linux/drivers/scsi/storvsc_drv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 *   K. Y. Srinivasan <kys@microsoft.com>
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/wait.h>
  13#include <linux/sched.h>
  14#include <linux/completion.h>
  15#include <linux/string.h>
  16#include <linux/mm.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/hyperv.h>
  23#include <linux/blkdev.h>
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_host.h>
  27#include <scsi/scsi_device.h>
  28#include <scsi/scsi_tcq.h>
  29#include <scsi/scsi_eh.h>
  30#include <scsi/scsi_devinfo.h>
  31#include <scsi/scsi_dbg.h>
  32#include <scsi/scsi_transport_fc.h>
  33#include <scsi/scsi_transport.h>
  34
  35/*
  36 * All wire protocol details (storage protocol between the guest and the host)
  37 * are consolidated here.
  38 *
  39 * Begin protocol definitions.
  40 */
  41
  42/*
  43 * Version history:
  44 * V1 Beta: 0.1
  45 * V1 RC < 2008/1/31: 1.0
  46 * V1 RC > 2008/1/31:  2.0
  47 * Win7: 4.2
  48 * Win8: 5.1
  49 * Win8.1: 6.0
  50 * Win10: 6.2
  51 */
  52
  53#define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
  54                                                (((MINOR_) & 0xff)))
  55
  56#define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
  57#define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
  58#define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
  59#define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
  60#define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
  61
  62/*  Packet structure describing virtual storage requests. */
  63enum vstor_packet_operation {
  64        VSTOR_OPERATION_COMPLETE_IO             = 1,
  65        VSTOR_OPERATION_REMOVE_DEVICE           = 2,
  66        VSTOR_OPERATION_EXECUTE_SRB             = 3,
  67        VSTOR_OPERATION_RESET_LUN               = 4,
  68        VSTOR_OPERATION_RESET_ADAPTER           = 5,
  69        VSTOR_OPERATION_RESET_BUS               = 6,
  70        VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
  71        VSTOR_OPERATION_END_INITIALIZATION      = 8,
  72        VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
  73        VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
  74        VSTOR_OPERATION_ENUMERATE_BUS           = 11,
  75        VSTOR_OPERATION_FCHBA_DATA              = 12,
  76        VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
  77        VSTOR_OPERATION_MAXIMUM                 = 13
  78};
  79
  80/*
  81 * WWN packet for Fibre Channel HBA
  82 */
  83
  84struct hv_fc_wwn_packet {
  85        u8      primary_active;
  86        u8      reserved1[3];
  87        u8      primary_port_wwn[8];
  88        u8      primary_node_wwn[8];
  89        u8      secondary_port_wwn[8];
  90        u8      secondary_node_wwn[8];
  91};
  92
  93
  94
  95/*
  96 * SRB Flag Bits
  97 */
  98
  99#define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
 100#define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
 101#define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
 102#define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
 103#define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
 104#define SRB_FLAGS_DATA_IN                       0x00000040
 105#define SRB_FLAGS_DATA_OUT                      0x00000080
 106#define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
 107#define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
 108#define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
 109#define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
 110#define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
 111
 112/*
 113 * This flag indicates the request is part of the workflow for processing a D3.
 114 */
 115#define SRB_FLAGS_D3_PROCESSING                 0x00000800
 116#define SRB_FLAGS_IS_ACTIVE                     0x00010000
 117#define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
 118#define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
 119#define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
 120#define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
 121#define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
 122#define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
 123#define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
 124#define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
 125#define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
 126
 127#define SP_UNTAGGED                     ((unsigned char) ~0)
 128#define SRB_SIMPLE_TAG_REQUEST          0x20
 129
 130/*
 131 * Platform neutral description of a scsi request -
 132 * this remains the same across the write regardless of 32/64 bit
 133 * note: it's patterned off the SCSI_PASS_THROUGH structure
 134 */
 135#define STORVSC_MAX_CMD_LEN                     0x10
 136
 137#define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE     0x14
 138#define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE      0x12
 139
 140#define STORVSC_SENSE_BUFFER_SIZE               0x14
 141#define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
 142
 143/*
 144 * Sense buffer size changed in win8; have a run-time
 145 * variable to track the size we should use.  This value will
 146 * likely change during protocol negotiation but it is valid
 147 * to start by assuming pre-Win8.
 148 */
 149static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
 150
 151/*
 152 * The storage protocol version is determined during the
 153 * initial exchange with the host.  It will indicate which
 154 * storage functionality is available in the host.
 155*/
 156static int vmstor_proto_version;
 157
 158#define STORVSC_LOGGING_NONE    0
 159#define STORVSC_LOGGING_ERROR   1
 160#define STORVSC_LOGGING_WARN    2
 161
 162static int logging_level = STORVSC_LOGGING_ERROR;
 163module_param(logging_level, int, S_IRUGO|S_IWUSR);
 164MODULE_PARM_DESC(logging_level,
 165        "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
 166
 167static inline bool do_logging(int level)
 168{
 169        return logging_level >= level;
 170}
 171
 172#define storvsc_log(dev, level, fmt, ...)                       \
 173do {                                                            \
 174        if (do_logging(level))                                  \
 175                dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
 176} while (0)
 177
 178struct vmscsi_win8_extension {
 179        /*
 180         * The following were added in Windows 8
 181         */
 182        u16 reserve;
 183        u8  queue_tag;
 184        u8  queue_action;
 185        u32 srb_flags;
 186        u32 time_out_value;
 187        u32 queue_sort_ey;
 188} __packed;
 189
 190struct vmscsi_request {
 191        u16 length;
 192        u8 srb_status;
 193        u8 scsi_status;
 194
 195        u8  port_number;
 196        u8  path_id;
 197        u8  target_id;
 198        u8  lun;
 199
 200        u8  cdb_length;
 201        u8  sense_info_length;
 202        u8  data_in;
 203        u8  reserved;
 204
 205        u32 data_transfer_length;
 206
 207        union {
 208                u8 cdb[STORVSC_MAX_CMD_LEN];
 209                u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
 210                u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
 211        };
 212        /*
 213         * The following was added in win8.
 214         */
 215        struct vmscsi_win8_extension win8_extension;
 216
 217} __attribute((packed));
 218
 219/*
 220 * The list of storage protocols in order of preference.
 221 */
 222struct vmstor_protocol {
 223        int protocol_version;
 224        int sense_buffer_size;
 225        int vmscsi_size_delta;
 226};
 227
 228
 229static const struct vmstor_protocol vmstor_protocols[] = {
 230        {
 231                VMSTOR_PROTO_VERSION_WIN10,
 232                POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
 233                0
 234        },
 235        {
 236                VMSTOR_PROTO_VERSION_WIN8_1,
 237                POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
 238                0
 239        },
 240        {
 241                VMSTOR_PROTO_VERSION_WIN8,
 242                POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
 243                0
 244        },
 245        {
 246                VMSTOR_PROTO_VERSION_WIN7,
 247                PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
 248                sizeof(struct vmscsi_win8_extension),
 249        },
 250        {
 251                VMSTOR_PROTO_VERSION_WIN6,
 252                PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
 253                sizeof(struct vmscsi_win8_extension),
 254        }
 255};
 256
 257
 258/*
 259 * This structure is sent during the initialization phase to get the different
 260 * properties of the channel.
 261 */
 262
 263#define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
 264
 265struct vmstorage_channel_properties {
 266        u32 reserved;
 267        u16 max_channel_cnt;
 268        u16 reserved1;
 269
 270        u32 flags;
 271        u32   max_transfer_bytes;
 272
 273        u64  reserved2;
 274} __packed;
 275
 276/*  This structure is sent during the storage protocol negotiations. */
 277struct vmstorage_protocol_version {
 278        /* Major (MSW) and minor (LSW) version numbers. */
 279        u16 major_minor;
 280
 281        /*
 282         * Revision number is auto-incremented whenever this file is changed
 283         * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
 284         * definitely indicate incompatibility--but it does indicate mismatched
 285         * builds.
 286         * This is only used on the windows side. Just set it to 0.
 287         */
 288        u16 revision;
 289} __packed;
 290
 291/* Channel Property Flags */
 292#define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
 293#define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
 294
 295struct vstor_packet {
 296        /* Requested operation type */
 297        enum vstor_packet_operation operation;
 298
 299        /*  Flags - see below for values */
 300        u32 flags;
 301
 302        /* Status of the request returned from the server side. */
 303        u32 status;
 304
 305        /* Data payload area */
 306        union {
 307                /*
 308                 * Structure used to forward SCSI commands from the
 309                 * client to the server.
 310                 */
 311                struct vmscsi_request vm_srb;
 312
 313                /* Structure used to query channel properties. */
 314                struct vmstorage_channel_properties storage_channel_properties;
 315
 316                /* Used during version negotiations. */
 317                struct vmstorage_protocol_version version;
 318
 319                /* Fibre channel address packet */
 320                struct hv_fc_wwn_packet wwn_packet;
 321
 322                /* Number of sub-channels to create */
 323                u16 sub_channel_count;
 324
 325                /* This will be the maximum of the union members */
 326                u8  buffer[0x34];
 327        };
 328} __packed;
 329
 330/*
 331 * Packet Flags:
 332 *
 333 * This flag indicates that the server should send back a completion for this
 334 * packet.
 335 */
 336
 337#define REQUEST_COMPLETION_FLAG 0x1
 338
 339/* Matches Windows-end */
 340enum storvsc_request_type {
 341        WRITE_TYPE = 0,
 342        READ_TYPE,
 343        UNKNOWN_TYPE,
 344};
 345
 346/*
 347 * SRB status codes and masks; a subset of the codes used here.
 348 */
 349
 350#define SRB_STATUS_AUTOSENSE_VALID      0x80
 351#define SRB_STATUS_QUEUE_FROZEN         0x40
 352#define SRB_STATUS_INVALID_LUN  0x20
 353#define SRB_STATUS_SUCCESS      0x01
 354#define SRB_STATUS_ABORTED      0x02
 355#define SRB_STATUS_ERROR        0x04
 356#define SRB_STATUS_DATA_OVERRUN 0x12
 357
 358#define SRB_STATUS(status) \
 359        (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
 360/*
 361 * This is the end of Protocol specific defines.
 362 */
 363
 364static int storvsc_ringbuffer_size = (128 * 1024);
 365static u32 max_outstanding_req_per_channel;
 366static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
 367
 368static int storvsc_vcpus_per_sub_channel = 4;
 369static unsigned int storvsc_max_hw_queues;
 370
 371module_param(storvsc_ringbuffer_size, int, S_IRUGO);
 372MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
 373
 374module_param(storvsc_max_hw_queues, uint, 0644);
 375MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
 376
 377module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
 378MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
 379
 380static int ring_avail_percent_lowater = 10;
 381module_param(ring_avail_percent_lowater, int, S_IRUGO);
 382MODULE_PARM_DESC(ring_avail_percent_lowater,
 383                "Select a channel if available ring size > this in percent");
 384
 385/*
 386 * Timeout in seconds for all devices managed by this driver.
 387 */
 388static int storvsc_timeout = 180;
 389
 390#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
 391static struct scsi_transport_template *fc_transport_template;
 392#endif
 393
 394static struct scsi_host_template scsi_driver;
 395static void storvsc_on_channel_callback(void *context);
 396
 397#define STORVSC_MAX_LUNS_PER_TARGET                     255
 398#define STORVSC_MAX_TARGETS                             2
 399#define STORVSC_MAX_CHANNELS                            8
 400
 401#define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
 402#define STORVSC_FC_MAX_TARGETS                          128
 403#define STORVSC_FC_MAX_CHANNELS                         8
 404
 405#define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
 406#define STORVSC_IDE_MAX_TARGETS                         1
 407#define STORVSC_IDE_MAX_CHANNELS                        1
 408
 409/*
 410 * Upper bound on the size of a storvsc packet. vmscsi_size_delta is not
 411 * included in the calculation because it is set after STORVSC_MAX_PKT_SIZE
 412 * is used in storvsc_connect_to_vsp
 413 */
 414#define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
 415                              sizeof(struct vstor_packet))
 416
 417struct storvsc_cmd_request {
 418        struct scsi_cmnd *cmd;
 419
 420        struct hv_device *device;
 421
 422        /* Synchronize the request/response if needed */
 423        struct completion wait_event;
 424
 425        struct vmbus_channel_packet_multipage_buffer mpb;
 426        struct vmbus_packet_mpb_array *payload;
 427        u32 payload_sz;
 428
 429        struct vstor_packet vstor_packet;
 430};
 431
 432
 433/* A storvsc device is a device object that contains a vmbus channel */
 434struct storvsc_device {
 435        struct hv_device *device;
 436
 437        bool     destroy;
 438        bool     drain_notify;
 439        atomic_t num_outstanding_req;
 440        struct Scsi_Host *host;
 441
 442        wait_queue_head_t waiting_to_drain;
 443
 444        /*
 445         * Each unique Port/Path/Target represents 1 channel ie scsi
 446         * controller. In reality, the pathid, targetid is always 0
 447         * and the port is set by us
 448         */
 449        unsigned int port_number;
 450        unsigned char path_id;
 451        unsigned char target_id;
 452
 453        /*
 454         * The size of the vmscsi_request has changed in win8. The
 455         * additional size is because of new elements added to the
 456         * structure. These elements are valid only when we are talking
 457         * to a win8 host.
 458         * Track the correction to size we need to apply. This value
 459         * will likely change during protocol negotiation but it is
 460         * valid to start by assuming pre-Win8.
 461         */
 462        int vmscsi_size_delta;
 463
 464        /*
 465         * Max I/O, the device can support.
 466         */
 467        u32   max_transfer_bytes;
 468        /*
 469         * Number of sub-channels we will open.
 470         */
 471        u16 num_sc;
 472        struct vmbus_channel **stor_chns;
 473        /*
 474         * Mask of CPUs bound to subchannels.
 475         */
 476        struct cpumask alloced_cpus;
 477        /*
 478         * Serializes modifications of stor_chns[] from storvsc_do_io()
 479         * and storvsc_change_target_cpu().
 480         */
 481        spinlock_t lock;
 482        /* Used for vsc/vsp channel reset process */
 483        struct storvsc_cmd_request init_request;
 484        struct storvsc_cmd_request reset_request;
 485        /*
 486         * Currently active port and node names for FC devices.
 487         */
 488        u64 node_name;
 489        u64 port_name;
 490#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
 491        struct fc_rport *rport;
 492#endif
 493};
 494
 495struct hv_host_device {
 496        struct hv_device *dev;
 497        unsigned int port;
 498        unsigned char path;
 499        unsigned char target;
 500        struct workqueue_struct *handle_error_wq;
 501        struct work_struct host_scan_work;
 502        struct Scsi_Host *host;
 503};
 504
 505struct storvsc_scan_work {
 506        struct work_struct work;
 507        struct Scsi_Host *host;
 508        u8 lun;
 509        u8 tgt_id;
 510};
 511
 512static void storvsc_device_scan(struct work_struct *work)
 513{
 514        struct storvsc_scan_work *wrk;
 515        struct scsi_device *sdev;
 516
 517        wrk = container_of(work, struct storvsc_scan_work, work);
 518
 519        sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
 520        if (!sdev)
 521                goto done;
 522        scsi_rescan_device(&sdev->sdev_gendev);
 523        scsi_device_put(sdev);
 524
 525done:
 526        kfree(wrk);
 527}
 528
 529static void storvsc_host_scan(struct work_struct *work)
 530{
 531        struct Scsi_Host *host;
 532        struct scsi_device *sdev;
 533        struct hv_host_device *host_device =
 534                container_of(work, struct hv_host_device, host_scan_work);
 535
 536        host = host_device->host;
 537        /*
 538         * Before scanning the host, first check to see if any of the
 539         * currrently known devices have been hot removed. We issue a
 540         * "unit ready" command against all currently known devices.
 541         * This I/O will result in an error for devices that have been
 542         * removed. As part of handling the I/O error, we remove the device.
 543         *
 544         * When a LUN is added or removed, the host sends us a signal to
 545         * scan the host. Thus we are forced to discover the LUNs that
 546         * may have been removed this way.
 547         */
 548        mutex_lock(&host->scan_mutex);
 549        shost_for_each_device(sdev, host)
 550                scsi_test_unit_ready(sdev, 1, 1, NULL);
 551        mutex_unlock(&host->scan_mutex);
 552        /*
 553         * Now scan the host to discover LUNs that may have been added.
 554         */
 555        scsi_scan_host(host);
 556}
 557
 558static void storvsc_remove_lun(struct work_struct *work)
 559{
 560        struct storvsc_scan_work *wrk;
 561        struct scsi_device *sdev;
 562
 563        wrk = container_of(work, struct storvsc_scan_work, work);
 564        if (!scsi_host_get(wrk->host))
 565                goto done;
 566
 567        sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
 568
 569        if (sdev) {
 570                scsi_remove_device(sdev);
 571                scsi_device_put(sdev);
 572        }
 573        scsi_host_put(wrk->host);
 574
 575done:
 576        kfree(wrk);
 577}
 578
 579
 580/*
 581 * We can get incoming messages from the host that are not in response to
 582 * messages that we have sent out. An example of this would be messages
 583 * received by the guest to notify dynamic addition/removal of LUNs. To
 584 * deal with potential race conditions where the driver may be in the
 585 * midst of being unloaded when we might receive an unsolicited message
 586 * from the host, we have implemented a mechanism to gurantee sequential
 587 * consistency:
 588 *
 589 * 1) Once the device is marked as being destroyed, we will fail all
 590 *    outgoing messages.
 591 * 2) We permit incoming messages when the device is being destroyed,
 592 *    only to properly account for messages already sent out.
 593 */
 594
 595static inline struct storvsc_device *get_out_stor_device(
 596                                        struct hv_device *device)
 597{
 598        struct storvsc_device *stor_device;
 599
 600        stor_device = hv_get_drvdata(device);
 601
 602        if (stor_device && stor_device->destroy)
 603                stor_device = NULL;
 604
 605        return stor_device;
 606}
 607
 608
 609static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
 610{
 611        dev->drain_notify = true;
 612        wait_event(dev->waiting_to_drain,
 613                   atomic_read(&dev->num_outstanding_req) == 0);
 614        dev->drain_notify = false;
 615}
 616
 617static inline struct storvsc_device *get_in_stor_device(
 618                                        struct hv_device *device)
 619{
 620        struct storvsc_device *stor_device;
 621
 622        stor_device = hv_get_drvdata(device);
 623
 624        if (!stor_device)
 625                goto get_in_err;
 626
 627        /*
 628         * If the device is being destroyed; allow incoming
 629         * traffic only to cleanup outstanding requests.
 630         */
 631
 632        if (stor_device->destroy  &&
 633                (atomic_read(&stor_device->num_outstanding_req) == 0))
 634                stor_device = NULL;
 635
 636get_in_err:
 637        return stor_device;
 638
 639}
 640
 641static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
 642                                      u32 new)
 643{
 644        struct storvsc_device *stor_device;
 645        struct vmbus_channel *cur_chn;
 646        bool old_is_alloced = false;
 647        struct hv_device *device;
 648        unsigned long flags;
 649        int cpu;
 650
 651        device = channel->primary_channel ?
 652                        channel->primary_channel->device_obj
 653                                : channel->device_obj;
 654        stor_device = get_out_stor_device(device);
 655        if (!stor_device)
 656                return;
 657
 658        /* See storvsc_do_io() -> get_og_chn(). */
 659        spin_lock_irqsave(&stor_device->lock, flags);
 660
 661        /*
 662         * Determines if the storvsc device has other channels assigned to
 663         * the "old" CPU to update the alloced_cpus mask and the stor_chns
 664         * array.
 665         */
 666        if (device->channel != channel && device->channel->target_cpu == old) {
 667                cur_chn = device->channel;
 668                old_is_alloced = true;
 669                goto old_is_alloced;
 670        }
 671        list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
 672                if (cur_chn == channel)
 673                        continue;
 674                if (cur_chn->target_cpu == old) {
 675                        old_is_alloced = true;
 676                        goto old_is_alloced;
 677                }
 678        }
 679
 680old_is_alloced:
 681        if (old_is_alloced)
 682                WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
 683        else
 684                cpumask_clear_cpu(old, &stor_device->alloced_cpus);
 685
 686        /* "Flush" the stor_chns array. */
 687        for_each_possible_cpu(cpu) {
 688                if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
 689                                        cpu, &stor_device->alloced_cpus))
 690                        WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
 691        }
 692
 693        WRITE_ONCE(stor_device->stor_chns[new], channel);
 694        cpumask_set_cpu(new, &stor_device->alloced_cpus);
 695
 696        spin_unlock_irqrestore(&stor_device->lock, flags);
 697}
 698
 699static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
 700{
 701        struct storvsc_cmd_request *request =
 702                (struct storvsc_cmd_request *)(unsigned long)rqst_addr;
 703
 704        if (rqst_addr == VMBUS_RQST_INIT)
 705                return VMBUS_RQST_INIT;
 706        if (rqst_addr == VMBUS_RQST_RESET)
 707                return VMBUS_RQST_RESET;
 708
 709        /*
 710         * Cannot return an ID of 0, which is reserved for an unsolicited
 711         * message from Hyper-V.
 712         */
 713        return (u64)blk_mq_unique_tag(request->cmd->request) + 1;
 714}
 715
 716static void handle_sc_creation(struct vmbus_channel *new_sc)
 717{
 718        struct hv_device *device = new_sc->primary_channel->device_obj;
 719        struct device *dev = &device->device;
 720        struct storvsc_device *stor_device;
 721        struct vmstorage_channel_properties props;
 722        int ret;
 723
 724        stor_device = get_out_stor_device(device);
 725        if (!stor_device)
 726                return;
 727
 728        memset(&props, 0, sizeof(struct vmstorage_channel_properties));
 729        new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
 730
 731        new_sc->next_request_id_callback = storvsc_next_request_id;
 732
 733        ret = vmbus_open(new_sc,
 734                         storvsc_ringbuffer_size,
 735                         storvsc_ringbuffer_size,
 736                         (void *)&props,
 737                         sizeof(struct vmstorage_channel_properties),
 738                         storvsc_on_channel_callback, new_sc);
 739
 740        /* In case vmbus_open() fails, we don't use the sub-channel. */
 741        if (ret != 0) {
 742                dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
 743                return;
 744        }
 745
 746        new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
 747
 748        /* Add the sub-channel to the array of available channels. */
 749        stor_device->stor_chns[new_sc->target_cpu] = new_sc;
 750        cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
 751}
 752
 753static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
 754{
 755        struct device *dev = &device->device;
 756        struct storvsc_device *stor_device;
 757        int num_sc;
 758        struct storvsc_cmd_request *request;
 759        struct vstor_packet *vstor_packet;
 760        int ret, t;
 761
 762        /*
 763         * If the number of CPUs is artificially restricted, such as
 764         * with maxcpus=1 on the kernel boot line, Hyper-V could offer
 765         * sub-channels >= the number of CPUs. These sub-channels
 766         * should not be created. The primary channel is already created
 767         * and assigned to one CPU, so check against # CPUs - 1.
 768         */
 769        num_sc = min((int)(num_online_cpus() - 1), max_chns);
 770        if (!num_sc)
 771                return;
 772
 773        stor_device = get_out_stor_device(device);
 774        if (!stor_device)
 775                return;
 776
 777        stor_device->num_sc = num_sc;
 778        request = &stor_device->init_request;
 779        vstor_packet = &request->vstor_packet;
 780
 781        /*
 782         * Establish a handler for dealing with subchannels.
 783         */
 784        vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
 785
 786        /*
 787         * Request the host to create sub-channels.
 788         */
 789        memset(request, 0, sizeof(struct storvsc_cmd_request));
 790        init_completion(&request->wait_event);
 791        vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
 792        vstor_packet->flags = REQUEST_COMPLETION_FLAG;
 793        vstor_packet->sub_channel_count = num_sc;
 794
 795        ret = vmbus_sendpacket(device->channel, vstor_packet,
 796                               (sizeof(struct vstor_packet) -
 797                               stor_device->vmscsi_size_delta),
 798                               VMBUS_RQST_INIT,
 799                               VM_PKT_DATA_INBAND,
 800                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 801
 802        if (ret != 0) {
 803                dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
 804                return;
 805        }
 806
 807        t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
 808        if (t == 0) {
 809                dev_err(dev, "Failed to create sub-channel: timed out\n");
 810                return;
 811        }
 812
 813        if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
 814            vstor_packet->status != 0) {
 815                dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
 816                        vstor_packet->operation, vstor_packet->status);
 817                return;
 818        }
 819
 820        /*
 821         * We need to do nothing here, because vmbus_process_offer()
 822         * invokes channel->sc_creation_callback, which will open and use
 823         * the sub-channel(s).
 824         */
 825}
 826
 827static void cache_wwn(struct storvsc_device *stor_device,
 828                      struct vstor_packet *vstor_packet)
 829{
 830        /*
 831         * Cache the currently active port and node ww names.
 832         */
 833        if (vstor_packet->wwn_packet.primary_active) {
 834                stor_device->node_name =
 835                        wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
 836                stor_device->port_name =
 837                        wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
 838        } else {
 839                stor_device->node_name =
 840                        wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
 841                stor_device->port_name =
 842                        wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
 843        }
 844}
 845
 846
 847static int storvsc_execute_vstor_op(struct hv_device *device,
 848                                    struct storvsc_cmd_request *request,
 849                                    bool status_check)
 850{
 851        struct storvsc_device *stor_device;
 852        struct vstor_packet *vstor_packet;
 853        int ret, t;
 854
 855        stor_device = get_out_stor_device(device);
 856        if (!stor_device)
 857                return -ENODEV;
 858
 859        vstor_packet = &request->vstor_packet;
 860
 861        init_completion(&request->wait_event);
 862        vstor_packet->flags = REQUEST_COMPLETION_FLAG;
 863
 864        ret = vmbus_sendpacket(device->channel, vstor_packet,
 865                               (sizeof(struct vstor_packet) -
 866                               stor_device->vmscsi_size_delta),
 867                               VMBUS_RQST_INIT,
 868                               VM_PKT_DATA_INBAND,
 869                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 870        if (ret != 0)
 871                return ret;
 872
 873        t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
 874        if (t == 0)
 875                return -ETIMEDOUT;
 876
 877        if (!status_check)
 878                return ret;
 879
 880        if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
 881            vstor_packet->status != 0)
 882                return -EINVAL;
 883
 884        return ret;
 885}
 886
 887static int storvsc_channel_init(struct hv_device *device, bool is_fc)
 888{
 889        struct storvsc_device *stor_device;
 890        struct storvsc_cmd_request *request;
 891        struct vstor_packet *vstor_packet;
 892        int ret, i;
 893        int max_chns;
 894        bool process_sub_channels = false;
 895
 896        stor_device = get_out_stor_device(device);
 897        if (!stor_device)
 898                return -ENODEV;
 899
 900        request = &stor_device->init_request;
 901        vstor_packet = &request->vstor_packet;
 902
 903        /*
 904         * Now, initiate the vsc/vsp initialization protocol on the open
 905         * channel
 906         */
 907        memset(request, 0, sizeof(struct storvsc_cmd_request));
 908        vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
 909        ret = storvsc_execute_vstor_op(device, request, true);
 910        if (ret)
 911                return ret;
 912        /*
 913         * Query host supported protocol version.
 914         */
 915
 916        for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
 917                /* reuse the packet for version range supported */
 918                memset(vstor_packet, 0, sizeof(struct vstor_packet));
 919                vstor_packet->operation =
 920                        VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
 921
 922                vstor_packet->version.major_minor =
 923                        vmstor_protocols[i].protocol_version;
 924
 925                /*
 926                 * The revision number is only used in Windows; set it to 0.
 927                 */
 928                vstor_packet->version.revision = 0;
 929                ret = storvsc_execute_vstor_op(device, request, false);
 930                if (ret != 0)
 931                        return ret;
 932
 933                if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
 934                        return -EINVAL;
 935
 936                if (vstor_packet->status == 0) {
 937                        vmstor_proto_version =
 938                                vmstor_protocols[i].protocol_version;
 939
 940                        sense_buffer_size =
 941                                vmstor_protocols[i].sense_buffer_size;
 942
 943                        stor_device->vmscsi_size_delta =
 944                                vmstor_protocols[i].vmscsi_size_delta;
 945
 946                        break;
 947                }
 948        }
 949
 950        if (vstor_packet->status != 0)
 951                return -EINVAL;
 952
 953
 954        memset(vstor_packet, 0, sizeof(struct vstor_packet));
 955        vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
 956        ret = storvsc_execute_vstor_op(device, request, true);
 957        if (ret != 0)
 958                return ret;
 959
 960        /*
 961         * Check to see if multi-channel support is there.
 962         * Hosts that implement protocol version of 5.1 and above
 963         * support multi-channel.
 964         */
 965        max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
 966
 967        /*
 968         * Allocate state to manage the sub-channels.
 969         * We allocate an array based on the numbers of possible CPUs
 970         * (Hyper-V does not support cpu online/offline).
 971         * This Array will be sparseley populated with unique
 972         * channels - primary + sub-channels.
 973         * We will however populate all the slots to evenly distribute
 974         * the load.
 975         */
 976        stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
 977                                         GFP_KERNEL);
 978        if (stor_device->stor_chns == NULL)
 979                return -ENOMEM;
 980
 981        device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
 982
 983        stor_device->stor_chns[device->channel->target_cpu] = device->channel;
 984        cpumask_set_cpu(device->channel->target_cpu,
 985                        &stor_device->alloced_cpus);
 986
 987        if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
 988                if (vstor_packet->storage_channel_properties.flags &
 989                    STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
 990                        process_sub_channels = true;
 991        }
 992        stor_device->max_transfer_bytes =
 993                vstor_packet->storage_channel_properties.max_transfer_bytes;
 994
 995        if (!is_fc)
 996                goto done;
 997
 998        /*
 999         * For FC devices retrieve FC HBA data.
1000         */
1001        memset(vstor_packet, 0, sizeof(struct vstor_packet));
1002        vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
1003        ret = storvsc_execute_vstor_op(device, request, true);
1004        if (ret != 0)
1005                return ret;
1006
1007        /*
1008         * Cache the currently active port and node ww names.
1009         */
1010        cache_wwn(stor_device, vstor_packet);
1011
1012done:
1013
1014        memset(vstor_packet, 0, sizeof(struct vstor_packet));
1015        vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
1016        ret = storvsc_execute_vstor_op(device, request, true);
1017        if (ret != 0)
1018                return ret;
1019
1020        if (process_sub_channels)
1021                handle_multichannel_storage(device, max_chns);
1022
1023        return ret;
1024}
1025
1026static void storvsc_handle_error(struct vmscsi_request *vm_srb,
1027                                struct scsi_cmnd *scmnd,
1028                                struct Scsi_Host *host,
1029                                u8 asc, u8 ascq)
1030{
1031        struct storvsc_scan_work *wrk;
1032        void (*process_err_fn)(struct work_struct *work);
1033        struct hv_host_device *host_dev = shost_priv(host);
1034
1035        /*
1036         * In some situations, Hyper-V sets multiple bits in the
1037         * srb_status, such as ABORTED and ERROR. So process them
1038         * individually, with the most specific bits first.
1039         */
1040
1041        if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) {
1042                set_host_byte(scmnd, DID_NO_CONNECT);
1043                process_err_fn = storvsc_remove_lun;
1044                goto do_work;
1045        }
1046
1047        if (vm_srb->srb_status & SRB_STATUS_ABORTED) {
1048                if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
1049                    /* Capacity data has changed */
1050                    (asc == 0x2a) && (ascq == 0x9)) {
1051                        process_err_fn = storvsc_device_scan;
1052                        /*
1053                         * Retry the I/O that triggered this.
1054                         */
1055                        set_host_byte(scmnd, DID_REQUEUE);
1056                        goto do_work;
1057                }
1058        }
1059
1060        if (vm_srb->srb_status & SRB_STATUS_ERROR) {
1061                /*
1062                 * Let upper layer deal with error when
1063                 * sense message is present.
1064                 */
1065                if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1066                        return;
1067
1068                /*
1069                 * If there is an error; offline the device since all
1070                 * error recovery strategies would have already been
1071                 * deployed on the host side. However, if the command
1072                 * were a pass-through command deal with it appropriately.
1073                 */
1074                switch (scmnd->cmnd[0]) {
1075                case ATA_16:
1076                case ATA_12:
1077                        set_host_byte(scmnd, DID_PASSTHROUGH);
1078                        break;
1079                /*
1080                 * On some Hyper-V hosts TEST_UNIT_READY command can
1081                 * return SRB_STATUS_ERROR. Let the upper level code
1082                 * deal with it based on the sense information.
1083                 */
1084                case TEST_UNIT_READY:
1085                        break;
1086                default:
1087                        set_host_byte(scmnd, DID_ERROR);
1088                }
1089        }
1090        return;
1091
1092do_work:
1093        /*
1094         * We need to schedule work to process this error; schedule it.
1095         */
1096        wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1097        if (!wrk) {
1098                set_host_byte(scmnd, DID_TARGET_FAILURE);
1099                return;
1100        }
1101
1102        wrk->host = host;
1103        wrk->lun = vm_srb->lun;
1104        wrk->tgt_id = vm_srb->target_id;
1105        INIT_WORK(&wrk->work, process_err_fn);
1106        queue_work(host_dev->handle_error_wq, &wrk->work);
1107}
1108
1109
1110static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1111                                       struct storvsc_device *stor_dev)
1112{
1113        struct scsi_cmnd *scmnd = cmd_request->cmd;
1114        struct scsi_sense_hdr sense_hdr;
1115        struct vmscsi_request *vm_srb;
1116        u32 data_transfer_length;
1117        struct Scsi_Host *host;
1118        u32 payload_sz = cmd_request->payload_sz;
1119        void *payload = cmd_request->payload;
1120        bool sense_ok;
1121
1122        host = stor_dev->host;
1123
1124        vm_srb = &cmd_request->vstor_packet.vm_srb;
1125        data_transfer_length = vm_srb->data_transfer_length;
1126
1127        scmnd->result = vm_srb->scsi_status;
1128
1129        if (scmnd->result) {
1130                sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1131                                SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1132
1133                if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1134                        scsi_print_sense_hdr(scmnd->device, "storvsc",
1135                                             &sense_hdr);
1136        }
1137
1138        if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1139                storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1140                                         sense_hdr.ascq);
1141                /*
1142                 * The Windows driver set data_transfer_length on
1143                 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1144                 * is untouched.  In these cases we set it to 0.
1145                 */
1146                if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1147                        data_transfer_length = 0;
1148        }
1149
1150        /* Validate data_transfer_length (from Hyper-V) */
1151        if (data_transfer_length > cmd_request->payload->range.len)
1152                data_transfer_length = cmd_request->payload->range.len;
1153
1154        scsi_set_resid(scmnd,
1155                cmd_request->payload->range.len - data_transfer_length);
1156
1157        scmnd->scsi_done(scmnd);
1158
1159        if (payload_sz >
1160                sizeof(struct vmbus_channel_packet_multipage_buffer))
1161                kfree(payload);
1162}
1163
1164static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1165                                  struct vstor_packet *vstor_packet,
1166                                  struct storvsc_cmd_request *request)
1167{
1168        struct vstor_packet *stor_pkt;
1169        struct hv_device *device = stor_device->device;
1170
1171        stor_pkt = &request->vstor_packet;
1172
1173        /*
1174         * The current SCSI handling on the host side does
1175         * not correctly handle:
1176         * INQUIRY command with page code parameter set to 0x80
1177         * MODE_SENSE command with cmd[2] == 0x1c
1178         *
1179         * Setup srb and scsi status so this won't be fatal.
1180         * We do this so we can distinguish truly fatal failues
1181         * (srb status == 0x4) and off-line the device in that case.
1182         */
1183
1184        if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1185           (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1186                vstor_packet->vm_srb.scsi_status = 0;
1187                vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1188        }
1189
1190        /* Copy over the status...etc */
1191        stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1192        stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1193
1194        /*
1195         * Copy over the sense_info_length, but limit to the known max
1196         * size if Hyper-V returns a bad value.
1197         */
1198        stor_pkt->vm_srb.sense_info_length = min_t(u8, sense_buffer_size,
1199                vstor_packet->vm_srb.sense_info_length);
1200
1201        if (vstor_packet->vm_srb.scsi_status != 0 ||
1202            vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1203
1204                /*
1205                 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1206                 * return errors when detecting devices using TEST_UNIT_READY,
1207                 * and logging these as errors produces unhelpful noise.
1208                 */
1209                int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1210                        STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1211
1212                storvsc_log(device, loglevel,
1213                        "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1214                        request->cmd->request->tag,
1215                        stor_pkt->vm_srb.cdb[0],
1216                        vstor_packet->vm_srb.scsi_status,
1217                        vstor_packet->vm_srb.srb_status,
1218                        vstor_packet->status);
1219        }
1220
1221        if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1222            (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1223                memcpy(request->cmd->sense_buffer,
1224                       vstor_packet->vm_srb.sense_data,
1225                       stor_pkt->vm_srb.sense_info_length);
1226
1227        stor_pkt->vm_srb.data_transfer_length =
1228                vstor_packet->vm_srb.data_transfer_length;
1229
1230        storvsc_command_completion(request, stor_device);
1231
1232        if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1233                stor_device->drain_notify)
1234                wake_up(&stor_device->waiting_to_drain);
1235}
1236
1237static void storvsc_on_receive(struct storvsc_device *stor_device,
1238                             struct vstor_packet *vstor_packet,
1239                             struct storvsc_cmd_request *request)
1240{
1241        struct hv_host_device *host_dev;
1242        switch (vstor_packet->operation) {
1243        case VSTOR_OPERATION_COMPLETE_IO:
1244                storvsc_on_io_completion(stor_device, vstor_packet, request);
1245                break;
1246
1247        case VSTOR_OPERATION_REMOVE_DEVICE:
1248        case VSTOR_OPERATION_ENUMERATE_BUS:
1249                host_dev = shost_priv(stor_device->host);
1250                queue_work(
1251                        host_dev->handle_error_wq, &host_dev->host_scan_work);
1252                break;
1253
1254        case VSTOR_OPERATION_FCHBA_DATA:
1255                cache_wwn(stor_device, vstor_packet);
1256#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1257                fc_host_node_name(stor_device->host) = stor_device->node_name;
1258                fc_host_port_name(stor_device->host) = stor_device->port_name;
1259#endif
1260                break;
1261        default:
1262                break;
1263        }
1264}
1265
1266static void storvsc_on_channel_callback(void *context)
1267{
1268        struct vmbus_channel *channel = (struct vmbus_channel *)context;
1269        const struct vmpacket_descriptor *desc;
1270        struct hv_device *device;
1271        struct storvsc_device *stor_device;
1272        struct Scsi_Host *shost;
1273
1274        if (channel->primary_channel != NULL)
1275                device = channel->primary_channel->device_obj;
1276        else
1277                device = channel->device_obj;
1278
1279        stor_device = get_in_stor_device(device);
1280        if (!stor_device)
1281                return;
1282
1283        shost = stor_device->host;
1284
1285        foreach_vmbus_pkt(desc, channel) {
1286                struct vstor_packet *packet = hv_pkt_data(desc);
1287                struct storvsc_cmd_request *request = NULL;
1288                u64 rqst_id = desc->trans_id;
1289
1290                if (hv_pkt_datalen(desc) < sizeof(struct vstor_packet) -
1291                                stor_device->vmscsi_size_delta) {
1292                        dev_err(&device->device, "Invalid packet len\n");
1293                        continue;
1294                }
1295
1296                if (rqst_id == VMBUS_RQST_INIT) {
1297                        request = &stor_device->init_request;
1298                } else if (rqst_id == VMBUS_RQST_RESET) {
1299                        request = &stor_device->reset_request;
1300                } else {
1301                        /* Hyper-V can send an unsolicited message with ID of 0 */
1302                        if (rqst_id == 0) {
1303                                /*
1304                                 * storvsc_on_receive() looks at the vstor_packet in the message
1305                                 * from the ring buffer.  If the operation in the vstor_packet is
1306                                 * COMPLETE_IO, then we call storvsc_on_io_completion(), and
1307                                 * dereference the guest memory address.  Make sure we don't call
1308                                 * storvsc_on_io_completion() with a guest memory address that is
1309                                 * zero if Hyper-V were to construct and send such a bogus packet.
1310                                 */
1311                                if (packet->operation == VSTOR_OPERATION_COMPLETE_IO) {
1312                                        dev_err(&device->device, "Invalid packet with ID of 0\n");
1313                                        continue;
1314                                }
1315                        } else {
1316                                struct scsi_cmnd *scmnd;
1317
1318                                /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1319                                scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1320                                if (scmnd == NULL) {
1321                                        dev_err(&device->device, "Incorrect transaction ID\n");
1322                                        continue;
1323                                }
1324                                request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1325                        }
1326
1327                        storvsc_on_receive(stor_device, packet, request);
1328                        continue;
1329                }
1330
1331                memcpy(&request->vstor_packet, packet,
1332                       (sizeof(struct vstor_packet) - stor_device->vmscsi_size_delta));
1333                complete(&request->wait_event);
1334        }
1335}
1336
1337static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1338                                  bool is_fc)
1339{
1340        struct vmstorage_channel_properties props;
1341        int ret;
1342
1343        memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1344
1345        device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1346        device->channel->next_request_id_callback = storvsc_next_request_id;
1347
1348        ret = vmbus_open(device->channel,
1349                         ring_size,
1350                         ring_size,
1351                         (void *)&props,
1352                         sizeof(struct vmstorage_channel_properties),
1353                         storvsc_on_channel_callback, device->channel);
1354
1355        if (ret != 0)
1356                return ret;
1357
1358        ret = storvsc_channel_init(device, is_fc);
1359
1360        return ret;
1361}
1362
1363static int storvsc_dev_remove(struct hv_device *device)
1364{
1365        struct storvsc_device *stor_device;
1366
1367        stor_device = hv_get_drvdata(device);
1368
1369        stor_device->destroy = true;
1370
1371        /* Make sure flag is set before waiting */
1372        wmb();
1373
1374        /*
1375         * At this point, all outbound traffic should be disable. We
1376         * only allow inbound traffic (responses) to proceed so that
1377         * outstanding requests can be completed.
1378         */
1379
1380        storvsc_wait_to_drain(stor_device);
1381
1382        /*
1383         * Since we have already drained, we don't need to busy wait
1384         * as was done in final_release_stor_device()
1385         * Note that we cannot set the ext pointer to NULL until
1386         * we have drained - to drain the outgoing packets, we need to
1387         * allow incoming packets.
1388         */
1389        hv_set_drvdata(device, NULL);
1390
1391        /* Close the channel */
1392        vmbus_close(device->channel);
1393
1394        kfree(stor_device->stor_chns);
1395        kfree(stor_device);
1396        return 0;
1397}
1398
1399static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1400                                        u16 q_num)
1401{
1402        u16 slot = 0;
1403        u16 hash_qnum;
1404        const struct cpumask *node_mask;
1405        int num_channels, tgt_cpu;
1406
1407        if (stor_device->num_sc == 0) {
1408                stor_device->stor_chns[q_num] = stor_device->device->channel;
1409                return stor_device->device->channel;
1410        }
1411
1412        /*
1413         * Our channel array is sparsley populated and we
1414         * initiated I/O on a processor/hw-q that does not
1415         * currently have a designated channel. Fix this.
1416         * The strategy is simple:
1417         * I. Ensure NUMA locality
1418         * II. Distribute evenly (best effort)
1419         */
1420
1421        node_mask = cpumask_of_node(cpu_to_node(q_num));
1422
1423        num_channels = 0;
1424        for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1425                if (cpumask_test_cpu(tgt_cpu, node_mask))
1426                        num_channels++;
1427        }
1428        if (num_channels == 0) {
1429                stor_device->stor_chns[q_num] = stor_device->device->channel;
1430                return stor_device->device->channel;
1431        }
1432
1433        hash_qnum = q_num;
1434        while (hash_qnum >= num_channels)
1435                hash_qnum -= num_channels;
1436
1437        for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1438                if (!cpumask_test_cpu(tgt_cpu, node_mask))
1439                        continue;
1440                if (slot == hash_qnum)
1441                        break;
1442                slot++;
1443        }
1444
1445        stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1446
1447        return stor_device->stor_chns[q_num];
1448}
1449
1450
1451static int storvsc_do_io(struct hv_device *device,
1452                         struct storvsc_cmd_request *request, u16 q_num)
1453{
1454        struct storvsc_device *stor_device;
1455        struct vstor_packet *vstor_packet;
1456        struct vmbus_channel *outgoing_channel, *channel;
1457        unsigned long flags;
1458        int ret = 0;
1459        const struct cpumask *node_mask;
1460        int tgt_cpu;
1461
1462        vstor_packet = &request->vstor_packet;
1463        stor_device = get_out_stor_device(device);
1464
1465        if (!stor_device)
1466                return -ENODEV;
1467
1468
1469        request->device  = device;
1470        /*
1471         * Select an appropriate channel to send the request out.
1472         */
1473        /* See storvsc_change_target_cpu(). */
1474        outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1475        if (outgoing_channel != NULL) {
1476                if (outgoing_channel->target_cpu == q_num) {
1477                        /*
1478                         * Ideally, we want to pick a different channel if
1479                         * available on the same NUMA node.
1480                         */
1481                        node_mask = cpumask_of_node(cpu_to_node(q_num));
1482                        for_each_cpu_wrap(tgt_cpu,
1483                                 &stor_device->alloced_cpus, q_num + 1) {
1484                                if (!cpumask_test_cpu(tgt_cpu, node_mask))
1485                                        continue;
1486                                if (tgt_cpu == q_num)
1487                                        continue;
1488                                channel = READ_ONCE(
1489                                        stor_device->stor_chns[tgt_cpu]);
1490                                if (channel == NULL)
1491                                        continue;
1492                                if (hv_get_avail_to_write_percent(
1493                                                        &channel->outbound)
1494                                                > ring_avail_percent_lowater) {
1495                                        outgoing_channel = channel;
1496                                        goto found_channel;
1497                                }
1498                        }
1499
1500                        /*
1501                         * All the other channels on the same NUMA node are
1502                         * busy. Try to use the channel on the current CPU
1503                         */
1504                        if (hv_get_avail_to_write_percent(
1505                                                &outgoing_channel->outbound)
1506                                        > ring_avail_percent_lowater)
1507                                goto found_channel;
1508
1509                        /*
1510                         * If we reach here, all the channels on the current
1511                         * NUMA node are busy. Try to find a channel in
1512                         * other NUMA nodes
1513                         */
1514                        for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1515                                if (cpumask_test_cpu(tgt_cpu, node_mask))
1516                                        continue;
1517                                channel = READ_ONCE(
1518                                        stor_device->stor_chns[tgt_cpu]);
1519                                if (channel == NULL)
1520                                        continue;
1521                                if (hv_get_avail_to_write_percent(
1522                                                        &channel->outbound)
1523                                                > ring_avail_percent_lowater) {
1524                                        outgoing_channel = channel;
1525                                        goto found_channel;
1526                                }
1527                        }
1528                }
1529        } else {
1530                spin_lock_irqsave(&stor_device->lock, flags);
1531                outgoing_channel = stor_device->stor_chns[q_num];
1532                if (outgoing_channel != NULL) {
1533                        spin_unlock_irqrestore(&stor_device->lock, flags);
1534                        goto found_channel;
1535                }
1536                outgoing_channel = get_og_chn(stor_device, q_num);
1537                spin_unlock_irqrestore(&stor_device->lock, flags);
1538        }
1539
1540found_channel:
1541        vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1542
1543        vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1544                                        stor_device->vmscsi_size_delta);
1545
1546
1547        vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1548
1549
1550        vstor_packet->vm_srb.data_transfer_length =
1551        request->payload->range.len;
1552
1553        vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1554
1555        if (request->payload->range.len) {
1556
1557                ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1558                                request->payload, request->payload_sz,
1559                                vstor_packet,
1560                                (sizeof(struct vstor_packet) -
1561                                stor_device->vmscsi_size_delta),
1562                                (unsigned long)request);
1563        } else {
1564                ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1565                               (sizeof(struct vstor_packet) -
1566                                stor_device->vmscsi_size_delta),
1567                               (unsigned long)request,
1568                               VM_PKT_DATA_INBAND,
1569                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1570        }
1571
1572        if (ret != 0)
1573                return ret;
1574
1575        atomic_inc(&stor_device->num_outstanding_req);
1576
1577        return ret;
1578}
1579
1580static int storvsc_device_alloc(struct scsi_device *sdevice)
1581{
1582        /*
1583         * Set blist flag to permit the reading of the VPD pages even when
1584         * the target may claim SPC-2 compliance. MSFT targets currently
1585         * claim SPC-2 compliance while they implement post SPC-2 features.
1586         * With this flag we can correctly handle WRITE_SAME_16 issues.
1587         *
1588         * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1589         * still supports REPORT LUN.
1590         */
1591        sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1592
1593        return 0;
1594}
1595
1596static int storvsc_device_configure(struct scsi_device *sdevice)
1597{
1598        blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1599
1600        /* Ensure there are no gaps in presented sgls */
1601        blk_queue_virt_boundary(sdevice->request_queue, PAGE_SIZE - 1);
1602
1603        sdevice->no_write_same = 1;
1604
1605        /*
1606         * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1607         * if the device is a MSFT virtual device.  If the host is
1608         * WIN10 or newer, allow write_same.
1609         */
1610        if (!strncmp(sdevice->vendor, "Msft", 4)) {
1611                switch (vmstor_proto_version) {
1612                case VMSTOR_PROTO_VERSION_WIN8:
1613                case VMSTOR_PROTO_VERSION_WIN8_1:
1614                        sdevice->scsi_level = SCSI_SPC_3;
1615                        break;
1616                }
1617
1618                if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1619                        sdevice->no_write_same = 0;
1620        }
1621
1622        return 0;
1623}
1624
1625static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1626                           sector_t capacity, int *info)
1627{
1628        sector_t nsect = capacity;
1629        sector_t cylinders = nsect;
1630        int heads, sectors_pt;
1631
1632        /*
1633         * We are making up these values; let us keep it simple.
1634         */
1635        heads = 0xff;
1636        sectors_pt = 0x3f;      /* Sectors per track */
1637        sector_div(cylinders, heads * sectors_pt);
1638        if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1639                cylinders = 0xffff;
1640
1641        info[0] = heads;
1642        info[1] = sectors_pt;
1643        info[2] = (int)cylinders;
1644
1645        return 0;
1646}
1647
1648static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1649{
1650        struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1651        struct hv_device *device = host_dev->dev;
1652
1653        struct storvsc_device *stor_device;
1654        struct storvsc_cmd_request *request;
1655        struct vstor_packet *vstor_packet;
1656        int ret, t;
1657
1658        stor_device = get_out_stor_device(device);
1659        if (!stor_device)
1660                return FAILED;
1661
1662        request = &stor_device->reset_request;
1663        vstor_packet = &request->vstor_packet;
1664        memset(vstor_packet, 0, sizeof(struct vstor_packet));
1665
1666        init_completion(&request->wait_event);
1667
1668        vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1669        vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1670        vstor_packet->vm_srb.path_id = stor_device->path_id;
1671
1672        ret = vmbus_sendpacket(device->channel, vstor_packet,
1673                               (sizeof(struct vstor_packet) -
1674                                stor_device->vmscsi_size_delta),
1675                               VMBUS_RQST_RESET,
1676                               VM_PKT_DATA_INBAND,
1677                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1678        if (ret != 0)
1679                return FAILED;
1680
1681        t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1682        if (t == 0)
1683                return TIMEOUT_ERROR;
1684
1685
1686        /*
1687         * At this point, all outstanding requests in the adapter
1688         * should have been flushed out and return to us
1689         * There is a potential race here where the host may be in
1690         * the process of responding when we return from here.
1691         * Just wait for all in-transit packets to be accounted for
1692         * before we return from here.
1693         */
1694        storvsc_wait_to_drain(stor_device);
1695
1696        return SUCCESS;
1697}
1698
1699/*
1700 * The host guarantees to respond to each command, although I/O latencies might
1701 * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1702 * chance to perform EH.
1703 */
1704static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1705{
1706#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1707        if (scmnd->device->host->transportt == fc_transport_template)
1708                return fc_eh_timed_out(scmnd);
1709#endif
1710        return BLK_EH_RESET_TIMER;
1711}
1712
1713static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1714{
1715        bool allowed = true;
1716        u8 scsi_op = scmnd->cmnd[0];
1717
1718        switch (scsi_op) {
1719        /* the host does not handle WRITE_SAME, log accident usage */
1720        case WRITE_SAME:
1721        /*
1722         * smartd sends this command and the host does not handle
1723         * this. So, don't send it.
1724         */
1725        case SET_WINDOW:
1726                set_host_byte(scmnd, DID_ERROR);
1727                allowed = false;
1728                break;
1729        default:
1730                break;
1731        }
1732        return allowed;
1733}
1734
1735static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1736{
1737        int ret;
1738        struct hv_host_device *host_dev = shost_priv(host);
1739        struct hv_device *dev = host_dev->dev;
1740        struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1741        int i;
1742        struct scatterlist *sgl;
1743        unsigned int sg_count;
1744        struct vmscsi_request *vm_srb;
1745        struct vmbus_packet_mpb_array  *payload;
1746        u32 payload_sz;
1747        u32 length;
1748
1749        if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1750                /*
1751                 * On legacy hosts filter unimplemented commands.
1752                 * Future hosts are expected to correctly handle
1753                 * unsupported commands. Furthermore, it is
1754                 * possible that some of the currently
1755                 * unsupported commands maybe supported in
1756                 * future versions of the host.
1757                 */
1758                if (!storvsc_scsi_cmd_ok(scmnd)) {
1759                        scmnd->scsi_done(scmnd);
1760                        return 0;
1761                }
1762        }
1763
1764        /* Setup the cmd request */
1765        cmd_request->cmd = scmnd;
1766
1767        memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1768        vm_srb = &cmd_request->vstor_packet.vm_srb;
1769        vm_srb->win8_extension.time_out_value = 60;
1770
1771        vm_srb->win8_extension.srb_flags |=
1772                SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1773
1774        if (scmnd->device->tagged_supported) {
1775                vm_srb->win8_extension.srb_flags |=
1776                (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1777                vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1778                vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1779        }
1780
1781        /* Build the SRB */
1782        switch (scmnd->sc_data_direction) {
1783        case DMA_TO_DEVICE:
1784                vm_srb->data_in = WRITE_TYPE;
1785                vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1786                break;
1787        case DMA_FROM_DEVICE:
1788                vm_srb->data_in = READ_TYPE;
1789                vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1790                break;
1791        case DMA_NONE:
1792                vm_srb->data_in = UNKNOWN_TYPE;
1793                vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1794                break;
1795        default:
1796                /*
1797                 * This is DMA_BIDIRECTIONAL or something else we are never
1798                 * supposed to see here.
1799                 */
1800                WARN(1, "Unexpected data direction: %d\n",
1801                     scmnd->sc_data_direction);
1802                return -EINVAL;
1803        }
1804
1805
1806        vm_srb->port_number = host_dev->port;
1807        vm_srb->path_id = scmnd->device->channel;
1808        vm_srb->target_id = scmnd->device->id;
1809        vm_srb->lun = scmnd->device->lun;
1810
1811        vm_srb->cdb_length = scmnd->cmd_len;
1812
1813        memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1814
1815        sgl = (struct scatterlist *)scsi_sglist(scmnd);
1816        sg_count = scsi_sg_count(scmnd);
1817
1818        length = scsi_bufflen(scmnd);
1819        payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1820        payload_sz = sizeof(cmd_request->mpb);
1821
1822        if (sg_count) {
1823                unsigned int hvpgoff, hvpfns_to_add;
1824                unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1825                unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1826                u64 hvpfn;
1827
1828                if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1829
1830                        payload_sz = (hvpg_count * sizeof(u64) +
1831                                      sizeof(struct vmbus_packet_mpb_array));
1832                        payload = kzalloc(payload_sz, GFP_ATOMIC);
1833                        if (!payload)
1834                                return SCSI_MLQUEUE_DEVICE_BUSY;
1835                }
1836
1837                payload->range.len = length;
1838                payload->range.offset = offset_in_hvpg;
1839
1840
1841                for (i = 0; sgl != NULL; sgl = sg_next(sgl)) {
1842                        /*
1843                         * Init values for the current sgl entry. hvpgoff
1844                         * and hvpfns_to_add are in units of Hyper-V size
1845                         * pages. Handling the PAGE_SIZE != HV_HYP_PAGE_SIZE
1846                         * case also handles values of sgl->offset that are
1847                         * larger than PAGE_SIZE. Such offsets are handled
1848                         * even on other than the first sgl entry, provided
1849                         * they are a multiple of PAGE_SIZE.
1850                         */
1851                        hvpgoff = HVPFN_DOWN(sgl->offset);
1852                        hvpfn = page_to_hvpfn(sg_page(sgl)) + hvpgoff;
1853                        hvpfns_to_add = HVPFN_UP(sgl->offset + sgl->length) -
1854                                                hvpgoff;
1855
1856                        /*
1857                         * Fill the next portion of the PFN array with
1858                         * sequential Hyper-V PFNs for the continguous physical
1859                         * memory described by the sgl entry. The end of the
1860                         * last sgl should be reached at the same time that
1861                         * the PFN array is filled.
1862                         */
1863                        while (hvpfns_to_add--)
1864                                payload->range.pfn_array[i++] = hvpfn++;
1865                }
1866        }
1867
1868        cmd_request->payload = payload;
1869        cmd_request->payload_sz = payload_sz;
1870
1871        /* Invokes the vsc to start an IO */
1872        ret = storvsc_do_io(dev, cmd_request, get_cpu());
1873        put_cpu();
1874
1875        if (ret == -EAGAIN) {
1876                if (payload_sz > sizeof(cmd_request->mpb))
1877                        kfree(payload);
1878                /* no more space */
1879                return SCSI_MLQUEUE_DEVICE_BUSY;
1880        }
1881
1882        return 0;
1883}
1884
1885static struct scsi_host_template scsi_driver = {
1886        .module =               THIS_MODULE,
1887        .name =                 "storvsc_host_t",
1888        .cmd_size =             sizeof(struct storvsc_cmd_request),
1889        .bios_param =           storvsc_get_chs,
1890        .queuecommand =         storvsc_queuecommand,
1891        .eh_host_reset_handler =        storvsc_host_reset_handler,
1892        .proc_name =            "storvsc_host",
1893        .eh_timed_out =         storvsc_eh_timed_out,
1894        .slave_alloc =          storvsc_device_alloc,
1895        .slave_configure =      storvsc_device_configure,
1896        .cmd_per_lun =          2048,
1897        .this_id =              -1,
1898        .use_clustering =       ENABLE_CLUSTERING,
1899        .no_write_same =        1,
1900        .track_queue_depth =    1,
1901        .change_queue_depth =   storvsc_change_queue_depth,
1902};
1903
1904enum {
1905        SCSI_GUID,
1906        IDE_GUID,
1907        SFC_GUID,
1908};
1909
1910static const struct hv_vmbus_device_id id_table[] = {
1911        /* SCSI guid */
1912        { HV_SCSI_GUID,
1913          .driver_data = SCSI_GUID
1914        },
1915        /* IDE guid */
1916        { HV_IDE_GUID,
1917          .driver_data = IDE_GUID
1918        },
1919        /* Fibre Channel GUID */
1920        {
1921          HV_SYNTHFC_GUID,
1922          .driver_data = SFC_GUID
1923        },
1924        { },
1925};
1926
1927MODULE_DEVICE_TABLE(vmbus, id_table);
1928
1929static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1930
1931static bool hv_dev_is_fc(struct hv_device *hv_dev)
1932{
1933        return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1934}
1935
1936static int storvsc_probe(struct hv_device *device,
1937                        const struct hv_vmbus_device_id *dev_id)
1938{
1939        int ret;
1940        int num_cpus = num_online_cpus();
1941        int num_present_cpus = num_present_cpus();
1942        struct Scsi_Host *host;
1943        struct hv_host_device *host_dev;
1944        bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1945        bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1946        int target = 0;
1947        struct storvsc_device *stor_device;
1948        int max_luns_per_target;
1949        int max_targets;
1950        int max_channels;
1951        int max_sub_channels = 0;
1952
1953        /*
1954         * Based on the windows host we are running on,
1955         * set state to properly communicate with the host.
1956         */
1957
1958        if (vmbus_proto_version < VERSION_WIN8) {
1959                max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1960                max_targets = STORVSC_IDE_MAX_TARGETS;
1961                max_channels = STORVSC_IDE_MAX_CHANNELS;
1962        } else {
1963                max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1964                max_targets = STORVSC_MAX_TARGETS;
1965                max_channels = STORVSC_MAX_CHANNELS;
1966                /*
1967                 * On Windows8 and above, we support sub-channels for storage
1968                 * on SCSI and FC controllers.
1969                 * The number of sub-channels offerred is based on the number of
1970                 * VCPUs in the guest.
1971                 */
1972                if (!dev_is_ide)
1973                        max_sub_channels =
1974                                (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1975        }
1976
1977        scsi_driver.can_queue = max_outstanding_req_per_channel *
1978                                (max_sub_channels + 1) *
1979                                (100 - ring_avail_percent_lowater) / 100;
1980
1981        host = scsi_host_alloc(&scsi_driver,
1982                               sizeof(struct hv_host_device));
1983        if (!host)
1984                return -ENOMEM;
1985
1986        host_dev = shost_priv(host);
1987        memset(host_dev, 0, sizeof(struct hv_host_device));
1988
1989        host_dev->port = host->host_no;
1990        host_dev->dev = device;
1991        host_dev->host = host;
1992
1993
1994        stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1995        if (!stor_device) {
1996                ret = -ENOMEM;
1997                goto err_out0;
1998        }
1999
2000        stor_device->destroy = false;
2001        init_waitqueue_head(&stor_device->waiting_to_drain);
2002        stor_device->device = device;
2003        stor_device->host = host;
2004        stor_device->vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
2005        spin_lock_init(&stor_device->lock);
2006        hv_set_drvdata(device, stor_device);
2007
2008        stor_device->port_number = host->host_no;
2009        ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
2010        if (ret)
2011                goto err_out1;
2012
2013        host_dev->path = stor_device->path_id;
2014        host_dev->target = stor_device->target_id;
2015
2016        switch (dev_id->driver_data) {
2017        case SFC_GUID:
2018                host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
2019                host->max_id = STORVSC_FC_MAX_TARGETS;
2020                host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
2021#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2022                host->transportt = fc_transport_template;
2023#endif
2024                break;
2025
2026        case SCSI_GUID:
2027                host->max_lun = max_luns_per_target;
2028                host->max_id = max_targets;
2029                host->max_channel = max_channels - 1;
2030                break;
2031
2032        default:
2033                host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
2034                host->max_id = STORVSC_IDE_MAX_TARGETS;
2035                host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
2036                break;
2037        }
2038        /* max cmd length */
2039        host->max_cmd_len = STORVSC_MAX_CMD_LEN;
2040
2041        /*
2042         * set the table size based on the info we got
2043         * from the host.
2044         */
2045        host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
2046        /*
2047         * For non-IDE disks, the host supports multiple channels.
2048         * Set the number of HW queues we are supporting.
2049         */
2050        if (!dev_is_ide) {
2051                if (storvsc_max_hw_queues > num_present_cpus) {
2052                        storvsc_max_hw_queues = 0;
2053                        storvsc_log(device, STORVSC_LOGGING_WARN,
2054                                "Resetting invalid storvsc_max_hw_queues value to default.\n");
2055                }
2056                if (storvsc_max_hw_queues)
2057                        host->nr_hw_queues = storvsc_max_hw_queues;
2058                else
2059                        host->nr_hw_queues = num_present_cpus;
2060        }
2061
2062        /*
2063         * Set the error handler work queue.
2064         */
2065        host_dev->handle_error_wq =
2066                        alloc_ordered_workqueue("storvsc_error_wq_%d",
2067                                                WQ_MEM_RECLAIM,
2068                                                host->host_no);
2069        if (!host_dev->handle_error_wq) {
2070                ret = -ENOMEM;
2071                goto err_out2;
2072        }
2073        INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2074        /* Register the HBA and start the scsi bus scan */
2075        ret = scsi_add_host(host, &device->device);
2076        if (ret != 0)
2077                goto err_out3;
2078
2079        if (!dev_is_ide) {
2080                scsi_scan_host(host);
2081        } else {
2082                target = (device->dev_instance.b[5] << 8 |
2083                         device->dev_instance.b[4]);
2084                ret = scsi_add_device(host, 0, target, 0);
2085                if (ret)
2086                        goto err_out4;
2087        }
2088#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2089        if (host->transportt == fc_transport_template) {
2090                struct fc_rport_identifiers ids = {
2091                        .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2092                };
2093
2094                fc_host_node_name(host) = stor_device->node_name;
2095                fc_host_port_name(host) = stor_device->port_name;
2096                stor_device->rport = fc_remote_port_add(host, 0, &ids);
2097                if (!stor_device->rport) {
2098                        ret = -ENOMEM;
2099                        goto err_out4;
2100                }
2101        }
2102#endif
2103        return 0;
2104
2105err_out4:
2106        scsi_remove_host(host);
2107
2108err_out3:
2109        destroy_workqueue(host_dev->handle_error_wq);
2110
2111err_out2:
2112        /*
2113         * Once we have connected with the host, we would need to
2114         * to invoke storvsc_dev_remove() to rollback this state and
2115         * this call also frees up the stor_device; hence the jump around
2116         * err_out1 label.
2117         */
2118        storvsc_dev_remove(device);
2119        goto err_out0;
2120
2121err_out1:
2122        kfree(stor_device->stor_chns);
2123        kfree(stor_device);
2124
2125err_out0:
2126        scsi_host_put(host);
2127        return ret;
2128}
2129
2130/* Change a scsi target's queue depth */
2131static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2132{
2133        if (queue_depth > scsi_driver.can_queue)
2134                queue_depth = scsi_driver.can_queue;
2135
2136        return scsi_change_queue_depth(sdev, queue_depth);
2137}
2138
2139static int storvsc_remove(struct hv_device *dev)
2140{
2141        struct storvsc_device *stor_device = hv_get_drvdata(dev);
2142        struct Scsi_Host *host = stor_device->host;
2143        struct hv_host_device *host_dev = shost_priv(host);
2144
2145#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2146        if (host->transportt == fc_transport_template) {
2147                fc_remote_port_delete(stor_device->rport);
2148                fc_remove_host(host);
2149        }
2150#endif
2151        destroy_workqueue(host_dev->handle_error_wq);
2152        scsi_remove_host(host);
2153        storvsc_dev_remove(dev);
2154        scsi_host_put(host);
2155
2156        return 0;
2157}
2158
2159static int storvsc_suspend(struct hv_device *hv_dev)
2160{
2161        struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2162        struct Scsi_Host *host = stor_device->host;
2163        struct hv_host_device *host_dev = shost_priv(host);
2164
2165        storvsc_wait_to_drain(stor_device);
2166
2167        drain_workqueue(host_dev->handle_error_wq);
2168
2169        vmbus_close(hv_dev->channel);
2170
2171        kfree(stor_device->stor_chns);
2172        stor_device->stor_chns = NULL;
2173
2174        cpumask_clear(&stor_device->alloced_cpus);
2175
2176        return 0;
2177}
2178
2179static int storvsc_resume(struct hv_device *hv_dev)
2180{
2181        int ret;
2182
2183        ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2184                                     hv_dev_is_fc(hv_dev));
2185        return ret;
2186}
2187
2188static struct hv_driver storvsc_drv = {
2189        .name = KBUILD_MODNAME,
2190        .id_table = id_table,
2191        .probe = storvsc_probe,
2192        .remove = storvsc_remove,
2193        .suspend = storvsc_suspend,
2194        .resume = storvsc_resume,
2195        .driver = {
2196                .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2197        },
2198};
2199
2200#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2201static struct fc_function_template fc_transport_functions = {
2202        .show_host_node_name = 1,
2203        .show_host_port_name = 1,
2204};
2205#endif
2206
2207static int __init storvsc_drv_init(void)
2208{
2209        int ret;
2210
2211        /*
2212         * Divide the ring buffer data size (which is 1 page less
2213         * than the ring buffer size since that page is reserved for
2214         * the ring buffer indices) by the max request size (which is
2215         * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2216         *
2217         * The computation underestimates max_outstanding_req_per_channel
2218         * for Win7 and older hosts because it does not take into account
2219         * the vmscsi_size_delta correction to the max request size.
2220         */
2221        max_outstanding_req_per_channel =
2222                ((storvsc_ringbuffer_size - PAGE_SIZE) /
2223                ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2224                sizeof(struct vstor_packet) + sizeof(u64),
2225                sizeof(u64)));
2226
2227#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2228        fc_transport_template = fc_attach_transport(&fc_transport_functions);
2229        if (!fc_transport_template)
2230                return -ENODEV;
2231#endif
2232
2233        ret = vmbus_driver_register(&storvsc_drv);
2234
2235#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2236        if (ret)
2237                fc_release_transport(fc_transport_template);
2238#endif
2239
2240        return ret;
2241}
2242
2243static void __exit storvsc_drv_exit(void)
2244{
2245        vmbus_driver_unregister(&storvsc_drv);
2246#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2247        fc_release_transport(fc_transport_template);
2248#endif
2249}
2250
2251MODULE_LICENSE("GPL");
2252MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2253module_init(storvsc_drv_init);
2254module_exit(storvsc_drv_exit);
2255