPL(nvme_get_features);
1564
1565int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1566{
1567        u32 q_count = (*count - 1) | ((*count - 1) << 16);
1568        u32 result;
1569        int status, nr_io_queues;
1570
1571        status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1572                        &result);
1573        if (status < 0)
1574                return status;
1575
1576        /*
1577         * Degraded controllers might return an error when setting the queue
1578         * count.  We still want to be able to bring them online and offer
1579         * access to the admin queue, as that might be only way to fix them up.
1580         */
1581        if (status > 0) {
1582                dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1583                *count = 0;
1584        } else {
1585                nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1586                *count = min(*count, nr_io_queues);
1587        }
1588
1589        return 0;
1590}
1591EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1592
1593#define NVME_AEN_SUPPORTED \
1594        (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1595         NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1596
1597static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1598{
1599        u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1600        int status;
1601
1602        if (!supported_aens)
1603                return;
1604
1605        status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1606                        NULL, 0, &result);
1607        if (status)
1608                dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1609                         supported_aens);
1610
1611        queue_work(nvme_wq, &ctrl->async_event_work);
1612}
1613
1614static int nvme_ns_open(struct nvme_ns *ns)
1615{
1616
1617        /* should never be called due to GENHD_FL_HIDDEN */
1618        if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1619                goto fail;
1620        if (!nvme_get_ns(ns))
1621                goto fail;
1622        if (!try_module_get(ns->ctrl->ops->module))
1623                goto fail_put_ns;
1624
1625        return 0;
1626
1627fail_put_ns:
1628        nvme_put_ns(ns);
1629fail:
1630        return -ENXIO;
1631}
1632
1633static void nvme_ns_release(struct nvme_ns *ns)
1634{
1635
1636        module_put(ns->ctrl->ops->module);
1637        nvme_put_ns(ns);
1638}
1639
1640static int nvme_open(struct block_device *bdev, fmode_t mode)
1641{
1642        return nvme_ns_open(bdev->bd_disk->private_data);
1643}
1644
1645static void nvme_release(struct gendisk *disk, fmode_t mode)
1646{
1647        nvme_ns_release(disk->private_data);
1648}
1649
1650int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1651{
1652        /* some standard values */
1653        geo->heads = 1 << 6;
1654        geo->sectors = 1 << 5;
1655        geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1656        return 0;
1657}
1658
1659#ifdef CONFIG_BLK_DEV_INTEGRITY
1660static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1661                                u32 max_integrity_segments)
1662{
1663        struct blk_integrity integrity = { };
1664
1665        switch (pi_type) {
1666        case NVME_NS_DPS_PI_TYPE3:
1667                integrity.profile = &t10_pi_type3_crc;
1668                integrity.tag_size = sizeof(u16) + sizeof(u32);
1669                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1670                break;
1671        case NVME_NS_DPS_PI_TYPE1:
1672        case NVME_NS_DPS_PI_TYPE2:
1673                integrity.profile = &t10_pi_type1_crc;
1674                integrity.tag_size = sizeof(u16);
1675                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1676                break;
1677        default:
1678                integrity.profile = NULL;
1679                break;
1680        }
1681        integrity.tuple_size = ms;
1682        blk_integrity_register(disk, &integrity);
1683        blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1684}
1685#else
1686static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1687                                u32 max_integrity_segments)
1688{
1689}
1690#endif /* CONFIG_BLK_DEV_INTEGRITY */
1691
1692static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1693{
1694        struct nvme_ctrl *ctrl = ns->ctrl;
1695        struct request_queue *queue = disk->queue;
1696        u32 size = queue_logical_block_size(queue);
1697
1698        if (ctrl->max_discard_sectors == 0) {
1699                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1700                return;
1701        }
1702
1703        if (ctrl->nr_streams && ns->sws && ns->sgs)
1704                size *= ns->sws * ns->sgs;
1705
1706        BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1707                        NVME_DSM_MAX_RANGES);
1708
1709        queue->limits.discard_alignment = 0;
1710        queue->limits.discard_granularity = size;
1711
1712        /* If discard is already enabled, don't reset queue limits */
1713        if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1714                return;
1715
1716        blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1717        blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1718
1719        if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1720                blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1721}
1722
1723static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1724{
1725        return !uuid_is_null(&ids->uuid) ||
1726                memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1727                memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1728}
1729
1730static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1731{
1732        return uuid_equal(&a->uuid, &b->uuid) &&
1733                memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1734                memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1735                a->csi == b->csi;
1736}
1737
1738static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1739                                 u32 *phys_bs, u32 *io_opt)
1740{
1741        struct streams_directive_params s;
1742        int ret;
1743
1744        if (!ctrl->nr_streams)
1745                return 0;
1746
1747        ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1748        if (ret)
1749                return ret;
1750
1751        ns->sws = le32_to_cpu(s.sws);
1752        ns->sgs = le16_to_cpu(s.sgs);
1753
1754        if (ns->sws) {
1755                *phys_bs = ns->sws * (1 << ns->lba_shift);
1756                if (ns->sgs)
1757                        *io_opt = *phys_bs * ns->sgs;
1758        }
1759
1760        return 0;
1761}
1762
1763static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1764{
1765        struct nvme_ctrl *ctrl = ns->ctrl;
1766
1767        /*
1768         * The PI implementation requires the metadata size to be equal to the
1769         * t10 pi tuple size.
1770         */
1771        ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1772        if (ns->ms == sizeof(struct t10_pi_tuple))
1773                ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1774        else
1775                ns->pi_type = 0;
1776
1777        ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1778        if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1779                return 0;
1780        if (ctrl->ops->flags & NVME_F_FABRICS) {
1781                /*
1782                 * The NVMe over Fabrics specification only supports metadata as
1783                 * part of the extended data LBA.  We rely on HCA/HBA support to
1784                 * remap the separate metadata buffer from the block layer.
1785                 */
1786                if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1787                        return -EINVAL;
1788                if (ctrl->max_integrity_segments)
1789                        ns->features |=
1790                                (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1791        } else {
1792                /*
1793                 * For PCIe controllers, we can't easily remap the separate
1794                 * metadata buffer from the block layer and thus require a
1795                 * separate metadata buffer for block layer metadata/PI support.
1796                 * We allow extended LBAs for the passthrough interface, though.
1797                 */
1798                if (id->flbas & NVME_NS_FLBAS_META_EXT)
1799                        ns->features |= NVME_NS_EXT_LBAS;
1800                else
1801                        ns->features |= NVME_NS_METADATA_SUPPORTED;
1802        }
1803
1804        return 0;
1805}
1806
1807static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1808                struct request_queue *q)
1809{
1810        bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1811
1812        if (ctrl->max_hw_sectors) {
1813                u32 max_segments =
1814                        (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1815
1816                max_segments = min_not_zero(max_segments, ctrl->max_segments);
1817                blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1818                blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1819        }
1820        blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1821        blk_queue_dma_alignment(q, 7);
1822        blk_queue_write_cache(q, vwc, vwc);
1823}
1824
1825static void nvme_update_disk_info(struct gendisk *disk,
1826                struct nvme_ns *ns, struct nvme_id_ns *id)
1827{
1828        sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1829        unsigned short bs = 1 << ns->lba_shift;
1830        u32 atomic_bs, phys_bs, io_opt = 0;
1831
1832        /*
1833         * The block layer can't support LBA sizes larger than the page size
1834         * yet, so catch this early and don't allow block I/O.
1835         */
1836        if (ns->lba_shift > PAGE_SHIFT) {
1837                capacity = 0;
1838                bs = (1 << 9);
1839        }
1840
1841        blk_integrity_unregister(disk);
1842
1843        atomic_bs = phys_bs = bs;
1844        nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1845        if (id->nabo == 0) {
1846                /*
1847                 * Bit 1 indicates whether NAWUPF is defined for this namespace
1848                 * and whether it should be used instead of AWUPF. If NAWUPF ==
1849                 * 0 then AWUPF must be used instead.
1850                 */
1851                if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1852                        atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1853                else
1854                        atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1855        }
1856
1857        if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1858                /* NPWG = Namespace Preferred Write Granularity */
1859                phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1860                /* NOWS = Namespace Optimal Write Size */
1861                io_opt = bs * (1 + le16_to_cpu(id->nows));
1862        }
1863
1864        blk_queue_logical_block_size(disk->queue, bs);
1865        /*
1866         * Linux filesystems assume writing a single physical block is
1867         * an atomic operation. Hence limit the physical block size to the
1868         * value of the Atomic Write Unit Power Fail parameter.
1869         */
1870        blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1871        blk_queue_io_min(disk->queue, phys_bs);
1872        blk_queue_io_opt(disk->queue, io_opt);
1873
1874        /*
1875         * Register a metadata profile for PI, or the plain non-integrity NVMe
1876         * metadata masquerading as Type 0 if supported, otherwise reject block
1877         * I/O to namespaces with metadata except when the namespace supports
1878         * PI, as it can strip/insert in that case.
1879         */
1880        if (ns->ms) {
1881                if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1882                    (ns->features & NVME_NS_METADATA_SUPPORTED))
1883                        nvme_init_integrity(disk, ns->ms, ns->pi_type,
1884                                            ns->ctrl->max_integrity_segments);
1885                else if (!nvme_ns_has_pi(ns))
1886                        capacity = 0;
1887        }
1888
1889        set_capacity_revalidate_and_notify(disk, capacity, true);
1890
1891        nvme_config_discard(disk, ns);
1892        blk_queue_max_write_zeroes_sectors(disk->queue,
1893                                           ns->ctrl->max_zeroes_sectors);
1894
1895        set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1896                test_bit(NVME_NS_FORCE_RO, &ns->flags));
1897}
1898
1899static inline bool nvme_first_scan(struct gendisk *disk)
1900{
1901        /* nvme_alloc_ns() scans the disk prior to adding it */
1902        return !(disk->flags & GENHD_FL_UP);
1903}
1904
1905static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1906{
1907        struct nvme_ctrl *ctrl = ns->ctrl;
1908        u32 iob;
1909
1910        if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1911            is_power_of_2(ctrl->max_hw_sectors))
1912                iob = ctrl->max_hw_sectors;
1913        else
1914                iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1915
1916        if (!iob)
1917                return;
1918
1919        if (!is_power_of_2(iob)) {
1920                if (nvme_first_scan(ns->disk))
1921                        pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1922                                ns->disk->disk_name, iob);
1923                return;
1924        }
1925
1926        if (blk_queue_is_zoned(ns->disk->queue)) {
1927                if (nvme_first_scan(ns->disk))
1928                        pr_warn("%s: ignoring zoned namespace IO boundary\n",
1929                                ns->disk->disk_name);
1930                return;
1931        }
1932
1933        blk_queue_chunk_sectors(ns->queue, iob);
1934}
1935
1936static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1937{
1938        unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1939        int ret;
1940
1941        blk_mq_freeze_queue(ns->disk->queue);
1942        ns->lba_shift = id->lbaf[lbaf].ds;
1943        nvme_set_queue_limits(ns->ctrl, ns->queue);
1944
1945        ret = nvme_configure_metadata(ns, id);
1946        if (ret)
1947                goto out_unfreeze;
1948        nvme_set_chunk_sectors(ns, id);
1949        nvme_update_disk_info(ns->disk, ns, id);
1950
1951        if (ns->head->ids.csi == NVME_CSI_ZNS) {
1952                ret = nvme_update_zone_info(ns, lbaf);
1953                if (ret)
1954                        goto out_unfreeze;
1955        }
1956
1957        blk_mq_unfreeze_queue(ns->disk->queue);
1958
1959        if (blk_queue_is_zoned(ns->queue)) {
1960                ret = nvme_revalidate_zones(ns);
1961                if (ret && !nvme_first_scan(ns->disk))
1962                        goto out;
1963        }
1964
1965        if (nvme_ns_head_multipath(ns->head)) {
1966                blk_mq_freeze_queue(ns->head->disk->queue);
1967                nvme_update_disk_info(ns->head->disk, ns, id);
1968                blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1969                blk_queue_update_readahead(ns->head->disk->queue);
1970                blk_mq_unfreeze_queue(ns->head->disk->queue);
1971        }
1972        return 0;
1973
1974out_unfreeze:
1975        blk_mq_unfreeze_queue(ns->disk->queue);
1976out:
1977        /*
1978         * If probing fails due an unsupported feature, hide the block device,
1979         * but still allow other access.
1980         */
1981        if (ret == -ENODEV) {
1982                ns->disk->flags |= GENHD_FL_HIDDEN;
1983                ret = 0;
1984        }
1985        return ret;
1986}
1987
1988static char nvme_pr_type(enum pr_type type)
1989{
1990        switch (type) {
1991        case PR_WRITE_EXCLUSIVE:
1992                return 1;
1993        case PR_EXCLUSIVE_ACCESS:
1994                return 2;
1995        case PR_WRITE_EXCLUSIVE_REG_ONLY:
1996                return 3;
1997        case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1998                return 4;
1999        case PR_WRITE_EXCLUSIVE_ALL_REGS:
2000                return 5;
2001        case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2002                return 6;
2003        default:
2004                return 0;
2005        }
2006};
2007
2008static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2009                struct nvme_command *c, u8 data[16])
2010{
2011        struct nvme_ns_head *head = bdev->bd_disk->private_data;
2012        int srcu_idx = srcu_read_lock(&head->srcu);
2013        struct nvme_ns *ns = nvme_find_path(head);
2014        int ret = -EWOULDBLOCK;
2015
2016        if (ns) {
2017                c->common.nsid = cpu_to_le32(ns->head->ns_id);
2018                ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2019        }
2020        srcu_read_unlock(&head->srcu, srcu_idx);
2021        return ret;
2022}
2023        
2024static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2025                u8 data[16])
2026{
2027        c->common.nsid = cpu_to_le32(ns->head->ns_id);
2028        return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2029}
2030
2031static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2032                                u64 key, u64 sa_key, u8 op)
2033{
2034        struct nvme_command c = { };
2035        u8 data[16] = { 0, };
2036
2037        put_unaligned_le64(key, &data[0]);
2038        put_unaligned_le64(sa_key, &data[8]);
2039
2040        c.common.opcode = op;
2041        c.common.cdw10 = cpu_to_le32(cdw10);
2042
2043        if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2044            bdev->bd_disk->fops == &nvme_ns_head_ops)
2045                return nvme_send_ns_head_pr_command(bdev, &c, data);
2046        return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2047}
2048
2049static int nvme_pr_register(struct block_device *bdev, u64 old,
2050                u64 new, unsigned flags)
2051{
2052        u32 cdw10;
2053
2054        if (flags & ~PR_FL_IGNORE_KEY)
2055                return -EOPNOTSUPP;
2056
2057        cdw10 = old ? 2 : 0;
2058        cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2059        cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2060        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2061}
2062
2063static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2064                enum pr_type type, unsigned flags)
2065{
2066        u32 cdw10;
2067
2068        if (flags & ~PR_FL_IGNORE_KEY)
2069                return -EOPNOTSUPP;
2070
2071        cdw10 = nvme_pr_type(type) << 8;
2072        cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2073        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2074}
2075
2076static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2077                enum pr_type type, bool abort)
2078{
2079        u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2080
2081        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2082}
2083
2084static int nvme_pr_clear(struct block_device *bdev, u64 key)
2085{
2086        u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2087
2088        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2089}
2090
2091static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2092{
2093        u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2094
2095        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2096}
2097
2098const struct pr_ops nvme_pr_ops = {
2099        .pr_register    = nvme_pr_register,
2100        .pr_reserve     = nvme_pr_reserve,
2101        .pr_release     = nvme_pr_release,
2102        .pr_preempt     = nvme_pr_preempt,
2103        .pr_clear       = nvme_pr_clear,
2104};
2105
2106#ifdef CONFIG_BLK_SED_OPAL
2107int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2108                bool send)
2109{
2110        struct nvme_ctrl *ctrl = data;
2111        struct nvme_command cmd = { };
2112
2113        if (send)
2114                cmd.common.opcode = nvme_admin_security_send;
2115        else
2116                cmd.common.opcode = nvme_admin_security_recv;
2117        cmd.common.nsid = 0;
2118        cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2119        cmd.common.cdw11 = cpu_to_le32(len);
2120
2121        return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2122                        NVME_QID_ANY, 1, 0);
2123}
2124EXPORT_SYMBOL_GPL(nvme_sec_submit);
2125#endif /* CONFIG_BLK_SED_OPAL */
2126
2127#ifdef CONFIG_BLK_DEV_ZONED
2128static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2129                unsigned int nr_zones, report_zones_cb cb, void *data)
2130{
2131        return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2132                        data);
2133}
2134#else
2135#define nvme_report_zones       NULL
2136#endif /* CONFIG_BLK_DEV_ZONED */
2137
2138static const struct block_device_operations nvme_bdev_ops = {
2139        .owner          = THIS_MODULE,
2140        .ioctl          = nvme_ioctl,
2141        .open           = nvme_open,
2142        .release        = nvme_release,
2143        .getgeo         = nvme_getgeo,
2144        .report_zones   = nvme_report_zones,
2145        .pr_ops         = &nvme_pr_ops,
2146};
2147
2148static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2149{
2150        unsigned long timeout =
2151                ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2152        u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2153        int ret;
2154
2155        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2156                if (csts == ~0)
2157                        return -ENODEV;
2158                if ((csts & NVME_CSTS_RDY) == bit)
2159                        break;
2160
2161                usleep_range(1000, 2000);
2162                if (fatal_signal_pending(current))
2163                        return -EINTR;
2164                if (time_after(jiffies, timeout)) {
2165                        dev_err(ctrl->device,
2166                                "Device not ready; aborting %s, CSTS=0x%x\n",
2167                                enabled ? "initialisation" : "reset", csts);
2168                        return -ENODEV;
2169                }
2170        }
2171
2172        return ret;
2173}
2174
2175/*
2176 * If the device has been passed off to us in an enabled state, just clear
2177 * the enabled bit.  The spec says we should set the 'shutdown notification
2178 * bits', but doing so may cause the device to complete commands to the
2179 * admin queue ... and we don't know what memory that might be pointing at!
2180 */
2181int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2182{
2183        int ret;
2184
2185        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2186        ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2187
2188        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2189        if (ret)
2190                return ret;
2191
2192        if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2193                msleep(NVME_QUIRK_DELAY_AMOUNT);
2194
2195        return nvme_wait_ready(ctrl, ctrl->cap, false);
2196}
2197EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2198
2199int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2200{
2201        unsigned dev_page_min;
2202        int ret;
2203
2204        ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2205        if (ret) {
2206                dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2207                return ret;
2208        }
2209        dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2210
2211        if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2212                dev_err(ctrl->device,
2213                        "Minimum device page size %u too large for host (%u)\n",
2214                        1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2215                return -ENODEV;
2216        }
2217
2218        if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2219                ctrl->ctrl_config = NVME_CC_CSS_CSI;
2220        else
2221                ctrl->ctrl_config = NVME_CC_CSS_NVM;
2222        ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2223        ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2224        ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2225        ctrl->ctrl_config |= NVME_CC_ENABLE;
2226
2227        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2228        if (ret)
2229                return ret;
2230        return nvme_wait_ready(ctrl, ctrl->cap, true);
2231}
2232EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2233
2234int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2235{
2236        unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2237        u32 csts;
2238        int ret;
2239
2240        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2241        ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2242
2243        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2244        if (ret)
2245                return ret;
2246
2247        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2248                if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2249                        break;
2250
2251                msleep(100);
2252                if (fatal_signal_pending(current))
2253                        return -EINTR;
2254                if (time_after(jiffies, timeout)) {
2255                        dev_err(ctrl->device,
2256                                "Device shutdown incomplete; abort shutdown\n");
2257                        return -ENODEV;
2258                }
2259        }
2260
2261        return ret;
2262}
2263EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2264
2265static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2266{
2267        __le64 ts;
2268        int ret;
2269
2270        if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2271                return 0;
2272
2273        ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2274        ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2275                        NULL);
2276        if (ret)
2277                dev_warn_once(ctrl->device,
2278                        "could not set timestamp (%d)\n", ret);
2279        return ret;
2280}
2281
2282static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2283{
2284        struct nvme_feat_host_behavior *host;
2285        int ret;
2286
2287        /* Don't bother enabling the feature if retry delay is not reported */
2288        if (!ctrl->crdt[0])
2289                return 0;
2290
2291        host = kzalloc(sizeof(*host), GFP_KERNEL);
2292        if (!host)
2293                return 0;
2294
2295        host->acre = NVME_ENABLE_ACRE;
2296        ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2297                                host, sizeof(*host), NULL);
2298        kfree(host);
2299        return ret;
2300}
2301
2302/*
2303 * The function checks whether the given total (exlat + enlat) latency of
2304 * a power state allows the latter to be used as an APST transition target.
2305 * It does so by comparing the latency to the primary and secondary latency
2306 * tolerances defined by module params. If there's a match, the corresponding
2307 * timeout value is returned and the matching tolerance index (1 or 2) is
2308 * reported.
2309 */
2310static bool nvme_apst_get_transition_time(u64 total_latency,
2311                u64 *transition_time, unsigned *last_index)
2312{
2313        if (total_latency <= apst_primary_latency_tol_us) {
2314                if (*last_index == 1)
2315                        return false;
2316                *last_index = 1;
2317                *transition_time = apst_primary_timeout_ms;
2318                return true;
2319        }
2320        if (apst_secondary_timeout_ms &&
2321                total_latency <= apst_secondary_latency_tol_us) {
2322                if (*last_index <= 2)
2323                        return false;
2324                *last_index = 2;
2325                *transition_time = apst_secondary_timeout_ms;
2326                return true;
2327        }
2328        return false;
2329}
2330
2331/*
2332 * APST (Autonomous Power State Transition) lets us program a table of power
2333 * state transitions that the controller will perform automatically.
2334 *
2335 * Depending on module params, one of the two supported techniques will be used:
2336 *
2337 * - If the parameters provide explicit timeouts and tolerances, they will be
2338 *   used to build a table with up to 2 non-operational states to transition to.
2339 *   The default parameter values were selected based on the values used by
2340 *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2341 *   regeneration of the APST table in the event of switching between external
2342 *   and battery power, the timeouts and tolerances reflect a compromise
2343 *   between values used by Microsoft for AC and battery scenarios.
2344 * - If not, we'll configure the table with a simple heuristic: we are willing
2345 *   to spend at most 2% of the time transitioning between power states.
2346 *   Therefore, when running in any given state, we will enter the next
2347 *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2348 *   microseconds, as long as that state's exit latency is under the requested
2349 *   maximum latency.
2350 *
2351 * We will not autonomously enter any non-operational state for which the total
2352 * latency exceeds ps_max_latency_us.
2353 *
2354 * Users can set ps_max_latency_us to zero to turn off APST.
2355 */
2356static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2357{
2358        struct nvme_feat_auto_pst *table;
2359        unsigned apste = 0;
2360        u64 max_lat_us = 0;
2361        __le64 target = 0;
2362        int max_ps = -1;
2363        int state;
2364        int ret;
2365        unsigned last_lt_index = UINT_MAX;
2366
2367        /*
2368         * If APST isn't supported or if we haven't been initialized yet,
2369         * then don't do anything.
2370         */
2371        if (!ctrl->apsta)
2372                return 0;
2373
2374        if (ctrl->npss > 31) {
2375                dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2376                return 0;
2377        }
2378
2379        table = kzalloc(sizeof(*table), GFP_KERNEL);
2380        if (!table)
2381                return 0;
2382
2383        if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2384                /* Turn off APST. */
2385                dev_dbg(ctrl->device, "APST disabled\n");
2386                goto done;
2387        }
2388
2389        /*
2390         * Walk through all states from lowest- to highest-power.
2391         * According to the spec, lower-numbered states use more power.  NPSS,
2392         * despite the name, is the index of the lowest-power state, not the
2393         * number of states.
2394         */
2395        for (state = (int)ctrl->npss; state >= 0; state--) {
2396                u64 total_latency_us, exit_latency_us, transition_ms;
2397
2398                if (target)
2399                        table->entries[state] = target;
2400
2401                /*
2402                 * Don't allow transitions to the deepest state if it's quirked
2403                 * off.
2404                 */
2405                if (state == ctrl->npss &&
2406                    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2407                        continue;
2408
2409                /*
2410                 * Is this state a useful non-operational state for higher-power
2411                 * states to autonomously transition to?
2412                 */
2413                if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2414                        continue;
2415
2416                exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2417                if (exit_latency_us > ctrl->ps_max_latency_us)
2418                        continue;
2419
2420                total_latency_us = exit_latency_us +
2421                        le32_to_cpu(ctrl->psd[state].entry_lat);
2422
2423                /*
2424                 * This state is good. It can be used as the APST idle target
2425                 * for higher power states.
2426                 */
2427                if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2428                        if (!nvme_apst_get_transition_time(total_latency_us,
2429                                        &transition_ms, &last_lt_index))
2430                                continue;
2431                } else {
2432                        transition_ms = total_latency_us + 19;
2433                        do_div(transition_ms, 20);
2434                        if (transition_ms > (1 << 24) - 1)
2435                                transition_ms = (1 << 24) - 1;
2436                }
2437
2438                target = cpu_to_le64((state << 3) | (transition_ms << 8));
2439                if (max_ps == -1)
2440                        max_ps = state;
2441                if (total_latency_us > max_lat_us)
2442                        max_lat_us = total_latency_us;
2443        }
2444
2445        if (max_ps == -1)
2446                dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2447        else
2448                dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2449                        max_ps, max_lat_us, (int)sizeof(*table), table);
2450        apste = 1;
2451
2452done:
2453        ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2454                                table, sizeof(*table), NULL);
2455        if (ret)
2456                dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2457        kfree(table);
2458        return ret;
2459}
2460
2461static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2462{
2463        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2464        u64 latency;
2465
2466        switch (val) {
2467        case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2468        case PM_QOS_LATENCY_ANY:
2469                latency = U64_MAX;
2470                break;
2471
2472        default:
2473                latency = val;
2474        }
2475
2476        if (ctrl->ps_max_latency_us != latency) {
2477                ctrl->ps_max_latency_us = latency;
2478                if (ctrl->state == NVME_CTRL_LIVE)
2479                        nvme_configure_apst(ctrl);
2480        }
2481}
2482
2483struct nvme_core_quirk_entry {
2484        /*
2485         * NVMe model and firmware strings are padded with spaces.  For
2486         * simplicity, strings in the quirk table are padded with NULLs
2487         * instead.
2488         */
2489        u16 vid;
2490        const char *mn;
2491        const char *fr;
2492        unsigned long quirks;
2493};
2494
2495static const struct nvme_core_quirk_entry core_quirks[] = {
2496        {
2497                /*
2498                 * This Toshiba device seems to die using any APST states.  See:
2499                 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2500                 */
2501                .vid = 0x1179,
2502                .mn = "THNSF5256GPUK TOSHIBA",
2503                .quirks = NVME_QUIRK_NO_APST,
2504        },
2505        {
2506                /*
2507                 * This LiteON CL1-3D*-Q11 firmware version has a race
2508                 * condition associated with actions related to suspend to idle
2509                 * LiteON has resolved the problem in future firmware
2510                 */
2511                .vid = 0x14a4,
2512                .fr = "22301111",
2513                .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2514        }
2515};
2516
2517/* match is null-terminated but idstr is space-padded. */
2518static bool string_matches(const char *idstr, const char *match, size_t len)
2519{
2520        size_t matchlen;
2521
2522        if (!match)
2523                return true;
2524
2525        matchlen = strlen(match);
2526        WARN_ON_ONCE(matchlen > len);
2527
2528        if (memcmp(idstr, match, matchlen))
2529                return false;
2530
2531        for (; matchlen < len; matchlen++)
2532                if (idstr[matchlen] != ' ')
2533                        return false;
2534
2535        return true;
2536}
2537
2538static bool quirk_matches(const struct nvme_id_ctrl *id,
2539                          const struct nvme_core_quirk_entry *q)
2540{
2541        return q->vid == le16_to_cpu(id->vid) &&
2542                string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2543                string_matches(id->fr, q->fr, sizeof(id->fr));
2544}
2545
2546static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2547                struct nvme_id_ctrl *id)
2548{
2549        size_t nqnlen;
2550        int off;
2551
2552        if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2553                nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2554                if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2555                        strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2556                        return;
2557                }
2558
2559                if (ctrl->vs >= NVME_VS(1, 2, 1))
2560                        dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2561        }
2562
2563        /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2564        off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2565                        "nqn.2014.08.org.nvmexpress:%04x%04x",
2566                        le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2567        memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2568        off += sizeof(id->sn);
2569        memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2570        off += sizeof(id->mn);
2571        memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2572}
2573
2574static void nvme_release_subsystem(struct device *dev)
2575{
2576        struct nvme_subsystem *subsys =
2577                container_of(dev, struct nvme_subsystem, dev);
2578
2579        if (subsys->instance >= 0)
2580                ida_simple_remove(&nvme_instance_ida, subsys->instance);
2581        kfree(subsys);
2582}
2583
2584static void nvme_destroy_subsystem(struct kref *ref)
2585{
2586        struct nvme_subsystem *subsys =
2587                        container_of(ref, struct nvme_subsystem, ref);
2588
2589        mutex_lock(&nvme_subsystems_lock);
2590        list_del(&subsys->entry);
2591        mutex_unlock(&nvme_subsystems_lock);
2592
2593        ida_destroy(&subsys->ns_ida);
2594        device_del(&subsys->dev);
2595        put_device(&subsys->dev);
2596}
2597
2598static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2599{
2600        kref_put(&subsys->ref, nvme_destroy_subsystem);
2601}
2602
2603static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2604{
2605        struct nvme_subsystem *subsys;
2606
2607        lockdep_assert_held(&nvme_subsystems_lock);
2608
2609        /*
2610         * Fail matches for discovery subsystems. This results
2611         * in each discovery controller bound to a unique subsystem.
2612         * This avoids issues with validating controller values
2613         * that can only be true when there is a single unique subsystem.
2614         * There may be multiple and completely independent entities
2615         * that provide discovery controllers.
2616         */
2617        if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2618                return NULL;
2619
2620        /*
2621         * Fail matches for discovery subsystems. This results
2622         * in each discovery controller bound to a unique subsystem.
2623         * This avoids issues with validating controller values
2624         * that can only be true when there is a single unique subsystem.
2625         * There may be multiple and completely independent entities
2626         * that provide discovery controllers.
2627         */
2628        if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2629                return NULL;
2630
2631        list_for_each_entry(subsys, &nvme_subsystems, entry) {
2632                if (strcmp(subsys->subnqn, subsysnqn))
2633                        continue;
2634                if (!kref_get_unless_zero(&subsys->ref))
2635                        continue;
2636                return subsys;
2637        }
2638
2639        return NULL;
2640}
2641
2642#define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2643        struct device_attribute subsys_attr_##_name = \
2644                __ATTR(_name, _mode, _show, NULL)
2645
2646static ssize_t nvme_subsys_show_nqn(struct device *dev,
2647                                    struct device_attribute *attr,
2648                                    char *buf)
2649{
2650        struct nvme_subsystem *subsys =
2651                container_of(dev, struct nvme_subsystem, dev);
2652
2653        return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2654}
2655static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2656
2657#define nvme_subsys_show_str_function(field)                            \
2658static ssize_t subsys_##field##_show(struct device *dev,                \
2659                            struct device_attribute *attr, char *buf)   \
2660{                                                                       \
2661        struct nvme_subsystem *subsys =                                 \
2662                container_of(dev, struct nvme_subsystem, dev);          \
2663        return sysfs_emit(buf, "%.*s\n",                                \
2664                           (int)sizeof(subsys->field), subsys->field);  \
2665}                                                                       \
2666static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2667
2668nvme_subsys_show_str_function(model);
2669nvme_subsys_show_str_function(serial);
2670nvme_subsys_show_str_function(firmware_rev);
2671
2672static struct attribute *nvme_subsys_attrs[] = {
2673        &subsys_attr_model.attr,
2674        &subsys_attr_serial.attr,
2675        &subsys_attr_firmware_rev.attr,
2676        &subsys_attr_subsysnqn.attr,
2677#ifdef CONFIG_NVME_MULTIPATH
2678        &subsys_attr_iopolicy.attr,
2679#endif
2680        NULL,
2681};
2682
2683static const struct attribute_group nvme_subsys_attrs_group = {
2684        .attrs = nvme_subsys_attrs,
2685};
2686
2687static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2688        &nvme_subsys_attrs_group,
2689        NULL,
2690};
2691
2692static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2693{
2694        return ctrl->opts && ctrl->opts->discovery_nqn;
2695}
2696
2697static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2698                struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2699{
2700        struct nvme_ctrl *tmp;
2701
2702        lockdep_assert_held(&nvme_subsystems_lock);
2703
2704        list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2705                if (nvme_state_terminal(tmp))
2706                        continue;
2707
2708                if (tmp->cntlid == ctrl->cntlid) {
2709                        dev_err(ctrl->device,
2710                                "Duplicate cntlid %u with %s, rejecting\n",
2711                                ctrl->cntlid, dev_name(tmp->device));
2712                        return false;
2713                }
2714
2715                if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2716                    nvme_discovery_ctrl(ctrl))
2717                        continue;
2718
2719                dev_err(ctrl->device,
2720                        "Subsystem does not support multiple controllers\n");
2721                return false;
2722        }
2723
2724        return true;
2725}
2726
2727static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2728{
2729        struct nvme_subsystem *subsys, *found;
2730        int ret;
2731
2732        subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2733        if (!subsys)
2734                return -ENOMEM;
2735
2736        subsys->instance = -1;
2737        mutex_init(&subsys->lock);
2738        kref_init(&subsys->ref);
2739        INIT_LIST_HEAD(&subsys->ctrls);
2740        INIT_LIST_HEAD(&subsys->nsheads);
2741        nvme_init_subnqn(subsys, ctrl, id);
2742        memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2743        memcpy(subsys->model, id->mn, sizeof(subsys->model));
2744        memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2745        subsys->vendor_id = le16_to_cpu(id->vid);
2746        subsys->cmic = id->cmic;
2747        subsys->awupf = le16_to_cpu(id->awupf);
2748#ifdef CONFIG_NVME_MULTIPATH
2749        subsys->iopolicy = NVME_IOPOLICY_NUMA;
2750#endif
2751
2752        subsys->dev.class = nvme_subsys_class;
2753        subsys->dev.release = nvme_release_subsystem;
2754        subsys->dev.groups = nvme_subsys_attrs_groups;
2755        dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2756        device_initialize(&subsys->dev);
2757
2758        mutex_lock(&nvme_subsystems_lock);
2759        found = __nvme_find_get_subsystem(subsys->subnqn);
2760        if (found) {
2761                put_device(&subsys->dev);
2762                subsys = found;
2763
2764                if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2765                        ret = -EINVAL;
2766                        goto out_put_subsystem;
2767                }
2768        } else {
2769                ret = device_add(&subsys->dev);
2770                if (ret) {
2771                        dev_err(ctrl->device,
2772                                "failed to register subsystem device.\n");
2773                        put_device(&subsys->dev);
2774                        goto out_unlock;
2775                }
2776                ida_init(&subsys->ns_ida);
2777                list_add_tail(&subsys->entry, &nvme_subsystems);
2778        }
2779
2780        ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2781                                dev_name(ctrl->device));
2782        if (ret) {
2783                dev_err(ctrl->device,
2784                        "failed to create sysfs link from subsystem.\n");
2785                goto out_put_subsystem;
2786        }
2787
2788        if (!found)
2789                subsys->instance = ctrl->instance;
2790        ctrl->subsys = subsys;
2791        list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2792        mutex_unlock(&nvme_subsystems_lock);
2793        return 0;
2794
2795out_put_subsystem:
2796        nvme_put_subsystem(subsys);
2797out_unlock:
2798        mutex_unlock(&nvme_subsystems_lock);
2799        return ret;
2800}
2801
2802int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2803                void *log, size_t size, u64 offset)
2804{
2805        struct nvme_command c = { };
2806        u32 dwlen = nvme_bytes_to_numd(size);
2807
2808        c.get_log_page.opcode = nvme_admin_get_log_page;
2809        c.get_log_page.nsid = cpu_to_le32(nsid);
2810        c.get_log_page.lid = log_page;
2811        c.get_log_page.lsp = lsp;
2812        c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2813        c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2814        c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2815        c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2816        c.get_log_page.csi = csi;
2817
2818        return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2819}
2820
2821static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2822                                struct nvme_effects_log **log)
2823{
2824        struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2825        int ret;
2826
2827        if (cel)
2828                goto out;
2829
2830        cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2831        if (!cel)
2832                return -ENOMEM;
2833
2834        ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2835                        cel, sizeof(*cel), 0);
2836        if (ret) {
2837                kfree(cel);
2838                return ret;
2839        }
2840
2841        xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2842out:
2843        *log = cel;
2844        return 0;
2845}
2846
2847static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2848{
2849        u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2850
2851        if (check_shl_overflow(1U, units + page_shift - 9, &val))
2852                return UINT_MAX;
2853        return val;
2854}
2855
2856static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2857{
2858        struct nvme_command c = { };
2859        struct nvme_id_ctrl_nvm *id;
2860        int ret;
2861
2862        if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2863                ctrl->max_discard_sectors = UINT_MAX;
2864                ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2865        } else {
2866                ctrl->max_discard_sectors = 0;
2867                ctrl->max_discard_segments = 0;
2868        }
2869
2870        /*
2871         * Even though NVMe spec explicitly states that MDTS is not applicable
2872         * to the write-zeroes, we are cautious and limit the size to the
2873         * controllers max_hw_sectors value, which is based on the MDTS field
2874         * and possibly other limiting factors.
2875         */
2876        if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2877            !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2878                ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2879        else
2880                ctrl->max_zeroes_sectors = 0;
2881
2882        if (nvme_ctrl_limited_cns(ctrl))
2883                return 0;
2884
2885        id = kzalloc(sizeof(*id), GFP_KERNEL);
2886        if (!id)
2887                return 0;
2888
2889        c.identify.opcode = nvme_admin_identify;
2890        c.identify.cns = NVME_ID_CNS_CS_CTRL;
2891        c.identify.csi = NVME_CSI_NVM;
2892
2893        ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2894        if (ret)
2895                goto free_data;
2896
2897        if (id->dmrl)
2898                ctrl->max_discard_segments = id->dmrl;
2899        if (id->dmrsl)
2900                ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2901        if (id->wzsl)
2902                ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2903
2904free_data:
2905        kfree(id);
2906        return ret;
2907}
2908
2909static int nvme_init_identify(struct nvme_ctrl *ctrl)
2910{
2911        struct nvme_id_ctrl *id;
2912        u32 max_hw_sectors;
2913        bool prev_apst_enabled;
2914        int ret;
2915
2916        ret = nvme_identify_ctrl(ctrl, &id);
2917        if (ret) {
2918                dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2919                return -EIO;
2920        }
2921
2922        if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2923                ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2924                if (ret < 0)
2925                        goto out_free;
2926        }
2927
2928        if (!(ctrl->ops->flags & NVME_F_FABRICS))
2929                ctrl->cntlid = le16_to_cpu(id->cntlid);
2930
2931        if (!ctrl->identified) {
2932                unsigned int i;
2933
2934                ret = nvme_init_subsystem(ctrl, id);
2935                if (ret)
2936                        goto out_free;
2937
2938                /*
2939                 * Check for quirks.  Quirk can depend on firmware version,
2940                 * so, in principle, the set of quirks present can change
2941                 * across a reset.  As a possible future enhancement, we
2942                 * could re-scan for quirks every time we reinitialize
2943                 * the device, but we'd have to make sure that the driver
2944                 * behaves intelligently if the quirks change.
2945                 */
2946                for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2947                        if (quirk_matches(id, &core_quirks[i]))
2948                                ctrl->quirks |= core_quirks[i].quirks;
2949                }
2950        }
2951
2952        if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2953                dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2954                ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2955        }
2956
2957        ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2958        ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2959        ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2960
2961        ctrl->oacs = le16_to_cpu(id->oacs);
2962        ctrl->oncs = le16_to_cpu(id->oncs);
2963        ctrl->mtfa = le16_to_cpu(id->mtfa);
2964        ctrl->oaes = le32_to_cpu(id->oaes);
2965        ctrl->wctemp = le16_to_cpu(id->wctemp);
2966        ctrl->cctemp = le16_to_cpu(id->cctemp);
2967
2968        atomic_set(&ctrl->abort_limit, id->acl + 1);
2969        ctrl->vwc = id->vwc;
2970        if (id->mdts)
2971                max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2972        else
2973                max_hw_sectors = UINT_MAX;
2974        ctrl->max_hw_sectors =
2975                min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2976
2977        nvme_set_queue_limits(ctrl, ctrl->admin_q);
2978        ctrl->sgls = le32_to_cpu(id->sgls);
2979        ctrl->kas = le16_to_cpu(id->kas);
2980        ctrl->max_namespaces = le32_to_cpu(id->mnan);
2981        ctrl->ctratt = le32_to_cpu(id->ctratt);
2982
2983        if (id->rtd3e) {
2984                /* us -> s */
2985                u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2986
2987                ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2988                                                 shutdown_timeout, 60);
2989
2990                if (ctrl->shutdown_timeout != shutdown_timeout)
2991                        dev_info(ctrl->device,
2992                                 "Shutdown timeout set to %u seconds\n",
2993                                 ctrl->shutdown_timeout);
2994        } else
2995                ctrl->shutdown_timeout = shutdown_timeout;
2996
2997        ctrl->npss = id->npss;
2998        ctrl->apsta = id->apsta;
2999        prev_apst_enabled = ctrl->apst_enabled;
3000        if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3001                if (force_apst && id->apsta) {
3002                        dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3003                        ctrl->apst_enabled = true;
3004                } else {
3005                        ctrl->apst_enabled = false;
3006                }
3007        } else {
3008                ctrl->apst_enabled = id->apsta;
3009        }
3010        memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3011
3012        if (ctrl->ops->flags & NVME_F_FABRICS) {
3013                ctrl->icdoff = le16_to_cpu(id->icdoff);
3014                ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3015                ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3016                ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3017
3018                /*
3019                 * In fabrics we need to verify the cntlid matches the
3020                 * admin connect
3021                 */
3022                if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3023                        dev_err(ctrl->device,
3024                                "Mismatching cntlid: Connect %u vs Identify "
3025                                "%u, rejecting\n",
3026                                ctrl->cntlid, le16_to_cpu(id->cntlid));
3027                        ret = -EINVAL;
3028                        goto out_free;
3029                }
3030
3031                if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3032                        dev_err(ctrl->device,
3033                                "keep-alive support is mandatory for fabrics\n");
3034                        ret = -EINVAL;
3035                        goto out_free;
3036                }
3037        } else {
3038                ctrl->hmpre = le32_to_cpu(id->hmpre);
3039                ctrl->hmmin = le32_to_cpu(id->hmmin);
3040                ctrl->hmminds = le32_to_cpu(id->hmminds);
3041                ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3042        }
3043
3044        ret = nvme_mpath_init_identify(ctrl, id);
3045        if (ret < 0)
3046                goto out_free;
3047
3048        if (ctrl->apst_enabled && !prev_apst_enabled)
3049                dev_pm_qos_expose_latency_tolerance(ctrl->device);
3050        else if (!ctrl->apst_enabled && prev_apst_enabled)
3051                dev_pm_qos_hide_latency_tolerance(ctrl->device);
3052
3053out_free:
3054        kfree(id);
3055        return ret;
3056}
3057
3058/*
3059 * Initialize the cached copies of the Identify data and various controller
3060 * register in our nvme_ctrl structure.  This should be called as soon as
3061 * the admin queue is fully up and running.
3062 */
3063int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3064{
3065        int ret;
3066
3067        ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3068        if (ret) {
3069                dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3070                return ret;
3071        }
3072
3073        ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3074
3075        if (ctrl->vs >= NVME_VS(1, 1, 0))
3076                ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3077
3078        ret = nvme_init_identify(ctrl);
3079        if (ret)
3080                return ret;
3081
3082        ret = nvme_init_non_mdts_limits(ctrl);
3083        if (ret < 0)
3084                return ret;
3085
3086        ret = nvme_configure_apst(ctrl);
3087        if (ret < 0)
3088                return ret;
3089
3090        ret = nvme_configure_timestamp(ctrl);
3091        if (ret < 0)
3092                return ret;
3093
3094        ret = nvme_configure_directives(ctrl);
3095        if (ret < 0)
3096                return ret;
3097
3098        ret = nvme_configure_acre(ctrl);
3099        if (ret < 0)
3100                return ret;
3101
3102        if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3103                ret = nvme_hwmon_init(ctrl);
3104                if (ret < 0)
3105                        return ret;
3106        }
3107
3108        ctrl->identified = true;
3109
3110        return 0;
3111}
3112EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3113
3114static int nvme_dev_open(struct inode *inode, struct file *file)
3115{
3116        struct nvme_ctrl *ctrl =
3117                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3118
3119        switch (ctrl->state) {
3120        case NVME_CTRL_LIVE:
3121                break;
3122        default:
3123                return -EWOULDBLOCK;
3124        }
3125
3126        nvme_get_ctrl(ctrl);
3127        if (!try_module_get(ctrl->ops->module)) {
3128                nvme_put_ctrl(ctrl);
3129                return -EINVAL;
3130        }
3131
3132        file->private_data = ctrl;
3133        return 0;
3134}
3135
3136static int nvme_dev_release(struct inode *inode, struct file *file)
3137{
3138        struct nvme_ctrl *ctrl =
3139                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3140
3141        module_put(ctrl->ops->module);
3142        nvme_put_ctrl(ctrl);
3143        return 0;
3144}
3145
3146static const struct file_operations nvme_dev_fops = {
3147        .owner          = THIS_MODULE,
3148        .open           = nvme_dev_open,
3149        .release        = nvme_dev_release,
3150        .unlocked_ioctl = nvme_dev_ioctl,
3151        .compat_ioctl   = compat_ptr_ioctl,
3152};
3153
3154static ssize_t nvme_sysfs_reset(struct device *dev,
3155                                struct device_attribute *attr, const char *buf,
3156                                size_t count)
3157{
3158        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3159        int ret;
3160
3161        ret = nvme_reset_ctrl_sync(ctrl);
3162        if (ret < 0)
3163                return ret;
3164        return count;
3165}
3166static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3167
3168static ssize_t nvme_sysfs_rescan(struct device *dev,
3169                                struct device_attribute *attr, const char *buf,
3170                                size_t count)
3171{
3172        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3173
3174        nvme_queue_scan(ctrl);
3175        return count;
3176}
3177static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3178
3179static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3180{
3181        struct gendisk *disk = dev_to_disk(dev);
3182
3183        if (disk->fops == &nvme_bdev_ops)
3184                return nvme_get_ns_from_dev(dev)->head;
3185        else
3186                return disk->private_data;
3187}
3188
3189static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3190                char *buf)
3191{
3192        struct nvme_ns_head *head = dev_to_ns_head(dev);
3193        struct nvme_ns_ids *ids = &head->ids;
3194        struct nvme_subsystem *subsys = head->subsys;
3195        int serial_len = sizeof(subsys->serial);
3196        int model_len = sizeof(subsys->model);
3197
3198        if (!uuid_is_null(&ids->uuid))
3199                return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3200
3201        if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3202                return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3203
3204        if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3205                return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3206
3207        while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3208                                  subsys->serial[serial_len - 1] == '\0'))
3209                serial_len--;
3210        while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3211                                 subsys->model[model_len - 1] == '\0'))
3212                model_len--;
3213
3214        return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3215                serial_len, subsys->serial, model_len, subsys->model,
3216                head->ns_id);
3217}
3218static DEVICE_ATTR_RO(wwid);
3219
3220static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3221                char *buf)
3222{
3223        return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3224}
3225static DEVICE_ATTR_RO(nguid);
3226
3227static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3228                char *buf)
3229{
3230        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3231
3232        /* For backward compatibility expose the NGUID to userspace if
3233         * we have no UUID set
3234         */
3235        if (uuid_is_null(&ids->uuid)) {
3236                printk_ratelimited(KERN_WARNING
3237                                   "No UUID available providing old NGUID\n");
3238                return sysfs_emit(buf, "%pU\n", ids->nguid);
3239        }
3240        return sysfs_emit(buf, "%pU\n", &ids->uuid);
3241}
3242static DEVICE_ATTR_RO(uuid);
3243
3244static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3245                char *buf)
3246{
3247        return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3248}
3249static DEVICE_ATTR_RO(eui);
3250
3251static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3252                char *buf)
3253{
3254        return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3255}
3256static DEVICE_ATTR_RO(nsid);
3257
3258static struct attribute *nvme_ns_id_attrs[] = {
3259        &dev_attr_wwid.attr,
3260        &dev_attr_uuid.attr,
3261        &dev_attr_nguid.attr,
3262        &dev_attr_eui.attr,
3263        &dev_attr_nsid.attr,
3264#ifdef CONFIG_NVME_MULTIPATH
3265        &dev_attr_ana_grpid.attr,
3266        &dev_attr_ana_state.attr,
3267#endif
3268        NULL,
3269};
3270
3271static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3272                struct attribute *a, int n)
3273{
3274        struct device *dev = container_of(kobj, struct device, kobj);
3275        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3276
3277        if (a == &dev_attr_uuid.attr) {
3278                if (uuid_is_null(&ids->uuid) &&
3279                    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3280                        return 0;
3281        }
3282        if (a == &dev_attr_nguid.attr) {
3283                if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3284                        return 0;
3285        }
3286        if (a == &dev_attr_eui.attr) {
3287                if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3288                        return 0;
3289        }
3290#ifdef CONFIG_NVME_MULTIPATH
3291        if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3292                if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3293                        return 0;
3294                if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3295                        return 0;
3296        }
3297#endif
3298        return a->mode;
3299}
3300
3301static const struct attribute_group nvme_ns_id_attr_group = {
3302        .attrs          = nvme_ns_id_attrs,
3303        .is_visible     = nvme_ns_id_attrs_are_visible,
3304};
3305
3306const struct attribute_group *nvme_ns_id_attr_groups[] = {
3307        &nvme_ns_id_attr_group,
3308#ifdef CONFIG_NVM
3309        &nvme_nvm_attr_group,
3310#endif
3311        NULL,
3312};
3313
3314#define nvme_show_str_function(field)                                           \
3315static ssize_t  field##_show(struct device *dev,                                \
3316                            struct device_attribute *attr, char *buf)           \
3317{                                                                               \
3318        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3319        return sysfs_emit(buf, "%.*s\n",                                        \
3320                (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3321}                                                                               \
3322static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3323
3324nvme_show_str_function(model);
3325nvme_show_str_function(serial);
3326nvme_show_str_function(firmware_rev);
3327
3328#define nvme_show_int_function(field)                                           \
3329static ssize_t  field##_show(struct device *dev,                                \
3330                            struct device_attribute *attr, char *buf)           \
3331{                                                                               \
3332        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3333        return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3334}                                                                               \
3335static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3336
3337nvme_show_int_function(cntlid);
3338nvme_show_int_function(numa_node);
3339nvme_show_int_function(queue_count);
3340nvme_show_int_function(sqsize);
3341nvme_show_int_function(kato);
3342
3343static ssize_t nvme_sysfs_delete(struct device *dev,
3344                                struct device_attribute *attr, const char *buf,
3345                                size_t count)
3346{
3347        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3348
3349        if (device_remove_file_self(dev, attr))
3350                nvme_delete_ctrl_sync(ctrl);
3351        return count;
3352}
3353static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3354
3355static ssize_t nvme_sysfs_show_transport(struct device *dev,
3356                                         struct device_attribute *attr,
3357                                         char *buf)
3358{
3359        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3360
3361        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3362}
3363static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3364
3365static ssize_t nvme_sysfs_show_state(struct device *dev,
3366                                     struct device_attribute *attr,
3367                                     char *buf)
3368{
3369        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3370        static const char *const state_name[] = {
3371                [NVME_CTRL_NEW]         = "new",
3372                [NVME_CTRL_LIVE]        = "live",
3373                [NVME_CTRL_RESETTING]   = "resetting",
3374                [NVME_CTRL_CONNECTING]  = "connecting",
3375                [NVME_CTRL_DELETING]    = "deleting",
3376                [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3377                [NVME_CTRL_DEAD]        = "dead",
3378        };
3379
3380        if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3381            state_name[ctrl->state])
3382                return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3383
3384        return sysfs_emit(buf, "unknown state\n");
3385}
3386
3387static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3388
3389static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3390                                         struct device_attribute *attr,
3391                                         char *buf)
3392{
3393        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3394
3395        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3396}
3397static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3398
3399static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3400                                        struct device_attribute *attr,
3401                                        char *buf)
3402{
3403        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3404
3405        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3406}
3407static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3408
3409static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3410                                        struct device_attribute *attr,
3411                                        char *buf)
3412{
3413        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3414
3415        return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3416}
3417static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3418
3419static ssize_t nvme_sysfs_show_address(struct device *dev,
3420                                         struct device_attribute *attr,
3421                                         char *buf)
3422{
3423        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3424
3425        return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3426}
3427static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3428
3429static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3430                struct device_attribute *attr, char *buf)
3431{
3432        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3433        struct nvmf_ctrl_options *opts = ctrl->opts;
3434
3435        if (ctrl->opts->max_reconnects == -1)
3436                return sysfs_emit(buf, "off\n");
3437        return sysfs_emit(buf, "%d\n",
3438                          opts->max_reconnects * opts->reconnect_delay);
3439}
3440
3441static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3442                struct device_attribute *attr, const char *buf, size_t count)
3443{
3444        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3445        struct nvmf_ctrl_options *opts = ctrl->opts;
3446        int ctrl_loss_tmo, err;
3447
3448        err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3449        if (err)
3450                return -EINVAL;
3451
3452        if (ctrl_loss_tmo < 0)
3453                opts->max_reconnects = -1;
3454        else
3455                opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3456                                                opts->reconnect_delay);
3457        return count;
3458}
3459static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3460        nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3461
3462static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3463                struct device_attribute *attr, char *buf)
3464{
3465        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3466
3467        if (ctrl->opts->reconnect_delay == -1)
3468                return sysfs_emit(buf, "off\n");
3469        return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3470}
3471
3472static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3473                struct device_attribute *attr, const char *buf, size_t count)
3474{
3475        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3476        unsigned int v;
3477        int err;
3478
3479        err = kstrtou32(buf, 10, &v);
3480        if (err)
3481                return err;
3482
3483        ctrl->opts->reconnect_delay = v;
3484        return count;
3485}
3486static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3487        nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3488
3489static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3490                struct device_attribute *attr, char *buf)
3491{
3492        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3493
3494        if (ctrl->opts->fast_io_fail_tmo == -1)
3495                return sysfs_emit(buf, "off\n");
3496        return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3497}
3498
3499static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3500                struct device_attribute *attr, const char *buf, size_t count)
3501{
3502        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3503        struct nvmf_ctrl_options *opts = ctrl->opts;
3504        int fast_io_fail_tmo, err;
3505
3506        err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3507        if (err)
3508                return -EINVAL;
3509
3510        if (fast_io_fail_tmo < 0)
3511                opts->fast_io_fail_tmo = -1;
3512        else
3513                opts->fast_io_fail_tmo = fast_io_fail_tmo;
3514        return count;
3515}
3516static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3517        nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3518
3519static struct attribute *nvme_dev_attrs[] = {
3520        &dev_attr_reset_controller.attr,
3521        &dev_attr_rescan_controller.attr,
3522        &dev_attr_model.attr,
3523        &dev_attr_serial.attr,
3524        &dev_attr_firmware_rev.attr,
3525        &dev_attr_cntlid.attr,
3526        &dev_attr_delete_controller.attr,
3527        &dev_attr_transport.attr,
3528        &dev_attr_subsysnqn.attr,
3529        &dev_attr_address.attr,
3530        &dev_attr_state.attr,
3531        &dev_attr_numa_node.attr,
3532        &dev_attr_queue_count.attr,
3533        &dev_attr_sqsize.attr,
3534        &dev_attr_hostnqn.attr,
3535        &dev_attr_hostid.attr,
3536        &dev_attr_ctrl_loss_tmo.attr,
3537        &dev_attr_kato.attr,
3538        &dev_attr_reconnect_delay.attr,
3539        &dev_attr_fast_io_fail_tmo.attr,
3540        NULL
3541};
3542
3543static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3544                struct attribute *a, int n)
3545{
3546        struct device *dev = container_of(kobj, struct device, kobj);
3547        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3548
3549        if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3550                return 0;
3551        if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3552                return 0;
3553        if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3554                return 0;
3555        if (a == &dev_attr_hostid.attr && !ctrl->opts)
3556                return 0;
3557        if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3558                return 0;
3559        if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3560                return 0;
3561        if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3562                return 0;
3563        if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3564                return 0;
3565
3566        return a->mode;
3567}
3568
3569static const struct attribute_group nvme_dev_attrs_group = {
3570        .attrs          = nvme_dev_attrs,
3571        .is_visible     = nvme_dev_attrs_are_visible,
3572};
3573
3574static const struct attribute_group *nvme_dev_attr_groups[] = {
3575        &nvme_dev_attrs_group,
3576        NULL,
3577};
3578
3579static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3580                unsigned nsid)
3581{
3582        struct nvme_ns_head *h;
3583
3584        lockdep_assert_held(&subsys->lock);
3585
3586        list_for_each_entry(h, &subsys->nsheads, entry) {
3587                if (h->ns_id != nsid)
3588                        continue;
3589                if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3590                        return h;
3591        }
3592
3593        return NULL;
3594}
3595
3596static int __nvme_check_ids(struct nvme_subsystem *subsys,
3597                struct nvme_ns_head *new)
3598{
3599        struct nvme_ns_head *h;
3600
3601        lockdep_assert_held(&subsys->lock);
3602
3603        list_for_each_entry(h, &subsys->nsheads, entry) {
3604                if (nvme_ns_ids_valid(&new->ids) &&
3605                    nvme_ns_ids_equal(&new->ids, &h->ids))
3606                        return -EINVAL;
3607        }
3608
3609        return 0;
3610}
3611
3612static void nvme_cdev_rel(struct device *dev)
3613{
3614        ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3615}
3616
3617void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3618{
3619        cdev_device_del(cdev, cdev_device);
3620        put_device(cdev_device);
3621}
3622
3623int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3624                const struct file_operations *fops, struct module *owner)
3625{
3626        int minor, ret;
3627
3628        minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3629        if (minor < 0)
3630                return minor;
3631        cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3632        cdev_device->class = nvme_ns_chr_class;
3633        cdev_device->release = nvme_cdev_rel;
3634        device_initialize(cdev_device);
3635        cdev_init(cdev, fops);
3636        cdev->owner = owner;
3637        ret = cdev_device_add(cdev, cdev_device);
3638        if (ret)
3639                put_device(cdev_device);
3640
3641        return ret;
3642}
3643
3644static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3645{
3646        return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3647}
3648
3649static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3650{
3651        nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3652        return 0;
3653}
3654
3655static const struct file_operations nvme_ns_chr_fops = {
3656        .owner          = THIS_MODULE,
3657        .open           = nvme_ns_chr_open,
3658        .release        = nvme_ns_chr_release,
3659        .unlocked_ioctl = nvme_ns_chr_ioctl,
3660        .compat_ioctl   = compat_ptr_ioctl,
3661};
3662
3663static int nvme_add_ns_cdev(struct nvme_ns *ns)
3664{
3665        int ret;
3666
3667        ns->cdev_device.parent = ns->ctrl->device;
3668        ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3669                           ns->ctrl->instance, ns->head->instance);
3670        if (ret)
3671                return ret;
3672
3673        return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3674                             ns->ctrl->ops->module);
3675}
3676
3677static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3678                unsigned nsid, struct nvme_ns_ids *ids)
3679{
3680        struct nvme_ns_head *head;
3681        size_t size = sizeof(*head);
3682        int ret = -ENOMEM;
3683
3684#ifdef CONFIG_NVME_MULTIPATH
3685        size += num_possible_nodes() * sizeof(struct nvme_ns *);
3686#endif
3687
3688        head = kzalloc(size, GFP_KERNEL);
3689        if (!head)
3690                goto out;
3691        ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3692        if (ret < 0)
3693                goto out_free_head;
3694        head->instance = ret;
3695        INIT_LIST_HEAD(&head->list);
3696        ret = init_srcu_struct(&head->srcu);
3697        if (ret)
3698                goto out_ida_remove;
3699        head->subsys = ctrl->subsys;
3700        head->ns_id = nsid;
3701        head->ids = *ids;
3702        kref_init(&head->ref);
3703
3704        ret = __nvme_check_ids(ctrl->subsys, head);
3705        if (ret) {
3706                dev_err(ctrl->device,
3707                        "duplicate IDs for nsid %d\n", nsid);
3708                goto out_cleanup_srcu;
3709        }
3710
3711        if (head->ids.csi) {
3712                ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3713                if (ret)
3714                        goto out_cleanup_srcu;
3715        } else
3716                head->effects = ctrl->effects;
3717
3718        ret = nvme_mpath_alloc_disk(ctrl, head);
3719        if (ret)
3720                goto out_cleanup_srcu;
3721
3722        list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3723
3724        kref_get(&ctrl->subsys->ref);
3725
3726        return head;
3727out_cleanup_srcu:
3728        cleanup_srcu_struct(&head->srcu);
3729out_ida_remove:
3730        ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3731out_free_head:
3732        kfree(head);
3733out:
3734        if (ret > 0)
3735                ret = blk_status_to_errno(nvme_error_status(ret));
3736        return ERR_PTR(ret);
3737}
3738
3739static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3740                struct nvme_ns_ids *ids, bool is_shared)
3741{
3742        struct nvme_ctrl *ctrl = ns->ctrl;
3743        struct nvme_ns_head *head = NULL;
3744        int ret = 0;
3745
3746        mutex_lock(&ctrl->subsys->lock);
3747        head = nvme_find_ns_head(ctrl->subsys, nsid);
3748        if (!head) {
3749                head = nvme_alloc_ns_head(ctrl, nsid, ids);
3750                if (IS_ERR(head)) {
3751                        ret = PTR_ERR(head);
3752                        goto out_unlock;
3753                }
3754                head->shared = is_shared;
3755        } else {
3756                ret = -EINVAL;
3757                if (!is_shared || !head->shared) {
3758                        dev_err(ctrl->device,
3759                                "Duplicate unshared namespace %d\n", nsid);
3760                        goto out_put_ns_head;
3761                }
3762                if (!nvme_ns_ids_equal(&head->ids, ids)) {
3763                        dev_err(ctrl->device,
3764                                "IDs don't match for shared namespace %d\n",
3765                                        nsid);
3766                        goto out_put_ns_head;
3767                }
3768        }
3769
3770        list_add_tail_rcu(&ns->siblings, &head->list);
3771        ns->head = head;
3772        mutex_unlock(&ctrl->subsys->lock);
3773        return 0;
3774
3775out_put_ns_head:
3776        nvme_put_ns_head(head);
3777out_unlock:
3778        mutex_unlock(&ctrl->subsys->lock);
3779        return ret;
3780}
3781
3782struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3783{
3784        struct nvme_ns *ns, *ret = NULL;
3785
3786        down_read(&ctrl->namespaces_rwsem);
3787        list_for_each_entry(ns, &ctrl->namespaces, list) {
3788                if (ns->head->ns_id == nsid) {
3789                        if (!nvme_get_ns(ns))
3790                                continue;
3791                        ret = ns;
3792                        break;
3793                }
3794                if (ns->head->ns_id > nsid)
3795                        break;
3796        }
3797        up_read(&ctrl->namespaces_rwsem);
3798        return ret;
3799}
3800EXPORT_SYMBOL_GPL(nvme_find_get_ns);
3801
3802/*
3803 * Add the namespace to the controller list while keeping the list ordered.
3804 */
3805static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3806{
3807        struct nvme_ns *tmp;
3808
3809        list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3810                if (tmp->head->ns_id < ns->head->ns_id) {
3811                        list_add(&ns->list, &tmp->list);
3812                        return;
3813                }
3814        }
3815        list_add(&ns->list, &ns->ctrl->namespaces);
3816}
3817
3818static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3819                struct nvme_ns_ids *ids)
3820{
3821        struct nvme_ns *ns;
3822        struct gendisk *disk;
3823        struct nvme_id_ns *id;
3824        int node = ctrl->numa_node;
3825
3826        if (nvme_identify_ns(ctrl, nsid, ids, &id))
3827                return;
3828
3829        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3830        if (!ns)
3831                goto out_free_id;
3832
3833        ns->queue = blk_mq_init_queue(ctrl->tagset);
3834        if (IS_ERR(ns->queue))
3835                goto out_free_ns;
3836
3837        if (ctrl->opts && ctrl->opts->data_digest)
3838                blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3839
3840        blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3841        if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3842                blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3843
3844        ns->queue->queuedata = ns;
3845        ns->ctrl = ctrl;
3846        kref_init(&ns->kref);
3847
3848        if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3849                goto out_free_queue;
3850
3851        disk = alloc_disk_node(0, node);
3852        if (!disk)
3853                goto out_unlink_ns;
3854
3855        disk->fops = &nvme_bdev_ops;
3856        disk->private_data = ns;
3857        disk->queue = ns->queue;
3858        disk->flags = GENHD_FL_EXT_DEVT;
3859        /*
3860         * Without the multipath code enabled, multiple controller per
3861         * subsystems are visible as devices and thus we cannot use the
3862         * subsystem instance.
3863         */
3864        if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3865                sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3866                        ns->head->instance);
3867        ns->disk = disk;
3868
3869        if (nvme_update_ns_info(ns, id))
3870                goto out_put_disk;
3871
3872        if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3873                if (nvme_nvm_register(ns, disk->disk_name, node)) {
3874                        dev_warn(ctrl->device, "LightNVM init failure\n");
3875                        goto out_put_disk;
3876                }
3877        }
3878
3879        down_write(&ctrl->namespaces_rwsem);
3880        nvme_ns_add_to_ctrl_list(ns);
3881        up_write(&ctrl->namespaces_rwsem);
3882        nvme_get_ctrl(ctrl);
3883
3884        device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3885        if (!nvme_ns_head_multipath(ns->head))
3886                nvme_add_ns_cdev(ns);
3887
3888        nvme_mpath_add_disk(ns, id);
3889        nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3890        kfree(id);
3891
3892        return;
3893 out_put_disk:
3894        /* prevent double queue cleanup */
3895        ns->disk->queue = NULL;
3896        put_disk(ns->disk);
3897 out_unlink_ns:
3898        mutex_lock(&ctrl->subsys->lock);
3899        list_del_rcu(&ns->siblings);
3900        if (list_empty(&ns->head->list))
3901                list_del_init(&ns->head->entry);
3902        mutex_unlock(&ctrl->subsys->lock);
3903        nvme_put_ns_head(ns->head);
3904 out_free_queue:
3905        blk_cleanup_queue(ns->queue);
3906 out_free_ns:
3907        kfree(ns);
3908 out_free_id:
3909        kfree(id);
3910}
3911
3912static void nvme_ns_remove(struct nvme_ns *ns)
3913{
3914        bool last_path = false;
3915
3916        if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3917                return;
3918
3919        set_capacity(ns->disk, 0);
3920        nvme_fault_inject_fini(&ns->fault_inject);
3921
3922        mutex_lock(&ns->ctrl->subsys->lock);
3923        list_del_rcu(&ns->siblings);
3924        if (list_empty(&ns->head->list)) {
3925                list_del_init(&ns->head->entry);
3926                last_path = true;
3927        }
3928        mutex_unlock(&ns->ctrl->subsys->lock);
3929
3930        synchronize_rcu(); /* guarantee not available in head->list */
3931        nvme_mpath_clear_current_path(ns);
3932        synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3933
3934        if (ns->disk->flags & GENHD_FL_UP) {
3935                if (!nvme_ns_head_multipath(ns->head))
3936                        nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3937                del_gendisk(ns->disk);
3938                blk_cleanup_queue(ns->queue);
3939                if (blk_get_integrity(ns->disk))
3940                        blk_integrity_unregister(ns->disk);
3941        }
3942
3943        down_write(&ns->ctrl->namespaces_rwsem);
3944        list_del_init(&ns->list);
3945        up_write(&ns->ctrl->namespaces_rwsem);
3946
3947        if (last_path)
3948                nvme_mpath_shutdown_disk(ns->head);
3949        nvme_put_ns(ns);
3950}
3951
3952static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3953{
3954        struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3955
3956        if (ns) {
3957                nvme_ns_remove(ns);
3958                nvme_put_ns(ns);
3959        }
3960}
3961
3962static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3963{
3964        struct nvme_id_ns *id;
3965        int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3966
3967        if (test_bit(NVME_NS_DEAD, &ns->flags))
3968                goto out;
3969
3970        ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3971        if (ret)
3972                goto out;
3973
3974        ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3975        if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3976                dev_err(ns->ctrl->device,
3977                        "identifiers changed for nsid %d\n", ns->head->ns_id);
3978                goto out_free_id;
3979        }
3980
3981        ret = nvme_update_ns_info(ns, id);
3982
3983out_free_id:
3984        kfree(id);
3985out:
3986        /*
3987         * Only remove the namespace if we got a fatal error back from the
3988         * device, otherwise ignore the error and just move on.
3989         *
3990         * TODO: we should probably schedule a delayed retry here.
3991         */
3992        if (ret > 0 && (ret & NVME_SC_DNR))
3993                nvme_ns_remove(ns);
3994}
3995
3996static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3997{
3998        struct nvme_ns_ids ids = { };
3999        struct nvme_ns *ns;
4000
4001        if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4002                return;
4003
4004        ns = nvme_find_get_ns(ctrl, nsid);
4005        if (ns) {
4006                nvme_validate_ns(ns, &ids);
4007                nvme_put_ns(ns);
4008                return;
4009        }
4010
4011        switch (ids.csi) {
4012        case NVME_CSI_NVM:
4013                nvme_alloc_ns(ctrl, nsid, &ids);
4014                break;
4015        case NVME_CSI_ZNS:
4016                if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4017                        dev_warn(ctrl->device,
4018                                "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4019                                nsid);
4020                        break;
4021                }
4022                if (!nvme_multi_css(ctrl)) {
4023                        dev_warn(ctrl->device,
4024                                "command set not reported for nsid: %d\n",
4025                                nsid);
4026                        break;
4027                }
4028                nvme_alloc_ns(ctrl, nsid, &ids);
4029                break;
4030        default:
4031                dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4032                        ids.csi, nsid);
4033                break;
4034        }
4035}
4036
4037static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4038                                        unsigned nsid)
4039{
4040        struct nvme_ns *ns, *next;
4041        LIST_HEAD(rm_list);
4042
4043        down_write(&ctrl->namespaces_rwsem);
4044        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4045                if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4046                        list_move_tail(&ns->list, &rm_list);
4047        }
4048        up_write(&ctrl->namespaces_rwsem);
4049
4050        list_for_each_entry_safe(ns, next, &rm_list, list)
4051                nvme_ns_remove(ns);
4052
4053}
4054
4055static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4056{
4057        const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4058        __le32 *ns_list;
4059        u32 prev = 0;
4060        int ret = 0, i;
4061
4062        if (nvme_ctrl_limited_cns(ctrl))
4063                return -EOPNOTSUPP;
4064
4065        ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4066        if (!ns_list)
4067                return -ENOMEM;
4068
4069        for (;;) {
4070                struct nvme_command cmd = {
4071                        .identify.opcode        = nvme_admin_identify,
4072                        .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4073                        .identify.nsid          = cpu_to_le32(prev),
4074                };
4075
4076                ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4077                                            NVME_IDENTIFY_DATA_SIZE);
4078                if (ret) {
4079                        dev_warn(ctrl->device,
4080                                "Identify NS List failed (status=0x%x)\n", ret);
4081                        goto free;
4082                }
4083
4084                for (i = 0; i < nr_entries; i++) {
4085                        u32 nsid = le32_to_cpu(ns_list[i]);
4086
4087                        if (!nsid)      /* end of the list? */
4088                                goto out;
4089                        nvme_validate_or_alloc_ns(ctrl, nsid);
4090                        while (++prev < nsid)
4091                                nvme_ns_remove_by_nsid(ctrl, prev);
4092                }
4093        }
4094 out:
4095        nvme_remove_invalid_namespaces(ctrl, prev);
4096 free:
4097        kfree(ns_list);
4098        return ret;
4099}
4100
4101static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4102{
4103        struct nvme_id_ctrl *id;
4104        u32 nn, i;
4105
4106        if (nvme_identify_ctrl(ctrl, &id))
4107                return;
4108        nn = le32_to_cpu(id->nn);
4109        kfree(id);
4110
4111        for (i = 1; i <= nn; i++)
4112                nvme_validate_or_alloc_ns(ctrl, i);
4113
4114        nvme_remove_invalid_namespaces(ctrl, nn);
4115}
4116
4117static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4118{
4119        size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4120        __le32 *log;
4121        int error;
4122
4123        log = kzalloc(log_size, GFP_KERNEL);
4124        if (!log)
4125                return;
4126
4127        /*
4128         * We need to read the log to clear the AEN, but we don't want to rely
4129         * on it for the changed namespace information as userspace could have
4130         * raced with us in reading the log page, which could cause us to miss
4131         * updates.
4132         */
4133        error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4134                        NVME_CSI_NVM, log, log_size, 0);
4135        if (error)
4136                dev_warn(ctrl->device,
4137                        "reading changed ns log failed: %d\n", error);
4138
4139        kfree(log);
4140}
4141
4142static void nvme_scan_work(struct work_struct *work)
4143{
4144        struct nvme_ctrl *ctrl =
4145                container_of(work, struct nvme_ctrl, scan_work);
4146
4147        /* No tagset on a live ctrl means IO queues could not created */
4148        if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4149                return;
4150
4151        if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4152                dev_info(ctrl->device, "rescanning namespaces.\n");
4153                nvme_clear_changed_ns_log(ctrl);
4154        }
4155
4156        mutex_lock(&ctrl->scan_lock);
4157        if (nvme_scan_ns_list(ctrl) != 0)
4158                nvme_scan_ns_sequential(ctrl);
4159        mutex_unlock(&ctrl->scan_lock);
4160}
4161
4162/*
4163 * This function iterates the namespace list unlocked to allow recovery from
4164 * controller failure. It is up to the caller to ensure the namespace list is
4165 * not modified by scan work while this function is executing.
4166 */
4167void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4168{
4169        struct nvme_ns *ns, *next;
4170        LIST_HEAD(ns_list);
4171
4172        /*
4173         * make sure to requeue I/O to all namespaces as these
4174         * might result from the scan itself and must complete
4175         * for the scan_work to make progress
4176         */
4177        nvme_mpath_clear_ctrl_paths(ctrl);
4178
4179        /* prevent racing with ns scanning */
4180        flush_work(&ctrl->scan_work);
4181
4182        /*
4183         * The dead states indicates the controller was not gracefully
4184         * disconnected. In that case, we won't be able to flush any data while
4185         * removing the namespaces' disks; fail all the queues now to avoid
4186         * potentially having to clean up the failed sync later.
4187         */
4188        if (ctrl->state == NVME_CTRL_DEAD)
4189                nvme_kill_queues(ctrl);
4190
4191        /* this is a no-op when called from the controller reset handler */
4192        nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4193
4194        down_write(&ctrl->namespaces_rwsem);
4195        list_splice_init(&ctrl->namespaces, &ns_list);
4196        up_write(&ctrl->namespaces_rwsem);
4197
4198        list_for_each_entry_safe(ns, next, &ns_list, list)
4199                nvme_ns_remove(ns);
4200}
4201EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4202
4203static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4204{
4205        struct nvme_ctrl *ctrl =
4206                container_of(dev, struct nvme_ctrl, ctrl_device);
4207        struct nvmf_ctrl_options *opts = ctrl->opts;
4208        int ret;
4209
4210        ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4211        if (ret)
4212                return ret;
4213
4214        if (opts) {
4215                ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4216                if (ret)
4217                        return ret;
4218
4219                ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4220                                opts->trsvcid ?: "none");
4221                if (ret)
4222                        return ret;
4223
4224                ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4225                                opts->host_traddr ?: "none");
4226                if (ret)
4227                        return ret;
4228
4229                ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4230                                opts->host_iface ?: "none");
4231        }
4232        return ret;
4233}
4234
4235static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4236{
4237        char *envp[2] = { NULL, NULL };
4238        u32 aen_result = ctrl->aen_result;
4239
4240        ctrl->aen_result = 0;
4241        if (!aen_result)
4242                return;
4243
4244        envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4245        if (!envp[0])
4246                return;
4247        kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4248        kfree(envp[0]);
4249}
4250
4251static void nvme_async_event_work(struct work_struct *work)
4252{
4253        struct nvme_ctrl *ctrl =
4254                container_of(work, struct nvme_ctrl, async_event_work);
4255
4256        nvme_aen_uevent(ctrl);
4257
4258        /*
4259         * The transport drivers must guarantee AER submission here is safe by
4260         * flushing ctrl async_event_work after changing the controller state
4261         * from LIVE and before freeing the admin queue.
4262        */
4263        if (ctrl->state == NVME_CTRL_LIVE)
4264                ctrl->ops->submit_async_event(ctrl);
4265}
4266
4267static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4268{
4269
4270        u32 csts;
4271
4272        if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4273                return false;
4274
4275        if (csts == ~0)
4276                return false;
4277
4278        return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4279}
4280
4281static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4282{
4283        struct nvme_fw_slot_info_log *log;
4284
4285        log = kmalloc(sizeof(*log), GFP_KERNEL);
4286        if (!log)
4287                return;
4288
4289        if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4290                        log, sizeof(*log), 0))
4291                dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4292        kfree(log);
4293}
4294
4295static void nvme_fw_act_work(struct work_struct *work)
4296{
4297        struct nvme_ctrl *ctrl = container_of(work,
4298                                struct nvme_ctrl, fw_act_work);
4299        unsigned long fw_act_timeout;
4300
4301        if (ctrl->mtfa)
4302                fw_act_timeout = jiffies +
4303                                msecs_to_jiffies(ctrl->mtfa * 100);
4304        else
4305                fw_act_timeout = jiffies +
4306                                msecs_to_jiffies(admin_timeout * 1000);
4307
4308        nvme_stop_queues(ctrl);
4309        while (nvme_ctrl_pp_status(ctrl)) {
4310                if (time_after(jiffies, fw_act_timeout)) {
4311                        dev_warn(ctrl->device,
4312                                "Fw activation timeout, reset controller\n");
4313                        nvme_try_sched_reset(ctrl);
4314                        return;
4315                }
4316                msleep(100);
4317        }
4318
4319        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4320                return;
4321
4322        nvme_start_queues(ctrl);
4323        /* read FW slot information to clear the AER */
4324        nvme_get_fw_slot_info(ctrl);
4325}
4326
4327static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4328{
4329        u32 aer_notice_type = (result & 0xff00) >> 8;
4330
4331        trace_nvme_async_event(ctrl, aer_notice_type);
4332
4333        switch (aer_notice_type) {
4334        case NVME_AER_NOTICE_NS_CHANGED:
4335                set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4336                nvme_queue_scan(ctrl);
4337                break;
4338        case NVME_AER_NOTICE_FW_ACT_STARTING:
4339                /*
4340                 * We are (ab)using the RESETTING state to prevent subsequent
4341                 * recovery actions from interfering with the controller's
4342                 * firmware activation.
4343                 */
4344                if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4345                        queue_work(nvme_wq, &ctrl->fw_act_work);
4346                break;
4347#ifdef CONFIG_NVME_MULTIPATH
4348        case NVME_AER_NOTICE_ANA:
4349                if (!ctrl->ana_log_buf)
4350                        break;
4351                queue_work(nvme_wq, &ctrl->ana_work);
4352                break;
4353#endif
4354        case NVME_AER_NOTICE_DISC_CHANGED:
4355                ctrl->aen_result = result;
4356                break;
4357        default:
4358                dev_warn(ctrl->device, "async event result %08x\n", result);
4359        }
4360}
4361
4362void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4363                volatile union nvme_result *res)
4364{
4365        u32 result = le32_to_cpu(res->u32);
4366        u32 aer_type = result & 0x07;
4367
4368        if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4369                return;
4370
4371        switch (aer_type) {
4372        case NVME_AER_NOTICE:
4373                nvme_handle_aen_notice(ctrl, result);
4374                break;
4375        case NVME_AER_ERROR:
4376        case NVME_AER_SMART:
4377        case NVME_AER_CSS:
4378        case NVME_AER_VS:
4379                trace_nvme_async_event(ctrl, aer_type);
4380                ctrl->aen_result = result;
4381                break;
4382        default:
4383                break;
4384        }
4385        queue_work(nvme_wq, &ctrl->async_event_work);
4386}
4387EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4388
4389void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4390{
4391        nvme_mpath_stop(ctrl);
4392        nvme_stop_keep_alive(ctrl);
4393        nvme_stop_failfast_work(ctrl);
4394        flush_work(&ctrl->async_event_work);
4395        cancel_work_sync(&ctrl->fw_act_work);
4396}
4397EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4398
4399void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4400{
4401        nvme_start_keep_alive(ctrl);
4402
4403        nvme_enable_aen(ctrl);
4404
4405        if (ctrl->queue_count > 1) {
4406                nvme_queue_scan(ctrl);
4407                nvme_start_queues(ctrl);
4408        }
4409}
4410EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4411
4412void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4413{
4414        nvme_hwmon_exit(ctrl);
4415        nvme_fault_inject_fini(&ctrl->fault_inject);
4416        dev_pm_qos_hide_latency_tolerance(ctrl->device);
4417        cdev_device_del(&ctrl->cdev, ctrl->device);
4418        nvme_put_ctrl(ctrl);
4419}
4420EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4421
4422static void nvme_free_cels(struct nvme_ctrl *ctrl)
4423{
4424        struct nvme_effects_log *cel;
4425        unsigned long i;
4426
4427        xa_for_each(&ctrl->cels, i, cel) {
4428                xa_erase(&ctrl->cels, i);
4429                kfree(cel);
4430        }
4431
4432        xa_destroy(&ctrl->cels);
4433}
4434
4435static void nvme_free_ctrl(struct device *dev)
4436{
4437        struct nvme_ctrl *ctrl =
4438                container_of(dev, struct nvme_ctrl, ctrl_device);
4439        struct nvme_subsystem *subsys = ctrl->subsys;
4440
4441        if (!subsys || ctrl->instance != subsys->instance)
4442                ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4443
4444        nvme_free_cels(ctrl);
4445        nvme_mpath_uninit(ctrl);
4446        __free_page(ctrl->discard_page);
4447
4448        if (subsys) {
4449                mutex_lock(&nvme_subsystems_lock);
4450                list_del(&ctrl->subsys_entry);
4451                sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4452                mutex_unlock(&nvme_subsystems_lock);
4453        }
4454
4455        ctrl->ops->free_ctrl(ctrl);
4456
4457        if (subsys)
4458                nvme_put_subsystem(subsys);
4459}
4460
4461/*
4462 * Initialize a NVMe controller structures.  This needs to be called during
4463 * earliest initialization so that we have the initialized structured around
4464 * during probing.
4465 */
4466int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4467                const struct nvme_ctrl_ops *ops, unsigned long quirks)
4468{
4469        int ret;
4470
4471        ctrl->state = NVME_CTRL_NEW;
4472        clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4473        spin_lock_init(&ctrl->lock);
4474        mutex_init(&ctrl->scan_lock);
4475        INIT_LIST_HEAD(&ctrl->namespaces);
4476        xa_init(&ctrl->cels);
4477        init_rwsem(&ctrl->namespaces_rwsem);
4478        ctrl->dev = dev;
4479        ctrl->ops = ops;
4480        ctrl->quirks = quirks;
4481        ctrl->numa_node = NUMA_NO_NODE;
4482        INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4483        INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4484        INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4485        INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4486        init_waitqueue_head(&ctrl->state_wq);
4487
4488        INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4489        INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4490        memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4491        ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4492
4493        BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4494                        PAGE_SIZE);
4495        ctrl->discard_page = alloc_page(GFP_KERNEL);
4496        if (!ctrl->discard_page) {
4497                ret = -ENOMEM;
4498                goto out;
4499        }
4500
4501        ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4502        if (ret < 0)
4503                goto out;
4504        ctrl->instance = ret;
4505
4506        device_initialize(&ctrl->ctrl_device);
4507        ctrl->device = &ctrl->ctrl_device;
4508        ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4509                        ctrl->instance);
4510        ctrl->device->class = nvme_class;
4511        ctrl->device->parent = ctrl->dev;
4512        ctrl->device->groups = nvme_dev_attr_groups;
4513        ctrl->device->release = nvme_free_ctrl;
4514        dev_set_drvdata(ctrl->device, ctrl);
4515        ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4516        if (ret)
4517                goto out_release_instance;
4518
4519        nvme_get_ctrl(ctrl);
4520        cdev_init(&ctrl->cdev, &nvme_dev_fops);
4521        ctrl->cdev.owner = ops->module;
4522        ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4523        if (ret)
4524                goto out_free_name;
4525
4526        /*
4527         * Initialize latency tolerance controls.  The sysfs files won't
4528         * be visible to userspace unless the device actually supports APST.
4529         */
4530        ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4531        dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4532                min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4533
4534        nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4535        nvme_mpath_init_ctrl(ctrl);
4536
4537        return 0;
4538out_free_name:
4539        nvme_put_ctrl(ctrl);
4540        kfree_const(ctrl->device->kobj.name);
4541out_release_instance:
4542        ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4543out:
4544        if (ctrl->discard_page)
4545                __free_page(ctrl->discard_page);
4546        return ret;
4547}
4548EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4549
4550/**
4551 * nvme_kill_queues(): Ends all namespace queues
4552 * @ctrl: the dead controller that needs to end
4553 *
4554 * Call this function when the driver determines it is unable to get the
4555 * controller in a state capable of servicing IO.
4556 */
4557void nvme_kill_queues(struct nvme_ctrl *ctrl)
4558{
4559        struct nvme_ns *ns;
4560
4561        down_read(&ctrl->namespaces_rwsem);
4562
4563        /* Forcibly unquiesce queues to avoid blocking dispatch */
4564        if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4565                blk_mq_unquiesce_queue(ctrl->admin_q);
4566
4567        list_for_each_entry(ns, &ctrl->namespaces, list)
4568                nvme_set_queue_dying(ns);
4569
4570        up_read(&ctrl->namespaces_rwsem);
4571}
4572EXPORT_SYMBOL_GPL(nvme_kill_queues);
4573
4574void nvme_unfreeze(struct nvme_ctrl *ctrl)
4575{
4576        struct nvme_ns *ns;
4577
4578        down_read(&ctrl->namespaces_rwsem);
4579        list_for_each_entry(ns, &ctrl->namespaces, list)
4580                blk_mq_unfreeze_queue(ns->queue);
4581        up_read(&ctrl->namespaces_rwsem);
4582}
4583EXPORT_SYMBOL_GPL(nvme_unfreeze);
4584
4585int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4586{
4587        struct nvme_ns *ns;
4588
4589        down_read(&ctrl->namespaces_rwsem);
4590        list_for_each_entry(ns, &ctrl->namespaces, list) {
4591                timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4592                if (timeout <= 0)
4593                        break;
4594        }
4595        up_read(&ctrl->namespaces_rwsem);
4596        return timeout;
4597}
4598EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4599
4600void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4601{
4602        struct nvme_ns *ns;
4603
4604        down_read(&ctrl->namespaces_rwsem);
4605        list_for_each_entry(ns, &ctrl->namespaces, list)
4606                blk_mq_freeze_queue_wait(ns->queue);
4607        up_read(&ctrl->namespaces_rwsem);
4608}
4609EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4610
4611void nvme_start_freeze(struct nvme_ctrl *ctrl)
4612{
4613        struct nvme_ns *ns;
4614
4615        down_read(&ctrl->namespaces_rwsem);
4616        list_for_each_entry(ns, &ctrl->namespaces, list)
4617                blk_freeze_queue_start(ns->queue);
4618        up_read(&ctrl->namespaces_rwsem);
4619}
4620EXPORT_SYMBOL_GPL(nvme_start_freeze);
4621
4622void nvme_stop_queues(struct nvme_ctrl *ctrl)
4623{
4624        struct nvme_ns *ns;
4625
4626        down_read(&ctrl->namespaces_rwsem);
4627        list_for_each_entry(ns, &ctrl->namespaces, list)
4628                blk_mq_quiesce_queue(ns->queue);
4629        up_read(&ctrl->namespaces_rwsem);
4630}
4631EXPORT_SYMBOL_GPL(nvme_stop_queues);
4632
4633void nvme_start_queues(struct nvme_ctrl *ctrl)
4634{
4635        struct nvme_ns *ns;
4636
4637        down_read(&ctrl->namespaces_rwsem);
4638        list_for_each_entry(ns, &ctrl->namespaces, list)
4639                blk_mq_unquiesce_queue(ns->queue);
4640        up_read(&ctrl->namespaces_rwsem);
4641}
4642EXPORT_SYMBOL_GPL(nvme_start_queues);
4643
4644void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4645{
4646        struct nvme_ns *ns;
4647
4648        down_read(&ctrl->namespaces_rwsem);
4649        list_for_each_entry(ns, &ctrl->namespaces, list)
4650                blk_sync_queue(ns->queue);
4651        up_read(&ctrl->namespaces_rwsem);
4652}
4653EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4654
4655void nvme_sync_queues(struct nvme_ctrl *ctrl)
4656{
4657        nvme_sync_io_queues(ctrl);
4658        if (ctrl->admin_q)
4659                blk_sync_queue(ctrl->admin_q);
4660}
4661EXPORT_SYMBOL_GPL(nvme_sync_queues);
4662
4663struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4664{
4665        if (file->f_op != &nvme_dev_fops)
4666                return NULL;
4667        return file->private_data;
4668}
4669EXPORT_SYMBOL_GPL(nvme_ctrl_from_file);
4670
4671/*
4672 * Check we didn't inadvertently grow the command structure sizes:
4673 */
4674static inline void _nvme_check_size(void)
4675{
4676        BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4677        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4678        BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4679        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4680        BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4681        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4682        BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4683        BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4684        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4685        BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4686        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4687        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4688        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4689        BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4690        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4691        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4692        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4693        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4694        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4695        BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4696}
4697
4698
4699static int __init nvme_core_init(void)
4700{
4701        int result = -ENOMEM;
4702
4703        _nvme_check_size();
4704
4705        nvme_wq = alloc_workqueue("nvme-wq",
4706                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4707        if (!nvme_wq)
4708                goto out;
4709
4710        nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4711                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4712        if (!nvme_reset_wq)
4713                goto destroy_wq;
4714
4715        nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4716                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4717        if (!nvme_delete_wq)
4718                goto destroy_reset_wq;
4719
4720        result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4721                        NVME_MINORS, "nvme");
4722        if (result < 0)
4723                goto destroy_delete_wq;
4724
4725        nvme_class = class_create(THIS_MODULE, "nvme");
4726        if (IS_ERR(nvme_class)) {
4727                result = PTR_ERR(nvme_class);
4728                goto unregister_chrdev;
4729        }
4730        nvme_class->dev_uevent = nvme_class_uevent;
4731
4732        nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4733        if (IS_ERR(nvme_subsys_class)) {
4734                result = PTR_ERR(nvme_subsys_class);
4735                goto destroy_class;
4736        }
4737
4738        result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4739                                     "nvme-generic");
4740        if (result < 0)
4741                goto destroy_subsys_class;
4742
4743        nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4744        if (IS_ERR(nvme_ns_chr_class)) {
4745                result = PTR_ERR(nvme_ns_chr_class);
4746                goto unregister_generic_ns;
4747        }
4748
4749        return 0;
4750
4751unregister_generic_ns:
4752        unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4753destroy_subsys_class:
4754        class_destroy(nvme_subsys_class);
4755destroy_class:
4756        class_destroy(nvme_class);
4757unregister_chrdev:
4758        unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4759destroy_delete_wq:
4760        destroy_workqueue(nvme_delete_wq);
4761destroy_reset_wq:
4762        destroy_workqueue(nvme_reset_wq);
4763destroy_wq:
4764        destroy_workqueue(nvme_wq);
4765out:
4766        return result;
4767}
4768
4769static void __exit nvme_core_exit(void)
4770{
4771        class_destroy(nvme_ns_chr_class);
4772        class_destroy(nvme_subsys_class);
4773        class_destroy(nvme_class);
4774        unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4775        unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4776        destroy_workqueue(nvme_delete_wq);
4777        destroy_workqueue(nvme_reset_wq);
4778        destroy_workqueue(nvme_wq);
4779        ida_destroy(&nvme_ns_chr_minor_ida);
4780        ida_destroy(&nvme_instance_ida);
4781}
4782
4783MODULE_LICENSE("GPL");
4784MODULE_VERSION("1.0");
4785module_init(nvme_core_init);
4786module_exit(nvme_core_exit);
4787