linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15
  16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  17                      *root, struct btrfs_path *path, int level);
  18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  19                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  20                      int data_size, int extend);
  21static int push_node_left(struct btrfs_trans_handle *trans,
  22                          struct btrfs_fs_info *fs_info,
  23                          struct extent_buffer *dst,
  24                          struct extent_buffer *src, int empty);
  25static int balance_node_right(struct btrfs_trans_handle *trans,
  26                              struct btrfs_fs_info *fs_info,
  27                              struct extent_buffer *dst_buf,
  28                              struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30                    int level, int slot);
  31
  32struct btrfs_path *btrfs_alloc_path(void)
  33{
  34        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  35}
  36
  37/*
  38 * set all locked nodes in the path to blocking locks.  This should
  39 * be done before scheduling
  40 */
  41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  42{
  43        int i;
  44        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  45                if (!p->nodes[i] || !p->locks[i])
  46                        continue;
  47                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  48                if (p->locks[i] == BTRFS_READ_LOCK)
  49                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  50                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  51                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  52        }
  53}
  54
  55/*
  56 * reset all the locked nodes in the patch to spinning locks.
  57 *
  58 * held is used to keep lockdep happy, when lockdep is enabled
  59 * we set held to a blocking lock before we go around and
  60 * retake all the spinlocks in the path.  You can safely use NULL
  61 * for held
  62 */
  63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  64                                        struct extent_buffer *held, int held_rw)
  65{
  66        int i;
  67
  68        if (held) {
  69                btrfs_set_lock_blocking_rw(held, held_rw);
  70                if (held_rw == BTRFS_WRITE_LOCK)
  71                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  72                else if (held_rw == BTRFS_READ_LOCK)
  73                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  74        }
  75        btrfs_set_path_blocking(p);
  76
  77        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  78                if (p->nodes[i] && p->locks[i]) {
  79                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  80                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  81                                p->locks[i] = BTRFS_WRITE_LOCK;
  82                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  83                                p->locks[i] = BTRFS_READ_LOCK;
  84                }
  85        }
  86
  87        if (held)
  88                btrfs_clear_lock_blocking_rw(held, held_rw);
  89}
  90
  91/* this also releases the path */
  92void btrfs_free_path(struct btrfs_path *p)
  93{
  94        if (!p)
  95                return;
  96        btrfs_release_path(p);
  97        kmem_cache_free(btrfs_path_cachep, p);
  98}
  99
 100/*
 101 * path release drops references on the extent buffers in the path
 102 * and it drops any locks held by this path
 103 *
 104 * It is safe to call this on paths that no locks or extent buffers held.
 105 */
 106noinline void btrfs_release_path(struct btrfs_path *p)
 107{
 108        int i;
 109
 110        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 111                p->slots[i] = 0;
 112                if (!p->nodes[i])
 113                        continue;
 114                if (p->locks[i]) {
 115                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 116                        p->locks[i] = 0;
 117                }
 118                free_extent_buffer(p->nodes[i]);
 119                p->nodes[i] = NULL;
 120        }
 121}
 122
 123/*
 124 * safely gets a reference on the root node of a tree.  A lock
 125 * is not taken, so a concurrent writer may put a different node
 126 * at the root of the tree.  See btrfs_lock_root_node for the
 127 * looping required.
 128 *
 129 * The extent buffer returned by this has a reference taken, so
 130 * it won't disappear.  It may stop being the root of the tree
 131 * at any time because there are no locks held.
 132 */
 133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 134{
 135        struct extent_buffer *eb;
 136
 137        while (1) {
 138                rcu_read_lock();
 139                eb = rcu_dereference(root->node);
 140
 141                /*
 142                 * RCU really hurts here, we could free up the root node because
 143                 * it was COWed but we may not get the new root node yet so do
 144                 * the inc_not_zero dance and if it doesn't work then
 145                 * synchronize_rcu and try again.
 146                 */
 147                if (atomic_inc_not_zero(&eb->refs)) {
 148                        rcu_read_unlock();
 149                        break;
 150                }
 151                rcu_read_unlock();
 152                synchronize_rcu();
 153        }
 154        return eb;
 155}
 156
 157/* loop around taking references on and locking the root node of the
 158 * tree until you end up with a lock on the root.  A locked buffer
 159 * is returned, with a reference held.
 160 */
 161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 162{
 163        struct extent_buffer *eb;
 164
 165        while (1) {
 166                eb = btrfs_root_node(root);
 167                btrfs_tree_lock(eb);
 168                if (eb == root->node)
 169                        break;
 170                btrfs_tree_unlock(eb);
 171                free_extent_buffer(eb);
 172        }
 173        return eb;
 174}
 175
 176/* loop around taking references on and locking the root node of the
 177 * tree until you end up with a lock on the root.  A locked buffer
 178 * is returned, with a reference held.
 179 */
 180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 181{
 182        struct extent_buffer *eb;
 183
 184        while (1) {
 185                eb = btrfs_root_node(root);
 186                btrfs_tree_read_lock(eb);
 187                if (eb == root->node)
 188                        break;
 189                btrfs_tree_read_unlock(eb);
 190                free_extent_buffer(eb);
 191        }
 192        return eb;
 193}
 194
 195/* cowonly root (everything not a reference counted cow subvolume), just get
 196 * put onto a simple dirty list.  transaction.c walks this to make sure they
 197 * get properly updated on disk.
 198 */
 199static void add_root_to_dirty_list(struct btrfs_root *root)
 200{
 201        struct btrfs_fs_info *fs_info = root->fs_info;
 202
 203        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 204            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 205                return;
 206
 207        spin_lock(&fs_info->trans_lock);
 208        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 209                /* Want the extent tree to be the last on the list */
 210                if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 211                        list_move_tail(&root->dirty_list,
 212                                       &fs_info->dirty_cowonly_roots);
 213                else
 214                        list_move(&root->dirty_list,
 215                                  &fs_info->dirty_cowonly_roots);
 216        }
 217        spin_unlock(&fs_info->trans_lock);
 218}
 219
 220/*
 221 * used by snapshot creation to make a copy of a root for a tree with
 222 * a given objectid.  The buffer with the new root node is returned in
 223 * cow_ret, and this func returns zero on success or a negative error code.
 224 */
 225int btrfs_copy_root(struct btrfs_trans_handle *trans,
 226                      struct btrfs_root *root,
 227                      struct extent_buffer *buf,
 228                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 229{
 230        struct btrfs_fs_info *fs_info = root->fs_info;
 231        struct extent_buffer *cow;
 232        int ret = 0;
 233        int level;
 234        struct btrfs_disk_key disk_key;
 235
 236        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 237                trans->transid != fs_info->running_transaction->transid);
 238        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 239                trans->transid != root->last_trans);
 240
 241        level = btrfs_header_level(buf);
 242        if (level == 0)
 243                btrfs_item_key(buf, &disk_key, 0);
 244        else
 245                btrfs_node_key(buf, &disk_key, 0);
 246
 247        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 248                        &disk_key, level, buf->start, 0);
 249        if (IS_ERR(cow))
 250                return PTR_ERR(cow);
 251
 252        copy_extent_buffer_full(cow, buf);
 253        btrfs_set_header_bytenr(cow, cow->start);
 254        btrfs_set_header_generation(cow, trans->transid);
 255        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 256        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 257                                     BTRFS_HEADER_FLAG_RELOC);
 258        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 259                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 260        else
 261                btrfs_set_header_owner(cow, new_root_objectid);
 262
 263        write_extent_buffer_fsid(cow, fs_info->fsid);
 264
 265        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 266        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 267                ret = btrfs_inc_ref(trans, root, cow, 1);
 268        else
 269                ret = btrfs_inc_ref(trans, root, cow, 0);
 270
 271        if (ret)
 272                return ret;
 273
 274        btrfs_mark_buffer_dirty(cow);
 275        *cow_ret = cow;
 276        return 0;
 277}
 278
 279enum mod_log_op {
 280        MOD_LOG_KEY_REPLACE,
 281        MOD_LOG_KEY_ADD,
 282        MOD_LOG_KEY_REMOVE,
 283        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 284        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 285        MOD_LOG_MOVE_KEYS,
 286        MOD_LOG_ROOT_REPLACE,
 287};
 288
 289struct tree_mod_root {
 290        u64 logical;
 291        u8 level;
 292};
 293
 294struct tree_mod_elem {
 295        struct rb_node node;
 296        u64 logical;
 297        u64 seq;
 298        enum mod_log_op op;
 299
 300        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 301        int slot;
 302
 303        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 304        u64 generation;
 305
 306        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 307        struct btrfs_disk_key key;
 308        u64 blockptr;
 309
 310        /* this is used for op == MOD_LOG_MOVE_KEYS */
 311        struct {
 312                int dst_slot;
 313                int nr_items;
 314        } move;
 315
 316        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 317        struct tree_mod_root old_root;
 318};
 319
 320/*
 321 * Pull a new tree mod seq number for our operation.
 322 */
 323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 324{
 325        return atomic64_inc_return(&fs_info->tree_mod_seq);
 326}
 327
 328/*
 329 * This adds a new blocker to the tree mod log's blocker list if the @elem
 330 * passed does not already have a sequence number set. So when a caller expects
 331 * to record tree modifications, it should ensure to set elem->seq to zero
 332 * before calling btrfs_get_tree_mod_seq.
 333 * Returns a fresh, unused tree log modification sequence number, even if no new
 334 * blocker was added.
 335 */
 336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 337                           struct seq_list *elem)
 338{
 339        write_lock(&fs_info->tree_mod_log_lock);
 340        spin_lock(&fs_info->tree_mod_seq_lock);
 341        if (!elem->seq) {
 342                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 343                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 344        }
 345        spin_unlock(&fs_info->tree_mod_seq_lock);
 346        write_unlock(&fs_info->tree_mod_log_lock);
 347
 348        return elem->seq;
 349}
 350
 351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 352                            struct seq_list *elem)
 353{
 354        struct rb_root *tm_root;
 355        struct rb_node *node;
 356        struct rb_node *next;
 357        struct seq_list *cur_elem;
 358        struct tree_mod_elem *tm;
 359        u64 min_seq = (u64)-1;
 360        u64 seq_putting = elem->seq;
 361
 362        if (!seq_putting)
 363                return;
 364
 365        spin_lock(&fs_info->tree_mod_seq_lock);
 366        list_del(&elem->list);
 367        elem->seq = 0;
 368
 369        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 370                if (cur_elem->seq < min_seq) {
 371                        if (seq_putting > cur_elem->seq) {
 372                                /*
 373                                 * blocker with lower sequence number exists, we
 374                                 * cannot remove anything from the log
 375                                 */
 376                                spin_unlock(&fs_info->tree_mod_seq_lock);
 377                                return;
 378                        }
 379                        min_seq = cur_elem->seq;
 380                }
 381        }
 382        spin_unlock(&fs_info->tree_mod_seq_lock);
 383
 384        /*
 385         * anything that's lower than the lowest existing (read: blocked)
 386         * sequence number can be removed from the tree.
 387         */
 388        write_lock(&fs_info->tree_mod_log_lock);
 389        tm_root = &fs_info->tree_mod_log;
 390        for (node = rb_first(tm_root); node; node = next) {
 391                next = rb_next(node);
 392                tm = rb_entry(node, struct tree_mod_elem, node);
 393                if (tm->seq > min_seq)
 394                        continue;
 395                rb_erase(node, tm_root);
 396                kfree(tm);
 397        }
 398        write_unlock(&fs_info->tree_mod_log_lock);
 399}
 400
 401/*
 402 * key order of the log:
 403 *       node/leaf start address -> sequence
 404 *
 405 * The 'start address' is the logical address of the *new* root node
 406 * for root replace operations, or the logical address of the affected
 407 * block for all other operations.
 408 *
 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
 410 */
 411static noinline int
 412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 413{
 414        struct rb_root *tm_root;
 415        struct rb_node **new;
 416        struct rb_node *parent = NULL;
 417        struct tree_mod_elem *cur;
 418
 419        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 420
 421        tm_root = &fs_info->tree_mod_log;
 422        new = &tm_root->rb_node;
 423        while (*new) {
 424                cur = rb_entry(*new, struct tree_mod_elem, node);
 425                parent = *new;
 426                if (cur->logical < tm->logical)
 427                        new = &((*new)->rb_left);
 428                else if (cur->logical > tm->logical)
 429                        new = &((*new)->rb_right);
 430                else if (cur->seq < tm->seq)
 431                        new = &((*new)->rb_left);
 432                else if (cur->seq > tm->seq)
 433                        new = &((*new)->rb_right);
 434                else
 435                        return -EEXIST;
 436        }
 437
 438        rb_link_node(&tm->node, parent, new);
 439        rb_insert_color(&tm->node, tm_root);
 440        return 0;
 441}
 442
 443/*
 444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 446 * this until all tree mod log insertions are recorded in the rb tree and then
 447 * write unlock fs_info::tree_mod_log_lock.
 448 */
 449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 450                                    struct extent_buffer *eb) {
 451        smp_mb();
 452        if (list_empty(&(fs_info)->tree_mod_seq_list))
 453                return 1;
 454        if (eb && btrfs_header_level(eb) == 0)
 455                return 1;
 456
 457        write_lock(&fs_info->tree_mod_log_lock);
 458        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 459                write_unlock(&fs_info->tree_mod_log_lock);
 460                return 1;
 461        }
 462
 463        return 0;
 464}
 465
 466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 468                                    struct extent_buffer *eb)
 469{
 470        smp_mb();
 471        if (list_empty(&(fs_info)->tree_mod_seq_list))
 472                return 0;
 473        if (eb && btrfs_header_level(eb) == 0)
 474                return 0;
 475
 476        return 1;
 477}
 478
 479static struct tree_mod_elem *
 480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 481                    enum mod_log_op op, gfp_t flags)
 482{
 483        struct tree_mod_elem *tm;
 484
 485        tm = kzalloc(sizeof(*tm), flags);
 486        if (!tm)
 487                return NULL;
 488
 489        tm->logical = eb->start;
 490        if (op != MOD_LOG_KEY_ADD) {
 491                btrfs_node_key(eb, &tm->key, slot);
 492                tm->blockptr = btrfs_node_blockptr(eb, slot);
 493        }
 494        tm->op = op;
 495        tm->slot = slot;
 496        tm->generation = btrfs_node_ptr_generation(eb, slot);
 497        RB_CLEAR_NODE(&tm->node);
 498
 499        return tm;
 500}
 501
 502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 503                enum mod_log_op op, gfp_t flags)
 504{
 505        struct tree_mod_elem *tm;
 506        int ret;
 507
 508        if (!tree_mod_need_log(eb->fs_info, eb))
 509                return 0;
 510
 511        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 512        if (!tm)
 513                return -ENOMEM;
 514
 515        if (tree_mod_dont_log(eb->fs_info, eb)) {
 516                kfree(tm);
 517                return 0;
 518        }
 519
 520        ret = __tree_mod_log_insert(eb->fs_info, tm);
 521        write_unlock(&eb->fs_info->tree_mod_log_lock);
 522        if (ret)
 523                kfree(tm);
 524
 525        return ret;
 526}
 527
 528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 529                int dst_slot, int src_slot, int nr_items)
 530{
 531        struct tree_mod_elem *tm = NULL;
 532        struct tree_mod_elem **tm_list = NULL;
 533        int ret = 0;
 534        int i;
 535        int locked = 0;
 536
 537        if (!tree_mod_need_log(eb->fs_info, eb))
 538                return 0;
 539
 540        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 541        if (!tm_list)
 542                return -ENOMEM;
 543
 544        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 545        if (!tm) {
 546                ret = -ENOMEM;
 547                goto free_tms;
 548        }
 549
 550        tm->logical = eb->start;
 551        tm->slot = src_slot;
 552        tm->move.dst_slot = dst_slot;
 553        tm->move.nr_items = nr_items;
 554        tm->op = MOD_LOG_MOVE_KEYS;
 555
 556        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 557                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 558                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 559                if (!tm_list[i]) {
 560                        ret = -ENOMEM;
 561                        goto free_tms;
 562                }
 563        }
 564
 565        if (tree_mod_dont_log(eb->fs_info, eb))
 566                goto free_tms;
 567        locked = 1;
 568
 569        /*
 570         * When we override something during the move, we log these removals.
 571         * This can only happen when we move towards the beginning of the
 572         * buffer, i.e. dst_slot < src_slot.
 573         */
 574        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 575                ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 576                if (ret)
 577                        goto free_tms;
 578        }
 579
 580        ret = __tree_mod_log_insert(eb->fs_info, tm);
 581        if (ret)
 582                goto free_tms;
 583        write_unlock(&eb->fs_info->tree_mod_log_lock);
 584        kfree(tm_list);
 585
 586        return 0;
 587free_tms:
 588        for (i = 0; i < nr_items; i++) {
 589                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 590                        rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 591                kfree(tm_list[i]);
 592        }
 593        if (locked)
 594                write_unlock(&eb->fs_info->tree_mod_log_lock);
 595        kfree(tm_list);
 596        kfree(tm);
 597
 598        return ret;
 599}
 600
 601static inline int
 602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 603                       struct tree_mod_elem **tm_list,
 604                       int nritems)
 605{
 606        int i, j;
 607        int ret;
 608
 609        for (i = nritems - 1; i >= 0; i--) {
 610                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 611                if (ret) {
 612                        for (j = nritems - 1; j > i; j--)
 613                                rb_erase(&tm_list[j]->node,
 614                                         &fs_info->tree_mod_log);
 615                        return ret;
 616                }
 617        }
 618
 619        return 0;
 620}
 621
 622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 623                         struct extent_buffer *new_root, int log_removal)
 624{
 625        struct btrfs_fs_info *fs_info = old_root->fs_info;
 626        struct tree_mod_elem *tm = NULL;
 627        struct tree_mod_elem **tm_list = NULL;
 628        int nritems = 0;
 629        int ret = 0;
 630        int i;
 631
 632        if (!tree_mod_need_log(fs_info, NULL))
 633                return 0;
 634
 635        if (log_removal && btrfs_header_level(old_root) > 0) {
 636                nritems = btrfs_header_nritems(old_root);
 637                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 638                                  GFP_NOFS);
 639                if (!tm_list) {
 640                        ret = -ENOMEM;
 641                        goto free_tms;
 642                }
 643                for (i = 0; i < nritems; i++) {
 644                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 645                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 646                        if (!tm_list[i]) {
 647                                ret = -ENOMEM;
 648                                goto free_tms;
 649                        }
 650                }
 651        }
 652
 653        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 654        if (!tm) {
 655                ret = -ENOMEM;
 656                goto free_tms;
 657        }
 658
 659        tm->logical = new_root->start;
 660        tm->old_root.logical = old_root->start;
 661        tm->old_root.level = btrfs_header_level(old_root);
 662        tm->generation = btrfs_header_generation(old_root);
 663        tm->op = MOD_LOG_ROOT_REPLACE;
 664
 665        if (tree_mod_dont_log(fs_info, NULL))
 666                goto free_tms;
 667
 668        if (tm_list)
 669                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 670        if (!ret)
 671                ret = __tree_mod_log_insert(fs_info, tm);
 672
 673        write_unlock(&fs_info->tree_mod_log_lock);
 674        if (ret)
 675                goto free_tms;
 676        kfree(tm_list);
 677
 678        return ret;
 679
 680free_tms:
 681        if (tm_list) {
 682                for (i = 0; i < nritems; i++)
 683                        kfree(tm_list[i]);
 684                kfree(tm_list);
 685        }
 686        kfree(tm);
 687
 688        return ret;
 689}
 690
 691static struct tree_mod_elem *
 692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 693                      int smallest)
 694{
 695        struct rb_root *tm_root;
 696        struct rb_node *node;
 697        struct tree_mod_elem *cur = NULL;
 698        struct tree_mod_elem *found = NULL;
 699
 700        read_lock(&fs_info->tree_mod_log_lock);
 701        tm_root = &fs_info->tree_mod_log;
 702        node = tm_root->rb_node;
 703        while (node) {
 704                cur = rb_entry(node, struct tree_mod_elem, node);
 705                if (cur->logical < start) {
 706                        node = node->rb_left;
 707                } else if (cur->logical > start) {
 708                        node = node->rb_right;
 709                } else if (cur->seq < min_seq) {
 710                        node = node->rb_left;
 711                } else if (!smallest) {
 712                        /* we want the node with the highest seq */
 713                        if (found)
 714                                BUG_ON(found->seq > cur->seq);
 715                        found = cur;
 716                        node = node->rb_left;
 717                } else if (cur->seq > min_seq) {
 718                        /* we want the node with the smallest seq */
 719                        if (found)
 720                                BUG_ON(found->seq < cur->seq);
 721                        found = cur;
 722                        node = node->rb_right;
 723                } else {
 724                        found = cur;
 725                        break;
 726                }
 727        }
 728        read_unlock(&fs_info->tree_mod_log_lock);
 729
 730        return found;
 731}
 732
 733/*
 734 * this returns the element from the log with the smallest time sequence
 735 * value that's in the log (the oldest log item). any element with a time
 736 * sequence lower than min_seq will be ignored.
 737 */
 738static struct tree_mod_elem *
 739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 740                           u64 min_seq)
 741{
 742        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 743}
 744
 745/*
 746 * this returns the element from the log with the largest time sequence
 747 * value that's in the log (the most recent log item). any element with
 748 * a time sequence lower than min_seq will be ignored.
 749 */
 750static struct tree_mod_elem *
 751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 752{
 753        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 754}
 755
 756static noinline int
 757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 758                     struct extent_buffer *src, unsigned long dst_offset,
 759                     unsigned long src_offset, int nr_items)
 760{
 761        int ret = 0;
 762        struct tree_mod_elem **tm_list = NULL;
 763        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 764        int i;
 765        int locked = 0;
 766
 767        if (!tree_mod_need_log(fs_info, NULL))
 768                return 0;
 769
 770        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 771                return 0;
 772
 773        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 774                          GFP_NOFS);
 775        if (!tm_list)
 776                return -ENOMEM;
 777
 778        tm_list_add = tm_list;
 779        tm_list_rem = tm_list + nr_items;
 780        for (i = 0; i < nr_items; i++) {
 781                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 782                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 783                if (!tm_list_rem[i]) {
 784                        ret = -ENOMEM;
 785                        goto free_tms;
 786                }
 787
 788                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 789                    MOD_LOG_KEY_ADD, GFP_NOFS);
 790                if (!tm_list_add[i]) {
 791                        ret = -ENOMEM;
 792                        goto free_tms;
 793                }
 794        }
 795
 796        if (tree_mod_dont_log(fs_info, NULL))
 797                goto free_tms;
 798        locked = 1;
 799
 800        for (i = 0; i < nr_items; i++) {
 801                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 802                if (ret)
 803                        goto free_tms;
 804                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 805                if (ret)
 806                        goto free_tms;
 807        }
 808
 809        write_unlock(&fs_info->tree_mod_log_lock);
 810        kfree(tm_list);
 811
 812        return 0;
 813
 814free_tms:
 815        for (i = 0; i < nr_items * 2; i++) {
 816                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 817                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 818                kfree(tm_list[i]);
 819        }
 820        if (locked)
 821                write_unlock(&fs_info->tree_mod_log_lock);
 822        kfree(tm_list);
 823
 824        return ret;
 825}
 826
 827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 828{
 829        struct tree_mod_elem **tm_list = NULL;
 830        int nritems = 0;
 831        int i;
 832        int ret = 0;
 833
 834        if (btrfs_header_level(eb) == 0)
 835                return 0;
 836
 837        if (!tree_mod_need_log(eb->fs_info, NULL))
 838                return 0;
 839
 840        nritems = btrfs_header_nritems(eb);
 841        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 842        if (!tm_list)
 843                return -ENOMEM;
 844
 845        for (i = 0; i < nritems; i++) {
 846                tm_list[i] = alloc_tree_mod_elem(eb, i,
 847                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 848                if (!tm_list[i]) {
 849                        ret = -ENOMEM;
 850                        goto free_tms;
 851                }
 852        }
 853
 854        if (tree_mod_dont_log(eb->fs_info, eb))
 855                goto free_tms;
 856
 857        ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 858        write_unlock(&eb->fs_info->tree_mod_log_lock);
 859        if (ret)
 860                goto free_tms;
 861        kfree(tm_list);
 862
 863        return 0;
 864
 865free_tms:
 866        for (i = 0; i < nritems; i++)
 867                kfree(tm_list[i]);
 868        kfree(tm_list);
 869
 870        return ret;
 871}
 872
 873/*
 874 * check if the tree block can be shared by multiple trees
 875 */
 876int btrfs_block_can_be_shared(struct btrfs_root *root,
 877                              struct extent_buffer *buf)
 878{
 879        /*
 880         * Tree blocks not in reference counted trees and tree roots
 881         * are never shared. If a block was allocated after the last
 882         * snapshot and the block was not allocated by tree relocation,
 883         * we know the block is not shared.
 884         */
 885        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 886            buf != root->node && buf != root->commit_root &&
 887            (btrfs_header_generation(buf) <=
 888             btrfs_root_last_snapshot(&root->root_item) ||
 889             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 890                return 1;
 891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 892        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 893            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 894                return 1;
 895#endif
 896        return 0;
 897}
 898
 899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 900                                       struct btrfs_root *root,
 901                                       struct extent_buffer *buf,
 902                                       struct extent_buffer *cow,
 903                                       int *last_ref)
 904{
 905        struct btrfs_fs_info *fs_info = root->fs_info;
 906        u64 refs;
 907        u64 owner;
 908        u64 flags;
 909        u64 new_flags = 0;
 910        int ret;
 911
 912        /*
 913         * Backrefs update rules:
 914         *
 915         * Always use full backrefs for extent pointers in tree block
 916         * allocated by tree relocation.
 917         *
 918         * If a shared tree block is no longer referenced by its owner
 919         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 920         * use full backrefs for extent pointers in tree block.
 921         *
 922         * If a tree block is been relocating
 923         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 924         * use full backrefs for extent pointers in tree block.
 925         * The reason for this is some operations (such as drop tree)
 926         * are only allowed for blocks use full backrefs.
 927         */
 928
 929        if (btrfs_block_can_be_shared(root, buf)) {
 930                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 931                                               btrfs_header_level(buf), 1,
 932                                               &refs, &flags);
 933                if (ret)
 934                        return ret;
 935                if (refs == 0) {
 936                        ret = -EROFS;
 937                        btrfs_handle_fs_error(fs_info, ret, NULL);
 938                        return ret;
 939                }
 940        } else {
 941                refs = 1;
 942                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 943                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 944                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 945                else
 946                        flags = 0;
 947        }
 948
 949        owner = btrfs_header_owner(buf);
 950        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 951               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 952
 953        if (refs > 1) {
 954                if ((owner == root->root_key.objectid ||
 955                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 956                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 957                        ret = btrfs_inc_ref(trans, root, buf, 1);
 958                        if (ret)
 959                                return ret;
 960
 961                        if (root->root_key.objectid ==
 962                            BTRFS_TREE_RELOC_OBJECTID) {
 963                                ret = btrfs_dec_ref(trans, root, buf, 0);
 964                                if (ret)
 965                                        return ret;
 966                                ret = btrfs_inc_ref(trans, root, cow, 1);
 967                                if (ret)
 968                                        return ret;
 969                        }
 970                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 971                } else {
 972
 973                        if (root->root_key.objectid ==
 974                            BTRFS_TREE_RELOC_OBJECTID)
 975                                ret = btrfs_inc_ref(trans, root, cow, 1);
 976                        else
 977                                ret = btrfs_inc_ref(trans, root, cow, 0);
 978                        if (ret)
 979                                return ret;
 980                }
 981                if (new_flags != 0) {
 982                        int level = btrfs_header_level(buf);
 983
 984                        ret = btrfs_set_disk_extent_flags(trans, fs_info,
 985                                                          buf->start,
 986                                                          buf->len,
 987                                                          new_flags, level, 0);
 988                        if (ret)
 989                                return ret;
 990                }
 991        } else {
 992                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 993                        if (root->root_key.objectid ==
 994                            BTRFS_TREE_RELOC_OBJECTID)
 995                                ret = btrfs_inc_ref(trans, root, cow, 1);
 996                        else
 997                                ret = btrfs_inc_ref(trans, root, cow, 0);
 998                        if (ret)
 999                                return ret;
1000                        ret = btrfs_dec_ref(trans, root, buf, 1);
1001                        if (ret)
1002                                return ret;
1003                }
1004                clean_tree_block(fs_info, buf);
1005                *last_ref = 1;
1006        }
1007        return 0;
1008}
1009
1010/*
1011 * does the dirty work in cow of a single block.  The parent block (if
1012 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1013 * dirty and returned locked.  If you modify the block it needs to be marked
1014 * dirty again.
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
1018 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1021 */
1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023                             struct btrfs_root *root,
1024                             struct extent_buffer *buf,
1025                             struct extent_buffer *parent, int parent_slot,
1026                             struct extent_buffer **cow_ret,
1027                             u64 search_start, u64 empty_size)
1028{
1029        struct btrfs_fs_info *fs_info = root->fs_info;
1030        struct btrfs_disk_key disk_key;
1031        struct extent_buffer *cow;
1032        int level, ret;
1033        int last_ref = 0;
1034        int unlock_orig = 0;
1035        u64 parent_start = 0;
1036
1037        if (*cow_ret == buf)
1038                unlock_orig = 1;
1039
1040        btrfs_assert_tree_locked(buf);
1041
1042        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043                trans->transid != fs_info->running_transaction->transid);
1044        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045                trans->transid != root->last_trans);
1046
1047        level = btrfs_header_level(buf);
1048
1049        if (level == 0)
1050                btrfs_item_key(buf, &disk_key, 0);
1051        else
1052                btrfs_node_key(buf, &disk_key, 0);
1053
1054        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055                parent_start = parent->start;
1056
1057        cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058                        root->root_key.objectid, &disk_key, level,
1059                        search_start, empty_size);
1060        if (IS_ERR(cow))
1061                return PTR_ERR(cow);
1062
1063        /* cow is set to blocking by btrfs_init_new_buffer */
1064
1065        copy_extent_buffer_full(cow, buf);
1066        btrfs_set_header_bytenr(cow, cow->start);
1067        btrfs_set_header_generation(cow, trans->transid);
1068        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070                                     BTRFS_HEADER_FLAG_RELOC);
1071        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073        else
1074                btrfs_set_header_owner(cow, root->root_key.objectid);
1075
1076        write_extent_buffer_fsid(cow, fs_info->fsid);
1077
1078        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079        if (ret) {
1080                btrfs_abort_transaction(trans, ret);
1081                return ret;
1082        }
1083
1084        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086                if (ret) {
1087                        btrfs_abort_transaction(trans, ret);
1088                        return ret;
1089                }
1090        }
1091
1092        if (buf == root->node) {
1093                WARN_ON(parent && parent != buf);
1094                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096                        parent_start = buf->start;
1097
1098                extent_buffer_get(cow);
1099                ret = tree_mod_log_insert_root(root->node, cow, 1);
1100                BUG_ON(ret < 0);
1101                rcu_assign_pointer(root->node, cow);
1102
1103                btrfs_free_tree_block(trans, root, buf, parent_start,
1104                                      last_ref);
1105                free_extent_buffer(buf);
1106                add_root_to_dirty_list(root);
1107        } else {
1108                WARN_ON(trans->transid != btrfs_header_generation(parent));
1109                tree_mod_log_insert_key(parent, parent_slot,
1110                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111                btrfs_set_node_blockptr(parent, parent_slot,
1112                                        cow->start);
1113                btrfs_set_node_ptr_generation(parent, parent_slot,
1114                                              trans->transid);
1115                btrfs_mark_buffer_dirty(parent);
1116                if (last_ref) {
1117                        ret = tree_mod_log_free_eb(buf);
1118                        if (ret) {
1119                                btrfs_abort_transaction(trans, ret);
1120                                return ret;
1121                        }
1122                }
1123                btrfs_free_tree_block(trans, root, buf, parent_start,
1124                                      last_ref);
1125        }
1126        if (unlock_orig)
1127                btrfs_tree_unlock(buf);
1128        free_extent_buffer_stale(buf);
1129        btrfs_mark_buffer_dirty(cow);
1130        *cow_ret = cow;
1131        return 0;
1132}
1133
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139                struct extent_buffer *eb_root, u64 time_seq)
1140{
1141        struct tree_mod_elem *tm;
1142        struct tree_mod_elem *found = NULL;
1143        u64 root_logical = eb_root->start;
1144        int looped = 0;
1145
1146        if (!time_seq)
1147                return NULL;
1148
1149        /*
1150         * the very last operation that's logged for a root is the
1151         * replacement operation (if it is replaced at all). this has
1152         * the logical address of the *new* root, making it the very
1153         * first operation that's logged for this root.
1154         */
1155        while (1) {
1156                tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1157                                                time_seq);
1158                if (!looped && !tm)
1159                        return NULL;
1160                /*
1161                 * if there are no tree operation for the oldest root, we simply
1162                 * return it. this should only happen if that (old) root is at
1163                 * level 0.
1164                 */
1165                if (!tm)
1166                        break;
1167
1168                /*
1169                 * if there's an operation that's not a root replacement, we
1170                 * found the oldest version of our root. normally, we'll find a
1171                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172                 */
1173                if (tm->op != MOD_LOG_ROOT_REPLACE)
1174                        break;
1175
1176                found = tm;
1177                root_logical = tm->old_root.logical;
1178                looped = 1;
1179        }
1180
1181        /* if there's no old root to return, return what we found instead */
1182        if (!found)
1183                found = tm;
1184
1185        return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1191 * time_seq).
1192 */
1193static void
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195                      u64 time_seq, struct tree_mod_elem *first_tm)
1196{
1197        u32 n;
1198        struct rb_node *next;
1199        struct tree_mod_elem *tm = first_tm;
1200        unsigned long o_dst;
1201        unsigned long o_src;
1202        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204        n = btrfs_header_nritems(eb);
1205        read_lock(&fs_info->tree_mod_log_lock);
1206        while (tm && tm->seq >= time_seq) {
1207                /*
1208                 * all the operations are recorded with the operator used for
1209                 * the modification. as we're going backwards, we do the
1210                 * opposite of each operation here.
1211                 */
1212                switch (tm->op) {
1213                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214                        BUG_ON(tm->slot < n);
1215                        /* Fallthrough */
1216                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217                case MOD_LOG_KEY_REMOVE:
1218                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1219                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220                        btrfs_set_node_ptr_generation(eb, tm->slot,
1221                                                      tm->generation);
1222                        n++;
1223                        break;
1224                case MOD_LOG_KEY_REPLACE:
1225                        BUG_ON(tm->slot >= n);
1226                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1227                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228                        btrfs_set_node_ptr_generation(eb, tm->slot,
1229                                                      tm->generation);
1230                        break;
1231                case MOD_LOG_KEY_ADD:
1232                        /* if a move operation is needed it's in the log */
1233                        n--;
1234                        break;
1235                case MOD_LOG_MOVE_KEYS:
1236                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238                        memmove_extent_buffer(eb, o_dst, o_src,
1239                                              tm->move.nr_items * p_size);
1240                        break;
1241                case MOD_LOG_ROOT_REPLACE:
1242                        /*
1243                         * this operation is special. for roots, this must be
1244                         * handled explicitly before rewinding.
1245                         * for non-roots, this operation may exist if the node
1246                         * was a root: root A -> child B; then A gets empty and
1247                         * B is promoted to the new root. in the mod log, we'll
1248                         * have a root-replace operation for B, a tree block
1249                         * that is no root. we simply ignore that operation.
1250                         */
1251                        break;
1252                }
1253                next = rb_next(&tm->node);
1254                if (!next)
1255                        break;
1256                tm = rb_entry(next, struct tree_mod_elem, node);
1257                if (tm->logical != first_tm->logical)
1258                        break;
1259        }
1260        read_unlock(&fs_info->tree_mod_log_lock);
1261        btrfs_set_header_nritems(eb, n);
1262}
1263
1264/*
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
1271static struct extent_buffer *
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273                    struct extent_buffer *eb, u64 time_seq)
1274{
1275        struct extent_buffer *eb_rewin;
1276        struct tree_mod_elem *tm;
1277
1278        if (!time_seq)
1279                return eb;
1280
1281        if (btrfs_header_level(eb) == 0)
1282                return eb;
1283
1284        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285        if (!tm)
1286                return eb;
1287
1288        btrfs_set_path_blocking(path);
1289        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
1291        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292                BUG_ON(tm->slot != 0);
1293                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294                if (!eb_rewin) {
1295                        btrfs_tree_read_unlock_blocking(eb);
1296                        free_extent_buffer(eb);
1297                        return NULL;
1298                }
1299                btrfs_set_header_bytenr(eb_rewin, eb->start);
1300                btrfs_set_header_backref_rev(eb_rewin,
1301                                             btrfs_header_backref_rev(eb));
1302                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1304        } else {
1305                eb_rewin = btrfs_clone_extent_buffer(eb);
1306                if (!eb_rewin) {
1307                        btrfs_tree_read_unlock_blocking(eb);
1308                        free_extent_buffer(eb);
1309                        return NULL;
1310                }
1311        }
1312
1313        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314        btrfs_tree_read_unlock_blocking(eb);
1315        free_extent_buffer(eb);
1316
1317        extent_buffer_get(eb_rewin);
1318        btrfs_tree_read_lock(eb_rewin);
1319        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320        WARN_ON(btrfs_header_nritems(eb_rewin) >
1321                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1322
1323        return eb_rewin;
1324}
1325
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
1336        struct btrfs_fs_info *fs_info = root->fs_info;
1337        struct tree_mod_elem *tm;
1338        struct extent_buffer *eb = NULL;
1339        struct extent_buffer *eb_root;
1340        struct extent_buffer *old;
1341        struct tree_mod_root *old_root = NULL;
1342        u64 old_generation = 0;
1343        u64 logical;
1344        int level;
1345
1346        eb_root = btrfs_read_lock_root_node(root);
1347        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1348        if (!tm)
1349                return eb_root;
1350
1351        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352                old_root = &tm->old_root;
1353                old_generation = tm->generation;
1354                logical = old_root->logical;
1355                level = old_root->level;
1356        } else {
1357                logical = eb_root->start;
1358                level = btrfs_header_level(eb_root);
1359        }
1360
1361        tm = tree_mod_log_search(fs_info, logical, time_seq);
1362        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363                btrfs_tree_read_unlock(eb_root);
1364                free_extent_buffer(eb_root);
1365                old = read_tree_block(fs_info, logical, 0, level, NULL);
1366                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367                        if (!IS_ERR(old))
1368                                free_extent_buffer(old);
1369                        btrfs_warn(fs_info,
1370                                   "failed to read tree block %llu from get_old_root",
1371                                   logical);
1372                } else {
1373                        eb = btrfs_clone_extent_buffer(old);
1374                        free_extent_buffer(old);
1375                }
1376        } else if (old_root) {
1377                btrfs_tree_read_unlock(eb_root);
1378                free_extent_buffer(eb_root);
1379                eb = alloc_dummy_extent_buffer(fs_info, logical);
1380        } else {
1381                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382                eb = btrfs_clone_extent_buffer(eb_root);
1383                btrfs_tree_read_unlock_blocking(eb_root);
1384                free_extent_buffer(eb_root);
1385        }
1386
1387        if (!eb)
1388                return NULL;
1389        extent_buffer_get(eb);
1390        btrfs_tree_read_lock(eb);
1391        if (old_root) {
1392                btrfs_set_header_bytenr(eb, eb->start);
1393                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395                btrfs_set_header_level(eb, old_root->level);
1396                btrfs_set_header_generation(eb, old_generation);
1397        }
1398        if (tm)
1399                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400        else
1401                WARN_ON(btrfs_header_level(eb) != 0);
1402        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1403
1404        return eb;
1405}
1406
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409        struct tree_mod_elem *tm;
1410        int level;
1411        struct extent_buffer *eb_root = btrfs_root_node(root);
1412
1413        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415                level = tm->old_root.level;
1416        } else {
1417                level = btrfs_header_level(eb_root);
1418        }
1419        free_extent_buffer(eb_root);
1420
1421        return level;
1422}
1423
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425                                   struct btrfs_root *root,
1426                                   struct extent_buffer *buf)
1427{
1428        if (btrfs_is_testing(root->fs_info))
1429                return 0;
1430
1431        /* Ensure we can see the FORCE_COW bit */
1432        smp_mb__before_atomic();
1433
1434        /*
1435         * We do not need to cow a block if
1436         * 1) this block is not created or changed in this transaction;
1437         * 2) this block does not belong to TREE_RELOC tree;
1438         * 3) the root is not forced COW.
1439         *
1440         * What is forced COW:
1441         *    when we create snapshot during committing the transaction,
1442         *    after we've finished coping src root, we must COW the shared
1443         *    block to ensure the metadata consistency.
1444         */
1445        if (btrfs_header_generation(buf) == trans->transid &&
1446            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450                return 0;
1451        return 1;
1452}
1453
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1458 */
1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460                    struct btrfs_root *root, struct extent_buffer *buf,
1461                    struct extent_buffer *parent, int parent_slot,
1462                    struct extent_buffer **cow_ret)
1463{
1464        struct btrfs_fs_info *fs_info = root->fs_info;
1465        u64 search_start;
1466        int ret;
1467
1468        if (trans->transaction != fs_info->running_transaction)
1469                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470                       trans->transid,
1471                       fs_info->running_transaction->transid);
1472
1473        if (trans->transid != fs_info->generation)
1474                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475                       trans->transid, fs_info->generation);
1476
1477        if (!should_cow_block(trans, root, buf)) {
1478                trans->dirty = true;
1479                *cow_ret = buf;
1480                return 0;
1481        }
1482
1483        search_start = buf->start & ~((u64)SZ_1G - 1);
1484
1485        if (parent)
1486                btrfs_set_lock_blocking(parent);
1487        btrfs_set_lock_blocking(buf);
1488
1489        ret = __btrfs_cow_block(trans, root, buf, parent,
1490                                 parent_slot, cow_ret, search_start, 0);
1491
1492        trace_btrfs_cow_block(root, buf, *cow_ret);
1493
1494        return ret;
1495}
1496
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502{
1503        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504                return 1;
1505        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506                return 1;
1507        return 0;
1508}
1509
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514                     const struct btrfs_key *k2)
1515{
1516        struct btrfs_key k1;
1517
1518        btrfs_disk_key_to_cpu(&k1, disk);
1519
1520        return btrfs_comp_cpu_keys(&k1, k2);
1521}
1522
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527{
1528        if (k1->objectid > k2->objectid)
1529                return 1;
1530        if (k1->objectid < k2->objectid)
1531                return -1;
1532        if (k1->type > k2->type)
1533                return 1;
1534        if (k1->type < k2->type)
1535                return -1;
1536        if (k1->offset > k2->offset)
1537                return 1;
1538        if (k1->offset < k2->offset)
1539                return -1;
1540        return 0;
1541}
1542
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549                       struct btrfs_root *root, struct extent_buffer *parent,
1550                       int start_slot, u64 *last_ret,
1551                       struct btrfs_key *progress)
1552{
1553        struct btrfs_fs_info *fs_info = root->fs_info;
1554        struct extent_buffer *cur;
1555        u64 blocknr;
1556        u64 gen;
1557        u64 search_start = *last_ret;
1558        u64 last_block = 0;
1559        u64 other;
1560        u32 parent_nritems;
1561        int end_slot;
1562        int i;
1563        int err = 0;
1564        int parent_level;
1565        int uptodate;
1566        u32 blocksize;
1567        int progress_passed = 0;
1568        struct btrfs_disk_key disk_key;
1569
1570        parent_level = btrfs_header_level(parent);
1571
1572        WARN_ON(trans->transaction != fs_info->running_transaction);
1573        WARN_ON(trans->transid != fs_info->generation);
1574
1575        parent_nritems = btrfs_header_nritems(parent);
1576        blocksize = fs_info->nodesize;
1577        end_slot = parent_nritems - 1;
1578
1579        if (parent_nritems <= 1)
1580                return 0;
1581
1582        btrfs_set_lock_blocking(parent);
1583
1584        for (i = start_slot; i <= end_slot; i++) {
1585                struct btrfs_key first_key;
1586                int close = 1;
1587
1588                btrfs_node_key(parent, &disk_key, i);
1589                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590                        continue;
1591
1592                progress_passed = 1;
1593                blocknr = btrfs_node_blockptr(parent, i);
1594                gen = btrfs_node_ptr_generation(parent, i);
1595                btrfs_node_key_to_cpu(parent, &first_key, i);
1596                if (last_block == 0)
1597                        last_block = blocknr;
1598
1599                if (i > 0) {
1600                        other = btrfs_node_blockptr(parent, i - 1);
1601                        close = close_blocks(blocknr, other, blocksize);
1602                }
1603                if (!close && i < end_slot) {
1604                        other = btrfs_node_blockptr(parent, i + 1);
1605                        close = close_blocks(blocknr, other, blocksize);
1606                }
1607                if (close) {
1608                        last_block = blocknr;
1609                        continue;
1610                }
1611
1612                cur = find_extent_buffer(fs_info, blocknr);
1613                if (cur)
1614                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615                else
1616                        uptodate = 0;
1617                if (!cur || !uptodate) {
1618                        if (!cur) {
1619                                cur = read_tree_block(fs_info, blocknr, gen,
1620                                                      parent_level - 1,
1621                                                      &first_key);
1622                                if (IS_ERR(cur)) {
1623                                        return PTR_ERR(cur);
1624                                } else if (!extent_buffer_uptodate(cur)) {
1625                                        free_extent_buffer(cur);
1626                                        return -EIO;
1627                                }
1628                        } else if (!uptodate) {
1629                                err = btrfs_read_buffer(cur, gen,
1630                                                parent_level - 1,&first_key);
1631                                if (err) {
1632                                        free_extent_buffer(cur);
1633                                        return err;
1634                                }
1635                        }
1636                }
1637                if (search_start == 0)
1638                        search_start = last_block;
1639
1640                btrfs_tree_lock(cur);
1641                btrfs_set_lock_blocking(cur);
1642                err = __btrfs_cow_block(trans, root, cur, parent, i,
1643                                        &cur, search_start,
1644                                        min(16 * blocksize,
1645                                            (end_slot - i) * blocksize));
1646                if (err) {
1647                        btrfs_tree_unlock(cur);
1648                        free_extent_buffer(cur);
1649                        break;
1650                }
1651                search_start = cur->start;
1652                last_block = cur->start;
1653                *last_ret = search_start;
1654                btrfs_tree_unlock(cur);
1655                free_extent_buffer(cur);
1656        }
1657        return err;
1658}
1659
1660/*
1661 * search for key in the extent_buffer.  The items start at offset p,
1662 * and they are item_size apart.  There are 'max' items in p.
1663 *
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
1670static noinline int generic_bin_search(struct extent_buffer *eb,
1671                                       unsigned long p, int item_size,
1672                                       const struct btrfs_key *key,
1673                                       int max, int *slot)
1674{
1675        int low = 0;
1676        int high = max;
1677        int mid;
1678        int ret;
1679        struct btrfs_disk_key *tmp = NULL;
1680        struct btrfs_disk_key unaligned;
1681        unsigned long offset;
1682        char *kaddr = NULL;
1683        unsigned long map_start = 0;
1684        unsigned long map_len = 0;
1685        int err;
1686
1687        if (low > high) {
1688                btrfs_err(eb->fs_info,
1689                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690                          __func__, low, high, eb->start,
1691                          btrfs_header_owner(eb), btrfs_header_level(eb));
1692                return -EINVAL;
1693        }
1694
1695        while (low < high) {
1696                mid = (low + high) / 2;
1697                offset = p + mid * item_size;
1698
1699                if (!kaddr || offset < map_start ||
1700                    (offset + sizeof(struct btrfs_disk_key)) >
1701                    map_start + map_len) {
1702
1703                        err = map_private_extent_buffer(eb, offset,
1704                                                sizeof(struct btrfs_disk_key),
1705                                                &kaddr, &map_start, &map_len);
1706
1707                        if (!err) {
1708                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709                                                        map_start);
1710                        } else if (err == 1) {
1711                                read_extent_buffer(eb, &unaligned,
1712                                                   offset, sizeof(unaligned));
1713                                tmp = &unaligned;
1714                        } else {
1715                                return err;
1716                        }
1717
1718                } else {
1719                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720                                                        map_start);
1721                }
1722                ret = comp_keys(tmp, key);
1723
1724                if (ret < 0)
1725                        low = mid + 1;
1726                else if (ret > 0)
1727                        high = mid;
1728                else {
1729                        *slot = mid;
1730                        return 0;
1731                }
1732        }
1733        *slot = low;
1734        return 1;
1735}
1736
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742                     int level, int *slot)
1743{
1744        if (level == 0)
1745                return generic_bin_search(eb,
1746                                          offsetof(struct btrfs_leaf, items),
1747                                          sizeof(struct btrfs_item),
1748                                          key, btrfs_header_nritems(eb),
1749                                          slot);
1750        else
1751                return generic_bin_search(eb,
1752                                          offsetof(struct btrfs_node, ptrs),
1753                                          sizeof(struct btrfs_key_ptr),
1754                                          key, btrfs_header_nritems(eb),
1755                                          slot);
1756}
1757
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760        spin_lock(&root->accounting_lock);
1761        btrfs_set_root_used(&root->root_item,
1762                            btrfs_root_used(&root->root_item) + size);
1763        spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768        spin_lock(&root->accounting_lock);
1769        btrfs_set_root_used(&root->root_item,
1770                            btrfs_root_used(&root->root_item) - size);
1771        spin_unlock(&root->accounting_lock);
1772}
1773
1774/* given a node and slot number, this reads the blocks it points to.  The
1775 * extent buffer is returned with a reference taken (but unlocked).
1776 */
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779               int slot)
1780{
1781        int level = btrfs_header_level(parent);
1782        struct extent_buffer *eb;
1783        struct btrfs_key first_key;
1784
1785        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786                return ERR_PTR(-ENOENT);
1787
1788        BUG_ON(level == 0);
1789
1790        btrfs_node_key_to_cpu(parent, &first_key, slot);
1791        eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792                             btrfs_node_ptr_generation(parent, slot),
1793                             level - 1, &first_key);
1794        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795                free_extent_buffer(eb);
1796                eb = ERR_PTR(-EIO);
1797        }
1798
1799        return eb;
1800}
1801
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion.  We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
1807static noinline int balance_level(struct btrfs_trans_handle *trans,
1808                         struct btrfs_root *root,
1809                         struct btrfs_path *path, int level)
1810{
1811        struct btrfs_fs_info *fs_info = root->fs_info;
1812        struct extent_buffer *right = NULL;
1813        struct extent_buffer *mid;
1814        struct extent_buffer *left = NULL;
1815        struct extent_buffer *parent = NULL;
1816        int ret = 0;
1817        int wret;
1818        int pslot;
1819        int orig_slot = path->slots[level];
1820        u64 orig_ptr;
1821
1822        if (level == 0)
1823                return 0;
1824
1825        mid = path->nodes[level];
1826
1827        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833        if (level < BTRFS_MAX_LEVEL - 1) {
1834                parent = path->nodes[level + 1];
1835                pslot = path->slots[level + 1];
1836        }
1837
1838        /*
1839         * deal with the case where there is only one pointer in the root
1840         * by promoting the node below to a root
1841         */
1842        if (!parent) {
1843                struct extent_buffer *child;
1844
1845                if (btrfs_header_nritems(mid) != 1)
1846                        return 0;
1847
1848                /* promote the child to a root */
1849                child = read_node_slot(fs_info, mid, 0);
1850                if (IS_ERR(child)) {
1851                        ret = PTR_ERR(child);
1852                        btrfs_handle_fs_error(fs_info, ret, NULL);
1853                        goto enospc;
1854                }
1855
1856                btrfs_tree_lock(child);
1857                btrfs_set_lock_blocking(child);
1858                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859                if (ret) {
1860                        btrfs_tree_unlock(child);
1861                        free_extent_buffer(child);
1862                        goto enospc;
1863                }
1864
1865                ret = tree_mod_log_insert_root(root->node, child, 1);
1866                BUG_ON(ret < 0);
1867                rcu_assign_pointer(root->node, child);
1868
1869                add_root_to_dirty_list(root);
1870                btrfs_tree_unlock(child);
1871
1872                path->locks[level] = 0;
1873                path->nodes[level] = NULL;
1874                clean_tree_block(fs_info, mid);
1875                btrfs_tree_unlock(mid);
1876                /* once for the path */
1877                free_extent_buffer(mid);
1878
1879                root_sub_used(root, mid->len);
1880                btrfs_free_tree_block(trans, root, mid, 0, 1);
1881                /* once for the root ptr */
1882                free_extent_buffer_stale(mid);
1883                return 0;
1884        }
1885        if (btrfs_header_nritems(mid) >
1886            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887                return 0;
1888
1889        left = read_node_slot(fs_info, parent, pslot - 1);
1890        if (IS_ERR(left))
1891                left = NULL;
1892
1893        if (left) {
1894                btrfs_tree_lock(left);
1895                btrfs_set_lock_blocking(left);
1896                wret = btrfs_cow_block(trans, root, left,
1897                                       parent, pslot - 1, &left);
1898                if (wret) {
1899                        ret = wret;
1900                        goto enospc;
1901                }
1902        }
1903
1904        right = read_node_slot(fs_info, parent, pslot + 1);
1905        if (IS_ERR(right))
1906                right = NULL;
1907
1908        if (right) {
1909                btrfs_tree_lock(right);
1910                btrfs_set_lock_blocking(right);
1911                wret = btrfs_cow_block(trans, root, right,
1912                                       parent, pslot + 1, &right);
1913                if (wret) {
1914                        ret = wret;
1915                        goto enospc;
1916                }
1917        }
1918
1919        /* first, try to make some room in the middle buffer */
1920        if (left) {
1921                orig_slot += btrfs_header_nritems(left);
1922                wret = push_node_left(trans, fs_info, left, mid, 1);
1923                if (wret < 0)
1924                        ret = wret;
1925        }
1926
1927        /*
1928         * then try to empty the right most buffer into the middle
1929         */
1930        if (right) {
1931                wret = push_node_left(trans, fs_info, mid, right, 1);
1932                if (wret < 0 && wret != -ENOSPC)
1933                        ret = wret;
1934                if (btrfs_header_nritems(right) == 0) {
1935                        clean_tree_block(fs_info, right);
1936                        btrfs_tree_unlock(right);
1937                        del_ptr(root, path, level + 1, pslot + 1);
1938                        root_sub_used(root, right->len);
1939                        btrfs_free_tree_block(trans, root, right, 0, 1);
1940                        free_extent_buffer_stale(right);
1941                        right = NULL;
1942                } else {
1943                        struct btrfs_disk_key right_key;
1944                        btrfs_node_key(right, &right_key, 0);
1945                        ret = tree_mod_log_insert_key(parent, pslot + 1,
1946                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947                        BUG_ON(ret < 0);
1948                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1949                        btrfs_mark_buffer_dirty(parent);
1950                }
1951        }
1952        if (btrfs_header_nritems(mid) == 1) {
1953                /*
1954                 * we're not allowed to leave a node with one item in the
1955                 * tree during a delete.  A deletion from lower in the tree
1956                 * could try to delete the only pointer in this node.
1957                 * So, pull some keys from the left.
1958                 * There has to be a left pointer at this point because
1959                 * otherwise we would have pulled some pointers from the
1960                 * right
1961                 */
1962                if (!left) {
1963                        ret = -EROFS;
1964                        btrfs_handle_fs_error(fs_info, ret, NULL);
1965                        goto enospc;
1966                }
1967                wret = balance_node_right(trans, fs_info, mid, left);
1968                if (wret < 0) {
1969                        ret = wret;
1970                        goto enospc;
1971                }
1972                if (wret == 1) {
1973                        wret = push_node_left(trans, fs_info, left, mid, 1);
1974                        if (wret < 0)
1975                                ret = wret;
1976                }
1977                BUG_ON(wret == 1);
1978        }
1979        if (btrfs_header_nritems(mid) == 0) {
1980                clean_tree_block(fs_info, mid);
1981                btrfs_tree_unlock(mid);
1982                del_ptr(root, path, level + 1, pslot);
1983                root_sub_used(root, mid->len);
1984                btrfs_free_tree_block(trans, root, mid, 0, 1);
1985                free_extent_buffer_stale(mid);
1986                mid = NULL;
1987        } else {
1988                /* update the parent key to reflect our changes */
1989                struct btrfs_disk_key mid_key;
1990                btrfs_node_key(mid, &mid_key, 0);
1991                ret = tree_mod_log_insert_key(parent, pslot,
1992                                MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993                BUG_ON(ret < 0);
1994                btrfs_set_node_key(parent, &mid_key, pslot);
1995                btrfs_mark_buffer_dirty(parent);
1996        }
1997
1998        /* update the path */
1999        if (left) {
2000                if (btrfs_header_nritems(left) > orig_slot) {
2001                        extent_buffer_get(left);
2002                        /* left was locked after cow */
2003                        path->nodes[level] = left;
2004                        path->slots[level + 1] -= 1;
2005                        path->slots[level] = orig_slot;
2006                        if (mid) {
2007                                btrfs_tree_unlock(mid);
2008                                free_extent_buffer(mid);
2009                        }
2010                } else {
2011                        orig_slot -= btrfs_header_nritems(left);
2012                        path->slots[level] = orig_slot;
2013                }
2014        }
2015        /* double check we haven't messed things up */
2016        if (orig_ptr !=
2017            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018                BUG();
2019enospc:
2020        if (right) {
2021                btrfs_tree_unlock(right);
2022                free_extent_buffer(right);
2023        }
2024        if (left) {
2025                if (path->nodes[level] != left)
2026                        btrfs_tree_unlock(left);
2027                free_extent_buffer(left);
2028        }
2029        return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037                                          struct btrfs_root *root,
2038                                          struct btrfs_path *path, int level)
2039{
2040        struct btrfs_fs_info *fs_info = root->fs_info;
2041        struct extent_buffer *right = NULL;
2042        struct extent_buffer *mid;
2043        struct extent_buffer *left = NULL;
2044        struct extent_buffer *parent = NULL;
2045        int ret = 0;
2046        int wret;
2047        int pslot;
2048        int orig_slot = path->slots[level];
2049
2050        if (level == 0)
2051                return 1;
2052
2053        mid = path->nodes[level];
2054        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056        if (level < BTRFS_MAX_LEVEL - 1) {
2057                parent = path->nodes[level + 1];
2058                pslot = path->slots[level + 1];
2059        }
2060
2061        if (!parent)
2062                return 1;
2063
2064        left = read_node_slot(fs_info, parent, pslot - 1);
2065        if (IS_ERR(left))
2066                left = NULL;
2067
2068        /* first, try to make some room in the middle buffer */
2069        if (left) {
2070                u32 left_nr;
2071
2072                btrfs_tree_lock(left);
2073                btrfs_set_lock_blocking(left);
2074
2075                left_nr = btrfs_header_nritems(left);
2076                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077                        wret = 1;
2078                } else {
2079                        ret = btrfs_cow_block(trans, root, left, parent,
2080                                              pslot - 1, &left);
2081                        if (ret)
2082                                wret = 1;
2083                        else {
2084                                wret = push_node_left(trans, fs_info,
2085                                                      left, mid, 0);
2086                        }
2087                }
2088                if (wret < 0)
2089                        ret = wret;
2090                if (wret == 0) {
2091                        struct btrfs_disk_key disk_key;
2092                        orig_slot += left_nr;
2093                        btrfs_node_key(mid, &disk_key, 0);
2094                        ret = tree_mod_log_insert_key(parent, pslot,
2095                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096                        BUG_ON(ret < 0);
2097                        btrfs_set_node_key(parent, &disk_key, pslot);
2098                        btrfs_mark_buffer_dirty(parent);
2099                        if (btrfs_header_nritems(left) > orig_slot) {
2100                                path->nodes[level] = left;
2101                                path->slots[level + 1] -= 1;
2102                                path->slots[level] = orig_slot;
2103                                btrfs_tree_unlock(mid);
2104                                free_extent_buffer(mid);
2105                        } else {
2106                                orig_slot -=
2107                                        btrfs_header_nritems(left);
2108                                path->slots[level] = orig_slot;
2109                                btrfs_tree_unlock(left);
2110                                free_extent_buffer(left);
2111                        }
2112                        return 0;
2113                }
2114                btrfs_tree_unlock(left);
2115                free_extent_buffer(left);
2116        }
2117        right = read_node_slot(fs_info, parent, pslot + 1);
2118        if (IS_ERR(right))
2119                right = NULL;
2120
2121        /*
2122         * then try to empty the right most buffer into the middle
2123         */
2124        if (right) {
2125                u32 right_nr;
2126
2127                btrfs_tree_lock(right);
2128                btrfs_set_lock_blocking(right);
2129
2130                right_nr = btrfs_header_nritems(right);
2131                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2132                        wret = 1;
2133                } else {
2134                        ret = btrfs_cow_block(trans, root, right,
2135                                              parent, pslot + 1,
2136                                              &right);
2137                        if (ret)
2138                                wret = 1;
2139                        else {
2140                                wret = balance_node_right(trans, fs_info,
2141                                                          right, mid);
2142                        }
2143                }
2144                if (wret < 0)
2145                        ret = wret;
2146                if (wret == 0) {
2147                        struct btrfs_disk_key disk_key;
2148
2149                        btrfs_node_key(right, &disk_key, 0);
2150                        ret = tree_mod_log_insert_key(parent, pslot + 1,
2151                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152                        BUG_ON(ret < 0);
2153                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154                        btrfs_mark_buffer_dirty(parent);
2155
2156                        if (btrfs_header_nritems(mid) <= orig_slot) {
2157                                path->nodes[level] = right;
2158                                path->slots[level + 1] += 1;
2159                                path->slots[level] = orig_slot -
2160                                        btrfs_header_nritems(mid);
2161                                btrfs_tree_unlock(mid);
2162                                free_extent_buffer(mid);
2163                        } else {
2164                                btrfs_tree_unlock(right);
2165                                free_extent_buffer(right);
2166                        }
2167                        return 0;
2168                }
2169                btrfs_tree_unlock(right);
2170                free_extent_buffer(right);
2171        }
2172        return 1;
2173}
2174
2175/*
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2178 */
2179static void reada_for_search(struct btrfs_fs_info *fs_info,
2180                             struct btrfs_path *path,
2181                             int level, int slot, u64 objectid)
2182{
2183        struct extent_buffer *node;
2184        struct btrfs_disk_key disk_key;
2185        u32 nritems;
2186        u64 search;
2187        u64 target;
2188        u64 nread = 0;
2189        struct extent_buffer *eb;
2190        u32 nr;
2191        u32 blocksize;
2192        u32 nscan = 0;
2193
2194        if (level != 1)
2195                return;
2196
2197        if (!path->nodes[level])
2198                return;
2199
2200        node = path->nodes[level];
2201
2202        search = btrfs_node_blockptr(node, slot);
2203        blocksize = fs_info->nodesize;
2204        eb = find_extent_buffer(fs_info, search);
2205        if (eb) {
2206                free_extent_buffer(eb);
2207                return;
2208        }
2209
2210        target = search;
2211
2212        nritems = btrfs_header_nritems(node);
2213        nr = slot;
2214
2215        while (1) {
2216                if (path->reada == READA_BACK) {
2217                        if (nr == 0)
2218                                break;
2219                        nr--;
2220                } else if (path->reada == READA_FORWARD) {
2221                        nr++;
2222                        if (nr >= nritems)
2223                                break;
2224                }
2225                if (path->reada == READA_BACK && objectid) {
2226                        btrfs_node_key(node, &disk_key, nr);
2227                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228                                break;
2229                }
2230                search = btrfs_node_blockptr(node, nr);
2231                if ((search <= target && target - search <= 65536) ||
2232                    (search > target && search - target <= 65536)) {
2233                        readahead_tree_block(fs_info, search);
2234                        nread += blocksize;
2235                }
2236                nscan++;
2237                if ((nread > 65536 || nscan > 32))
2238                        break;
2239        }
2240}
2241
2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243                                       struct btrfs_path *path, int level)
2244{
2245        int slot;
2246        int nritems;
2247        struct extent_buffer *parent;
2248        struct extent_buffer *eb;
2249        u64 gen;
2250        u64 block1 = 0;
2251        u64 block2 = 0;
2252
2253        parent = path->nodes[level + 1];
2254        if (!parent)
2255                return;
2256
2257        nritems = btrfs_header_nritems(parent);
2258        slot = path->slots[level + 1];
2259
2260        if (slot > 0) {
2261                block1 = btrfs_node_blockptr(parent, slot - 1);
2262                gen = btrfs_node_ptr_generation(parent, slot - 1);
2263                eb = find_extent_buffer(fs_info, block1);
2264                /*
2265                 * if we get -eagain from btrfs_buffer_uptodate, we
2266                 * don't want to return eagain here.  That will loop
2267                 * forever
2268                 */
2269                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270                        block1 = 0;
2271                free_extent_buffer(eb);
2272        }
2273        if (slot + 1 < nritems) {
2274                block2 = btrfs_node_blockptr(parent, slot + 1);
2275                gen = btrfs_node_ptr_generation(parent, slot + 1);
2276                eb = find_extent_buffer(fs_info, block2);
2277                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278                        block2 = 0;
2279                free_extent_buffer(eb);
2280        }
2281
2282        if (block1)
2283                readahead_tree_block(fs_info, block1);
2284        if (block2)
2285                readahead_tree_block(fs_info, block2);
2286}
2287
2288
2289/*
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree.  The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
2294 *
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block.  This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2298 *
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2301 */
2302static noinline void unlock_up(struct btrfs_path *path, int level,
2303                               int lowest_unlock, int min_write_lock_level,
2304                               int *write_lock_level)
2305{
2306        int i;
2307        int skip_level = level;
2308        int no_skips = 0;
2309        struct extent_buffer *t;
2310
2311        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312                if (!path->nodes[i])
2313                        break;
2314                if (!path->locks[i])
2315                        break;
2316                if (!no_skips && path->slots[i] == 0) {
2317                        skip_level = i + 1;
2318                        continue;
2319                }
2320                if (!no_skips && path->keep_locks) {
2321                        u32 nritems;
2322                        t = path->nodes[i];
2323                        nritems = btrfs_header_nritems(t);
2324                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325                                skip_level = i + 1;
2326                                continue;
2327                        }
2328                }
2329                if (skip_level < i && i >= lowest_unlock)
2330                        no_skips = 1;
2331
2332                t = path->nodes[i];
2333                if (i >= lowest_unlock && i > skip_level) {
2334                        btrfs_tree_unlock_rw(t, path->locks[i]);
2335                        path->locks[i] = 0;
2336                        if (write_lock_level &&
2337                            i > min_write_lock_level &&
2338                            i <= *write_lock_level) {
2339                                *write_lock_level = i - 1;
2340                        }
2341                }
2342        }
2343}
2344
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node.  This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356        int i;
2357
2358        if (path->keep_locks)
2359                return;
2360
2361        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362                if (!path->nodes[i])
2363                        continue;
2364                if (!path->locks[i])
2365                        continue;
2366                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367                path->locks[i] = 0;
2368        }
2369}
2370
2371/*
2372 * helper function for btrfs_search_slot.  The goal is to find a block
2373 * in cache without setting the path to blocking.  If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada.  -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381                      struct extent_buffer **eb_ret, int level, int slot,
2382                      const struct btrfs_key *key)
2383{
2384        struct btrfs_fs_info *fs_info = root->fs_info;
2385        u64 blocknr;
2386        u64 gen;
2387        struct extent_buffer *b = *eb_ret;
2388        struct extent_buffer *tmp;
2389        struct btrfs_key first_key;
2390        int ret;
2391        int parent_level;
2392
2393        blocknr = btrfs_node_blockptr(b, slot);
2394        gen = btrfs_node_ptr_generation(b, slot);
2395        parent_level = btrfs_header_level(b);
2396        btrfs_node_key_to_cpu(b, &first_key, slot);
2397
2398        tmp = find_extent_buffer(fs_info, blocknr);
2399        if (tmp) {
2400                /* first we do an atomic uptodate check */
2401                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2402                        *eb_ret = tmp;
2403                        return 0;
2404                }
2405
2406                /* the pages were up to date, but we failed
2407                 * the generation number check.  Do a full
2408                 * read for the generation number that is correct.
2409                 * We must do this without dropping locks so
2410                 * we can trust our generation number
2411                 */
2412                btrfs_set_path_blocking(p);
2413
2414                /* now we're allowed to do a blocking uptodate check */
2415                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416                if (!ret) {
2417                        *eb_ret = tmp;
2418                        return 0;
2419                }
2420                free_extent_buffer(tmp);
2421                btrfs_release_path(p);
2422                return -EIO;
2423        }
2424
2425        /*
2426         * reduce lock contention at high levels
2427         * of the btree by dropping locks before
2428         * we read.  Don't release the lock on the current
2429         * level because we need to walk this node to figure
2430         * out which blocks to read.
2431         */
2432        btrfs_unlock_up_safe(p, level + 1);
2433        btrfs_set_path_blocking(p);
2434
2435        if (p->reada != READA_NONE)
2436                reada_for_search(fs_info, p, level, slot, key->objectid);
2437
2438        ret = -EAGAIN;
2439        tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2440                              &first_key);
2441        if (!IS_ERR(tmp)) {
2442                /*
2443                 * If the read above didn't mark this buffer up to date,
2444                 * it will never end up being up to date.  Set ret to EIO now
2445                 * and give up so that our caller doesn't loop forever
2446                 * on our EAGAINs.
2447                 */
2448                if (!extent_buffer_uptodate(tmp))
2449                        ret = -EIO;
2450                free_extent_buffer(tmp);
2451        } else {
2452                ret = PTR_ERR(tmp);
2453        }
2454
2455        btrfs_release_path(p);
2456        return ret;
2457}
2458
2459/*
2460 * helper function for btrfs_search_slot.  This does all of the checks
2461 * for node-level blocks and does any balancing required based on
2462 * the ins_len.
2463 *
2464 * If no extra work was required, zero is returned.  If we had to
2465 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2466 * start over
2467 */
2468static int
2469setup_nodes_for_search(struct btrfs_trans_handle *trans,
2470                       struct btrfs_root *root, struct btrfs_path *p,
2471                       struct extent_buffer *b, int level, int ins_len,
2472                       int *write_lock_level)
2473{
2474        struct btrfs_fs_info *fs_info = root->fs_info;
2475        int ret;
2476
2477        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2478            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2479                int sret;
2480
2481                if (*write_lock_level < level + 1) {
2482                        *write_lock_level = level + 1;
2483                        btrfs_release_path(p);
2484                        goto again;
2485                }
2486
2487                btrfs_set_path_blocking(p);
2488                reada_for_balance(fs_info, p, level);
2489                sret = split_node(trans, root, p, level);
2490                btrfs_clear_path_blocking(p, NULL, 0);
2491
2492                BUG_ON(sret > 0);
2493                if (sret) {
2494                        ret = sret;
2495                        goto done;
2496                }
2497                b = p->nodes[level];
2498        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2499                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2500                int sret;
2501
2502                if (*write_lock_level < level + 1) {
2503                        *write_lock_level = level + 1;
2504                        btrfs_release_path(p);
2505                        goto again;
2506                }
2507
2508                btrfs_set_path_blocking(p);
2509                reada_for_balance(fs_info, p, level);
2510                sret = balance_level(trans, root, p, level);
2511                btrfs_clear_path_blocking(p, NULL, 0);
2512
2513                if (sret) {
2514                        ret = sret;
2515                        goto done;
2516                }
2517                b = p->nodes[level];
2518                if (!b) {
2519                        btrfs_release_path(p);
2520                        goto again;
2521                }
2522                BUG_ON(btrfs_header_nritems(b) == 1);
2523        }
2524        return 0;
2525
2526again:
2527        ret = -EAGAIN;
2528done:
2529        return ret;
2530}
2531
2532static void key_search_validate(struct extent_buffer *b,
2533                                const struct btrfs_key *key,
2534                                int level)
2535{
2536#ifdef CONFIG_BTRFS_ASSERT
2537        struct btrfs_disk_key disk_key;
2538
2539        btrfs_cpu_key_to_disk(&disk_key, key);
2540
2541        if (level == 0)
2542                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543                    offsetof(struct btrfs_leaf, items[0].key),
2544                    sizeof(disk_key)));
2545        else
2546                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2547                    offsetof(struct btrfs_node, ptrs[0].key),
2548                    sizeof(disk_key)));
2549#endif
2550}
2551
2552static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553                      int level, int *prev_cmp, int *slot)
2554{
2555        if (*prev_cmp != 0) {
2556                *prev_cmp = btrfs_bin_search(b, key, level, slot);
2557                return *prev_cmp;
2558        }
2559
2560        key_search_validate(b, key, level);
2561        *slot = 0;
2562
2563        return 0;
2564}
2565
2566int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2567                u64 iobjectid, u64 ioff, u8 key_type,
2568                struct btrfs_key *found_key)
2569{
2570        int ret;
2571        struct btrfs_key key;
2572        struct extent_buffer *eb;
2573
2574        ASSERT(path);
2575        ASSERT(found_key);
2576
2577        key.type = key_type;
2578        key.objectid = iobjectid;
2579        key.offset = ioff;
2580
2581        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2582        if (ret < 0)
2583                return ret;
2584
2585        eb = path->nodes[0];
2586        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2587                ret = btrfs_next_leaf(fs_root, path);
2588                if (ret)
2589                        return ret;
2590                eb = path->nodes[0];
2591        }
2592
2593        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2594        if (found_key->type != key.type ||
2595                        found_key->objectid != key.objectid)
2596                return 1;
2597
2598        return 0;
2599}
2600
2601static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2602                                                        struct btrfs_path *p,
2603                                                        int write_lock_level)
2604{
2605        struct btrfs_fs_info *fs_info = root->fs_info;
2606        struct extent_buffer *b;
2607        int root_lock;
2608        int level = 0;
2609
2610        /* We try very hard to do read locks on the root */
2611        root_lock = BTRFS_READ_LOCK;
2612
2613        if (p->search_commit_root) {
2614                /* The commit roots are read only so we always do read locks */
2615                if (p->need_commit_sem)
2616                        down_read(&fs_info->commit_root_sem);
2617                b = root->commit_root;
2618                extent_buffer_get(b);
2619                level = btrfs_header_level(b);
2620                if (p->need_commit_sem)
2621                        up_read(&fs_info->commit_root_sem);
2622                /*
2623                 * Ensure that all callers have set skip_locking when
2624                 * p->search_commit_root = 1.
2625                 */
2626                ASSERT(p->skip_locking == 1);
2627
2628                goto out;
2629        }
2630
2631        if (p->skip_locking) {
2632                b = btrfs_root_node(root);
2633                level = btrfs_header_level(b);
2634                goto out;
2635        }
2636
2637        /*
2638         * If the level is set to maximum, we can skip trying to get the read
2639         * lock.
2640         */
2641        if (write_lock_level < BTRFS_MAX_LEVEL) {
2642                /*
2643                 * We don't know the level of the root node until we actually
2644                 * have it read locked
2645                 */
2646                b = btrfs_read_lock_root_node(root);
2647                level = btrfs_header_level(b);
2648                if (level > write_lock_level)
2649                        goto out;
2650
2651                /* Whoops, must trade for write lock */
2652                btrfs_tree_read_unlock(b);
2653                free_extent_buffer(b);
2654        }
2655
2656        b = btrfs_lock_root_node(root);
2657        root_lock = BTRFS_WRITE_LOCK;
2658
2659        /* The level might have changed, check again */
2660        level = btrfs_header_level(b);
2661
2662out:
2663        p->nodes[level] = b;
2664        if (!p->skip_locking)
2665                p->locks[level] = root_lock;
2666        /*
2667         * Callers are responsible for dropping b's references.
2668         */
2669        return b;
2670}
2671
2672
2673/*
2674 * btrfs_search_slot - look for a key in a tree and perform necessary
2675 * modifications to preserve tree invariants.
2676 *
2677 * @trans:      Handle of transaction, used when modifying the tree
2678 * @p:          Holds all btree nodes along the search path
2679 * @root:       The root node of the tree
2680 * @key:        The key we are looking for
2681 * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2682 *              deletions it's -1. 0 for plain searches
2683 * @cow:        boolean should CoW operations be performed. Must always be 1
2684 *              when modifying the tree.
2685 *
2686 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2687 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2688 *
2689 * If @key is found, 0 is returned and you can find the item in the leaf level
2690 * of the path (level 0)
2691 *
2692 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2693 * points to the slot where it should be inserted
2694 *
2695 * If an error is encountered while searching the tree a negative error number
2696 * is returned
2697 */
2698int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2699                      const struct btrfs_key *key, struct btrfs_path *p,
2700                      int ins_len, int cow)
2701{
2702        struct btrfs_fs_info *fs_info = root->fs_info;
2703        struct extent_buffer *b;
2704        int slot;
2705        int ret;
2706        int err;
2707        int level;
2708        int lowest_unlock = 1;
2709        /* everything at write_lock_level or lower must be write locked */
2710        int write_lock_level = 0;
2711        u8 lowest_level = 0;
2712        int min_write_lock_level;
2713        int prev_cmp;
2714
2715        lowest_level = p->lowest_level;
2716        WARN_ON(lowest_level && ins_len > 0);
2717        WARN_ON(p->nodes[0] != NULL);
2718        BUG_ON(!cow && ins_len);
2719
2720        if (ins_len < 0) {
2721                lowest_unlock = 2;
2722
2723                /* when we are removing items, we might have to go up to level
2724                 * two as we update tree pointers  Make sure we keep write
2725                 * for those levels as well
2726                 */
2727                write_lock_level = 2;
2728        } else if (ins_len > 0) {
2729                /*
2730                 * for inserting items, make sure we have a write lock on
2731                 * level 1 so we can update keys
2732                 */
2733                write_lock_level = 1;
2734        }
2735
2736        if (!cow)
2737                write_lock_level = -1;
2738
2739        if (cow && (p->keep_locks || p->lowest_level))
2740                write_lock_level = BTRFS_MAX_LEVEL;
2741
2742        min_write_lock_level = write_lock_level;
2743
2744again:
2745        prev_cmp = -1;
2746        b = btrfs_search_slot_get_root(root, p, write_lock_level);
2747
2748        while (b) {
2749                level = btrfs_header_level(b);
2750
2751                /*
2752                 * setup the path here so we can release it under lock
2753                 * contention with the cow code
2754                 */
2755                if (cow) {
2756                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2757
2758                        /*
2759                         * if we don't really need to cow this block
2760                         * then we don't want to set the path blocking,
2761                         * so we test it here
2762                         */
2763                        if (!should_cow_block(trans, root, b)) {
2764                                trans->dirty = true;
2765                                goto cow_done;
2766                        }
2767
2768                        /*
2769                         * must have write locks on this node and the
2770                         * parent
2771                         */
2772                        if (level > write_lock_level ||
2773                            (level + 1 > write_lock_level &&
2774                            level + 1 < BTRFS_MAX_LEVEL &&
2775                            p->nodes[level + 1])) {
2776                                write_lock_level = level + 1;
2777                                btrfs_release_path(p);
2778                                goto again;
2779                        }
2780
2781                        btrfs_set_path_blocking(p);
2782                        if (last_level)
2783                                err = btrfs_cow_block(trans, root, b, NULL, 0,
2784                                                      &b);
2785                        else
2786                                err = btrfs_cow_block(trans, root, b,
2787                                                      p->nodes[level + 1],
2788                                                      p->slots[level + 1], &b);
2789                        if (err) {
2790                                ret = err;
2791                                goto done;
2792                        }
2793                }
2794cow_done:
2795                p->nodes[level] = b;
2796                btrfs_clear_path_blocking(p, NULL, 0);
2797
2798                /*
2799                 * we have a lock on b and as long as we aren't changing
2800                 * the tree, there is no way to for the items in b to change.
2801                 * It is safe to drop the lock on our parent before we
2802                 * go through the expensive btree search on b.
2803                 *
2804                 * If we're inserting or deleting (ins_len != 0), then we might
2805                 * be changing slot zero, which may require changing the parent.
2806                 * So, we can't drop the lock until after we know which slot
2807                 * we're operating on.
2808                 */
2809                if (!ins_len && !p->keep_locks) {
2810                        int u = level + 1;
2811
2812                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2813                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2814                                p->locks[u] = 0;
2815                        }
2816                }
2817
2818                ret = key_search(b, key, level, &prev_cmp, &slot);
2819                if (ret < 0)
2820                        goto done;
2821
2822                if (level != 0) {
2823                        int dec = 0;
2824                        if (ret && slot > 0) {
2825                                dec = 1;
2826                                slot -= 1;
2827                        }
2828                        p->slots[level] = slot;
2829                        err = setup_nodes_for_search(trans, root, p, b, level,
2830                                             ins_len, &write_lock_level);
2831                        if (err == -EAGAIN)
2832                                goto again;
2833                        if (err) {
2834                                ret = err;
2835                                goto done;
2836                        }
2837                        b = p->nodes[level];
2838                        slot = p->slots[level];
2839
2840                        /*
2841                         * slot 0 is special, if we change the key
2842                         * we have to update the parent pointer
2843                         * which means we must have a write lock
2844                         * on the parent
2845                         */
2846                        if (slot == 0 && ins_len &&
2847                            write_lock_level < level + 1) {
2848                                write_lock_level = level + 1;
2849                                btrfs_release_path(p);
2850                                goto again;
2851                        }
2852
2853                        unlock_up(p, level, lowest_unlock,
2854                                  min_write_lock_level, &write_lock_level);
2855
2856                        if (level == lowest_level) {
2857                                if (dec)
2858                                        p->slots[level]++;
2859                                goto done;
2860                        }
2861
2862                        err = read_block_for_search(root, p, &b, level,
2863                                                    slot, key);
2864                        if (err == -EAGAIN)
2865                                goto again;
2866                        if (err) {
2867                                ret = err;
2868                                goto done;
2869                        }
2870
2871                        if (!p->skip_locking) {
2872                                level = btrfs_header_level(b);
2873                                if (level <= write_lock_level) {
2874                                        err = btrfs_try_tree_write_lock(b);
2875                                        if (!err) {
2876                                                btrfs_set_path_blocking(p);
2877                                                btrfs_tree_lock(b);
2878                                                btrfs_clear_path_blocking(p, b,
2879                                                                  BTRFS_WRITE_LOCK);
2880                                        }
2881                                        p->locks[level] = BTRFS_WRITE_LOCK;
2882                                } else {
2883                                        err = btrfs_tree_read_lock_atomic(b);
2884                                        if (!err) {
2885                                                btrfs_set_path_blocking(p);
2886                                                btrfs_tree_read_lock(b);
2887                                                btrfs_clear_path_blocking(p, b,
2888                                                                  BTRFS_READ_LOCK);
2889                                        }
2890                                        p->locks[level] = BTRFS_READ_LOCK;
2891                                }
2892                                p->nodes[level] = b;
2893                        }
2894                } else {
2895                        p->slots[level] = slot;
2896                        if (ins_len > 0 &&
2897                            btrfs_leaf_free_space(fs_info, b) < ins_len) {
2898                                if (write_lock_level < 1) {
2899                                        write_lock_level = 1;
2900                                        btrfs_release_path(p);
2901                                        goto again;
2902                                }
2903
2904                                btrfs_set_path_blocking(p);
2905                                err = split_leaf(trans, root, key,
2906                                                 p, ins_len, ret == 0);
2907                                btrfs_clear_path_blocking(p, NULL, 0);
2908
2909                                BUG_ON(err > 0);
2910                                if (err) {
2911                                        ret = err;
2912                                        goto done;
2913                                }
2914                        }
2915                        if (!p->search_for_split)
2916                                unlock_up(p, level, lowest_unlock,
2917                                          min_write_lock_level, &write_lock_level);
2918                        goto done;
2919                }
2920        }
2921        ret = 1;
2922done:
2923        /*
2924         * we don't really know what they plan on doing with the path
2925         * from here on, so for now just mark it as blocking
2926         */
2927        if (!p->leave_spinning)
2928                btrfs_set_path_blocking(p);
2929        if (ret < 0 && !p->skip_release_on_error)
2930                btrfs_release_path(p);
2931        return ret;
2932}
2933
2934/*
2935 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2936 * current state of the tree together with the operations recorded in the tree
2937 * modification log to search for the key in a previous version of this tree, as
2938 * denoted by the time_seq parameter.
2939 *
2940 * Naturally, there is no support for insert, delete or cow operations.
2941 *
2942 * The resulting path and return value will be set up as if we called
2943 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2944 */
2945int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2946                          struct btrfs_path *p, u64 time_seq)
2947{
2948        struct btrfs_fs_info *fs_info = root->fs_info;
2949        struct extent_buffer *b;
2950        int slot;
2951        int ret;
2952        int err;
2953        int level;
2954        int lowest_unlock = 1;
2955        u8 lowest_level = 0;
2956        int prev_cmp = -1;
2957
2958        lowest_level = p->lowest_level;
2959        WARN_ON(p->nodes[0] != NULL);
2960
2961        if (p->search_commit_root) {
2962                BUG_ON(time_seq);
2963                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2964        }
2965
2966again:
2967        b = get_old_root(root, time_seq);
2968        level = btrfs_header_level(b);
2969        p->locks[level] = BTRFS_READ_LOCK;
2970
2971        while (b) {
2972                level = btrfs_header_level(b);
2973                p->nodes[level] = b;
2974                btrfs_clear_path_blocking(p, NULL, 0);
2975
2976                /*
2977                 * we have a lock on b and as long as we aren't changing
2978                 * the tree, there is no way to for the items in b to change.
2979                 * It is safe to drop the lock on our parent before we
2980                 * go through the expensive btree search on b.
2981                 */
2982                btrfs_unlock_up_safe(p, level + 1);
2983
2984                /*
2985                 * Since we can unwind ebs we want to do a real search every
2986                 * time.
2987                 */
2988                prev_cmp = -1;
2989                ret = key_search(b, key, level, &prev_cmp, &slot);
2990
2991                if (level != 0) {
2992                        int dec = 0;
2993                        if (ret && slot > 0) {
2994                                dec = 1;
2995                                slot -= 1;
2996                        }
2997                        p->slots[level] = slot;
2998                        unlock_up(p, level, lowest_unlock, 0, NULL);
2999
3000                        if (level == lowest_level) {
3001                                if (dec)
3002                                        p->slots[level]++;
3003                                goto done;
3004                        }
3005
3006                        err = read_block_for_search(root, p, &b, level,
3007                                                    slot, key);
3008                        if (err == -EAGAIN)
3009                                goto again;
3010                        if (err) {
3011                                ret = err;
3012                                goto done;
3013                        }
3014
3015                        level = btrfs_header_level(b);
3016                        err = btrfs_tree_read_lock_atomic(b);
3017                        if (!err) {
3018                                btrfs_set_path_blocking(p);
3019                                btrfs_tree_read_lock(b);
3020                                btrfs_clear_path_blocking(p, b,
3021                                                          BTRFS_READ_LOCK);
3022                        }
3023                        b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3024                        if (!b) {
3025                                ret = -ENOMEM;
3026                                goto done;
3027                        }
3028                        p->locks[level] = BTRFS_READ_LOCK;
3029                        p->nodes[level] = b;
3030                } else {
3031                        p->slots[level] = slot;
3032                        unlock_up(p, level, lowest_unlock, 0, NULL);
3033                        goto done;
3034                }
3035        }
3036        ret = 1;
3037done:
3038        if (!p->leave_spinning)
3039                btrfs_set_path_blocking(p);
3040        if (ret < 0)
3041                btrfs_release_path(p);
3042
3043        return ret;
3044}
3045
3046/*
3047 * helper to use instead of search slot if no exact match is needed but
3048 * instead the next or previous item should be returned.
3049 * When find_higher is true, the next higher item is returned, the next lower
3050 * otherwise.
3051 * When return_any and find_higher are both true, and no higher item is found,
3052 * return the next lower instead.
3053 * When return_any is true and find_higher is false, and no lower item is found,
3054 * return the next higher instead.
3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056 * < 0 on error
3057 */
3058int btrfs_search_slot_for_read(struct btrfs_root *root,
3059                               const struct btrfs_key *key,
3060                               struct btrfs_path *p, int find_higher,
3061                               int return_any)
3062{
3063        int ret;
3064        struct extent_buffer *leaf;
3065
3066again:
3067        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068        if (ret <= 0)
3069                return ret;
3070        /*
3071         * a return value of 1 means the path is at the position where the
3072         * item should be inserted. Normally this is the next bigger item,
3073         * but in case the previous item is the last in a leaf, path points
3074         * to the first free slot in the previous leaf, i.e. at an invalid
3075         * item.
3076         */
3077        leaf = p->nodes[0];
3078
3079        if (find_higher) {
3080                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081                        ret = btrfs_next_leaf(root, p);
3082                        if (ret <= 0)
3083                                return ret;
3084                        if (!return_any)
3085                                return 1;
3086                        /*
3087                         * no higher item found, return the next
3088                         * lower instead
3089                         */
3090                        return_any = 0;
3091                        find_higher = 0;
3092                        btrfs_release_path(p);
3093                        goto again;
3094                }
3095        } else {
3096                if (p->slots[0] == 0) {
3097                        ret = btrfs_prev_leaf(root, p);
3098                        if (ret < 0)
3099                                return ret;
3100                        if (!ret) {
3101                                leaf = p->nodes[0];
3102                                if (p->slots[0] == btrfs_header_nritems(leaf))
3103                                        p->slots[0]--;
3104                                return 0;
3105                        }
3106                        if (!return_any)
3107                                return 1;
3108                        /*
3109                         * no lower item found, return the next
3110                         * higher instead
3111                         */
3112                        return_any = 0;
3113                        find_higher = 1;
3114                        btrfs_release_path(p);
3115                        goto again;
3116                } else {
3117                        --p->slots[0];
3118                }
3119        }
3120        return 0;
3121}
3122
3123/*
3124 * adjust the pointers going up the tree, starting at level
3125 * making sure the right key of each node is points to 'key'.
3126 * This is used after shifting pointers to the left, so it stops
3127 * fixing up pointers when a given leaf/node is not in slot 0 of the
3128 * higher levels
3129 *
3130 */
3131static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3132                           struct btrfs_path *path,
3133                           struct btrfs_disk_key *key, int level)
3134{
3135        int i;
3136        struct extent_buffer *t;
3137        int ret;
3138
3139        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3140                int tslot = path->slots[i];
3141
3142                if (!path->nodes[i])
3143                        break;
3144                t = path->nodes[i];
3145                ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3146                                GFP_ATOMIC);
3147                BUG_ON(ret < 0);
3148                btrfs_set_node_key(t, key, tslot);
3149                btrfs_mark_buffer_dirty(path->nodes[i]);
3150                if (tslot != 0)
3151                        break;
3152        }
3153}
3154
3155/*
3156 * update item key.
3157 *
3158 * This function isn't completely safe. It's the caller's responsibility
3159 * that the new key won't break the order
3160 */
3161void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3162                             struct btrfs_path *path,
3163                             const struct btrfs_key *new_key)
3164{
3165        struct btrfs_disk_key disk_key;
3166        struct extent_buffer *eb;
3167        int slot;
3168
3169        eb = path->nodes[0];
3170        slot = path->slots[0];
3171        if (slot > 0) {
3172                btrfs_item_key(eb, &disk_key, slot - 1);
3173                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3174        }
3175        if (slot < btrfs_header_nritems(eb) - 1) {
3176                btrfs_item_key(eb, &disk_key, slot + 1);
3177                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3178        }
3179
3180        btrfs_cpu_key_to_disk(&disk_key, new_key);
3181        btrfs_set_item_key(eb, &disk_key, slot);
3182        btrfs_mark_buffer_dirty(eb);
3183        if (slot == 0)
3184                fixup_low_keys(fs_info, path, &disk_key, 1);
3185}
3186
3187/*
3188 * try to push data from one node into the next node left in the
3189 * tree.
3190 *
3191 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3192 * error, and > 0 if there was no room in the left hand block.
3193 */
3194static int push_node_left(struct btrfs_trans_handle *trans,
3195                          struct btrfs_fs_info *fs_info,
3196                          struct extent_buffer *dst,
3197                          struct extent_buffer *src, int empty)
3198{
3199        int push_items = 0;
3200        int src_nritems;
3201        int dst_nritems;
3202        int ret = 0;
3203
3204        src_nritems = btrfs_header_nritems(src);
3205        dst_nritems = btrfs_header_nritems(dst);
3206        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3207        WARN_ON(btrfs_header_generation(src) != trans->transid);
3208        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3209
3210        if (!empty && src_nritems <= 8)
3211                return 1;
3212
3213        if (push_items <= 0)
3214                return 1;
3215
3216        if (empty) {
3217                push_items = min(src_nritems, push_items);
3218                if (push_items < src_nritems) {
3219                        /* leave at least 8 pointers in the node if
3220                         * we aren't going to empty it
3221                         */
3222                        if (src_nritems - push_items < 8) {
3223                                if (push_items <= 8)
3224                                        return 1;
3225                                push_items -= 8;
3226                        }
3227                }
3228        } else
3229                push_items = min(src_nritems - 8, push_items);
3230
3231        ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3232                                   push_items);
3233        if (ret) {
3234                btrfs_abort_transaction(trans, ret);
3235                return ret;
3236        }
3237        copy_extent_buffer(dst, src,
3238                           btrfs_node_key_ptr_offset(dst_nritems),
3239                           btrfs_node_key_ptr_offset(0),
3240                           push_items * sizeof(struct btrfs_key_ptr));
3241
3242        if (push_items < src_nritems) {
3243                /*
3244                 * Don't call tree_mod_log_insert_move here, key removal was
3245                 * already fully logged by tree_mod_log_eb_copy above.
3246                 */
3247                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3248                                      btrfs_node_key_ptr_offset(push_items),
3249                                      (src_nritems - push_items) *
3250                                      sizeof(struct btrfs_key_ptr));
3251        }
3252        btrfs_set_header_nritems(src, src_nritems - push_items);
3253        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3254        btrfs_mark_buffer_dirty(src);
3255        btrfs_mark_buffer_dirty(dst);
3256
3257        return ret;
3258}
3259
3260/*
3261 * try to push data from one node into the next node right in the
3262 * tree.
3263 *
3264 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3265 * error, and > 0 if there was no room in the right hand block.
3266 *
3267 * this will  only push up to 1/2 the contents of the left node over
3268 */
3269static int balance_node_right(struct btrfs_trans_handle *trans,
3270                              struct btrfs_fs_info *fs_info,
3271                              struct extent_buffer *dst,
3272                              struct extent_buffer *src)
3273{
3274        int push_items = 0;
3275        int max_push;
3276        int src_nritems;
3277        int dst_nritems;
3278        int ret = 0;
3279
3280        WARN_ON(btrfs_header_generation(src) != trans->transid);
3281        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3282
3283        src_nritems = btrfs_header_nritems(src);
3284        dst_nritems = btrfs_header_nritems(dst);
3285        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3286        if (push_items <= 0)
3287                return 1;
3288
3289        if (src_nritems < 4)
3290                return 1;
3291
3292        max_push = src_nritems / 2 + 1;
3293        /* don't try to empty the node */
3294        if (max_push >= src_nritems)
3295                return 1;
3296
3297        if (max_push < push_items)
3298                push_items = max_push;
3299
3300        ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3301        BUG_ON(ret < 0);
3302        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3303                                      btrfs_node_key_ptr_offset(0),
3304                                      (dst_nritems) *
3305                                      sizeof(struct btrfs_key_ptr));
3306
3307        ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3308                                   src_nritems - push_items, push_items);
3309        if (ret) {
3310                btrfs_abort_transaction(trans, ret);
3311                return ret;
3312        }
3313        copy_extent_buffer(dst, src,
3314                           btrfs_node_key_ptr_offset(0),
3315                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3316                           push_items * sizeof(struct btrfs_key_ptr));
3317
3318        btrfs_set_header_nritems(src, src_nritems - push_items);
3319        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3320
3321        btrfs_mark_buffer_dirty(src);
3322        btrfs_mark_buffer_dirty(dst);
3323
3324        return ret;
3325}
3326
3327/*
3328 * helper function to insert a new root level in the tree.
3329 * A new node is allocated, and a single item is inserted to
3330 * point to the existing root
3331 *
3332 * returns zero on success or < 0 on failure.
3333 */
3334static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3335                           struct btrfs_root *root,
3336                           struct btrfs_path *path, int level)
3337{
3338        struct btrfs_fs_info *fs_info = root->fs_info;
3339        u64 lower_gen;
3340        struct extent_buffer *lower;
3341        struct extent_buffer *c;
3342        struct extent_buffer *old;
3343        struct btrfs_disk_key lower_key;
3344        int ret;
3345
3346        BUG_ON(path->nodes[level]);
3347        BUG_ON(path->nodes[level-1] != root->node);
3348
3349        lower = path->nodes[level-1];
3350        if (level == 1)
3351                btrfs_item_key(lower, &lower_key, 0);
3352        else
3353                btrfs_node_key(lower, &lower_key, 0);
3354
3355        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3356                                   &lower_key, level, root->node->start, 0);
3357        if (IS_ERR(c))
3358                return PTR_ERR(c);
3359
3360        root_add_used(root, fs_info->nodesize);
3361
3362        memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3363        btrfs_set_header_nritems(c, 1);
3364        btrfs_set_header_level(c, level);
3365        btrfs_set_header_bytenr(c, c->start);
3366        btrfs_set_header_generation(c, trans->transid);
3367        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3368        btrfs_set_header_owner(c, root->root_key.objectid);
3369
3370        write_extent_buffer_fsid(c, fs_info->fsid);
3371        write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3372
3373        btrfs_set_node_key(c, &lower_key, 0);
3374        btrfs_set_node_blockptr(c, 0, lower->start);
3375        lower_gen = btrfs_header_generation(lower);
3376        WARN_ON(lower_gen != trans->transid);
3377
3378        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3379
3380        btrfs_mark_buffer_dirty(c);
3381
3382        old = root->node;
3383        ret = tree_mod_log_insert_root(root->node, c, 0);
3384        BUG_ON(ret < 0);
3385        rcu_assign_pointer(root->node, c);
3386
3387        /* the super has an extra ref to root->node */
3388        free_extent_buffer(old);
3389
3390        add_root_to_dirty_list(root);
3391        extent_buffer_get(c);
3392        path->nodes[level] = c;
3393        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3394        path->slots[level] = 0;
3395        return 0;
3396}
3397
3398/*
3399 * worker function to insert a single pointer in a node.
3400 * the node should have enough room for the pointer already
3401 *
3402 * slot and level indicate where you want the key to go, and
3403 * blocknr is the block the key points to.
3404 */
3405static void insert_ptr(struct btrfs_trans_handle *trans,
3406                       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3407                       struct btrfs_disk_key *key, u64 bytenr,
3408                       int slot, int level)
3409{
3410        struct extent_buffer *lower;
3411        int nritems;
3412        int ret;
3413
3414        BUG_ON(!path->nodes[level]);
3415        btrfs_assert_tree_locked(path->nodes[level]);
3416        lower = path->nodes[level];
3417        nritems = btrfs_header_nritems(lower);
3418        BUG_ON(slot > nritems);
3419        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3420        if (slot != nritems) {
3421                if (level) {
3422                        ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3423                                        nritems - slot);
3424                        BUG_ON(ret < 0);
3425                }
3426                memmove_extent_buffer(lower,
3427                              btrfs_node_key_ptr_offset(slot + 1),
3428                              btrfs_node_key_ptr_offset(slot),
3429                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3430        }
3431        if (level) {
3432                ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3433                                GFP_NOFS);
3434                BUG_ON(ret < 0);
3435        }
3436        btrfs_set_node_key(lower, key, slot);
3437        btrfs_set_node_blockptr(lower, slot, bytenr);
3438        WARN_ON(trans->transid == 0);
3439        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3440        btrfs_set_header_nritems(lower, nritems + 1);
3441        btrfs_mark_buffer_dirty(lower);
3442}
3443
3444/*
3445 * split the node at the specified level in path in two.
3446 * The path is corrected to point to the appropriate node after the split
3447 *
3448 * Before splitting this tries to make some room in the node by pushing
3449 * left and right, if either one works, it returns right away.
3450 *
3451 * returns 0 on success and < 0 on failure
3452 */
3453static noinline int split_node(struct btrfs_trans_handle *trans,
3454                               struct btrfs_root *root,
3455                               struct btrfs_path *path, int level)
3456{
3457        struct btrfs_fs_info *fs_info = root->fs_info;
3458        struct extent_buffer *c;
3459        struct extent_buffer *split;
3460        struct btrfs_disk_key disk_key;
3461        int mid;
3462        int ret;
3463        u32 c_nritems;
3464
3465        c = path->nodes[level];
3466        WARN_ON(btrfs_header_generation(c) != trans->transid);
3467        if (c == root->node) {
3468                /*
3469                 * trying to split the root, lets make a new one
3470                 *
3471                 * tree mod log: We don't log_removal old root in
3472                 * insert_new_root, because that root buffer will be kept as a
3473                 * normal node. We are going to log removal of half of the
3474                 * elements below with tree_mod_log_eb_copy. We're holding a
3475                 * tree lock on the buffer, which is why we cannot race with
3476                 * other tree_mod_log users.
3477                 */
3478                ret = insert_new_root(trans, root, path, level + 1);
3479                if (ret)
3480                        return ret;
3481        } else {
3482                ret = push_nodes_for_insert(trans, root, path, level);
3483                c = path->nodes[level];
3484                if (!ret && btrfs_header_nritems(c) <
3485                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3486                        return 0;
3487                if (ret < 0)
3488                        return ret;
3489        }
3490
3491        c_nritems = btrfs_header_nritems(c);
3492        mid = (c_nritems + 1) / 2;
3493        btrfs_node_key(c, &disk_key, mid);
3494
3495        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496                        &disk_key, level, c->start, 0);
3497        if (IS_ERR(split))
3498                return PTR_ERR(split);
3499
3500        root_add_used(root, fs_info->nodesize);
3501
3502        memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3503        btrfs_set_header_level(split, btrfs_header_level(c));
3504        btrfs_set_header_bytenr(split, split->start);
3505        btrfs_set_header_generation(split, trans->transid);
3506        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507        btrfs_set_header_owner(split, root->root_key.objectid);
3508        write_extent_buffer_fsid(split, fs_info->fsid);
3509        write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3510
3511        ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3512        if (ret) {
3513                btrfs_abort_transaction(trans, ret);
3514                return ret;
3515        }
3516        copy_extent_buffer(split, c,
3517                           btrfs_node_key_ptr_offset(0),
3518                           btrfs_node_key_ptr_offset(mid),
3519                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520        btrfs_set_header_nritems(split, c_nritems - mid);
3521        btrfs_set_header_nritems(c, mid);
3522        ret = 0;
3523
3524        btrfs_mark_buffer_dirty(c);
3525        btrfs_mark_buffer_dirty(split);
3526
3527        insert_ptr(trans, fs_info, path, &disk_key, split->start,
3528                   path->slots[level + 1] + 1, level + 1);
3529
3530        if (path->slots[level] >= mid) {
3531                path->slots[level] -= mid;
3532                btrfs_tree_unlock(c);
3533                free_extent_buffer(c);
3534                path->nodes[level] = split;
3535                path->slots[level + 1] += 1;
3536        } else {
3537                btrfs_tree_unlock(split);
3538                free_extent_buffer(split);
3539        }
3540        return ret;
3541}
3542
3543/*
3544 * how many bytes are required to store the items in a leaf.  start
3545 * and nr indicate which items in the leaf to check.  This totals up the
3546 * space used both by the item structs and the item data
3547 */
3548static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549{
3550        struct btrfs_item *start_item;
3551        struct btrfs_item *end_item;
3552        struct btrfs_map_token token;
3553        int data_len;
3554        int nritems = btrfs_header_nritems(l);
3555        int end = min(nritems, start + nr) - 1;
3556
3557        if (!nr)
3558                return 0;
3559        btrfs_init_map_token(&token);
3560        start_item = btrfs_item_nr(start);
3561        end_item = btrfs_item_nr(end);
3562        data_len = btrfs_token_item_offset(l, start_item, &token) +
3563                btrfs_token_item_size(l, start_item, &token);
3564        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565        data_len += sizeof(struct btrfs_item) * nr;
3566        WARN_ON(data_len < 0);
3567        return data_len;
3568}
3569
3570/*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data.  IOW, how much room
3573 * the leaf has left for both items and data
3574 */
3575noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3576                                   struct extent_buffer *leaf)
3577{
3578        int nritems = btrfs_header_nritems(leaf);
3579        int ret;
3580
3581        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582        if (ret < 0) {
3583                btrfs_crit(fs_info,
3584                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585                           ret,
3586                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587                           leaf_space_used(leaf, 0, nritems), nritems);
3588        }
3589        return ret;
3590}
3591
3592/*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right.  We'll push up to and including min_slot, but no lower
3595 */
3596static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3597                                      struct btrfs_path *path,
3598                                      int data_size, int empty,
3599                                      struct extent_buffer *right,
3600                                      int free_space, u32 left_nritems,
3601                                      u32 min_slot)
3602{
3603        struct extent_buffer *left = path->nodes[0];
3604        struct extent_buffer *upper = path->nodes[1];
3605        struct btrfs_map_token token;
3606        struct btrfs_disk_key disk_key;
3607        int slot;
3608        u32 i;
3609        int push_space = 0;
3610        int push_items = 0;
3611        struct btrfs_item *item;
3612        u32 nr;
3613        u32 right_nritems;
3614        u32 data_end;
3615        u32 this_item_size;
3616
3617        btrfs_init_map_token(&token);
3618
3619        if (empty)
3620                nr = 0;
3621        else
3622                nr = max_t(u32, 1, min_slot);
3623
3624        if (path->slots[0] >= left_nritems)
3625                push_space += data_size;
3626
3627        slot = path->slots[1];
3628        i = left_nritems - 1;
3629        while (i >= nr) {
3630                item = btrfs_item_nr(i);
3631
3632                if (!empty && push_items > 0) {
3633                        if (path->slots[0] > i)
3634                                break;
3635                        if (path->slots[0] == i) {
3636                                int space = btrfs_leaf_free_space(fs_info, left);
3637                                if (space + push_space * 2 > free_space)
3638                                        break;
3639                        }
3640                }
3641
3642                if (path->slots[0] == i)
3643                        push_space += data_size;
3644
3645                this_item_size = btrfs_item_size(left, item);
3646                if (this_item_size + sizeof(*item) + push_space > free_space)
3647                        break;
3648
3649                push_items++;
3650                push_space += this_item_size + sizeof(*item);
3651                if (i == 0)
3652                        break;
3653                i--;
3654        }
3655
3656        if (push_items == 0)
3657                goto out_unlock;
3658
3659        WARN_ON(!empty && push_items == left_nritems);
3660
3661        /* push left to right */
3662        right_nritems = btrfs_header_nritems(right);
3663
3664        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665        push_space -= leaf_data_end(fs_info, left);
3666
3667        /* make room in the right data area */
3668        data_end = leaf_data_end(fs_info, right);
3669        memmove_extent_buffer(right,
3670                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3671                              BTRFS_LEAF_DATA_OFFSET + data_end,
3672                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3673
3674        /* copy from the left data area */
3675        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3676                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3677                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3678                     push_space);
3679
3680        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681                              btrfs_item_nr_offset(0),
3682                              right_nritems * sizeof(struct btrfs_item));
3683
3684        /* copy the items from left to right */
3685        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686                   btrfs_item_nr_offset(left_nritems - push_items),
3687                   push_items * sizeof(struct btrfs_item));
3688
3689        /* update the item pointers */
3690        right_nritems += push_items;
3691        btrfs_set_header_nritems(right, right_nritems);
3692        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693        for (i = 0; i < right_nritems; i++) {
3694                item = btrfs_item_nr(i);
3695                push_space -= btrfs_token_item_size(right, item, &token);
3696                btrfs_set_token_item_offset(right, item, push_space, &token);
3697        }
3698
3699        left_nritems -= push_items;
3700        btrfs_set_header_nritems(left, left_nritems);
3701
3702        if (left_nritems)
3703                btrfs_mark_buffer_dirty(left);
3704        else
3705                clean_tree_block(fs_info, left);
3706
3707        btrfs_mark_buffer_dirty(right);
3708
3709        btrfs_item_key(right, &disk_key, 0);
3710        btrfs_set_node_key(upper, &disk_key, slot + 1);
3711        btrfs_mark_buffer_dirty(upper);
3712
3713        /* then fixup the leaf pointer in the path */
3714        if (path->slots[0] >= left_nritems) {
3715                path->slots[0] -= left_nritems;
3716                if (btrfs_header_nritems(path->nodes[0]) == 0)
3717                        clean_tree_block(fs_info, path->nodes[0]);
3718                btrfs_tree_unlock(path->nodes[0]);
3719                free_extent_buffer(path->nodes[0]);
3720                path->nodes[0] = right;
3721                path->slots[1] += 1;
3722        } else {
3723                btrfs_tree_unlock(right);
3724                free_extent_buffer(right);
3725        }
3726        return 0;
3727
3728out_unlock:
3729        btrfs_tree_unlock(right);
3730        free_extent_buffer(right);
3731        return 1;
3732}
3733
3734/*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3740 *
3741 * this will push starting from min_slot to the end of the leaf.  It won't
3742 * push any slot lower than min_slot
3743 */
3744static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745                           *root, struct btrfs_path *path,
3746                           int min_data_size, int data_size,
3747                           int empty, u32 min_slot)
3748{
3749        struct btrfs_fs_info *fs_info = root->fs_info;
3750        struct extent_buffer *left = path->nodes[0];
3751        struct extent_buffer *right;
3752        struct extent_buffer *upper;
3753        int slot;
3754        int free_space;
3755        u32 left_nritems;
3756        int ret;
3757
3758        if (!path->nodes[1])
3759                return 1;
3760
3761        slot = path->slots[1];
3762        upper = path->nodes[1];
3763        if (slot >= btrfs_header_nritems(upper) - 1)
3764                return 1;
3765
3766        btrfs_assert_tree_locked(path->nodes[1]);
3767
3768        right = read_node_slot(fs_info, upper, slot + 1);
3769        /*
3770         * slot + 1 is not valid or we fail to read the right node,
3771         * no big deal, just return.
3772         */
3773        if (IS_ERR(right))
3774                return 1;
3775
3776        btrfs_tree_lock(right);
3777        btrfs_set_lock_blocking(right);
3778
3779        free_space = btrfs_leaf_free_space(fs_info, right);
3780        if (free_space < data_size)
3781                goto out_unlock;
3782
3783        /* cow and double check */
3784        ret = btrfs_cow_block(trans, root, right, upper,
3785                              slot + 1, &right);
3786        if (ret)
3787                goto out_unlock;
3788
3789        free_space = btrfs_leaf_free_space(fs_info, right);
3790        if (free_space < data_size)
3791                goto out_unlock;
3792
3793        left_nritems = btrfs_header_nritems(left);
3794        if (left_nritems == 0)
3795                goto out_unlock;
3796
3797        if (path->slots[0] == left_nritems && !empty) {
3798                /* Key greater than all keys in the leaf, right neighbor has
3799                 * enough room for it and we're not emptying our leaf to delete
3800                 * it, therefore use right neighbor to insert the new item and
3801                 * no need to touch/dirty our left leaft. */
3802                btrfs_tree_unlock(left);
3803                free_extent_buffer(left);
3804                path->nodes[0] = right;
3805                path->slots[0] = 0;
3806                path->slots[1]++;
3807                return 0;
3808        }
3809
3810        return __push_leaf_right(fs_info, path, min_data_size, empty,
3811                                right, free_space, left_nritems, min_slot);
3812out_unlock:
3813        btrfs_tree_unlock(right);
3814        free_extent_buffer(right);
3815        return 1;
3816}
3817
3818/*
3819 * push some data in the path leaf to the left, trying to free up at
3820 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3821 *
3822 * max_slot can put a limit on how far into the leaf we'll push items.  The
3823 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3824 * items
3825 */
3826static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3827                                     struct btrfs_path *path, int data_size,
3828                                     int empty, struct extent_buffer *left,
3829                                     int free_space, u32 right_nritems,
3830                                     u32 max_slot)
3831{
3832        struct btrfs_disk_key disk_key;
3833        struct extent_buffer *right = path->nodes[0];
3834        int i;
3835        int push_space = 0;
3836        int push_items = 0;
3837        struct btrfs_item *item;
3838        u32 old_left_nritems;
3839        u32 nr;
3840        int ret = 0;
3841        u32 this_item_size;
3842        u32 old_left_item_size;
3843        struct btrfs_map_token token;
3844
3845        btrfs_init_map_token(&token);
3846
3847        if (empty)
3848                nr = min(right_nritems, max_slot);
3849        else
3850                nr = min(right_nritems - 1, max_slot);
3851
3852        for (i = 0; i < nr; i++) {
3853                item = btrfs_item_nr(i);
3854
3855                if (!empty && push_items > 0) {
3856                        if (path->slots[0] < i)
3857                                break;
3858                        if (path->slots[0] == i) {
3859                                int space = btrfs_leaf_free_space(fs_info, right);
3860                                if (space + push_space * 2 > free_space)
3861                                        break;
3862                        }
3863                }
3864
3865                if (path->slots[0] == i)
3866                        push_space += data_size;
3867
3868                this_item_size = btrfs_item_size(right, item);
3869                if (this_item_size + sizeof(*item) + push_space > free_space)
3870                        break;
3871
3872                push_items++;
3873                push_space += this_item_size + sizeof(*item);
3874        }
3875
3876        if (push_items == 0) {
3877                ret = 1;
3878                goto out;
3879        }
3880        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881
3882        /* push data from right to left */
3883        copy_extent_buffer(left, right,
3884                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885                           btrfs_item_nr_offset(0),
3886                           push_items * sizeof(struct btrfs_item));
3887
3888        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3889                     btrfs_item_offset_nr(right, push_items - 1);
3890
3891        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3892                     leaf_data_end(fs_info, left) - push_space,
3893                     BTRFS_LEAF_DATA_OFFSET +
3894                     btrfs_item_offset_nr(right, push_items - 1),
3895                     push_space);
3896        old_left_nritems = btrfs_header_nritems(left);
3897        BUG_ON(old_left_nritems <= 0);
3898
3899        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901                u32 ioff;
3902
3903                item = btrfs_item_nr(i);
3904
3905                ioff = btrfs_token_item_offset(left, item, &token);
3906                btrfs_set_token_item_offset(left, item,
3907                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3908                      &token);
3909        }
3910        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911
3912        /* fixup right node */
3913        if (push_items > right_nritems)
3914                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915                       right_nritems);
3916
3917        if (push_items < right_nritems) {
3918                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919                                                  leaf_data_end(fs_info, right);
3920                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3921                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3922                                      BTRFS_LEAF_DATA_OFFSET +
3923                                      leaf_data_end(fs_info, right), push_space);
3924
3925                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926                              btrfs_item_nr_offset(push_items),
3927                             (btrfs_header_nritems(right) - push_items) *
3928                             sizeof(struct btrfs_item));
3929        }
3930        right_nritems -= push_items;
3931        btrfs_set_header_nritems(right, right_nritems);
3932        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3933        for (i = 0; i < right_nritems; i++) {
3934                item = btrfs_item_nr(i);
3935
3936                push_space = push_space - btrfs_token_item_size(right,
3937                                                                item, &token);
3938                btrfs_set_token_item_offset(right, item, push_space, &token);
3939        }
3940
3941        btrfs_mark_buffer_dirty(left);
3942        if (right_nritems)
3943                btrfs_mark_buffer_dirty(right);
3944        else
3945                clean_tree_block(fs_info, right);
3946
3947        btrfs_item_key(right, &disk_key, 0);
3948        fixup_low_keys(fs_info, path, &disk_key, 1);
3949
3950        /* then fixup the leaf pointer in the path */
3951        if (path->slots[0] < push_items) {
3952                path->slots[0] += old_left_nritems;
3953                btrfs_tree_unlock(path->nodes[0]);
3954                free_extent_buffer(path->nodes[0]);
3955                path->nodes[0] = left;
3956                path->slots[1] -= 1;
3957        } else {
3958                btrfs_tree_unlock(left);
3959                free_extent_buffer(left);
3960                path->slots[0] -= push_items;
3961        }
3962        BUG_ON(path->slots[0] < 0);
3963        return ret;
3964out:
3965        btrfs_tree_unlock(left);
3966        free_extent_buffer(left);
3967        return ret;
3968}
3969
3970/*
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973 *
3974 * max_slot can put a limit on how far into the leaf we'll push items.  The
3975 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3976 * items
3977 */
3978static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979                          *root, struct btrfs_path *path, int min_data_size,
3980                          int data_size, int empty, u32 max_slot)
3981{
3982        struct btrfs_fs_info *fs_info = root->fs_info;
3983        struct extent_buffer *right = path->nodes[0];
3984        struct extent_buffer *left;
3985        int slot;
3986        int free_space;
3987        u32 right_nritems;
3988        int ret = 0;
3989
3990        slot = path->slots[1];
3991        if (slot == 0)
3992                return 1;
3993        if (!path->nodes[1])
3994                return 1;
3995
3996        right_nritems = btrfs_header_nritems(right);
3997        if (right_nritems == 0)
3998                return 1;
3999
4000        btrfs_assert_tree_locked(path->nodes[1]);
4001
4002        left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4003        /*
4004         * slot - 1 is not valid or we fail to read the left node,
4005         * no big deal, just return.
4006         */
4007        if (IS_ERR(left))
4008                return 1;
4009
4010        btrfs_tree_lock(left);
4011        btrfs_set_lock_blocking(left);
4012
4013        free_space = btrfs_leaf_free_space(fs_info, left);
4014        if (free_space < data_size) {
4015                ret = 1;
4016                goto out;
4017        }
4018
4019        /* cow and double check */
4020        ret = btrfs_cow_block(trans, root, left,
4021                              path->nodes[1], slot - 1, &left);
4022        if (ret) {
4023                /* we hit -ENOSPC, but it isn't fatal here */
4024                if (ret == -ENOSPC)
4025                        ret = 1;
4026                goto out;
4027        }
4028
4029        free_space = btrfs_leaf_free_space(fs_info, left);
4030        if (free_space < data_size) {
4031                ret = 1;
4032                goto out;
4033        }
4034
4035        return __push_leaf_left(fs_info, path, min_data_size,
4036                               empty, left, free_space, right_nritems,
4037                               max_slot);
4038out:
4039        btrfs_tree_unlock(left);
4040        free_extent_buffer(left);
4041        return ret;
4042}
4043
4044/*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4047 */
4048static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049                                    struct btrfs_fs_info *fs_info,
4050                                    struct btrfs_path *path,
4051                                    struct extent_buffer *l,
4052                                    struct extent_buffer *right,
4053                                    int slot, int mid, int nritems)
4054{
4055        int data_copy_size;
4056        int rt_data_off;
4057        int i;
4058        struct btrfs_disk_key disk_key;
4059        struct btrfs_map_token token;
4060
4061        btrfs_init_map_token(&token);
4062
4063        nritems = nritems - mid;
4064        btrfs_set_header_nritems(right, nritems);
4065        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4066
4067        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4068                           btrfs_item_nr_offset(mid),
4069                           nritems * sizeof(struct btrfs_item));
4070
4071        copy_extent_buffer(right, l,
4072                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4073                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4074                     leaf_data_end(fs_info, l), data_copy_size);
4075
4076        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4077
4078        for (i = 0; i < nritems; i++) {
4079                struct btrfs_item *item = btrfs_item_nr(i);
4080                u32 ioff;
4081
4082                ioff = btrfs_token_item_offset(right, item, &token);
4083                btrfs_set_token_item_offset(right, item,
4084                                            ioff + rt_data_off, &token);
4085        }
4086
4087        btrfs_set_header_nritems(l, mid);
4088        btrfs_item_key(right, &disk_key, 0);
4089        insert_ptr(trans, fs_info, path, &disk_key, right->start,
4090                   path->slots[1] + 1, 1);
4091
4092        btrfs_mark_buffer_dirty(right);
4093        btrfs_mark_buffer_dirty(l);
4094        BUG_ON(path->slots[0] != slot);
4095
4096        if (mid <= slot) {
4097                btrfs_tree_unlock(path->nodes[0]);
4098                free_extent_buffer(path->nodes[0]);
4099                path->nodes[0] = right;
4100                path->slots[0] -= mid;
4101                path->slots[1] += 1;
4102        } else {
4103                btrfs_tree_unlock(right);
4104                free_extent_buffer(right);
4105        }
4106
4107        BUG_ON(path->slots[0] < 0);
4108}
4109
4110/*
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114 *          A                 B                 C
4115 *
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves.  If all goes well we can avoid the double split
4118 * completely.
4119 */
4120static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121                                          struct btrfs_root *root,
4122                                          struct btrfs_path *path,
4123                                          int data_size)
4124{
4125        struct btrfs_fs_info *fs_info = root->fs_info;
4126        int ret;
4127        int progress = 0;
4128        int slot;
4129        u32 nritems;
4130        int space_needed = data_size;
4131
4132        slot = path->slots[0];
4133        if (slot < btrfs_header_nritems(path->nodes[0]))
4134                space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4135
4136        /*
4137         * try to push all the items after our slot into the
4138         * right leaf
4139         */
4140        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4141        if (ret < 0)
4142                return ret;
4143
4144        if (ret == 0)
4145                progress++;
4146
4147        nritems = btrfs_header_nritems(path->nodes[0]);
4148        /*
4149         * our goal is to get our slot at the start or end of a leaf.  If
4150         * we've done so we're done
4151         */
4152        if (path->slots[0] == 0 || path->slots[0] == nritems)
4153                return 0;
4154
4155        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4156                return 0;
4157
4158        /* try to push all the items before our slot into the next leaf */
4159        slot = path->slots[0];
4160        space_needed = data_size;
4161        if (slot > 0)
4162                space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4163        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164        if (ret < 0)
4165                return ret;
4166
4167        if (ret == 0)
4168                progress++;
4169
4170        if (progress)
4171                return 0;
4172        return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182                               struct btrfs_root *root,
4183                               const struct btrfs_key *ins_key,
4184                               struct btrfs_path *path, int data_size,
4185                               int extend)
4186{
4187        struct btrfs_disk_key disk_key;
4188        struct extent_buffer *l;
4189        u32 nritems;
4190        int mid;
4191        int slot;
4192        struct extent_buffer *right;
4193        struct btrfs_fs_info *fs_info = root->fs_info;
4194        int ret = 0;
4195        int wret;
4196        int split;
4197        int num_doubles = 0;
4198        int tried_avoid_double = 0;
4199
4200        l = path->nodes[0];
4201        slot = path->slots[0];
4202        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204                return -EOVERFLOW;
4205
4206        /* first try to make some room by pushing left and right */
4207        if (data_size && path->nodes[1]) {
4208                int space_needed = data_size;
4209
4210                if (slot < btrfs_header_nritems(l))
4211                        space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213                wret = push_leaf_right(trans, root, path, space_needed,
4214                                       space_needed, 0, 0);
4215                if (wret < 0)
4216                        return wret;
4217                if (wret) {
4218                        space_needed = data_size;
4219                        if (slot > 0)
4220                                space_needed -= btrfs_leaf_free_space(fs_info,
4221                                                                      l);
4222                        wret = push_leaf_left(trans, root, path, space_needed,
4223                                              space_needed, 0, (u32)-1);
4224                        if (wret < 0)
4225                                return wret;
4226                }
4227                l = path->nodes[0];
4228
4229                /* did the pushes work? */
4230                if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4231                        return 0;
4232        }
4233
4234        if (!path->nodes[1]) {
4235                ret = insert_new_root(trans, root, path, 1);
4236                if (ret)
4237                        return ret;
4238        }
4239again:
4240        split = 1;
4241        l = path->nodes[0];
4242        slot = path->slots[0];
4243        nritems = btrfs_header_nritems(l);
4244        mid = (nritems + 1) / 2;
4245
4246        if (mid <= slot) {
4247                if (nritems == 1 ||
4248                    leaf_space_used(l, mid, nritems - mid) + data_size >
4249                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250                        if (slot >= nritems) {
4251                                split = 0;
4252                        } else {
4253                                mid = slot;
4254                                if (mid != nritems &&
4255                                    leaf_space_used(l, mid, nritems - mid) +
4256                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4257                                        if (data_size && !tried_avoid_double)
4258                                                goto push_for_double;
4259                                        split = 2;
4260                                }
4261                        }
4262                }
4263        } else {
4264                if (leaf_space_used(l, 0, mid) + data_size >
4265                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4266                        if (!extend && data_size && slot == 0) {
4267                                split = 0;
4268                        } else if ((extend || !data_size) && slot == 0) {
4269                                mid = 1;
4270                        } else {
4271                                mid = slot;
4272                                if (mid != nritems &&
4273                                    leaf_space_used(l, mid, nritems - mid) +
4274                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275                                        if (data_size && !tried_avoid_double)
4276                                                goto push_for_double;
4277                                        split = 2;
4278                                }
4279                        }
4280                }
4281        }
4282
4283        if (split == 0)
4284                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285        else
4286                btrfs_item_key(l, &disk_key, mid);
4287
4288        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289                        &disk_key, 0, l->start, 0);
4290        if (IS_ERR(right))
4291                return PTR_ERR(right);
4292
4293        root_add_used(root, fs_info->nodesize);
4294
4295        memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4296        btrfs_set_header_bytenr(right, right->start);
4297        btrfs_set_header_generation(right, trans->transid);
4298        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299        btrfs_set_header_owner(right, root->root_key.objectid);
4300        btrfs_set_header_level(right, 0);
4301        write_extent_buffer_fsid(right, fs_info->fsid);
4302        write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4303
4304        if (split == 0) {
4305                if (mid <= slot) {
4306                        btrfs_set_header_nritems(right, 0);
4307                        insert_ptr(trans, fs_info, path, &disk_key,
4308                                   right->start, path->slots[1] + 1, 1);
4309                        btrfs_tree_unlock(path->nodes[0]);
4310                        free_extent_buffer(path->nodes[0]);
4311                        path->nodes[0] = right;
4312                        path->slots[0] = 0;
4313                        path->slots[1] += 1;
4314                } else {
4315                        btrfs_set_header_nritems(right, 0);
4316                        insert_ptr(trans, fs_info, path, &disk_key,
4317                                   right->start, path->slots[1], 1);
4318                        btrfs_tree_unlock(path->nodes[0]);
4319                        free_extent_buffer(path->nodes[0]);
4320                        path->nodes[0] = right;
4321                        path->slots[0] = 0;
4322                        if (path->slots[1] == 0)
4323                                fixup_low_keys(fs_info, path, &disk_key, 1);
4324                }
4325                /*
4326                 * We create a new leaf 'right' for the required ins_len and
4327                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328                 * the content of ins_len to 'right'.
4329                 */
4330                return ret;
4331        }
4332
4333        copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4334
4335        if (split == 2) {
4336                BUG_ON(num_doubles != 0);
4337                num_doubles++;
4338                goto again;
4339        }
4340
4341        return 0;
4342
4343push_for_double:
4344        push_for_double_split(trans, root, path, data_size);
4345        tried_avoid_double = 1;
4346        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4347                return 0;
4348        goto again;
4349}
4350
4351static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352                                         struct btrfs_root *root,
4353                                         struct btrfs_path *path, int ins_len)
4354{
4355        struct btrfs_fs_info *fs_info = root->fs_info;
4356        struct btrfs_key key;
4357        struct extent_buffer *leaf;
4358        struct btrfs_file_extent_item *fi;
4359        u64 extent_len = 0;
4360        u32 item_size;
4361        int ret;
4362
4363        leaf = path->nodes[0];
4364        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4365
4366        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4367               key.type != BTRFS_EXTENT_CSUM_KEY);
4368
4369        if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4370                return 0;
4371
4372        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4373        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374                fi = btrfs_item_ptr(leaf, path->slots[0],
4375                                    struct btrfs_file_extent_item);
4376                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4377        }
4378        btrfs_release_path(path);
4379
4380        path->keep_locks = 1;
4381        path->search_for_split = 1;
4382        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4383        path->search_for_split = 0;
4384        if (ret > 0)
4385                ret = -EAGAIN;
4386        if (ret < 0)
4387                goto err;
4388
4389        ret = -EAGAIN;
4390        leaf = path->nodes[0];
4391        /* if our item isn't there, return now */
4392        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4393                goto err;
4394
4395        /* the leaf has  changed, it now has room.  return now */
4396        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4397                goto err;
4398
4399        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4400                fi = btrfs_item_ptr(leaf, path->slots[0],
4401                                    struct btrfs_file_extent_item);
4402                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4403                        goto err;
4404        }
4405
4406        btrfs_set_path_blocking(path);
4407        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4408        if (ret)
4409                goto err;
4410
4411        path->keep_locks = 0;
4412        btrfs_unlock_up_safe(path, 1);
4413        return 0;
4414err:
4415        path->keep_locks = 0;
4416        return ret;
4417}
4418
4419static noinline int split_item(struct btrfs_fs_info *fs_info,
4420                               struct btrfs_path *path,
4421                               const struct btrfs_key *new_key,
4422                               unsigned long split_offset)
4423{
4424        struct extent_buffer *leaf;
4425        struct btrfs_item *item;
4426        struct btrfs_item *new_item;
4427        int slot;
4428        char *buf;
4429        u32 nritems;
4430        u32 item_size;
4431        u32 orig_offset;
4432        struct btrfs_disk_key disk_key;
4433
4434        leaf = path->nodes[0];
4435        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4436
4437        btrfs_set_path_blocking(path);
4438
4439        item = btrfs_item_nr(path->slots[0]);
4440        orig_offset = btrfs_item_offset(leaf, item);
4441        item_size = btrfs_item_size(leaf, item);
4442
4443        buf = kmalloc(item_size, GFP_NOFS);
4444        if (!buf)
4445                return -ENOMEM;
4446
4447        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448                            path->slots[0]), item_size);
4449
4450        slot = path->slots[0] + 1;
4451        nritems = btrfs_header_nritems(leaf);
4452        if (slot != nritems) {
4453                /* shift the items */
4454                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4455                                btrfs_item_nr_offset(slot),
4456                                (nritems - slot) * sizeof(struct btrfs_item));
4457        }
4458
4459        btrfs_cpu_key_to_disk(&disk_key, new_key);
4460        btrfs_set_item_key(leaf, &disk_key, slot);
4461
4462        new_item = btrfs_item_nr(slot);
4463
4464        btrfs_set_item_offset(leaf, new_item, orig_offset);
4465        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466
4467        btrfs_set_item_offset(leaf, item,
4468                              orig_offset + item_size - split_offset);
4469        btrfs_set_item_size(leaf, item, split_offset);
4470
4471        btrfs_set_header_nritems(leaf, nritems + 1);
4472
4473        /* write the data for the start of the original item */
4474        write_extent_buffer(leaf, buf,
4475                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4476                            split_offset);
4477
4478        /* write the data for the new item */
4479        write_extent_buffer(leaf, buf + split_offset,
4480                            btrfs_item_ptr_offset(leaf, slot),
4481                            item_size - split_offset);
4482        btrfs_mark_buffer_dirty(leaf);
4483
4484        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4485        kfree(buf);
4486        return 0;
4487}
4488
4489/*
4490 * This function splits a single item into two items,
4491 * giving 'new_key' to the new item and splitting the
4492 * old one at split_offset (from the start of the item).
4493 *
4494 * The path may be released by this operation.  After
4495 * the split, the path is pointing to the old item.  The
4496 * new item is going to be in the same node as the old one.
4497 *
4498 * Note, the item being split must be smaller enough to live alone on
4499 * a tree block with room for one extra struct btrfs_item
4500 *
4501 * This allows us to split the item in place, keeping a lock on the
4502 * leaf the entire time.
4503 */
4504int btrfs_split_item(struct btrfs_trans_handle *trans,
4505                     struct btrfs_root *root,
4506                     struct btrfs_path *path,
4507                     const struct btrfs_key *new_key,
4508                     unsigned long split_offset)
4509{
4510        int ret;
4511        ret = setup_leaf_for_split(trans, root, path,
4512                                   sizeof(struct btrfs_item));
4513        if (ret)
4514                return ret;
4515
4516        ret = split_item(root->fs_info, path, new_key, split_offset);
4517        return ret;
4518}
4519
4520/*
4521 * This function duplicate a item, giving 'new_key' to the new item.
4522 * It guarantees both items live in the same tree leaf and the new item
4523 * is contiguous with the original item.
4524 *
4525 * This allows us to split file extent in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529                         struct btrfs_root *root,
4530                         struct btrfs_path *path,
4531                         const struct btrfs_key *new_key)
4532{
4533        struct extent_buffer *leaf;
4534        int ret;
4535        u32 item_size;
4536
4537        leaf = path->nodes[0];
4538        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539        ret = setup_leaf_for_split(trans, root, path,
4540                                   item_size + sizeof(struct btrfs_item));
4541        if (ret)
4542                return ret;
4543
4544        path->slots[0]++;
4545        setup_items_for_insert(root, path, new_key, &item_size,
4546                               item_size, item_size +
4547                               sizeof(struct btrfs_item), 1);
4548        leaf = path->nodes[0];
4549        memcpy_extent_buffer(leaf,
4550                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4551                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552                             item_size);
4553        return 0;
4554}
4555
4556/*
4557 * make the item pointed to by the path smaller.  new_size indicates
4558 * how small to make it, and from_end tells us if we just chop bytes
4559 * off the end of the item or if we shift the item to chop bytes off
4560 * the front.
4561 */
4562void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4563                         struct btrfs_path *path, u32 new_size, int from_end)
4564{
4565        int slot;
4566        struct extent_buffer *leaf;
4567        struct btrfs_item *item;
4568        u32 nritems;
4569        unsigned int data_end;
4570        unsigned int old_data_start;
4571        unsigned int old_size;
4572        unsigned int size_diff;
4573        int i;
4574        struct btrfs_map_token token;
4575
4576        btrfs_init_map_token(&token);
4577
4578        leaf = path->nodes[0];
4579        slot = path->slots[0];
4580
4581        old_size = btrfs_item_size_nr(leaf, slot);
4582        if (old_size == new_size)
4583                return;
4584
4585        nritems = btrfs_header_nritems(leaf);
4586        data_end = leaf_data_end(fs_info, leaf);
4587
4588        old_data_start = btrfs_item_offset_nr(leaf, slot);
4589
4590        size_diff = old_size - new_size;
4591
4592        BUG_ON(slot < 0);
4593        BUG_ON(slot >= nritems);
4594
4595        /*
4596         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597         */
4598        /* first correct the data pointers */
4599        for (i = slot; i < nritems; i++) {
4600                u32 ioff;
4601                item = btrfs_item_nr(i);
4602
4603                ioff = btrfs_token_item_offset(leaf, item, &token);
4604                btrfs_set_token_item_offset(leaf, item,
4605                                            ioff + size_diff, &token);
4606        }
4607
4608        /* shift the data */
4609        if (from_end) {
4610                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612                              data_end, old_data_start + new_size - data_end);
4613        } else {
4614                struct btrfs_disk_key disk_key;
4615                u64 offset;
4616
4617                btrfs_item_key(leaf, &disk_key, slot);
4618
4619                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620                        unsigned long ptr;
4621                        struct btrfs_file_extent_item *fi;
4622
4623                        fi = btrfs_item_ptr(leaf, slot,
4624                                            struct btrfs_file_extent_item);
4625                        fi = (struct btrfs_file_extent_item *)(
4626                             (unsigned long)fi - size_diff);
4627
4628                        if (btrfs_file_extent_type(leaf, fi) ==
4629                            BTRFS_FILE_EXTENT_INLINE) {
4630                                ptr = btrfs_item_ptr_offset(leaf, slot);
4631                                memmove_extent_buffer(leaf, ptr,
4632                                      (unsigned long)fi,
4633                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634                        }
4635                }
4636
4637                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4638                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4639                              data_end, old_data_start - data_end);
4640
4641                offset = btrfs_disk_key_offset(&disk_key);
4642                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643                btrfs_set_item_key(leaf, &disk_key, slot);
4644                if (slot == 0)
4645                        fixup_low_keys(fs_info, path, &disk_key, 1);
4646        }
4647
4648        item = btrfs_item_nr(slot);
4649        btrfs_set_item_size(leaf, item, new_size);
4650        btrfs_mark_buffer_dirty(leaf);
4651
4652        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4653                btrfs_print_leaf(leaf);
4654                BUG();
4655        }
4656}
4657
4658/*
4659 * make the item pointed to by the path bigger, data_size is the added size.
4660 */
4661void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4662                       u32 data_size)
4663{
4664        int slot;
4665        struct extent_buffer *leaf;
4666        struct btrfs_item *item;
4667        u32 nritems;
4668        unsigned int data_end;
4669        unsigned int old_data;
4670        unsigned int old_size;
4671        int i;
4672        struct btrfs_map_token token;
4673
4674        btrfs_init_map_token(&token);
4675
4676        leaf = path->nodes[0];
4677
4678        nritems = btrfs_header_nritems(leaf);
4679        data_end = leaf_data_end(fs_info, leaf);
4680
4681        if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4682                btrfs_print_leaf(leaf);
4683                BUG();
4684        }
4685        slot = path->slots[0];
4686        old_data = btrfs_item_end_nr(leaf, slot);
4687
4688        BUG_ON(slot < 0);
4689        if (slot >= nritems) {
4690                btrfs_print_leaf(leaf);
4691                btrfs_crit(fs_info, "slot %d too large, nritems %d",
4692                           slot, nritems);
4693                BUG_ON(1);
4694        }
4695
4696        /*
4697         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698         */
4699        /* first correct the data pointers */
4700        for (i = slot; i < nritems; i++) {
4701                u32 ioff;
4702                item = btrfs_item_nr(i);
4703
4704                ioff = btrfs_token_item_offset(leaf, item, &token);
4705                btrfs_set_token_item_offset(leaf, item,
4706                                            ioff - data_size, &token);
4707        }
4708
4709        /* shift the data */
4710        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712                      data_end, old_data - data_end);
4713
4714        data_end = old_data;
4715        old_size = btrfs_item_size_nr(leaf, slot);
4716        item = btrfs_item_nr(slot);
4717        btrfs_set_item_size(leaf, item, old_size + data_size);
4718        btrfs_mark_buffer_dirty(leaf);
4719
4720        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4721                btrfs_print_leaf(leaf);
4722                BUG();
4723        }
4724}
4725
4726/*
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4730 */
4731void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732                            const struct btrfs_key *cpu_key, u32 *data_size,
4733                            u32 total_data, u32 total_size, int nr)
4734{
4735        struct btrfs_fs_info *fs_info = root->fs_info;
4736        struct btrfs_item *item;
4737        int i;
4738        u32 nritems;
4739        unsigned int data_end;
4740        struct btrfs_disk_key disk_key;
4741        struct extent_buffer *leaf;
4742        int slot;
4743        struct btrfs_map_token token;
4744
4745        if (path->slots[0] == 0) {
4746                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747                fixup_low_keys(fs_info, path, &disk_key, 1);
4748        }
4749        btrfs_unlock_up_safe(path, 1);
4750
4751        btrfs_init_map_token(&token);
4752
4753        leaf = path->nodes[0];
4754        slot = path->slots[0];
4755
4756        nritems = btrfs_header_nritems(leaf);
4757        data_end = leaf_data_end(fs_info, leaf);
4758
4759        if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4760                btrfs_print_leaf(leaf);
4761                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762                           total_size, btrfs_leaf_free_space(fs_info, leaf));
4763                BUG();
4764        }
4765
4766        if (slot != nritems) {
4767                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768
4769                if (old_data < data_end) {
4770                        btrfs_print_leaf(leaf);
4771                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772                                   slot, old_data, data_end);
4773                        BUG_ON(1);
4774                }
4775                /*
4776                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777                 */
4778                /* first correct the data pointers */
4779                for (i = slot; i < nritems; i++) {
4780                        u32 ioff;
4781
4782                        item = btrfs_item_nr(i);
4783                        ioff = btrfs_token_item_offset(leaf, item, &token);
4784                        btrfs_set_token_item_offset(leaf, item,
4785                                                    ioff - total_data, &token);
4786                }
4787                /* shift the items */
4788                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789                              btrfs_item_nr_offset(slot),
4790                              (nritems - slot) * sizeof(struct btrfs_item));
4791
4792                /* shift the data */
4793                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795                              data_end, old_data - data_end);
4796                data_end = old_data;
4797        }
4798
4799        /* setup the item for the new data */
4800        for (i = 0; i < nr; i++) {
4801                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802                btrfs_set_item_key(leaf, &disk_key, slot + i);
4803                item = btrfs_item_nr(slot + i);
4804                btrfs_set_token_item_offset(leaf, item,
4805                                            data_end - data_size[i], &token);
4806                data_end -= data_size[i];
4807                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808        }
4809
4810        btrfs_set_header_nritems(leaf, nritems + nr);
4811        btrfs_mark_buffer_dirty(leaf);
4812
4813        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4814                btrfs_print_leaf(leaf);
4815                BUG();
4816        }
4817}
4818
4819/*
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
4823int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824                            struct btrfs_root *root,
4825                            struct btrfs_path *path,
4826                            const struct btrfs_key *cpu_key, u32 *data_size,
4827                            int nr)
4828{
4829        int ret = 0;
4830        int slot;
4831        int i;
4832        u32 total_size = 0;
4833        u32 total_data = 0;
4834
4835        for (i = 0; i < nr; i++)
4836                total_data += data_size[i];
4837
4838        total_size = total_data + (nr * sizeof(struct btrfs_item));
4839        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840        if (ret == 0)
4841                return -EEXIST;
4842        if (ret < 0)
4843                return ret;
4844
4845        slot = path->slots[0];
4846        BUG_ON(slot < 0);
4847
4848        setup_items_for_insert(root, path, cpu_key, data_size,
4849                               total_data, total_size, nr);
4850        return 0;
4851}
4852
4853/*
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4856 */
4857int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858                      const struct btrfs_key *cpu_key, void *data,
4859                      u32 data_size)
4860{
4861        int ret = 0;
4862        struct btrfs_path *path;
4863        struct extent_buffer *leaf;
4864        unsigned long ptr;
4865
4866        path = btrfs_alloc_path();
4867        if (!path)
4868                return -ENOMEM;
4869        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870        if (!ret) {
4871                leaf = path->nodes[0];
4872                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873                write_extent_buffer(leaf, data, ptr, data_size);
4874                btrfs_mark_buffer_dirty(leaf);
4875        }
4876        btrfs_free_path(path);
4877        return ret;
4878}
4879
4880/*
4881 * delete the pointer from a given node.
4882 *
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
4885 */
4886static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887                    int level, int slot)
4888{
4889        struct btrfs_fs_info *fs_info = root->fs_info;
4890        struct extent_buffer *parent = path->nodes[level];
4891        u32 nritems;
4892        int ret;
4893
4894        nritems = btrfs_header_nritems(parent);
4895        if (slot != nritems - 1) {
4896                if (level) {
4897                        ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4898                                        nritems - slot - 1);
4899                        BUG_ON(ret < 0);
4900                }
4901                memmove_extent_buffer(parent,
4902                              btrfs_node_key_ptr_offset(slot),
4903                              btrfs_node_key_ptr_offset(slot + 1),
4904                              sizeof(struct btrfs_key_ptr) *
4905                              (nritems - slot - 1));
4906        } else if (level) {
4907                ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4908                                GFP_NOFS);
4909                BUG_ON(ret < 0);
4910        }
4911
4912        nritems--;
4913        btrfs_set_header_nritems(parent, nritems);
4914        if (nritems == 0 && parent == root->node) {
4915                BUG_ON(btrfs_header_level(root->node) != 1);
4916                /* just turn the root into a leaf and break */
4917                btrfs_set_header_level(root->node, 0);
4918        } else if (slot == 0) {
4919                struct btrfs_disk_key disk_key;
4920
4921                btrfs_node_key(parent, &disk_key, 0);
4922                fixup_low_keys(fs_info, path, &disk_key, level + 1);
4923        }
4924        btrfs_mark_buffer_dirty(parent);
4925}
4926
4927/*
4928 * a helper function to delete the leaf pointed to by path->slots[1] and
4929 * path->nodes[1].
4930 *
4931 * This deletes the pointer in path->nodes[1] and frees the leaf
4932 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4933 *
4934 * The path must have already been setup for deleting the leaf, including
4935 * all the proper balancing.  path->nodes[1] must be locked.
4936 */
4937static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4938                                    struct btrfs_root *root,
4939                                    struct btrfs_path *path,
4940                                    struct extent_buffer *leaf)
4941{
4942        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4943        del_ptr(root, path, 1, path->slots[1]);
4944
4945        /*
4946         * btrfs_free_extent is expensive, we want to make sure we
4947         * aren't holding any locks when we call it
4948         */
4949        btrfs_unlock_up_safe(path, 0);
4950
4951        root_sub_used(root, leaf->len);
4952
4953        extent_buffer_get(leaf);
4954        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4955        free_extent_buffer_stale(leaf);
4956}
4957/*
4958 * delete the item at the leaf level in path.  If that empties
4959 * the leaf, remove it from the tree
4960 */
4961int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4962                    struct btrfs_path *path, int slot, int nr)
4963{
4964        struct btrfs_fs_info *fs_info = root->fs_info;
4965        struct extent_buffer *leaf;
4966        struct btrfs_item *item;
4967        u32 last_off;
4968        u32 dsize = 0;
4969        int ret = 0;
4970        int wret;
4971        int i;
4972        u32 nritems;
4973        struct btrfs_map_token token;
4974
4975        btrfs_init_map_token(&token);
4976
4977        leaf = path->nodes[0];
4978        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4979
4980        for (i = 0; i < nr; i++)
4981                dsize += btrfs_item_size_nr(leaf, slot + i);
4982
4983        nritems = btrfs_header_nritems(leaf);
4984
4985        if (slot + nr != nritems) {
4986                int data_end = leaf_data_end(fs_info, leaf);
4987
4988                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4989                              data_end + dsize,
4990                              BTRFS_LEAF_DATA_OFFSET + data_end,
4991                              last_off - data_end);
4992
4993                for (i = slot + nr; i < nritems; i++) {
4994                        u32 ioff;
4995
4996                        item = btrfs_item_nr(i);
4997                        ioff = btrfs_token_item_offset(leaf, item, &token);
4998                        btrfs_set_token_item_offset(leaf, item,
4999                                                    ioff + dsize, &token);
5000                }
5001
5002                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5003                              btrfs_item_nr_offset(slot + nr),
5004                              sizeof(struct btrfs_item) *
5005                              (nritems - slot - nr));
5006        }
5007        btrfs_set_header_nritems(leaf, nritems - nr);
5008        nritems -= nr;
5009
5010        /* delete the leaf if we've emptied it */
5011        if (nritems == 0) {
5012                if (leaf == root->node) {
5013                        btrfs_set_header_level(leaf, 0);
5014                } else {
5015                        btrfs_set_path_blocking(path);
5016                        clean_tree_block(fs_info, leaf);
5017                        btrfs_del_leaf(trans, root, path, leaf);
5018                }
5019        } else {
5020                int used = leaf_space_used(leaf, 0, nritems);
5021                if (slot == 0) {
5022                        struct btrfs_disk_key disk_key;
5023
5024                        btrfs_item_key(leaf, &disk_key, 0);
5025                        fixup_low_keys(fs_info, path, &disk_key, 1);
5026                }
5027
5028                /* delete the leaf if it is mostly empty */
5029                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5030                        /* push_leaf_left fixes the path.
5031                         * make sure the path still points to our leaf
5032                         * for possible call to del_ptr below
5033                         */
5034                        slot = path->slots[1];
5035                        extent_buffer_get(leaf);
5036
5037                        btrfs_set_path_blocking(path);
5038                        wret = push_leaf_left(trans, root, path, 1, 1,
5039                                              1, (u32)-1);
5040                        if (wret < 0 && wret != -ENOSPC)
5041                                ret = wret;
5042
5043                        if (path->nodes[0] == leaf &&
5044                            btrfs_header_nritems(leaf)) {
5045                                wret = push_leaf_right(trans, root, path, 1,
5046                                                       1, 1, 0);
5047                                if (wret < 0 && wret != -ENOSPC)
5048                                        ret = wret;
5049                        }
5050
5051                        if (btrfs_header_nritems(leaf) == 0) {
5052                                path->slots[1] = slot;
5053                                btrfs_del_leaf(trans, root, path, leaf);
5054                                free_extent_buffer(leaf);
5055                                ret = 0;
5056                        } else {
5057                                /* if we're still in the path, make sure
5058                                 * we're dirty.  Otherwise, one of the
5059                                 * push_leaf functions must have already
5060                                 * dirtied this buffer
5061                                 */
5062                                if (path->nodes[0] == leaf)
5063                                        btrfs_mark_buffer_dirty(leaf);
5064                                free_extent_buffer(leaf);
5065                        }
5066                } else {
5067                        btrfs_mark_buffer_dirty(leaf);
5068                }
5069        }
5070        return ret;
5071}
5072
5073/*
5074 * search the tree again to find a leaf with lesser keys
5075 * returns 0 if it found something or 1 if there are no lesser leaves.
5076 * returns < 0 on io errors.
5077 *
5078 * This may release the path, and so you may lose any locks held at the
5079 * time you call it.
5080 */
5081int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5082{
5083        struct btrfs_key key;
5084        struct btrfs_disk_key found_key;
5085        int ret;
5086
5087        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5088
5089        if (key.offset > 0) {
5090                key.offset--;
5091        } else if (key.type > 0) {
5092                key.type--;
5093                key.offset = (u64)-1;
5094        } else if (key.objectid > 0) {
5095                key.objectid--;
5096                key.type = (u8)-1;
5097                key.offset = (u64)-1;
5098        } else {
5099                return 1;
5100        }
5101
5102        btrfs_release_path(path);
5103        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5104        if (ret < 0)
5105                return ret;
5106        btrfs_item_key(path->nodes[0], &found_key, 0);
5107        ret = comp_keys(&found_key, &key);
5108        /*
5109         * We might have had an item with the previous key in the tree right
5110         * before we released our path. And after we released our path, that
5111         * item might have been pushed to the first slot (0) of the leaf we
5112         * were holding due to a tree balance. Alternatively, an item with the
5113         * previous key can exist as the only element of a leaf (big fat item).
5114         * Therefore account for these 2 cases, so that our callers (like
5115         * btrfs_previous_item) don't miss an existing item with a key matching
5116         * the previous key we computed above.
5117         */
5118        if (ret <= 0)
5119                return 0;
5120        return 1;
5121}
5122
5123/*
5124 * A helper function to walk down the tree starting at min_key, and looking
5125 * for nodes or leaves that are have a minimum transaction id.
5126 * This is used by the btree defrag code, and tree logging
5127 *
5128 * This does not cow, but it does stuff the starting key it finds back
5129 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5130 * key and get a writable path.
5131 *
5132 * This honors path->lowest_level to prevent descent past a given level
5133 * of the tree.
5134 *
5135 * min_trans indicates the oldest transaction that you are interested
5136 * in walking through.  Any nodes or leaves older than min_trans are
5137 * skipped over (without reading them).
5138 *
5139 * returns zero if something useful was found, < 0 on error and 1 if there
5140 * was nothing in the tree that matched the search criteria.
5141 */
5142int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5143                         struct btrfs_path *path,
5144                         u64 min_trans)
5145{
5146        struct btrfs_fs_info *fs_info = root->fs_info;
5147        struct extent_buffer *cur;
5148        struct btrfs_key found_key;
5149        int slot;
5150        int sret;
5151        u32 nritems;
5152        int level;
5153        int ret = 1;
5154        int keep_locks = path->keep_locks;
5155
5156        path->keep_locks = 1;
5157again:
5158        cur = btrfs_read_lock_root_node(root);
5159        level = btrfs_header_level(cur);
5160        WARN_ON(path->nodes[level]);
5161        path->nodes[level] = cur;
5162        path->locks[level] = BTRFS_READ_LOCK;
5163
5164        if (btrfs_header_generation(cur) < min_trans) {
5165                ret = 1;
5166                goto out;
5167        }
5168        while (1) {
5169                nritems = btrfs_header_nritems(cur);
5170                level = btrfs_header_level(cur);
5171                sret = btrfs_bin_search(cur, min_key, level, &slot);
5172
5173                /* at the lowest level, we're done, setup the path and exit */
5174                if (level == path->lowest_level) {
5175                        if (slot >= nritems)
5176                                goto find_next_key;
5177                        ret = 0;
5178                        path->slots[level] = slot;
5179                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5180                        goto out;
5181                }
5182                if (sret && slot > 0)
5183                        slot--;
5184                /*
5185                 * check this node pointer against the min_trans parameters.
5186                 * If it is too old, old, skip to the next one.
5187                 */
5188                while (slot < nritems) {
5189                        u64 gen;
5190
5191                        gen = btrfs_node_ptr_generation(cur, slot);
5192                        if (gen < min_trans) {
5193                                slot++;
5194                                continue;
5195                        }
5196                        break;
5197                }
5198find_next_key:
5199                /*
5200                 * we didn't find a candidate key in this node, walk forward
5201                 * and find another one
5202                 */
5203                if (slot >= nritems) {
5204                        path->slots[level] = slot;
5205                        btrfs_set_path_blocking(path);
5206                        sret = btrfs_find_next_key(root, path, min_key, level,
5207                                                  min_trans);
5208                        if (sret == 0) {
5209                                btrfs_release_path(path);
5210                                goto again;
5211                        } else {
5212                                goto out;
5213                        }
5214                }
5215                /* save our key for returning back */
5216                btrfs_node_key_to_cpu(cur, &found_key, slot);
5217                path->slots[level] = slot;
5218                if (level == path->lowest_level) {
5219                        ret = 0;
5220                        goto out;
5221                }
5222                btrfs_set_path_blocking(path);
5223                cur = read_node_slot(fs_info, cur, slot);
5224                if (IS_ERR(cur)) {
5225                        ret = PTR_ERR(cur);
5226                        goto out;
5227                }
5228
5229                btrfs_tree_read_lock(cur);
5230
5231                path->locks[level - 1] = BTRFS_READ_LOCK;
5232                path->nodes[level - 1] = cur;
5233                unlock_up(path, level, 1, 0, NULL);
5234                btrfs_clear_path_blocking(path, NULL, 0);
5235        }
5236out:
5237        path->keep_locks = keep_locks;
5238        if (ret == 0) {
5239                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5240                btrfs_set_path_blocking(path);
5241                memcpy(min_key, &found_key, sizeof(found_key));
5242        }
5243        return ret;
5244}
5245
5246static int tree_move_down(struct btrfs_fs_info *fs_info,
5247                           struct btrfs_path *path,
5248                           int *level)
5249{
5250        struct extent_buffer *eb;
5251
5252        BUG_ON(*level == 0);
5253        eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5254        if (IS_ERR(eb))
5255                return PTR_ERR(eb);
5256
5257        path->nodes[*level - 1] = eb;
5258        path->slots[*level - 1] = 0;
5259        (*level)--;
5260        return 0;
5261}
5262
5263static int tree_move_next_or_upnext(struct btrfs_path *path,
5264                                    int *level, int root_level)
5265{
5266        int ret = 0;
5267        int nritems;
5268        nritems = btrfs_header_nritems(path->nodes[*level]);
5269
5270        path->slots[*level]++;
5271
5272        while (path->slots[*level] >= nritems) {
5273                if (*level == root_level)
5274                        return -1;
5275
5276                /* move upnext */
5277                path->slots[*level] = 0;
5278                free_extent_buffer(path->nodes[*level]);
5279                path->nodes[*level] = NULL;
5280                (*level)++;
5281                path->slots[*level]++;
5282
5283                nritems = btrfs_header_nritems(path->nodes[*level]);
5284                ret = 1;
5285        }
5286        return ret;
5287}
5288
5289/*
5290 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5291 * or down.
5292 */
5293static int tree_advance(struct btrfs_fs_info *fs_info,
5294                        struct btrfs_path *path,
5295                        int *level, int root_level,
5296                        int allow_down,
5297                        struct btrfs_key *key)
5298{
5299        int ret;
5300
5301        if (*level == 0 || !allow_down) {
5302                ret = tree_move_next_or_upnext(path, level, root_level);
5303        } else {
5304                ret = tree_move_down(fs_info, path, level);
5305        }
5306        if (ret >= 0) {
5307                if (*level == 0)
5308                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5309                                        path->slots[*level]);
5310                else
5311                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5312                                        path->slots[*level]);
5313        }
5314        return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318                             struct btrfs_path *right_path,
5319                             char *tmp_buf)
5320{
5321        int cmp;
5322        int len1, len2;
5323        unsigned long off1, off2;
5324
5325        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327        if (len1 != len2)
5328                return 1;
5329
5330        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332                                right_path->slots[0]);
5333
5334        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337        if (cmp)
5338                return 1;
5339        return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359                        struct btrfs_root *right_root,
5360                        btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362        struct btrfs_fs_info *fs_info = left_root->fs_info;
5363        int ret;
5364        int cmp;
5365        struct btrfs_path *left_path = NULL;
5366        struct btrfs_path *right_path = NULL;
5367        struct btrfs_key left_key;
5368        struct btrfs_key right_key;
5369        char *tmp_buf = NULL;
5370        int left_root_level;
5371        int right_root_level;
5372        int left_level;
5373        int right_level;
5374        int left_end_reached;
5375        int right_end_reached;
5376        int advance_left;
5377        int advance_right;
5378        u64 left_blockptr;
5379        u64 right_blockptr;
5380        u64 left_gen;
5381        u64 right_gen;
5382
5383        left_path = btrfs_alloc_path();
5384        if (!left_path) {
5385                ret = -ENOMEM;
5386                goto out;
5387        }
5388        right_path = btrfs_alloc_path();
5389        if (!right_path) {
5390                ret = -ENOMEM;
5391                goto out;
5392        }
5393
5394        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5395        if (!tmp_buf) {
5396                ret = -ENOMEM;
5397                goto out;
5398        }
5399
5400        left_path->search_commit_root = 1;
5401        left_path->skip_locking = 1;
5402        right_path->search_commit_root = 1;
5403        right_path->skip_locking = 1;
5404
5405        /*
5406         * Strategy: Go to the first items of both trees. Then do
5407         *
5408         * If both trees are at level 0
5409         *   Compare keys of current items
5410         *     If left < right treat left item as new, advance left tree
5411         *       and repeat
5412         *     If left > right treat right item as deleted, advance right tree
5413         *       and repeat
5414         *     If left == right do deep compare of items, treat as changed if
5415         *       needed, advance both trees and repeat
5416         * If both trees are at the same level but not at level 0
5417         *   Compare keys of current nodes/leafs
5418         *     If left < right advance left tree and repeat
5419         *     If left > right advance right tree and repeat
5420         *     If left == right compare blockptrs of the next nodes/leafs
5421         *       If they match advance both trees but stay at the same level
5422         *         and repeat
5423         *       If they don't match advance both trees while allowing to go
5424         *         deeper and repeat
5425         * If tree levels are different
5426         *   Advance the tree that needs it and repeat
5427         *
5428         * Advancing a tree means:
5429         *   If we are at level 0, try to go to the next slot. If that's not
5430         *   possible, go one level up and repeat. Stop when we found a level
5431         *   where we could go to the next slot. We may at this point be on a
5432         *   node or a leaf.
5433         *
5434         *   If we are not at level 0 and not on shared tree blocks, go one
5435         *   level deeper.
5436         *
5437         *   If we are not at level 0 and on shared tree blocks, go one slot to
5438         *   the right if possible or go up and right.
5439         */
5440
5441        down_read(&fs_info->commit_root_sem);
5442        left_level = btrfs_header_level(left_root->commit_root);
5443        left_root_level = left_level;
5444        left_path->nodes[left_level] =
5445                        btrfs_clone_extent_buffer(left_root->commit_root);
5446        if (!left_path->nodes[left_level]) {
5447                up_read(&fs_info->commit_root_sem);
5448                ret = -ENOMEM;
5449                goto out;
5450        }
5451        extent_buffer_get(left_path->nodes[left_level]);
5452
5453        right_level = btrfs_header_level(right_root->commit_root);
5454        right_root_level = right_level;
5455        right_path->nodes[right_level] =
5456                        btrfs_clone_extent_buffer(right_root->commit_root);
5457        if (!right_path->nodes[right_level]) {
5458                up_read(&fs_info->commit_root_sem);
5459                ret = -ENOMEM;
5460                goto out;
5461        }
5462        extent_buffer_get(right_path->nodes[right_level]);
5463        up_read(&fs_info->commit_root_sem);
5464
5465        if (left_level == 0)
5466                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5467                                &left_key, left_path->slots[left_level]);
5468        else
5469                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5470                                &left_key, left_path->slots[left_level]);
5471        if (right_level == 0)
5472                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5473                                &right_key, right_path->slots[right_level]);
5474        else
5475                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5476                                &right_key, right_path->slots[right_level]);
5477
5478        left_end_reached = right_end_reached = 0;
5479        advance_left = advance_right = 0;
5480
5481        while (1) {
5482                if (advance_left && !left_end_reached) {
5483                        ret = tree_advance(fs_info, left_path, &left_level,
5484                                        left_root_level,
5485                                        advance_left != ADVANCE_ONLY_NEXT,
5486                                        &left_key);
5487                        if (ret == -1)
5488                                left_end_reached = ADVANCE;
5489                        else if (ret < 0)
5490                                goto out;
5491                        advance_left = 0;
5492                }
5493                if (advance_right && !right_end_reached) {
5494                        ret = tree_advance(fs_info, right_path, &right_level,
5495                                        right_root_level,
5496                                        advance_right != ADVANCE_ONLY_NEXT,
5497                                        &right_key);
5498                        if (ret == -1)
5499                                right_end_reached = ADVANCE;
5500                        else if (ret < 0)
5501                                goto out;
5502                        advance_right = 0;
5503                }
5504
5505                if (left_end_reached && right_end_reached) {
5506                        ret = 0;
5507                        goto out;
5508                } else if (left_end_reached) {
5509                        if (right_level == 0) {
5510                                ret = changed_cb(left_path, right_path,
5511                                                &right_key,
5512                                                BTRFS_COMPARE_TREE_DELETED,
5513                                                ctx);
5514                                if (ret < 0)
5515                                        goto out;
5516                        }
5517                        advance_right = ADVANCE;
5518                        continue;
5519                } else if (right_end_reached) {
5520                        if (left_level == 0) {
5521                                ret = changed_cb(left_path, right_path,
5522                                                &left_key,
5523                                                BTRFS_COMPARE_TREE_NEW,
5524                                                ctx);
5525                                if (ret < 0)
5526                                        goto out;
5527                        }
5528                        advance_left = ADVANCE;
5529                        continue;
5530                }
5531
5532                if (left_level == 0 && right_level == 0) {
5533                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5534                        if (cmp < 0) {
5535                                ret = changed_cb(left_path, right_path,
5536                                                &left_key,
5537                                                BTRFS_COMPARE_TREE_NEW,
5538                                                ctx);
5539                                if (ret < 0)
5540                                        goto out;
5541                                advance_left = ADVANCE;
5542                        } else if (cmp > 0) {
5543                                ret = changed_cb(left_path, right_path,
5544                                                &right_key,
5545                                                BTRFS_COMPARE_TREE_DELETED,
5546                                                ctx);
5547                                if (ret < 0)
5548                                        goto out;
5549                                advance_right = ADVANCE;
5550                        } else {
5551                                enum btrfs_compare_tree_result result;
5552
5553                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5554                                ret = tree_compare_item(left_path, right_path,
5555                                                        tmp_buf);
5556                                if (ret)
5557                                        result = BTRFS_COMPARE_TREE_CHANGED;
5558                                else
5559                                        result = BTRFS_COMPARE_TREE_SAME;
5560                                ret = changed_cb(left_path, right_path,
5561                                                 &left_key, result, ctx);
5562                                if (ret < 0)
5563                                        goto out;
5564                                advance_left = ADVANCE;
5565                                advance_right = ADVANCE;
5566                        }
5567                } else if (left_level == right_level) {
5568                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5569                        if (cmp < 0) {
5570                                advance_left = ADVANCE;
5571                        } else if (cmp > 0) {
5572                                advance_right = ADVANCE;
5573                        } else {
5574                                left_blockptr = btrfs_node_blockptr(
5575                                                left_path->nodes[left_level],
5576                                                left_path->slots[left_level]);
5577                                right_blockptr = btrfs_node_blockptr(
5578                                                right_path->nodes[right_level],
5579                                                right_path->slots[right_level]);
5580                                left_gen = btrfs_node_ptr_generation(
5581                                                left_path->nodes[left_level],
5582                                                left_path->slots[left_level]);
5583                                right_gen = btrfs_node_ptr_generation(
5584                                                right_path->nodes[right_level],
5585                                                right_path->slots[right_level]);
5586                                if (left_blockptr == right_blockptr &&
5587                                    left_gen == right_gen) {
5588                                        /*
5589                                         * As we're on a shared block, don't
5590                                         * allow to go deeper.
5591                                         */
5592                                        advance_left = ADVANCE_ONLY_NEXT;
5593                                        advance_right = ADVANCE_ONLY_NEXT;
5594                                } else {
5595                                        advance_left = ADVANCE;
5596                                        advance_right = ADVANCE;
5597                                }
5598                        }
5599                } else if (left_level < right_level) {
5600                        advance_right = ADVANCE;
5601                } else {
5602                        advance_left = ADVANCE;
5603                }
5604        }
5605
5606out:
5607        btrfs_free_path(left_path);
5608        btrfs_free_path(right_path);
5609        kvfree(tmp_buf);
5610        return ret;
5611}
5612
5613/*
5614 * this is similar to btrfs_next_leaf, but does not try to preserve
5615 * and fixup the path.  It looks for and returns the next key in the
5616 * tree based on the current path and the min_trans parameters.
5617 *
5618 * 0 is returned if another key is found, < 0 if there are any errors
5619 * and 1 is returned if there are no higher keys in the tree
5620 *
5621 * path->keep_locks should be set to 1 on the search made before
5622 * calling this function.
5623 */
5624int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5625                        struct btrfs_key *key, int level, u64 min_trans)
5626{
5627        int slot;
5628        struct extent_buffer *c;
5629
5630        WARN_ON(!path->keep_locks);
5631        while (level < BTRFS_MAX_LEVEL) {
5632                if (!path->nodes[level])
5633                        return 1;
5634
5635                slot = path->slots[level] + 1;
5636                c = path->nodes[level];
5637next:
5638                if (slot >= btrfs_header_nritems(c)) {
5639                        int ret;
5640                        int orig_lowest;
5641                        struct btrfs_key cur_key;
5642                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5643                            !path->nodes[level + 1])
5644                                return 1;
5645
5646                        if (path->locks[level + 1]) {
5647                                level++;
5648                                continue;
5649                        }
5650
5651                        slot = btrfs_header_nritems(c) - 1;
5652                        if (level == 0)
5653                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5654                        else
5655                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5656
5657                        orig_lowest = path->lowest_level;
5658                        btrfs_release_path(path);
5659                        path->lowest_level = level;
5660                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5661                                                0, 0);
5662                        path->lowest_level = orig_lowest;
5663                        if (ret < 0)
5664                                return ret;
5665
5666                        c = path->nodes[level];
5667                        slot = path->slots[level];
5668                        if (ret == 0)
5669                                slot++;
5670                        goto next;
5671                }
5672
5673                if (level == 0)
5674                        btrfs_item_key_to_cpu(c, key, slot);
5675                else {
5676                        u64 gen = btrfs_node_ptr_generation(c, slot);
5677
5678                        if (gen < min_trans) {
5679                                slot++;
5680                                goto next;
5681                        }
5682                        btrfs_node_key_to_cpu(c, key, slot);
5683                }
5684                return 0;
5685        }
5686        return 1;
5687}
5688
5689/*
5690 * search the tree again to find a leaf with greater keys
5691 * returns 0 if it found something or 1 if there are no greater leaves.
5692 * returns < 0 on io errors.
5693 */
5694int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5695{
5696        return btrfs_next_old_leaf(root, path, 0);
5697}
5698
5699int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5700                        u64 time_seq)
5701{
5702        int slot;
5703        int level;
5704        struct extent_buffer *c;
5705        struct extent_buffer *next;
5706        struct btrfs_key key;
5707        u32 nritems;
5708        int ret;
5709        int old_spinning = path->leave_spinning;
5710        int next_rw_lock = 0;
5711
5712        nritems = btrfs_header_nritems(path->nodes[0]);
5713        if (nritems == 0)
5714                return 1;
5715
5716        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5717again:
5718        level = 1;
5719        next = NULL;
5720        next_rw_lock = 0;
5721        btrfs_release_path(path);
5722
5723        path->keep_locks = 1;
5724        path->leave_spinning = 1;
5725
5726        if (time_seq)
5727                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5728        else
5729                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5730        path->keep_locks = 0;
5731
5732        if (ret < 0)
5733                return ret;
5734
5735        nritems = btrfs_header_nritems(path->nodes[0]);
5736        /*
5737         * by releasing the path above we dropped all our locks.  A balance
5738         * could have added more items next to the key that used to be
5739         * at the very end of the block.  So, check again here and
5740         * advance the path if there are now more items available.
5741         */
5742        if (nritems > 0 && path->slots[0] < nritems - 1) {
5743                if (ret == 0)
5744                        path->slots[0]++;
5745                ret = 0;
5746                goto done;
5747        }
5748        /*
5749         * So the above check misses one case:
5750         * - after releasing the path above, someone has removed the item that
5751         *   used to be at the very end of the block, and balance between leafs
5752         *   gets another one with bigger key.offset to replace it.
5753         *
5754         * This one should be returned as well, or we can get leaf corruption
5755         * later(esp. in __btrfs_drop_extents()).
5756         *
5757         * And a bit more explanation about this check,
5758         * with ret > 0, the key isn't found, the path points to the slot
5759         * where it should be inserted, so the path->slots[0] item must be the
5760         * bigger one.
5761         */
5762        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5763                ret = 0;
5764                goto done;
5765        }
5766
5767        while (level < BTRFS_MAX_LEVEL) {
5768                if (!path->nodes[level]) {
5769                        ret = 1;
5770                        goto done;
5771                }
5772
5773                slot = path->slots[level] + 1;
5774                c = path->nodes[level];
5775                if (slot >= btrfs_header_nritems(c)) {
5776                        level++;
5777                        if (level == BTRFS_MAX_LEVEL) {
5778                                ret = 1;
5779                                goto done;
5780                        }
5781                        continue;
5782                }
5783
5784                if (next) {
5785                        btrfs_tree_unlock_rw(next, next_rw_lock);
5786                        free_extent_buffer(next);
5787                }
5788
5789                next = c;
5790                next_rw_lock = path->locks[level];
5791                ret = read_block_for_search(root, path, &next, level,
5792                                            slot, &key);
5793                if (ret == -EAGAIN)
5794                        goto again;
5795
5796                if (ret < 0) {
5797                        btrfs_release_path(path);
5798                        goto done;
5799                }
5800
5801                if (!path->skip_locking) {
5802                        ret = btrfs_try_tree_read_lock(next);
5803                        if (!ret && time_seq) {
5804                                /*
5805                                 * If we don't get the lock, we may be racing
5806                                 * with push_leaf_left, holding that lock while
5807                                 * itself waiting for the leaf we've currently
5808                                 * locked. To solve this situation, we give up
5809                                 * on our lock and cycle.
5810                                 */
5811                                free_extent_buffer(next);
5812                                btrfs_release_path(path);
5813                                cond_resched();
5814                                goto again;
5815                        }
5816                        if (!ret) {
5817                                btrfs_set_path_blocking(path);
5818                                btrfs_tree_read_lock(next);
5819                                btrfs_clear_path_blocking(path, next,
5820                                                          BTRFS_READ_LOCK);
5821                        }
5822                        next_rw_lock = BTRFS_READ_LOCK;
5823                }
5824                break;
5825        }
5826        path->slots[level] = slot;
5827        while (1) {
5828                level--;
5829                c = path->nodes[level];
5830                if (path->locks[level])
5831                        btrfs_tree_unlock_rw(c, path->locks[level]);
5832
5833                free_extent_buffer(c);
5834                path->nodes[level] = next;
5835                path->slots[level] = 0;
5836                if (!path->skip_locking)
5837                        path->locks[level] = next_rw_lock;
5838                if (!level)
5839                        break;
5840
5841                ret = read_block_for_search(root, path, &next, level,
5842                                            0, &key);
5843                if (ret == -EAGAIN)
5844                        goto again;
5845
5846                if (ret < 0) {
5847                        btrfs_release_path(path);
5848                        goto done;
5849                }
5850
5851                if (!path->skip_locking) {
5852                        ret = btrfs_try_tree_read_lock(next);
5853                        if (!ret) {
5854                                btrfs_set_path_blocking(path);
5855                                btrfs_tree_read_lock(next);
5856                                btrfs_clear_path_blocking(path, next,
5857                                                          BTRFS_READ_LOCK);
5858                        }
5859                        next_rw_lock = BTRFS_READ_LOCK;
5860                }
5861        }
5862        ret = 0;
5863done:
5864        unlock_up(path, 0, 1, 0, NULL);
5865        path->leave_spinning = old_spinning;
5866        if (!old_spinning)
5867                btrfs_set_path_blocking(path);
5868
5869        return ret;
5870}
5871
5872/*
5873 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5874 * searching until it gets past min_objectid or finds an item of 'type'
5875 *
5876 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5877 */
5878int btrfs_previous_item(struct btrfs_root *root,
5879                        struct btrfs_path *path, u64 min_objectid,
5880                        int type)
5881{
5882        struct btrfs_key found_key;
5883        struct extent_buffer *leaf;
5884        u32 nritems;
5885        int ret;
5886
5887        while (1) {
5888                if (path->slots[0] == 0) {
5889                        btrfs_set_path_blocking(path);
5890                        ret = btrfs_prev_leaf(root, path);
5891                        if (ret != 0)
5892                                return ret;
5893                } else {
5894                        path->slots[0]--;
5895                }
5896                leaf = path->nodes[0];
5897                nritems = btrfs_header_nritems(leaf);
5898                if (nritems == 0)
5899                        return 1;
5900                if (path->slots[0] == nritems)
5901                        path->slots[0]--;
5902
5903                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904                if (found_key.objectid < min_objectid)
5905                        break;
5906                if (found_key.type == type)
5907                        return 0;
5908                if (found_key.objectid == min_objectid &&
5909                    found_key.type < type)
5910                        break;
5911        }
5912        return 1;
5913}
5914
5915/*
5916 * search in extent tree to find a previous Metadata/Data extent item with
5917 * min objecitd.
5918 *
5919 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5920 */
5921int btrfs_previous_extent_item(struct btrfs_root *root,
5922                        struct btrfs_path *path, u64 min_objectid)
5923{
5924        struct btrfs_key found_key;
5925        struct extent_buffer *leaf;
5926        u32 nritems;
5927        int ret;
5928
5929        while (1) {
5930                if (path->slots[0] == 0) {
5931                        btrfs_set_path_blocking(path);
5932                        ret = btrfs_prev_leaf(root, path);
5933                        if (ret != 0)
5934                                return ret;
5935                } else {
5936                        path->slots[0]--;
5937                }
5938                leaf = path->nodes[0];
5939                nritems = btrfs_header_nritems(leaf);
5940                if (nritems == 0)
5941                        return 1;
5942                if (path->slots[0] == nritems)
5943                        path->slots[0]--;
5944
5945                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5946                if (found_key.objectid < min_objectid)
5947                        break;
5948                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5949                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5950                        return 0;
5951                if (found_key.objectid == min_objectid &&
5952                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5953                        break;
5954        }
5955        return 1;
5956}
5957