linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *              Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
  26#include <crypto/hash.h>
  27#include <crypto/skcipher.h>
  28#include <linux/fs.h>
  29#include <linux/mount.h>
  30#include <linux/pagemap.h>
  31#include <linux/random.h>
  32#include <linux/compiler.h>
  33#include <linux/key.h>
  34#include <linux/namei.h>
  35#include <linux/file.h>
  36#include <linux/scatterlist.h>
  37#include <linux/slab.h>
  38#include <asm/unaligned.h>
  39#include <linux/kernel.h>
  40#include "ecryptfs_kernel.h"
  41
  42#define DECRYPT         0
  43#define ENCRYPT         1
  44
  45/**
  46 * ecryptfs_from_hex
  47 * @dst: Buffer to take the bytes from src hex; must be at least of
  48 *       size (src_size / 2)
  49 * @src: Buffer to be converted from a hex string representation to raw value
  50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  51 */
  52void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  53{
  54        int x;
  55        char tmp[3] = { 0, };
  56
  57        for (x = 0; x < dst_size; x++) {
  58                tmp[0] = src[x * 2];
  59                tmp[1] = src[x * 2 + 1];
  60                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  61        }
  62}
  63
  64static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  65                                char *src, int len, char *dst)
  66{
  67        SHASH_DESC_ON_STACK(desc, tfm);
  68        int err;
  69
  70        desc->tfm = tfm;
  71        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  72        err = crypto_shash_digest(desc, src, len, dst);
  73        shash_desc_zero(desc);
  74        return err;
  75}
  76
  77/**
  78 * ecryptfs_calculate_md5 - calculates the md5 of @src
  79 * @dst: Pointer to 16 bytes of allocated memory
  80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  81 * @src: Data to be md5'd
  82 * @len: Length of @src
  83 *
  84 * Uses the allocated crypto context that crypt_stat references to
  85 * generate the MD5 sum of the contents of src.
  86 */
  87static int ecryptfs_calculate_md5(char *dst,
  88                                  struct ecryptfs_crypt_stat *crypt_stat,
  89                                  char *src, int len)
  90{
  91        struct crypto_shash *tfm;
  92        int rc = 0;
  93
  94        tfm = crypt_stat->hash_tfm;
  95        rc = ecryptfs_hash_digest(tfm, src, len, dst);
  96        if (rc) {
  97                printk(KERN_ERR
  98                       "%s: Error computing crypto hash; rc = [%d]\n",
  99                       __func__, rc);
 100                goto out;
 101        }
 102out:
 103        return rc;
 104}
 105
 106static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 107                                                  char *cipher_name,
 108                                                  char *chaining_modifier)
 109{
 110        int cipher_name_len = strlen(cipher_name);
 111        int chaining_modifier_len = strlen(chaining_modifier);
 112        int algified_name_len;
 113        int rc;
 114
 115        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 116        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 117        if (!(*algified_name)) {
 118                rc = -ENOMEM;
 119                goto out;
 120        }
 121        snprintf((*algified_name), algified_name_len, "%s(%s)",
 122                 chaining_modifier, cipher_name);
 123        rc = 0;
 124out:
 125        return rc;
 126}
 127
 128/**
 129 * ecryptfs_derive_iv
 130 * @iv: destination for the derived iv vale
 131 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 132 * @offset: Offset of the extent whose IV we are to derive
 133 *
 134 * Generate the initialization vector from the given root IV and page
 135 * offset.
 136 *
 137 * Returns zero on success; non-zero on error.
 138 */
 139int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 140                       loff_t offset)
 141{
 142        int rc = 0;
 143        char dst[MD5_DIGEST_SIZE];
 144        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 145
 146        if (unlikely(ecryptfs_verbosity > 0)) {
 147                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 148                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 149        }
 150        /* TODO: It is probably secure to just cast the least
 151         * significant bits of the root IV into an unsigned long and
 152         * add the offset to that rather than go through all this
 153         * hashing business. -Halcrow */
 154        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 155        memset((src + crypt_stat->iv_bytes), 0, 16);
 156        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 157        if (unlikely(ecryptfs_verbosity > 0)) {
 158                ecryptfs_printk(KERN_DEBUG, "source:\n");
 159                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 160        }
 161        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 162                                    (crypt_stat->iv_bytes + 16));
 163        if (rc) {
 164                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 165                                "MD5 while generating IV for a page\n");
 166                goto out;
 167        }
 168        memcpy(iv, dst, crypt_stat->iv_bytes);
 169        if (unlikely(ecryptfs_verbosity > 0)) {
 170                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 171                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 172        }
 173out:
 174        return rc;
 175}
 176
 177/**
 178 * ecryptfs_init_crypt_stat
 179 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 180 *
 181 * Initialize the crypt_stat structure.
 182 */
 183int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 184{
 185        struct crypto_shash *tfm;
 186        int rc;
 187
 188        tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 189        if (IS_ERR(tfm)) {
 190                rc = PTR_ERR(tfm);
 191                ecryptfs_printk(KERN_ERR, "Error attempting to "
 192                                "allocate crypto context; rc = [%d]\n",
 193                                rc);
 194                return rc;
 195        }
 196
 197        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 198        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 199        mutex_init(&crypt_stat->keysig_list_mutex);
 200        mutex_init(&crypt_stat->cs_mutex);
 201        mutex_init(&crypt_stat->cs_tfm_mutex);
 202        crypt_stat->hash_tfm = tfm;
 203        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 204
 205        return 0;
 206}
 207
 208/**
 209 * ecryptfs_destroy_crypt_stat
 210 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 211 *
 212 * Releases all memory associated with a crypt_stat struct.
 213 */
 214void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 215{
 216        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 217
 218        crypto_free_skcipher(crypt_stat->tfm);
 219        crypto_free_shash(crypt_stat->hash_tfm);
 220        list_for_each_entry_safe(key_sig, key_sig_tmp,
 221                                 &crypt_stat->keysig_list, crypt_stat_list) {
 222                list_del(&key_sig->crypt_stat_list);
 223                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 224        }
 225        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 226}
 227
 228void ecryptfs_destroy_mount_crypt_stat(
 229        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 230{
 231        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 232
 233        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 234                return;
 235        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 236        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 237                                 &mount_crypt_stat->global_auth_tok_list,
 238                                 mount_crypt_stat_list) {
 239                list_del(&auth_tok->mount_crypt_stat_list);
 240                if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 241                        key_put(auth_tok->global_auth_tok_key);
 242                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 243        }
 244        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 245        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 246}
 247
 248/**
 249 * virt_to_scatterlist
 250 * @addr: Virtual address
 251 * @size: Size of data; should be an even multiple of the block size
 252 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 253 *      the number of scatterlist structs required in array
 254 * @sg_size: Max array size
 255 *
 256 * Fills in a scatterlist array with page references for a passed
 257 * virtual address.
 258 *
 259 * Returns the number of scatterlist structs in array used
 260 */
 261int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 262                        int sg_size)
 263{
 264        int i = 0;
 265        struct page *pg;
 266        int offset;
 267        int remainder_of_page;
 268
 269        sg_init_table(sg, sg_size);
 270
 271        while (size > 0 && i < sg_size) {
 272                pg = virt_to_page(addr);
 273                offset = offset_in_page(addr);
 274                sg_set_page(&sg[i], pg, 0, offset);
 275                remainder_of_page = PAGE_SIZE - offset;
 276                if (size >= remainder_of_page) {
 277                        sg[i].length = remainder_of_page;
 278                        addr += remainder_of_page;
 279                        size -= remainder_of_page;
 280                } else {
 281                        sg[i].length = size;
 282                        addr += size;
 283                        size = 0;
 284                }
 285                i++;
 286        }
 287        if (size > 0)
 288                return -ENOMEM;
 289        return i;
 290}
 291
 292struct extent_crypt_result {
 293        struct completion completion;
 294        int rc;
 295};
 296
 297static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 298{
 299        struct extent_crypt_result *ecr = req->data;
 300
 301        if (rc == -EINPROGRESS)
 302                return;
 303
 304        ecr->rc = rc;
 305        complete(&ecr->completion);
 306}
 307
 308/**
 309 * crypt_scatterlist
 310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 311 * @dst_sg: Destination of the data after performing the crypto operation
 312 * @src_sg: Data to be encrypted or decrypted
 313 * @size: Length of data
 314 * @iv: IV to use
 315 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 316 *
 317 * Returns the number of bytes encrypted or decrypted; negative value on error
 318 */
 319static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 320                             struct scatterlist *dst_sg,
 321                             struct scatterlist *src_sg, int size,
 322                             unsigned char *iv, int op)
 323{
 324        struct skcipher_request *req = NULL;
 325        struct extent_crypt_result ecr;
 326        int rc = 0;
 327
 328        BUG_ON(!crypt_stat || !crypt_stat->tfm
 329               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 330        if (unlikely(ecryptfs_verbosity > 0)) {
 331                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 332                                crypt_stat->key_size);
 333                ecryptfs_dump_hex(crypt_stat->key,
 334                                  crypt_stat->key_size);
 335        }
 336
 337        init_completion(&ecr.completion);
 338
 339        mutex_lock(&crypt_stat->cs_tfm_mutex);
 340        req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 341        if (!req) {
 342                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 343                rc = -ENOMEM;
 344                goto out;
 345        }
 346
 347        skcipher_request_set_callback(req,
 348                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 349                        extent_crypt_complete, &ecr);
 350        /* Consider doing this once, when the file is opened */
 351        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 352                rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 353                                            crypt_stat->key_size);
 354                if (rc) {
 355                        ecryptfs_printk(KERN_ERR,
 356                                        "Error setting key; rc = [%d]\n",
 357                                        rc);
 358                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 359                        rc = -EINVAL;
 360                        goto out;
 361                }
 362                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 363        }
 364        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 365        skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 366        rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 367                             crypto_skcipher_decrypt(req);
 368        if (rc == -EINPROGRESS || rc == -EBUSY) {
 369                struct extent_crypt_result *ecr = req->base.data;
 370
 371                wait_for_completion(&ecr->completion);
 372                rc = ecr->rc;
 373                reinit_completion(&ecr->completion);
 374        }
 375out:
 376        skcipher_request_free(req);
 377        return rc;
 378}
 379
 380/**
 381 * lower_offset_for_page
 382 *
 383 * Convert an eCryptfs page index into a lower byte offset
 384 */
 385static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 386                                    struct page *page)
 387{
 388        return ecryptfs_lower_header_size(crypt_stat) +
 389               ((loff_t)page->index << PAGE_SHIFT);
 390}
 391
 392/**
 393 * crypt_extent
 394 * @crypt_stat: crypt_stat containing cryptographic context for the
 395 *              encryption operation
 396 * @dst_page: The page to write the result into
 397 * @src_page: The page to read from
 398 * @extent_offset: Page extent offset for use in generating IV
 399 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 400 *
 401 * Encrypts or decrypts one extent of data.
 402 *
 403 * Return zero on success; non-zero otherwise
 404 */
 405static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 406                        struct page *dst_page,
 407                        struct page *src_page,
 408                        unsigned long extent_offset, int op)
 409{
 410        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 411        loff_t extent_base;
 412        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 413        struct scatterlist src_sg, dst_sg;
 414        size_t extent_size = crypt_stat->extent_size;
 415        int rc;
 416
 417        extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 418        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 419                                (extent_base + extent_offset));
 420        if (rc) {
 421                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 422                        "extent [0x%.16llx]; rc = [%d]\n",
 423                        (unsigned long long)(extent_base + extent_offset), rc);
 424                goto out;
 425        }
 426
 427        sg_init_table(&src_sg, 1);
 428        sg_init_table(&dst_sg, 1);
 429
 430        sg_set_page(&src_sg, src_page, extent_size,
 431                    extent_offset * extent_size);
 432        sg_set_page(&dst_sg, dst_page, extent_size,
 433                    extent_offset * extent_size);
 434
 435        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 436                               extent_iv, op);
 437        if (rc < 0) {
 438                printk(KERN_ERR "%s: Error attempting to crypt page with "
 439                       "page_index = [%ld], extent_offset = [%ld]; "
 440                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 441                goto out;
 442        }
 443        rc = 0;
 444out:
 445        return rc;
 446}
 447
 448/**
 449 * ecryptfs_encrypt_page
 450 * @page: Page mapped from the eCryptfs inode for the file; contains
 451 *        decrypted content that needs to be encrypted (to a temporary
 452 *        page; not in place) and written out to the lower file
 453 *
 454 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 455 * that eCryptfs pages may straddle the lower pages -- for instance,
 456 * if the file was created on a machine with an 8K page size
 457 * (resulting in an 8K header), and then the file is copied onto a
 458 * host with a 32K page size, then when reading page 0 of the eCryptfs
 459 * file, 24K of page 0 of the lower file will be read and decrypted,
 460 * and then 8K of page 1 of the lower file will be read and decrypted.
 461 *
 462 * Returns zero on success; negative on error
 463 */
 464int ecryptfs_encrypt_page(struct page *page)
 465{
 466        struct inode *ecryptfs_inode;
 467        struct ecryptfs_crypt_stat *crypt_stat;
 468        char *enc_extent_virt;
 469        struct page *enc_extent_page = NULL;
 470        loff_t extent_offset;
 471        loff_t lower_offset;
 472        int rc = 0;
 473
 474        ecryptfs_inode = page->mapping->host;
 475        crypt_stat =
 476                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 477        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 478        enc_extent_page = alloc_page(GFP_USER);
 479        if (!enc_extent_page) {
 480                rc = -ENOMEM;
 481                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 482                                "encrypted extent\n");
 483                goto out;
 484        }
 485
 486        for (extent_offset = 0;
 487             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 488             extent_offset++) {
 489                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 490                                  extent_offset, ENCRYPT);
 491                if (rc) {
 492                        printk(KERN_ERR "%s: Error encrypting extent; "
 493                               "rc = [%d]\n", __func__, rc);
 494                        goto out;
 495                }
 496        }
 497
 498        lower_offset = lower_offset_for_page(crypt_stat, page);
 499        enc_extent_virt = kmap(enc_extent_page);
 500        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 501                                  PAGE_SIZE);
 502        kunmap(enc_extent_page);
 503        if (rc < 0) {
 504                ecryptfs_printk(KERN_ERR,
 505                        "Error attempting to write lower page; rc = [%d]\n",
 506                        rc);
 507                goto out;
 508        }
 509        rc = 0;
 510out:
 511        if (enc_extent_page) {
 512                __free_page(enc_extent_page);
 513        }
 514        return rc;
 515}
 516
 517/**
 518 * ecryptfs_decrypt_page
 519 * @page: Page mapped from the eCryptfs inode for the file; data read
 520 *        and decrypted from the lower file will be written into this
 521 *        page
 522 *
 523 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 524 * that eCryptfs pages may straddle the lower pages -- for instance,
 525 * if the file was created on a machine with an 8K page size
 526 * (resulting in an 8K header), and then the file is copied onto a
 527 * host with a 32K page size, then when reading page 0 of the eCryptfs
 528 * file, 24K of page 0 of the lower file will be read and decrypted,
 529 * and then 8K of page 1 of the lower file will be read and decrypted.
 530 *
 531 * Returns zero on success; negative on error
 532 */
 533int ecryptfs_decrypt_page(struct page *page)
 534{
 535        struct inode *ecryptfs_inode;
 536        struct ecryptfs_crypt_stat *crypt_stat;
 537        char *page_virt;
 538        unsigned long extent_offset;
 539        loff_t lower_offset;
 540        int rc = 0;
 541
 542        ecryptfs_inode = page->mapping->host;
 543        crypt_stat =
 544                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 545        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 546
 547        lower_offset = lower_offset_for_page(crypt_stat, page);
 548        page_virt = kmap(page);
 549        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 550                                 ecryptfs_inode);
 551        kunmap(page);
 552        if (rc < 0) {
 553                ecryptfs_printk(KERN_ERR,
 554                        "Error attempting to read lower page; rc = [%d]\n",
 555                        rc);
 556                goto out;
 557        }
 558
 559        for (extent_offset = 0;
 560             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 561             extent_offset++) {
 562                rc = crypt_extent(crypt_stat, page, page,
 563                                  extent_offset, DECRYPT);
 564                if (rc) {
 565                        printk(KERN_ERR "%s: Error encrypting extent; "
 566                               "rc = [%d]\n", __func__, rc);
 567                        goto out;
 568                }
 569        }
 570out:
 571        return rc;
 572}
 573
 574#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 575
 576/**
 577 * ecryptfs_init_crypt_ctx
 578 * @crypt_stat: Uninitialized crypt stats structure
 579 *
 580 * Initialize the crypto context.
 581 *
 582 * TODO: Performance: Keep a cache of initialized cipher contexts;
 583 * only init if needed
 584 */
 585int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 586{
 587        char *full_alg_name;
 588        int rc = -EINVAL;
 589
 590        ecryptfs_printk(KERN_DEBUG,
 591                        "Initializing cipher [%s]; strlen = [%d]; "
 592                        "key_size_bits = [%zd]\n",
 593                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 594                        crypt_stat->key_size << 3);
 595        mutex_lock(&crypt_stat->cs_tfm_mutex);
 596        if (crypt_stat->tfm) {
 597                rc = 0;
 598                goto out_unlock;
 599        }
 600        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 601                                                    crypt_stat->cipher, "cbc");
 602        if (rc)
 603                goto out_unlock;
 604        crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 605        if (IS_ERR(crypt_stat->tfm)) {
 606                rc = PTR_ERR(crypt_stat->tfm);
 607                crypt_stat->tfm = NULL;
 608                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 609                                "Error initializing cipher [%s]\n",
 610                                full_alg_name);
 611                goto out_free;
 612        }
 613        crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 614        rc = 0;
 615out_free:
 616        kfree(full_alg_name);
 617out_unlock:
 618        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 619        return rc;
 620}
 621
 622static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 623{
 624        int extent_size_tmp;
 625
 626        crypt_stat->extent_mask = 0xFFFFFFFF;
 627        crypt_stat->extent_shift = 0;
 628        if (crypt_stat->extent_size == 0)
 629                return;
 630        extent_size_tmp = crypt_stat->extent_size;
 631        while ((extent_size_tmp & 0x01) == 0) {
 632                extent_size_tmp >>= 1;
 633                crypt_stat->extent_mask <<= 1;
 634                crypt_stat->extent_shift++;
 635        }
 636}
 637
 638void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 639{
 640        /* Default values; may be overwritten as we are parsing the
 641         * packets. */
 642        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 643        set_extent_mask_and_shift(crypt_stat);
 644        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 645        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 646                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 647        else {
 648                if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 649                        crypt_stat->metadata_size =
 650                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 651                else
 652                        crypt_stat->metadata_size = PAGE_SIZE;
 653        }
 654}
 655
 656/**
 657 * ecryptfs_compute_root_iv
 658 * @crypt_stats
 659 *
 660 * On error, sets the root IV to all 0's.
 661 */
 662int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 663{
 664        int rc = 0;
 665        char dst[MD5_DIGEST_SIZE];
 666
 667        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 668        BUG_ON(crypt_stat->iv_bytes <= 0);
 669        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 670                rc = -EINVAL;
 671                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 672                                "cannot generate root IV\n");
 673                goto out;
 674        }
 675        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 676                                    crypt_stat->key_size);
 677        if (rc) {
 678                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 679                                "MD5 while generating root IV\n");
 680                goto out;
 681        }
 682        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 683out:
 684        if (rc) {
 685                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 686                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 687        }
 688        return rc;
 689}
 690
 691static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 692{
 693        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 694        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 695        ecryptfs_compute_root_iv(crypt_stat);
 696        if (unlikely(ecryptfs_verbosity > 0)) {
 697                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 698                ecryptfs_dump_hex(crypt_stat->key,
 699                                  crypt_stat->key_size);
 700        }
 701}
 702
 703/**
 704 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 705 * @crypt_stat: The inode's cryptographic context
 706 * @mount_crypt_stat: The mount point's cryptographic context
 707 *
 708 * This function propagates the mount-wide flags to individual inode
 709 * flags.
 710 */
 711static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 712        struct ecryptfs_crypt_stat *crypt_stat,
 713        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 714{
 715        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 716                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 717        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 718                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 719        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 720                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 721                if (mount_crypt_stat->flags
 722                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 723                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 724                else if (mount_crypt_stat->flags
 725                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 726                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 727        }
 728}
 729
 730static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 731        struct ecryptfs_crypt_stat *crypt_stat,
 732        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 733{
 734        struct ecryptfs_global_auth_tok *global_auth_tok;
 735        int rc = 0;
 736
 737        mutex_lock(&crypt_stat->keysig_list_mutex);
 738        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 739
 740        list_for_each_entry(global_auth_tok,
 741                            &mount_crypt_stat->global_auth_tok_list,
 742                            mount_crypt_stat_list) {
 743                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 744                        continue;
 745                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 746                if (rc) {
 747                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 748                        goto out;
 749                }
 750        }
 751
 752out:
 753        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 754        mutex_unlock(&crypt_stat->keysig_list_mutex);
 755        return rc;
 756}
 757
 758/**
 759 * ecryptfs_set_default_crypt_stat_vals
 760 * @crypt_stat: The inode's cryptographic context
 761 * @mount_crypt_stat: The mount point's cryptographic context
 762 *
 763 * Default values in the event that policy does not override them.
 764 */
 765static void ecryptfs_set_default_crypt_stat_vals(
 766        struct ecryptfs_crypt_stat *crypt_stat,
 767        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 768{
 769        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 770                                                      mount_crypt_stat);
 771        ecryptfs_set_default_sizes(crypt_stat);
 772        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 773        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 774        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 775        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 776        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 777}
 778
 779/**
 780 * ecryptfs_new_file_context
 781 * @ecryptfs_inode: The eCryptfs inode
 782 *
 783 * If the crypto context for the file has not yet been established,
 784 * this is where we do that.  Establishing a new crypto context
 785 * involves the following decisions:
 786 *  - What cipher to use?
 787 *  - What set of authentication tokens to use?
 788 * Here we just worry about getting enough information into the
 789 * authentication tokens so that we know that they are available.
 790 * We associate the available authentication tokens with the new file
 791 * via the set of signatures in the crypt_stat struct.  Later, when
 792 * the headers are actually written out, we may again defer to
 793 * userspace to perform the encryption of the session key; for the
 794 * foreseeable future, this will be the case with public key packets.
 795 *
 796 * Returns zero on success; non-zero otherwise
 797 */
 798int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 799{
 800        struct ecryptfs_crypt_stat *crypt_stat =
 801            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 802        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 803            &ecryptfs_superblock_to_private(
 804                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 805        int cipher_name_len;
 806        int rc = 0;
 807
 808        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 809        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 810        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 811                                                      mount_crypt_stat);
 812        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 813                                                         mount_crypt_stat);
 814        if (rc) {
 815                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 816                       "to the inode key sigs; rc = [%d]\n", rc);
 817                goto out;
 818        }
 819        cipher_name_len =
 820                strlen(mount_crypt_stat->global_default_cipher_name);
 821        memcpy(crypt_stat->cipher,
 822               mount_crypt_stat->global_default_cipher_name,
 823               cipher_name_len);
 824        crypt_stat->cipher[cipher_name_len] = '\0';
 825        crypt_stat->key_size =
 826                mount_crypt_stat->global_default_cipher_key_size;
 827        ecryptfs_generate_new_key(crypt_stat);
 828        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 829        if (rc)
 830                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 831                                "context for cipher [%s]: rc = [%d]\n",
 832                                crypt_stat->cipher, rc);
 833out:
 834        return rc;
 835}
 836
 837/**
 838 * ecryptfs_validate_marker - check for the ecryptfs marker
 839 * @data: The data block in which to check
 840 *
 841 * Returns zero if marker found; -EINVAL if not found
 842 */
 843static int ecryptfs_validate_marker(char *data)
 844{
 845        u32 m_1, m_2;
 846
 847        m_1 = get_unaligned_be32(data);
 848        m_2 = get_unaligned_be32(data + 4);
 849        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 850                return 0;
 851        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 852                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 853                        MAGIC_ECRYPTFS_MARKER);
 854        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 855                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 856        return -EINVAL;
 857}
 858
 859struct ecryptfs_flag_map_elem {
 860        u32 file_flag;
 861        u32 local_flag;
 862};
 863
 864/* Add support for additional flags by adding elements here. */
 865static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 866        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 867        {0x00000002, ECRYPTFS_ENCRYPTED},
 868        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 869        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 870};
 871
 872/**
 873 * ecryptfs_process_flags
 874 * @crypt_stat: The cryptographic context
 875 * @page_virt: Source data to be parsed
 876 * @bytes_read: Updated with the number of bytes read
 877 *
 878 * Returns zero on success; non-zero if the flag set is invalid
 879 */
 880static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 881                                  char *page_virt, int *bytes_read)
 882{
 883        int rc = 0;
 884        int i;
 885        u32 flags;
 886
 887        flags = get_unaligned_be32(page_virt);
 888        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 889                if (flags & ecryptfs_flag_map[i].file_flag) {
 890                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 891                } else
 892                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 893        /* Version is in top 8 bits of the 32-bit flag vector */
 894        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 895        (*bytes_read) = 4;
 896        return rc;
 897}
 898
 899/**
 900 * write_ecryptfs_marker
 901 * @page_virt: The pointer to in a page to begin writing the marker
 902 * @written: Number of bytes written
 903 *
 904 * Marker = 0x3c81b7f5
 905 */
 906static void write_ecryptfs_marker(char *page_virt, size_t *written)
 907{
 908        u32 m_1, m_2;
 909
 910        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 911        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 912        put_unaligned_be32(m_1, page_virt);
 913        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 914        put_unaligned_be32(m_2, page_virt);
 915        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 916}
 917
 918void ecryptfs_write_crypt_stat_flags(char *page_virt,
 919                                     struct ecryptfs_crypt_stat *crypt_stat,
 920                                     size_t *written)
 921{
 922        u32 flags = 0;
 923        int i;
 924
 925        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 926                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 927                        flags |= ecryptfs_flag_map[i].file_flag;
 928        /* Version is in top 8 bits of the 32-bit flag vector */
 929        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 930        put_unaligned_be32(flags, page_virt);
 931        (*written) = 4;
 932}
 933
 934struct ecryptfs_cipher_code_str_map_elem {
 935        char cipher_str[16];
 936        u8 cipher_code;
 937};
 938
 939/* Add support for additional ciphers by adding elements here. The
 940 * cipher_code is whatever OpenPGP applications use to identify the
 941 * ciphers. List in order of probability. */
 942static struct ecryptfs_cipher_code_str_map_elem
 943ecryptfs_cipher_code_str_map[] = {
 944        {"aes",RFC2440_CIPHER_AES_128 },
 945        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 946        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 947        {"cast5", RFC2440_CIPHER_CAST_5},
 948        {"twofish", RFC2440_CIPHER_TWOFISH},
 949        {"cast6", RFC2440_CIPHER_CAST_6},
 950        {"aes", RFC2440_CIPHER_AES_192},
 951        {"aes", RFC2440_CIPHER_AES_256}
 952};
 953
 954/**
 955 * ecryptfs_code_for_cipher_string
 956 * @cipher_name: The string alias for the cipher
 957 * @key_bytes: Length of key in bytes; used for AES code selection
 958 *
 959 * Returns zero on no match, or the cipher code on match
 960 */
 961u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 962{
 963        int i;
 964        u8 code = 0;
 965        struct ecryptfs_cipher_code_str_map_elem *map =
 966                ecryptfs_cipher_code_str_map;
 967
 968        if (strcmp(cipher_name, "aes") == 0) {
 969                switch (key_bytes) {
 970                case 16:
 971                        code = RFC2440_CIPHER_AES_128;
 972                        break;
 973                case 24:
 974                        code = RFC2440_CIPHER_AES_192;
 975                        break;
 976                case 32:
 977                        code = RFC2440_CIPHER_AES_256;
 978                }
 979        } else {
 980                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 981                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 982                                code = map[i].cipher_code;
 983                                break;
 984                        }
 985        }
 986        return code;
 987}
 988
 989/**
 990 * ecryptfs_cipher_code_to_string
 991 * @str: Destination to write out the cipher name
 992 * @cipher_code: The code to convert to cipher name string
 993 *
 994 * Returns zero on success
 995 */
 996int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 997{
 998        int rc = 0;
 999        int i;
1000
1001        str[0] = '\0';
1002        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005        if (str[0] == '\0') {
1006                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007                                "[%d]\n", cipher_code);
1008                rc = -EINVAL;
1009        }
1010        return rc;
1011}
1012
1013int ecryptfs_read_and_validate_header_region(struct inode *inode)
1014{
1015        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1017        int rc;
1018
1019        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020                                 inode);
1021        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1022                return rc >= 0 ? -EINVAL : rc;
1023        rc = ecryptfs_validate_marker(marker);
1024        if (!rc)
1025                ecryptfs_i_size_init(file_size, inode);
1026        return rc;
1027}
1028
1029void
1030ecryptfs_write_header_metadata(char *virt,
1031                               struct ecryptfs_crypt_stat *crypt_stat,
1032                               size_t *written)
1033{
1034        u32 header_extent_size;
1035        u16 num_header_extents_at_front;
1036
1037        header_extent_size = (u32)crypt_stat->extent_size;
1038        num_header_extents_at_front =
1039                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1040        put_unaligned_be32(header_extent_size, virt);
1041        virt += 4;
1042        put_unaligned_be16(num_header_extents_at_front, virt);
1043        (*written) = 6;
1044}
1045
1046struct kmem_cache *ecryptfs_header_cache;
1047
1048/**
1049 * ecryptfs_write_headers_virt
1050 * @page_virt: The virtual address to write the headers to
1051 * @max: The size of memory allocated at page_virt
1052 * @size: Set to the number of bytes written by this function
1053 * @crypt_stat: The cryptographic context
1054 * @ecryptfs_dentry: The eCryptfs dentry
1055 *
1056 * Format version: 1
1057 *
1058 *   Header Extent:
1059 *     Octets 0-7:        Unencrypted file size (big-endian)
1060 *     Octets 8-15:       eCryptfs special marker
1061 *     Octets 16-19:      Flags
1062 *      Octet 16:         File format version number (between 0 and 255)
1063 *      Octets 17-18:     Reserved
1064 *      Octet 19:         Bit 1 (lsb): Reserved
1065 *                        Bit 2: Encrypted?
1066 *                        Bits 3-8: Reserved
1067 *     Octets 20-23:      Header extent size (big-endian)
1068 *     Octets 24-25:      Number of header extents at front of file
1069 *                        (big-endian)
1070 *     Octet  26:         Begin RFC 2440 authentication token packet set
1071 *   Data Extent 0:
1072 *     Lower data (CBC encrypted)
1073 *   Data Extent 1:
1074 *     Lower data (CBC encrypted)
1075 *   ...
1076 *
1077 * Returns zero on success
1078 */
1079static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1080                                       size_t *size,
1081                                       struct ecryptfs_crypt_stat *crypt_stat,
1082                                       struct dentry *ecryptfs_dentry)
1083{
1084        int rc;
1085        size_t written;
1086        size_t offset;
1087
1088        offset = ECRYPTFS_FILE_SIZE_BYTES;
1089        write_ecryptfs_marker((page_virt + offset), &written);
1090        offset += written;
1091        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1092                                        &written);
1093        offset += written;
1094        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1095                                       &written);
1096        offset += written;
1097        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1098                                              ecryptfs_dentry, &written,
1099                                              max - offset);
1100        if (rc)
1101                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1102                                "set; rc = [%d]\n", rc);
1103        if (size) {
1104                offset += written;
1105                *size = offset;
1106        }
1107        return rc;
1108}
1109
1110static int
1111ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1112                                    char *virt, size_t virt_len)
1113{
1114        int rc;
1115
1116        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1117                                  0, virt_len);
1118        if (rc < 0)
1119                printk(KERN_ERR "%s: Error attempting to write header "
1120                       "information to lower file; rc = [%d]\n", __func__, rc);
1121        else
1122                rc = 0;
1123        return rc;
1124}
1125
1126static int
1127ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1128                                 struct inode *ecryptfs_inode,
1129                                 char *page_virt, size_t size)
1130{
1131        int rc;
1132
1133        rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1134                               ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1135        return rc;
1136}
1137
1138static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1139                                               unsigned int order)
1140{
1141        struct page *page;
1142
1143        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1144        if (page)
1145                return (unsigned long) page_address(page);
1146        return 0;
1147}
1148
1149/**
1150 * ecryptfs_write_metadata
1151 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1152 * @ecryptfs_inode: The newly created eCryptfs inode
1153 *
1154 * Write the file headers out.  This will likely involve a userspace
1155 * callout, in which the session key is encrypted with one or more
1156 * public keys and/or the passphrase necessary to do the encryption is
1157 * retrieved via a prompt.  Exactly what happens at this point should
1158 * be policy-dependent.
1159 *
1160 * Returns zero on success; non-zero on error
1161 */
1162int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1163                            struct inode *ecryptfs_inode)
1164{
1165        struct ecryptfs_crypt_stat *crypt_stat =
1166                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1167        unsigned int order;
1168        char *virt;
1169        size_t virt_len;
1170        size_t size = 0;
1171        int rc = 0;
1172
1173        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1174                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1175                        printk(KERN_ERR "Key is invalid; bailing out\n");
1176                        rc = -EINVAL;
1177                        goto out;
1178                }
1179        } else {
1180                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1181                       __func__);
1182                rc = -EINVAL;
1183                goto out;
1184        }
1185        virt_len = crypt_stat->metadata_size;
1186        order = get_order(virt_len);
1187        /* Released in this function */
1188        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1189        if (!virt) {
1190                printk(KERN_ERR "%s: Out of memory\n", __func__);
1191                rc = -ENOMEM;
1192                goto out;
1193        }
1194        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1195        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1196                                         ecryptfs_dentry);
1197        if (unlikely(rc)) {
1198                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1199                       __func__, rc);
1200                goto out_free;
1201        }
1202        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1203                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1204                                                      virt, size);
1205        else
1206                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1207                                                         virt_len);
1208        if (rc) {
1209                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1210                       "rc = [%d]\n", __func__, rc);
1211                goto out_free;
1212        }
1213out_free:
1214        free_pages((unsigned long)virt, order);
1215out:
1216        return rc;
1217}
1218
1219#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1220#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1221static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1222                                 char *virt, int *bytes_read,
1223                                 int validate_header_size)
1224{
1225        int rc = 0;
1226        u32 header_extent_size;
1227        u16 num_header_extents_at_front;
1228
1229        header_extent_size = get_unaligned_be32(virt);
1230        virt += sizeof(__be32);
1231        num_header_extents_at_front = get_unaligned_be16(virt);
1232        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1233                                     * (size_t)header_extent_size));
1234        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1235        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1236            && (crypt_stat->metadata_size
1237                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1238                rc = -EINVAL;
1239                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1240                       crypt_stat->metadata_size);
1241        }
1242        return rc;
1243}
1244
1245/**
1246 * set_default_header_data
1247 * @crypt_stat: The cryptographic context
1248 *
1249 * For version 0 file format; this function is only for backwards
1250 * compatibility for files created with the prior versions of
1251 * eCryptfs.
1252 */
1253static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1254{
1255        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1256}
1257
1258void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1259{
1260        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1261        struct ecryptfs_crypt_stat *crypt_stat;
1262        u64 file_size;
1263
1264        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1265        mount_crypt_stat =
1266                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1267        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1268                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1269                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1270                        file_size += crypt_stat->metadata_size;
1271        } else
1272                file_size = get_unaligned_be64(page_virt);
1273        i_size_write(inode, (loff_t)file_size);
1274        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1275}
1276
1277/**
1278 * ecryptfs_read_headers_virt
1279 * @page_virt: The virtual address into which to read the headers
1280 * @crypt_stat: The cryptographic context
1281 * @ecryptfs_dentry: The eCryptfs dentry
1282 * @validate_header_size: Whether to validate the header size while reading
1283 *
1284 * Read/parse the header data. The header format is detailed in the
1285 * comment block for the ecryptfs_write_headers_virt() function.
1286 *
1287 * Returns zero on success
1288 */
1289static int ecryptfs_read_headers_virt(char *page_virt,
1290                                      struct ecryptfs_crypt_stat *crypt_stat,
1291                                      struct dentry *ecryptfs_dentry,
1292                                      int validate_header_size)
1293{
1294        int rc = 0;
1295        int offset;
1296        int bytes_read;
1297
1298        ecryptfs_set_default_sizes(crypt_stat);
1299        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1300                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1301        offset = ECRYPTFS_FILE_SIZE_BYTES;
1302        rc = ecryptfs_validate_marker(page_virt + offset);
1303        if (rc)
1304                goto out;
1305        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1306                ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1307        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1308        rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1309                                    &bytes_read);
1310        if (rc) {
1311                ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1312                goto out;
1313        }
1314        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1315                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1316                                "file version [%d] is supported by this "
1317                                "version of eCryptfs\n",
1318                                crypt_stat->file_version,
1319                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1320                rc = -EINVAL;
1321                goto out;
1322        }
1323        offset += bytes_read;
1324        if (crypt_stat->file_version >= 1) {
1325                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1326                                           &bytes_read, validate_header_size);
1327                if (rc) {
1328                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1329                                        "metadata; rc = [%d]\n", rc);
1330                }
1331                offset += bytes_read;
1332        } else
1333                set_default_header_data(crypt_stat);
1334        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1335                                       ecryptfs_dentry);
1336out:
1337        return rc;
1338}
1339
1340/**
1341 * ecryptfs_read_xattr_region
1342 * @page_virt: The vitual address into which to read the xattr data
1343 * @ecryptfs_inode: The eCryptfs inode
1344 *
1345 * Attempts to read the crypto metadata from the extended attribute
1346 * region of the lower file.
1347 *
1348 * Returns zero on success; non-zero on error
1349 */
1350int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1351{
1352        struct dentry *lower_dentry =
1353                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1354        ssize_t size;
1355        int rc = 0;
1356
1357        size = ecryptfs_getxattr_lower(lower_dentry,
1358                                       ecryptfs_inode_to_lower(ecryptfs_inode),
1359                                       ECRYPTFS_XATTR_NAME,
1360                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1361        if (size < 0) {
1362                if (unlikely(ecryptfs_verbosity > 0))
1363                        printk(KERN_INFO "Error attempting to read the [%s] "
1364                               "xattr from the lower file; return value = "
1365                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1366                rc = -EINVAL;
1367                goto out;
1368        }
1369out:
1370        return rc;
1371}
1372
1373int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1374                                            struct inode *inode)
1375{
1376        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1377        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1378        int rc;
1379
1380        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1381                                     ecryptfs_inode_to_lower(inode),
1382                                     ECRYPTFS_XATTR_NAME, file_size,
1383                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1384        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1385                return rc >= 0 ? -EINVAL : rc;
1386        rc = ecryptfs_validate_marker(marker);
1387        if (!rc)
1388                ecryptfs_i_size_init(file_size, inode);
1389        return rc;
1390}
1391
1392/**
1393 * ecryptfs_read_metadata
1394 *
1395 * Common entry point for reading file metadata. From here, we could
1396 * retrieve the header information from the header region of the file,
1397 * the xattr region of the file, or some other repository that is
1398 * stored separately from the file itself. The current implementation
1399 * supports retrieving the metadata information from the file contents
1400 * and from the xattr region.
1401 *
1402 * Returns zero if valid headers found and parsed; non-zero otherwise
1403 */
1404int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1405{
1406        int rc;
1407        char *page_virt;
1408        struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1409        struct ecryptfs_crypt_stat *crypt_stat =
1410            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1411        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1412                &ecryptfs_superblock_to_private(
1413                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1414
1415        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1416                                                      mount_crypt_stat);
1417        /* Read the first page from the underlying file */
1418        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1419        if (!page_virt) {
1420                rc = -ENOMEM;
1421                goto out;
1422        }
1423        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1424                                 ecryptfs_inode);
1425        if (rc >= 0)
1426                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427                                                ecryptfs_dentry,
1428                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1429        if (rc) {
1430                /* metadata is not in the file header, so try xattrs */
1431                memset(page_virt, 0, PAGE_SIZE);
1432                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1433                if (rc) {
1434                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1435                               "file header region or xattr region, inode %lu\n",
1436                                ecryptfs_inode->i_ino);
1437                        rc = -EINVAL;
1438                        goto out;
1439                }
1440                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441                                                ecryptfs_dentry,
1442                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1443                if (rc) {
1444                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1445                               "file xattr region either, inode %lu\n",
1446                                ecryptfs_inode->i_ino);
1447                        rc = -EINVAL;
1448                }
1449                if (crypt_stat->mount_crypt_stat->flags
1450                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1451                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1452                } else {
1453                        printk(KERN_WARNING "Attempt to access file with "
1454                               "crypto metadata only in the extended attribute "
1455                               "region, but eCryptfs was mounted without "
1456                               "xattr support enabled. eCryptfs will not treat "
1457                               "this like an encrypted file, inode %lu\n",
1458                                ecryptfs_inode->i_ino);
1459                        rc = -EINVAL;
1460                }
1461        }
1462out:
1463        if (page_virt) {
1464                memset(page_virt, 0, PAGE_SIZE);
1465                kmem_cache_free(ecryptfs_header_cache, page_virt);
1466        }
1467        return rc;
1468}
1469
1470/**
1471 * ecryptfs_encrypt_filename - encrypt filename
1472 *
1473 * CBC-encrypts the filename. We do not want to encrypt the same
1474 * filename with the same key and IV, which may happen with hard
1475 * links, so we prepend random bits to each filename.
1476 *
1477 * Returns zero on success; non-zero otherwise
1478 */
1479static int
1480ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1481                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1482{
1483        int rc = 0;
1484
1485        filename->encrypted_filename = NULL;
1486        filename->encrypted_filename_size = 0;
1487        if (mount_crypt_stat && (mount_crypt_stat->flags
1488                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1489                size_t packet_size;
1490                size_t remaining_bytes;
1491
1492                rc = ecryptfs_write_tag_70_packet(
1493                        NULL, NULL,
1494                        &filename->encrypted_filename_size,
1495                        mount_crypt_stat, NULL,
1496                        filename->filename_size);
1497                if (rc) {
1498                        printk(KERN_ERR "%s: Error attempting to get packet "
1499                               "size for tag 72; rc = [%d]\n", __func__,
1500                               rc);
1501                        filename->encrypted_filename_size = 0;
1502                        goto out;
1503                }
1504                filename->encrypted_filename =
1505                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1506                if (!filename->encrypted_filename) {
1507                        rc = -ENOMEM;
1508                        goto out;
1509                }
1510                remaining_bytes = filename->encrypted_filename_size;
1511                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1512                                                  &remaining_bytes,
1513                                                  &packet_size,
1514                                                  mount_crypt_stat,
1515                                                  filename->filename,
1516                                                  filename->filename_size);
1517                if (rc) {
1518                        printk(KERN_ERR "%s: Error attempting to generate "
1519                               "tag 70 packet; rc = [%d]\n", __func__,
1520                               rc);
1521                        kfree(filename->encrypted_filename);
1522                        filename->encrypted_filename = NULL;
1523                        filename->encrypted_filename_size = 0;
1524                        goto out;
1525                }
1526                filename->encrypted_filename_size = packet_size;
1527        } else {
1528                printk(KERN_ERR "%s: No support for requested filename "
1529                       "encryption method in this release\n", __func__);
1530                rc = -EOPNOTSUPP;
1531                goto out;
1532        }
1533out:
1534        return rc;
1535}
1536
1537static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1538                                  const char *name, size_t name_size)
1539{
1540        int rc = 0;
1541
1542        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1543        if (!(*copied_name)) {
1544                rc = -ENOMEM;
1545                goto out;
1546        }
1547        memcpy((void *)(*copied_name), (void *)name, name_size);
1548        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1549                                                 * in printing out the
1550                                                 * string in debug
1551                                                 * messages */
1552        (*copied_name_size) = name_size;
1553out:
1554        return rc;
1555}
1556
1557/**
1558 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1559 * @key_tfm: Crypto context for key material, set by this function
1560 * @cipher_name: Name of the cipher
1561 * @key_size: Size of the key in bytes
1562 *
1563 * Returns zero on success. Any crypto_tfm structs allocated here
1564 * should be released by other functions, such as on a superblock put
1565 * event, regardless of whether this function succeeds for fails.
1566 */
1567static int
1568ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1569                            char *cipher_name, size_t *key_size)
1570{
1571        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1572        char *full_alg_name = NULL;
1573        int rc;
1574
1575        *key_tfm = NULL;
1576        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1577                rc = -EINVAL;
1578                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1579                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1580                goto out;
1581        }
1582        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1583                                                    "ecb");
1584        if (rc)
1585                goto out;
1586        *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1587        if (IS_ERR(*key_tfm)) {
1588                rc = PTR_ERR(*key_tfm);
1589                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1590                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1591                goto out;
1592        }
1593        crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1594        if (*key_size == 0)
1595                *key_size = crypto_skcipher_default_keysize(*key_tfm);
1596        get_random_bytes(dummy_key, *key_size);
1597        rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1598        if (rc) {
1599                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1600                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1601                       rc);
1602                rc = -EINVAL;
1603                goto out;
1604        }
1605out:
1606        kfree(full_alg_name);
1607        return rc;
1608}
1609
1610struct kmem_cache *ecryptfs_key_tfm_cache;
1611static struct list_head key_tfm_list;
1612struct mutex key_tfm_list_mutex;
1613
1614int __init ecryptfs_init_crypto(void)
1615{
1616        mutex_init(&key_tfm_list_mutex);
1617        INIT_LIST_HEAD(&key_tfm_list);
1618        return 0;
1619}
1620
1621/**
1622 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1623 *
1624 * Called only at module unload time
1625 */
1626int ecryptfs_destroy_crypto(void)
1627{
1628        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1629
1630        mutex_lock(&key_tfm_list_mutex);
1631        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1632                                 key_tfm_list) {
1633                list_del(&key_tfm->key_tfm_list);
1634                crypto_free_skcipher(key_tfm->key_tfm);
1635                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1636        }
1637        mutex_unlock(&key_tfm_list_mutex);
1638        return 0;
1639}
1640
1641int
1642ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1643                         size_t key_size)
1644{
1645        struct ecryptfs_key_tfm *tmp_tfm;
1646        int rc = 0;
1647
1648        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1649
1650        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1651        if (key_tfm)
1652                (*key_tfm) = tmp_tfm;
1653        if (!tmp_tfm) {
1654                rc = -ENOMEM;
1655                goto out;
1656        }
1657        mutex_init(&tmp_tfm->key_tfm_mutex);
1658        strncpy(tmp_tfm->cipher_name, cipher_name,
1659                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1660        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1661        tmp_tfm->key_size = key_size;
1662        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1663                                         tmp_tfm->cipher_name,
1664                                         &tmp_tfm->key_size);
1665        if (rc) {
1666                printk(KERN_ERR "Error attempting to initialize key TFM "
1667                       "cipher with name = [%s]; rc = [%d]\n",
1668                       tmp_tfm->cipher_name, rc);
1669                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1670                if (key_tfm)
1671                        (*key_tfm) = NULL;
1672                goto out;
1673        }
1674        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1675out:
1676        return rc;
1677}
1678
1679/**
1680 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1681 * @cipher_name: the name of the cipher to search for
1682 * @key_tfm: set to corresponding tfm if found
1683 *
1684 * Searches for cached key_tfm matching @cipher_name
1685 * Must be called with &key_tfm_list_mutex held
1686 * Returns 1 if found, with @key_tfm set
1687 * Returns 0 if not found, with @key_tfm set to NULL
1688 */
1689int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1690{
1691        struct ecryptfs_key_tfm *tmp_key_tfm;
1692
1693        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1694
1695        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1696                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1697                        if (key_tfm)
1698                                (*key_tfm) = tmp_key_tfm;
1699                        return 1;
1700                }
1701        }
1702        if (key_tfm)
1703                (*key_tfm) = NULL;
1704        return 0;
1705}
1706
1707/**
1708 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1709 *
1710 * @tfm: set to cached tfm found, or new tfm created
1711 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1712 * @cipher_name: the name of the cipher to search for and/or add
1713 *
1714 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1715 * Searches for cached item first, and creates new if not found.
1716 * Returns 0 on success, non-zero if adding new cipher failed
1717 */
1718int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1719                                               struct mutex **tfm_mutex,
1720                                               char *cipher_name)
1721{
1722        struct ecryptfs_key_tfm *key_tfm;
1723        int rc = 0;
1724
1725        (*tfm) = NULL;
1726        (*tfm_mutex) = NULL;
1727
1728        mutex_lock(&key_tfm_list_mutex);
1729        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1730                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1731                if (rc) {
1732                        printk(KERN_ERR "Error adding new key_tfm to list; "
1733                                        "rc = [%d]\n", rc);
1734                        goto out;
1735                }
1736        }
1737        (*tfm) = key_tfm->key_tfm;
1738        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1739out:
1740        mutex_unlock(&key_tfm_list_mutex);
1741        return rc;
1742}
1743
1744/* 64 characters forming a 6-bit target field */
1745static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1746                                                 "EFGHIJKLMNOPQRST"
1747                                                 "UVWXYZabcdefghij"
1748                                                 "klmnopqrstuvwxyz");
1749
1750/* We could either offset on every reverse map or just pad some 0x00's
1751 * at the front here */
1752static const unsigned char filename_rev_map[256] = {
1753        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1754        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1755        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1756        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1757        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1758        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1759        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1760        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1761        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1762        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1763        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1764        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1765        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1766        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1767        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1768        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1769};
1770
1771/**
1772 * ecryptfs_encode_for_filename
1773 * @dst: Destination location for encoded filename
1774 * @dst_size: Size of the encoded filename in bytes
1775 * @src: Source location for the filename to encode
1776 * @src_size: Size of the source in bytes
1777 */
1778static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1779                                  unsigned char *src, size_t src_size)
1780{
1781        size_t num_blocks;
1782        size_t block_num = 0;
1783        size_t dst_offset = 0;
1784        unsigned char last_block[3];
1785
1786        if (src_size == 0) {
1787                (*dst_size) = 0;
1788                goto out;
1789        }
1790        num_blocks = (src_size / 3);
1791        if ((src_size % 3) == 0) {
1792                memcpy(last_block, (&src[src_size - 3]), 3);
1793        } else {
1794                num_blocks++;
1795                last_block[2] = 0x00;
1796                switch (src_size % 3) {
1797                case 1:
1798                        last_block[0] = src[src_size - 1];
1799                        last_block[1] = 0x00;
1800                        break;
1801                case 2:
1802                        last_block[0] = src[src_size - 2];
1803                        last_block[1] = src[src_size - 1];
1804                }
1805        }
1806        (*dst_size) = (num_blocks * 4);
1807        if (!dst)
1808                goto out;
1809        while (block_num < num_blocks) {
1810                unsigned char *src_block;
1811                unsigned char dst_block[4];
1812
1813                if (block_num == (num_blocks - 1))
1814                        src_block = last_block;
1815                else
1816                        src_block = &src[block_num * 3];
1817                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1818                dst_block[1] = (((src_block[0] << 4) & 0x30)
1819                                | ((src_block[1] >> 4) & 0x0F));
1820                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1821                                | ((src_block[2] >> 6) & 0x03));
1822                dst_block[3] = (src_block[2] & 0x3F);
1823                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1824                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1825                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1826                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1827                block_num++;
1828        }
1829out:
1830        return;
1831}
1832
1833static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1834{
1835        /* Not exact; conservatively long. Every block of 4
1836         * encoded characters decodes into a block of 3
1837         * decoded characters. This segment of code provides
1838         * the caller with the maximum amount of allocated
1839         * space that @dst will need to point to in a
1840         * subsequent call. */
1841        return ((encoded_size + 1) * 3) / 4;
1842}
1843
1844/**
1845 * ecryptfs_decode_from_filename
1846 * @dst: If NULL, this function only sets @dst_size and returns. If
1847 *       non-NULL, this function decodes the encoded octets in @src
1848 *       into the memory that @dst points to.
1849 * @dst_size: Set to the size of the decoded string.
1850 * @src: The encoded set of octets to decode.
1851 * @src_size: The size of the encoded set of octets to decode.
1852 */
1853static void
1854ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1855                              const unsigned char *src, size_t src_size)
1856{
1857        u8 current_bit_offset = 0;
1858        size_t src_byte_offset = 0;
1859        size_t dst_byte_offset = 0;
1860
1861        if (!dst) {
1862                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1863                goto out;
1864        }
1865        while (src_byte_offset < src_size) {
1866                unsigned char src_byte =
1867                                filename_rev_map[(int)src[src_byte_offset]];
1868
1869                switch (current_bit_offset) {
1870                case 0:
1871                        dst[dst_byte_offset] = (src_byte << 2);
1872                        current_bit_offset = 6;
1873                        break;
1874                case 6:
1875                        dst[dst_byte_offset++] |= (src_byte >> 4);
1876                        dst[dst_byte_offset] = ((src_byte & 0xF)
1877                                                 << 4);
1878                        current_bit_offset = 4;
1879                        break;
1880                case 4:
1881                        dst[dst_byte_offset++] |= (src_byte >> 2);
1882                        dst[dst_byte_offset] = (src_byte << 6);
1883                        current_bit_offset = 2;
1884                        break;
1885                case 2:
1886                        dst[dst_byte_offset++] |= (src_byte);
1887                        current_bit_offset = 0;
1888                        break;
1889                }
1890                src_byte_offset++;
1891        }
1892        (*dst_size) = dst_byte_offset;
1893out:
1894        return;
1895}
1896
1897/**
1898 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1899 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1900 * @name: The plaintext name
1901 * @length: The length of the plaintext
1902 * @encoded_name: The encypted name
1903 *
1904 * Encrypts and encodes a filename into something that constitutes a
1905 * valid filename for a filesystem, with printable characters.
1906 *
1907 * We assume that we have a properly initialized crypto context,
1908 * pointed to by crypt_stat->tfm.
1909 *
1910 * Returns zero on success; non-zero on otherwise
1911 */
1912int ecryptfs_encrypt_and_encode_filename(
1913        char **encoded_name,
1914        size_t *encoded_name_size,
1915        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1916        const char *name, size_t name_size)
1917{
1918        size_t encoded_name_no_prefix_size;
1919        int rc = 0;
1920
1921        (*encoded_name) = NULL;
1922        (*encoded_name_size) = 0;
1923        if (mount_crypt_stat && (mount_crypt_stat->flags
1924                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1925                struct ecryptfs_filename *filename;
1926
1927                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1928                if (!filename) {
1929                        rc = -ENOMEM;
1930                        goto out;
1931                }
1932                filename->filename = (char *)name;
1933                filename->filename_size = name_size;
1934                rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1935                if (rc) {
1936                        printk(KERN_ERR "%s: Error attempting to encrypt "
1937                               "filename; rc = [%d]\n", __func__, rc);
1938                        kfree(filename);
1939                        goto out;
1940                }
1941                ecryptfs_encode_for_filename(
1942                        NULL, &encoded_name_no_prefix_size,
1943                        filename->encrypted_filename,
1944                        filename->encrypted_filename_size);
1945                if (mount_crypt_stat
1946                        && (mount_crypt_stat->flags
1947                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1948                        (*encoded_name_size) =
1949                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950                                 + encoded_name_no_prefix_size);
1951                else
1952                        (*encoded_name_size) =
1953                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954                                 + encoded_name_no_prefix_size);
1955                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1956                if (!(*encoded_name)) {
1957                        rc = -ENOMEM;
1958                        kfree(filename->encrypted_filename);
1959                        kfree(filename);
1960                        goto out;
1961                }
1962                if (mount_crypt_stat
1963                        && (mount_crypt_stat->flags
1964                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1965                        memcpy((*encoded_name),
1966                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1967                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1968                        ecryptfs_encode_for_filename(
1969                            ((*encoded_name)
1970                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1971                            &encoded_name_no_prefix_size,
1972                            filename->encrypted_filename,
1973                            filename->encrypted_filename_size);
1974                        (*encoded_name_size) =
1975                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976                                 + encoded_name_no_prefix_size);
1977                        (*encoded_name)[(*encoded_name_size)] = '\0';
1978                } else {
1979                        rc = -EOPNOTSUPP;
1980                }
1981                if (rc) {
1982                        printk(KERN_ERR "%s: Error attempting to encode "
1983                               "encrypted filename; rc = [%d]\n", __func__,
1984                               rc);
1985                        kfree((*encoded_name));
1986                        (*encoded_name) = NULL;
1987                        (*encoded_name_size) = 0;
1988                }
1989                kfree(filename->encrypted_filename);
1990                kfree(filename);
1991        } else {
1992                rc = ecryptfs_copy_filename(encoded_name,
1993                                            encoded_name_size,
1994                                            name, name_size);
1995        }
1996out:
1997        return rc;
1998}
1999
2000static bool is_dot_dotdot(const char *name, size_t name_size)
2001{
2002        if (name_size == 1 && name[0] == '.')
2003                return true;
2004        else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2005                return true;
2006
2007        return false;
2008}
2009
2010/**
2011 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2012 * @plaintext_name: The plaintext name
2013 * @plaintext_name_size: The plaintext name size
2014 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2015 * @name: The filename in cipher text
2016 * @name_size: The cipher text name size
2017 *
2018 * Decrypts and decodes the filename.
2019 *
2020 * Returns zero on error; non-zero otherwise
2021 */
2022int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2023                                         size_t *plaintext_name_size,
2024                                         struct super_block *sb,
2025                                         const char *name, size_t name_size)
2026{
2027        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2028                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2029        char *decoded_name;
2030        size_t decoded_name_size;
2031        size_t packet_size;
2032        int rc = 0;
2033
2034        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2035            !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2036                if (is_dot_dotdot(name, name_size)) {
2037                        rc = ecryptfs_copy_filename(plaintext_name,
2038                                                    plaintext_name_size,
2039                                                    name, name_size);
2040                        goto out;
2041                }
2042
2043                if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2044                    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2045                            ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2046                        rc = -EINVAL;
2047                        goto out;
2048                }
2049
2050                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2051                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2052                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2053                                              name, name_size);
2054                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2055                if (!decoded_name) {
2056                        rc = -ENOMEM;
2057                        goto out;
2058                }
2059                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2060                                              name, name_size);
2061                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2062                                                  plaintext_name_size,
2063                                                  &packet_size,
2064                                                  mount_crypt_stat,
2065                                                  decoded_name,
2066                                                  decoded_name_size);
2067                if (rc) {
2068                        ecryptfs_printk(KERN_DEBUG,
2069                                        "%s: Could not parse tag 70 packet from filename\n",
2070                                        __func__);
2071                        goto out_free;
2072                }
2073        } else {
2074                rc = ecryptfs_copy_filename(plaintext_name,
2075                                            plaintext_name_size,
2076                                            name, name_size);
2077                goto out;
2078        }
2079out_free:
2080        kfree(decoded_name);
2081out:
2082        return rc;
2083}
2084
2085#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2086
2087int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2088                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2089{
2090        struct crypto_skcipher *tfm;
2091        struct mutex *tfm_mutex;
2092        size_t cipher_blocksize;
2093        int rc;
2094
2095        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2096                (*namelen) = lower_namelen;
2097                return 0;
2098        }
2099
2100        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2101                        mount_crypt_stat->global_default_fn_cipher_name);
2102        if (unlikely(rc)) {
2103                (*namelen) = 0;
2104                return rc;
2105        }
2106
2107        mutex_lock(tfm_mutex);
2108        cipher_blocksize = crypto_skcipher_blocksize(tfm);
2109        mutex_unlock(tfm_mutex);
2110
2111        /* Return an exact amount for the common cases */
2112        if (lower_namelen == NAME_MAX
2113            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2114                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2115                return 0;
2116        }
2117
2118        /* Return a safe estimate for the uncommon cases */
2119        (*namelen) = lower_namelen;
2120        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2121        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2122        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2123        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2124        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2125        /* Worst case is that the filename is padded nearly a full block size */
2126        (*namelen) -= cipher_blocksize - 1;
2127
2128        if ((*namelen) < 0)
2129                (*namelen) = 0;
2130
2131        return 0;
2132}
2133