linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
  37
  38/*
  39 * Passed into wb_writeback(), essentially a subset of writeback_control
  40 */
  41struct wb_writeback_work {
  42        long nr_pages;
  43        struct super_block *sb;
  44        enum writeback_sync_modes sync_mode;
  45        unsigned int tagged_writepages:1;
  46        unsigned int for_kupdate:1;
  47        unsigned int range_cyclic:1;
  48        unsigned int for_background:1;
  49        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  50        unsigned int auto_free:1;       /* free on completion */
  51        enum wb_reason reason;          /* why was writeback initiated? */
  52
  53        struct list_head list;          /* pending work list */
  54        struct wb_completion *done;     /* set if the caller waits */
  55};
  56
  57/*
  58 * If an inode is constantly having its pages dirtied, but then the
  59 * updates stop dirtytime_expire_interval seconds in the past, it's
  60 * possible for the worst case time between when an inode has its
  61 * timestamps updated and when they finally get written out to be two
  62 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  63 * seconds), which means most of the time inodes will have their
  64 * timestamps written to disk after 12 hours, but in the worst case a
  65 * few inodes might not their timestamps updated for 24 hours.
  66 */
  67unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  68
  69static inline struct inode *wb_inode(struct list_head *head)
  70{
  71        return list_entry(head, struct inode, i_io_list);
  72}
  73
  74/*
  75 * Include the creation of the trace points after defining the
  76 * wb_writeback_work structure and inline functions so that the definition
  77 * remains local to this file.
  78 */
  79#define CREATE_TRACE_POINTS
  80#include <trace/events/writeback.h>
  81
  82EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  83
  84static bool wb_io_lists_populated(struct bdi_writeback *wb)
  85{
  86        if (wb_has_dirty_io(wb)) {
  87                return false;
  88        } else {
  89                set_bit(WB_has_dirty_io, &wb->state);
  90                WARN_ON_ONCE(!wb->avg_write_bandwidth);
  91                atomic_long_add(wb->avg_write_bandwidth,
  92                                &wb->bdi->tot_write_bandwidth);
  93                return true;
  94        }
  95}
  96
  97static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  98{
  99        if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 100            list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 101                clear_bit(WB_has_dirty_io, &wb->state);
 102                WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 103                                        &wb->bdi->tot_write_bandwidth) < 0);
 104        }
 105}
 106
 107/**
 108 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 109 * @inode: inode to be moved
 110 * @wb: target bdi_writeback
 111 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 112 *
 113 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 114 * Returns %true if @inode is the first occupant of the !dirty_time IO
 115 * lists; otherwise, %false.
 116 */
 117static bool inode_io_list_move_locked(struct inode *inode,
 118                                      struct bdi_writeback *wb,
 119                                      struct list_head *head)
 120{
 121        assert_spin_locked(&wb->list_lock);
 122
 123        list_move(&inode->i_io_list, head);
 124
 125        /* dirty_time doesn't count as dirty_io until expiration */
 126        if (head != &wb->b_dirty_time)
 127                return wb_io_lists_populated(wb);
 128
 129        wb_io_lists_depopulated(wb);
 130        return false;
 131}
 132
 133/**
 134 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 135 * @inode: inode to be removed
 136 * @wb: bdi_writeback @inode is being removed from
 137 *
 138 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 139 * clear %WB_has_dirty_io if all are empty afterwards.
 140 */
 141static void inode_io_list_del_locked(struct inode *inode,
 142                                     struct bdi_writeback *wb)
 143{
 144        assert_spin_locked(&wb->list_lock);
 145        assert_spin_locked(&inode->i_lock);
 146
 147        inode->i_state &= ~I_SYNC_QUEUED;
 148        list_del_init(&inode->i_io_list);
 149        wb_io_lists_depopulated(wb);
 150}
 151
 152static void wb_wakeup(struct bdi_writeback *wb)
 153{
 154        spin_lock_bh(&wb->work_lock);
 155        if (test_bit(WB_registered, &wb->state))
 156                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 157        spin_unlock_bh(&wb->work_lock);
 158}
 159
 160static void finish_writeback_work(struct bdi_writeback *wb,
 161                                  struct wb_writeback_work *work)
 162{
 163        struct wb_completion *done = work->done;
 164
 165        if (work->auto_free)
 166                kfree(work);
 167        if (done) {
 168                wait_queue_head_t *waitq = done->waitq;
 169
 170                /* @done can't be accessed after the following dec */
 171                if (atomic_dec_and_test(&done->cnt))
 172                        wake_up_all(waitq);
 173        }
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177                          struct wb_writeback_work *work)
 178{
 179        trace_writeback_queue(wb, work);
 180
 181        if (work->done)
 182                atomic_inc(&work->done->cnt);
 183
 184        spin_lock_bh(&wb->work_lock);
 185
 186        if (test_bit(WB_registered, &wb->state)) {
 187                list_add_tail(&work->list, &wb->work_list);
 188                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 189        } else
 190                finish_writeback_work(wb, work);
 191
 192        spin_unlock_bh(&wb->work_lock);
 193}
 194
 195/**
 196 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 197 * @done: target wb_completion
 198 *
 199 * Wait for one or more work items issued to @bdi with their ->done field
 200 * set to @done, which should have been initialized with
 201 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 202 * are completed.  Work items which are waited upon aren't freed
 203 * automatically on completion.
 204 */
 205void wb_wait_for_completion(struct wb_completion *done)
 206{
 207        atomic_dec(&done->cnt);         /* put down the initial count */
 208        wait_event(*done->waitq, !atomic_read(&done->cnt));
 209}
 210
 211#ifdef CONFIG_CGROUP_WRITEBACK
 212
 213/*
 214 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 215 * how they're used.
 216 *
 217 * These paramters are inherently heuristical as the detection target
 218 * itself is fuzzy.  All we want to do is detaching an inode from the
 219 * current owner if it's being written to by some other cgroups too much.
 220 *
 221 * The current cgroup writeback is built on the assumption that multiple
 222 * cgroups writing to the same inode concurrently is very rare and a mode
 223 * of operation which isn't well supported.  As such, the goal is not
 224 * taking too long when a different cgroup takes over an inode while
 225 * avoiding too aggressive flip-flops from occasional foreign writes.
 226 *
 227 * We record, very roughly, 2s worth of IO time history and if more than
 228 * half of that is foreign, trigger the switch.  The recording is quantized
 229 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 230 * writes smaller than 1/8 of avg size are ignored.
 231 */
 232#define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
 233#define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
 234#define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
 235#define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
 236
 237#define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
 238#define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 239                                        /* each slot's duration is 2s / 16 */
 240#define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
 241                                        /* if foreign slots >= 8, switch */
 242#define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
 243                                        /* one round can affect upto 5 slots */
 244#define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
 245
 246static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 247static struct workqueue_struct *isw_wq;
 248
 249void __inode_attach_wb(struct inode *inode, struct page *page)
 250{
 251        struct backing_dev_info *bdi = inode_to_bdi(inode);
 252        struct bdi_writeback *wb = NULL;
 253
 254        if (inode_cgwb_enabled(inode)) {
 255                struct cgroup_subsys_state *memcg_css;
 256
 257                if (page) {
 258                        memcg_css = mem_cgroup_css_from_page(page);
 259                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 260                } else {
 261                        /* must pin memcg_css, see wb_get_create() */
 262                        memcg_css = task_get_css(current, memory_cgrp_id);
 263                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 264                        css_put(memcg_css);
 265                }
 266        }
 267
 268        if (!wb)
 269                wb = &bdi->wb;
 270
 271        /*
 272         * There may be multiple instances of this function racing to
 273         * update the same inode.  Use cmpxchg() to tell the winner.
 274         */
 275        if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 276                wb_put(wb);
 277}
 278EXPORT_SYMBOL_GPL(__inode_attach_wb);
 279
 280/**
 281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 282 * @inode: inode of interest with i_lock held
 283 *
 284 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 285 * held on entry and is released on return.  The returned wb is guaranteed
 286 * to stay @inode's associated wb until its list_lock is released.
 287 */
 288static struct bdi_writeback *
 289locked_inode_to_wb_and_lock_list(struct inode *inode)
 290        __releases(&inode->i_lock)
 291        __acquires(&wb->list_lock)
 292{
 293        while (true) {
 294                struct bdi_writeback *wb = inode_to_wb(inode);
 295
 296                /*
 297                 * inode_to_wb() association is protected by both
 298                 * @inode->i_lock and @wb->list_lock but list_lock nests
 299                 * outside i_lock.  Drop i_lock and verify that the
 300                 * association hasn't changed after acquiring list_lock.
 301                 */
 302                wb_get(wb);
 303                spin_unlock(&inode->i_lock);
 304                spin_lock(&wb->list_lock);
 305
 306                /* i_wb may have changed inbetween, can't use inode_to_wb() */
 307                if (likely(wb == inode->i_wb)) {
 308                        wb_put(wb);     /* @inode already has ref */
 309                        return wb;
 310                }
 311
 312                spin_unlock(&wb->list_lock);
 313                wb_put(wb);
 314                cpu_relax();
 315                spin_lock(&inode->i_lock);
 316        }
 317}
 318
 319/**
 320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 321 * @inode: inode of interest
 322 *
 323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 324 * on entry.
 325 */
 326static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 327        __acquires(&wb->list_lock)
 328{
 329        spin_lock(&inode->i_lock);
 330        return locked_inode_to_wb_and_lock_list(inode);
 331}
 332
 333struct inode_switch_wbs_context {
 334        struct inode            *inode;
 335        struct bdi_writeback    *new_wb;
 336
 337        struct rcu_head         rcu_head;
 338        struct work_struct      work;
 339};
 340
 341static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 342{
 343        down_write(bdi->wb_switch_rwsem);
 344}
 345
 346static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 347{
 348        up_write(bdi->wb_switch_rwsem);
 349}
 350
 351static void inode_switch_wbs_work_fn(struct work_struct *work)
 352{
 353        struct inode_switch_wbs_context *isw =
 354                container_of(work, struct inode_switch_wbs_context, work);
 355        struct inode *inode = isw->inode;
 356        struct backing_dev_info *bdi = inode_to_bdi(inode);
 357        struct address_space *mapping = inode->i_mapping;
 358        struct bdi_writeback *old_wb = inode->i_wb;
 359        struct bdi_writeback *new_wb = isw->new_wb;
 360        XA_STATE(xas, &mapping->i_pages, 0);
 361        struct page *page;
 362        bool switched = false;
 363
 364        /*
 365         * If @inode switches cgwb membership while sync_inodes_sb() is
 366         * being issued, sync_inodes_sb() might miss it.  Synchronize.
 367         */
 368        down_read(bdi->wb_switch_rwsem);
 369
 370        /*
 371         * By the time control reaches here, RCU grace period has passed
 372         * since I_WB_SWITCH assertion and all wb stat update transactions
 373         * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 374         * synchronizing against the i_pages lock.
 375         *
 376         * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 377         * gives us exclusion against all wb related operations on @inode
 378         * including IO list manipulations and stat updates.
 379         */
 380        if (old_wb < new_wb) {
 381                spin_lock(&old_wb->list_lock);
 382                spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 383        } else {
 384                spin_lock(&new_wb->list_lock);
 385                spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 386        }
 387        spin_lock(&inode->i_lock);
 388        xa_lock_irq(&mapping->i_pages);
 389
 390        /*
 391         * Once I_FREEING is visible under i_lock, the eviction path owns
 392         * the inode and we shouldn't modify ->i_io_list.
 393         */
 394        if (unlikely(inode->i_state & I_FREEING))
 395                goto skip_switch;
 396
 397        trace_inode_switch_wbs(inode, old_wb, new_wb);
 398
 399        /*
 400         * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 401         * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 402         * pages actually under writeback.
 403         */
 404        xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
 405                if (PageDirty(page)) {
 406                        dec_wb_stat(old_wb, WB_RECLAIMABLE);
 407                        inc_wb_stat(new_wb, WB_RECLAIMABLE);
 408                }
 409        }
 410
 411        xas_set(&xas, 0);
 412        xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
 413                WARN_ON_ONCE(!PageWriteback(page));
 414                dec_wb_stat(old_wb, WB_WRITEBACK);
 415                inc_wb_stat(new_wb, WB_WRITEBACK);
 416        }
 417
 418        if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
 419                atomic_dec(&old_wb->writeback_inodes);
 420                atomic_inc(&new_wb->writeback_inodes);
 421        }
 422
 423        wb_get(new_wb);
 424
 425        /*
 426         * Transfer to @new_wb's IO list if necessary.  The specific list
 427         * @inode was on is ignored and the inode is put on ->b_dirty which
 428         * is always correct including from ->b_dirty_time.  The transfer
 429         * preserves @inode->dirtied_when ordering.
 430         */
 431        if (!list_empty(&inode->i_io_list)) {
 432                struct inode *pos;
 433
 434                inode_io_list_del_locked(inode, old_wb);
 435                inode->i_wb = new_wb;
 436                list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 437                        if (time_after_eq(inode->dirtied_when,
 438                                          pos->dirtied_when))
 439                                break;
 440                inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 441        } else {
 442                inode->i_wb = new_wb;
 443        }
 444
 445        /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 446        inode->i_wb_frn_winner = 0;
 447        inode->i_wb_frn_avg_time = 0;
 448        inode->i_wb_frn_history = 0;
 449        switched = true;
 450skip_switch:
 451        /*
 452         * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 453         * ensures that the new wb is visible if they see !I_WB_SWITCH.
 454         */
 455        smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 456
 457        xa_unlock_irq(&mapping->i_pages);
 458        spin_unlock(&inode->i_lock);
 459        spin_unlock(&new_wb->list_lock);
 460        spin_unlock(&old_wb->list_lock);
 461
 462        up_read(bdi->wb_switch_rwsem);
 463
 464        if (switched) {
 465                wb_wakeup(new_wb);
 466                wb_put(old_wb);
 467        }
 468        wb_put(new_wb);
 469
 470        iput(inode);
 471        kfree(isw);
 472
 473        atomic_dec(&isw_nr_in_flight);
 474}
 475
 476static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 477{
 478        struct inode_switch_wbs_context *isw = container_of(rcu_head,
 479                                struct inode_switch_wbs_context, rcu_head);
 480
 481        /* needs to grab bh-unsafe locks, bounce to work item */
 482        INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 483        queue_work(isw_wq, &isw->work);
 484}
 485
 486/**
 487 * inode_switch_wbs - change the wb association of an inode
 488 * @inode: target inode
 489 * @new_wb_id: ID of the new wb
 490 *
 491 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 492 * switching is performed asynchronously and may fail silently.
 493 */
 494static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 495{
 496        struct backing_dev_info *bdi = inode_to_bdi(inode);
 497        struct cgroup_subsys_state *memcg_css;
 498        struct inode_switch_wbs_context *isw;
 499
 500        /* noop if seems to be already in progress */
 501        if (inode->i_state & I_WB_SWITCH)
 502                return;
 503
 504        /* avoid queueing a new switch if too many are already in flight */
 505        if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
 506                return;
 507
 508        isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 509        if (!isw)
 510                return;
 511
 512        /* find and pin the new wb */
 513        rcu_read_lock();
 514        memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 515        if (memcg_css)
 516                isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 517        rcu_read_unlock();
 518        if (!isw->new_wb)
 519                goto out_free;
 520
 521        /* while holding I_WB_SWITCH, no one else can update the association */
 522        spin_lock(&inode->i_lock);
 523        if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 524            inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 525            inode_to_wb(inode) == isw->new_wb) {
 526                spin_unlock(&inode->i_lock);
 527                goto out_free;
 528        }
 529        inode->i_state |= I_WB_SWITCH;
 530        __iget(inode);
 531        spin_unlock(&inode->i_lock);
 532
 533        isw->inode = inode;
 534
 535        atomic_inc(&isw_nr_in_flight);
 536
 537        /*
 538         * In addition to synchronizing among switchers, I_WB_SWITCH tells
 539         * the RCU protected stat update paths to grab the i_page
 540         * lock so that stat transfer can synchronize against them.
 541         * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 542         */
 543        call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 544        return;
 545
 546out_free:
 547        if (isw->new_wb)
 548                wb_put(isw->new_wb);
 549        kfree(isw);
 550}
 551
 552/**
 553 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 554 * @wbc: writeback_control of interest
 555 * @inode: target inode
 556 *
 557 * @inode is locked and about to be written back under the control of @wbc.
 558 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 559 * writeback completion, wbc_detach_inode() should be called.  This is used
 560 * to track the cgroup writeback context.
 561 */
 562void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 563                                 struct inode *inode)
 564{
 565        if (!inode_cgwb_enabled(inode)) {
 566                spin_unlock(&inode->i_lock);
 567                return;
 568        }
 569
 570        wbc->wb = inode_to_wb(inode);
 571        wbc->inode = inode;
 572
 573        wbc->wb_id = wbc->wb->memcg_css->id;
 574        wbc->wb_lcand_id = inode->i_wb_frn_winner;
 575        wbc->wb_tcand_id = 0;
 576        wbc->wb_bytes = 0;
 577        wbc->wb_lcand_bytes = 0;
 578        wbc->wb_tcand_bytes = 0;
 579
 580        wb_get(wbc->wb);
 581        spin_unlock(&inode->i_lock);
 582
 583        /*
 584         * A dying wb indicates that either the blkcg associated with the
 585         * memcg changed or the associated memcg is dying.  In the first
 586         * case, a replacement wb should already be available and we should
 587         * refresh the wb immediately.  In the second case, trying to
 588         * refresh will keep failing.
 589         */
 590        if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
 591                inode_switch_wbs(inode, wbc->wb_id);
 592}
 593EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
 594
 595/**
 596 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 597 * @wbc: writeback_control of the just finished writeback
 598 *
 599 * To be called after a writeback attempt of an inode finishes and undoes
 600 * wbc_attach_and_unlock_inode().  Can be called under any context.
 601 *
 602 * As concurrent write sharing of an inode is expected to be very rare and
 603 * memcg only tracks page ownership on first-use basis severely confining
 604 * the usefulness of such sharing, cgroup writeback tracks ownership
 605 * per-inode.  While the support for concurrent write sharing of an inode
 606 * is deemed unnecessary, an inode being written to by different cgroups at
 607 * different points in time is a lot more common, and, more importantly,
 608 * charging only by first-use can too readily lead to grossly incorrect
 609 * behaviors (single foreign page can lead to gigabytes of writeback to be
 610 * incorrectly attributed).
 611 *
 612 * To resolve this issue, cgroup writeback detects the majority dirtier of
 613 * an inode and transfers the ownership to it.  To avoid unnnecessary
 614 * oscillation, the detection mechanism keeps track of history and gives
 615 * out the switch verdict only if the foreign usage pattern is stable over
 616 * a certain amount of time and/or writeback attempts.
 617 *
 618 * On each writeback attempt, @wbc tries to detect the majority writer
 619 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 620 * count from the majority voting, it also counts the bytes written for the
 621 * current wb and the last round's winner wb (max of last round's current
 622 * wb, the winner from two rounds ago, and the last round's majority
 623 * candidate).  Keeping track of the historical winner helps the algorithm
 624 * to semi-reliably detect the most active writer even when it's not the
 625 * absolute majority.
 626 *
 627 * Once the winner of the round is determined, whether the winner is
 628 * foreign or not and how much IO time the round consumed is recorded in
 629 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 630 * over a certain threshold, the switch verdict is given.
 631 */
 632void wbc_detach_inode(struct writeback_control *wbc)
 633{
 634        struct bdi_writeback *wb = wbc->wb;
 635        struct inode *inode = wbc->inode;
 636        unsigned long avg_time, max_bytes, max_time;
 637        u16 history;
 638        int max_id;
 639
 640        if (!wb)
 641                return;
 642
 643        history = inode->i_wb_frn_history;
 644        avg_time = inode->i_wb_frn_avg_time;
 645
 646        /* pick the winner of this round */
 647        if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 648            wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 649                max_id = wbc->wb_id;
 650                max_bytes = wbc->wb_bytes;
 651        } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 652                max_id = wbc->wb_lcand_id;
 653                max_bytes = wbc->wb_lcand_bytes;
 654        } else {
 655                max_id = wbc->wb_tcand_id;
 656                max_bytes = wbc->wb_tcand_bytes;
 657        }
 658
 659        /*
 660         * Calculate the amount of IO time the winner consumed and fold it
 661         * into the running average kept per inode.  If the consumed IO
 662         * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 663         * deciding whether to switch or not.  This is to prevent one-off
 664         * small dirtiers from skewing the verdict.
 665         */
 666        max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 667                                wb->avg_write_bandwidth);
 668        if (avg_time)
 669                avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 670                            (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 671        else
 672                avg_time = max_time;    /* immediate catch up on first run */
 673
 674        if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 675                int slots;
 676
 677                /*
 678                 * The switch verdict is reached if foreign wb's consume
 679                 * more than a certain proportion of IO time in a
 680                 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 681                 * history mask where each bit represents one sixteenth of
 682                 * the period.  Determine the number of slots to shift into
 683                 * history from @max_time.
 684                 */
 685                slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 686                            (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 687                history <<= slots;
 688                if (wbc->wb_id != max_id)
 689                        history |= (1U << slots) - 1;
 690
 691                if (history)
 692                        trace_inode_foreign_history(inode, wbc, history);
 693
 694                /*
 695                 * Switch if the current wb isn't the consistent winner.
 696                 * If there are multiple closely competing dirtiers, the
 697                 * inode may switch across them repeatedly over time, which
 698                 * is okay.  The main goal is avoiding keeping an inode on
 699                 * the wrong wb for an extended period of time.
 700                 */
 701                if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 702                        inode_switch_wbs(inode, max_id);
 703        }
 704
 705        /*
 706         * Multiple instances of this function may race to update the
 707         * following fields but we don't mind occassional inaccuracies.
 708         */
 709        inode->i_wb_frn_winner = max_id;
 710        inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 711        inode->i_wb_frn_history = history;
 712
 713        wb_put(wbc->wb);
 714        wbc->wb = NULL;
 715}
 716EXPORT_SYMBOL_GPL(wbc_detach_inode);
 717
 718/**
 719 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
 720 * @wbc: writeback_control of the writeback in progress
 721 * @page: page being written out
 722 * @bytes: number of bytes being written out
 723 *
 724 * @bytes from @page are about to written out during the writeback
 725 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 726 * wbc_detach_inode().
 727 */
 728void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
 729                              size_t bytes)
 730{
 731        struct cgroup_subsys_state *css;
 732        int id;
 733
 734        /*
 735         * pageout() path doesn't attach @wbc to the inode being written
 736         * out.  This is intentional as we don't want the function to block
 737         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 738         * regular writeback instead of writing things out itself.
 739         */
 740        if (!wbc->wb || wbc->no_cgroup_owner)
 741                return;
 742
 743        css = mem_cgroup_css_from_page(page);
 744        /* dead cgroups shouldn't contribute to inode ownership arbitration */
 745        if (!(css->flags & CSS_ONLINE))
 746                return;
 747
 748        id = css->id;
 749
 750        if (id == wbc->wb_id) {
 751                wbc->wb_bytes += bytes;
 752                return;
 753        }
 754
 755        if (id == wbc->wb_lcand_id)
 756                wbc->wb_lcand_bytes += bytes;
 757
 758        /* Boyer-Moore majority vote algorithm */
 759        if (!wbc->wb_tcand_bytes)
 760                wbc->wb_tcand_id = id;
 761        if (id == wbc->wb_tcand_id)
 762                wbc->wb_tcand_bytes += bytes;
 763        else
 764                wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 765}
 766EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
 767
 768/**
 769 * inode_congested - test whether an inode is congested
 770 * @inode: inode to test for congestion (may be NULL)
 771 * @cong_bits: mask of WB_[a]sync_congested bits to test
 772 *
 773 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 774 * bits to test and the return value is the mask of set bits.
 775 *
 776 * If cgroup writeback is enabled for @inode, the congestion state is
 777 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 778 * associated with @inode is congested; otherwise, the root wb's congestion
 779 * state is used.
 780 *
 781 * @inode is allowed to be NULL as this function is often called on
 782 * mapping->host which is NULL for the swapper space.
 783 */
 784int inode_congested(struct inode *inode, int cong_bits)
 785{
 786        /*
 787         * Once set, ->i_wb never becomes NULL while the inode is alive.
 788         * Start transaction iff ->i_wb is visible.
 789         */
 790        if (inode && inode_to_wb_is_valid(inode)) {
 791                struct bdi_writeback *wb;
 792                struct wb_lock_cookie lock_cookie = {};
 793                bool congested;
 794
 795                wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
 796                congested = wb_congested(wb, cong_bits);
 797                unlocked_inode_to_wb_end(inode, &lock_cookie);
 798                return congested;
 799        }
 800
 801        return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 802}
 803EXPORT_SYMBOL_GPL(inode_congested);
 804
 805/**
 806 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 807 * @wb: target bdi_writeback to split @nr_pages to
 808 * @nr_pages: number of pages to write for the whole bdi
 809 *
 810 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 811 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 812 * @wb->bdi.
 813 */
 814static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 815{
 816        unsigned long this_bw = wb->avg_write_bandwidth;
 817        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 818
 819        if (nr_pages == LONG_MAX)
 820                return LONG_MAX;
 821
 822        /*
 823         * This may be called on clean wb's and proportional distribution
 824         * may not make sense, just use the original @nr_pages in those
 825         * cases.  In general, we wanna err on the side of writing more.
 826         */
 827        if (!tot_bw || this_bw >= tot_bw)
 828                return nr_pages;
 829        else
 830                return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 831}
 832
 833/**
 834 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 835 * @bdi: target backing_dev_info
 836 * @base_work: wb_writeback_work to issue
 837 * @skip_if_busy: skip wb's which already have writeback in progress
 838 *
 839 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 840 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 841 * distributed to the busy wbs according to each wb's proportion in the
 842 * total active write bandwidth of @bdi.
 843 */
 844static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 845                                  struct wb_writeback_work *base_work,
 846                                  bool skip_if_busy)
 847{
 848        struct bdi_writeback *last_wb = NULL;
 849        struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 850                                              struct bdi_writeback, bdi_node);
 851
 852        might_sleep();
 853restart:
 854        rcu_read_lock();
 855        list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 856                DEFINE_WB_COMPLETION(fallback_work_done, bdi);
 857                struct wb_writeback_work fallback_work;
 858                struct wb_writeback_work *work;
 859                long nr_pages;
 860
 861                if (last_wb) {
 862                        wb_put(last_wb);
 863                        last_wb = NULL;
 864                }
 865
 866                /* SYNC_ALL writes out I_DIRTY_TIME too */
 867                if (!wb_has_dirty_io(wb) &&
 868                    (base_work->sync_mode == WB_SYNC_NONE ||
 869                     list_empty(&wb->b_dirty_time)))
 870                        continue;
 871                if (skip_if_busy && writeback_in_progress(wb))
 872                        continue;
 873
 874                nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 875
 876                work = kmalloc(sizeof(*work), GFP_ATOMIC);
 877                if (work) {
 878                        *work = *base_work;
 879                        work->nr_pages = nr_pages;
 880                        work->auto_free = 1;
 881                        wb_queue_work(wb, work);
 882                        continue;
 883                }
 884
 885                /* alloc failed, execute synchronously using on-stack fallback */
 886                work = &fallback_work;
 887                *work = *base_work;
 888                work->nr_pages = nr_pages;
 889                work->auto_free = 0;
 890                work->done = &fallback_work_done;
 891
 892                wb_queue_work(wb, work);
 893
 894                /*
 895                 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 896                 * continuing iteration from @wb after dropping and
 897                 * regrabbing rcu read lock.
 898                 */
 899                wb_get(wb);
 900                last_wb = wb;
 901
 902                rcu_read_unlock();
 903                wb_wait_for_completion(&fallback_work_done);
 904                goto restart;
 905        }
 906        rcu_read_unlock();
 907
 908        if (last_wb)
 909                wb_put(last_wb);
 910}
 911
 912/**
 913 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
 914 * @bdi_id: target bdi id
 915 * @memcg_id: target memcg css id
 916 * @nr: number of pages to write, 0 for best-effort dirty flushing
 917 * @reason: reason why some writeback work initiated
 918 * @done: target wb_completion
 919 *
 920 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
 921 * with the specified parameters.
 922 */
 923int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
 924                           enum wb_reason reason, struct wb_completion *done)
 925{
 926        struct backing_dev_info *bdi;
 927        struct cgroup_subsys_state *memcg_css;
 928        struct bdi_writeback *wb;
 929        struct wb_writeback_work *work;
 930        int ret;
 931
 932        /* lookup bdi and memcg */
 933        bdi = bdi_get_by_id(bdi_id);
 934        if (!bdi)
 935                return -ENOENT;
 936
 937        rcu_read_lock();
 938        memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
 939        if (memcg_css && !css_tryget(memcg_css))
 940                memcg_css = NULL;
 941        rcu_read_unlock();
 942        if (!memcg_css) {
 943                ret = -ENOENT;
 944                goto out_bdi_put;
 945        }
 946
 947        /*
 948         * And find the associated wb.  If the wb isn't there already
 949         * there's nothing to flush, don't create one.
 950         */
 951        wb = wb_get_lookup(bdi, memcg_css);
 952        if (!wb) {
 953                ret = -ENOENT;
 954                goto out_css_put;
 955        }
 956
 957        /*
 958         * If @nr is zero, the caller is attempting to write out most of
 959         * the currently dirty pages.  Let's take the current dirty page
 960         * count and inflate it by 25% which should be large enough to
 961         * flush out most dirty pages while avoiding getting livelocked by
 962         * concurrent dirtiers.
 963         */
 964        if (!nr) {
 965                unsigned long filepages, headroom, dirty, writeback;
 966
 967                mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
 968                                      &writeback);
 969                nr = dirty * 10 / 8;
 970        }
 971
 972        /* issue the writeback work */
 973        work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
 974        if (work) {
 975                work->nr_pages = nr;
 976                work->sync_mode = WB_SYNC_NONE;
 977                work->range_cyclic = 1;
 978                work->reason = reason;
 979                work->done = done;
 980                work->auto_free = 1;
 981                wb_queue_work(wb, work);
 982                ret = 0;
 983        } else {
 984                ret = -ENOMEM;
 985        }
 986
 987        wb_put(wb);
 988out_css_put:
 989        css_put(memcg_css);
 990out_bdi_put:
 991        bdi_put(bdi);
 992        return ret;
 993}
 994
 995/**
 996 * cgroup_writeback_umount - flush inode wb switches for umount
 997 *
 998 * This function is called when a super_block is about to be destroyed and
 999 * flushes in-flight inode wb switches.  An inode wb switch goes through
1000 * RCU and then workqueue, so the two need to be flushed in order to ensure
1001 * that all previously scheduled switches are finished.  As wb switches are
1002 * rare occurrences and synchronize_rcu() can take a while, perform
1003 * flushing iff wb switches are in flight.
1004 */
1005void cgroup_writeback_umount(void)
1006{
1007        if (atomic_read(&isw_nr_in_flight)) {
1008                synchronize_rcu();
1009                flush_workqueue(isw_wq);
1010        }
1011}
1012
1013static int __init cgroup_writeback_init(void)
1014{
1015        isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1016        if (!isw_wq)
1017                return -ENOMEM;
1018        return 0;
1019}
1020fs_initcall(cgroup_writeback_init);
1021
1022#else   /* CONFIG_CGROUP_WRITEBACK */
1023
1024static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1026
1027static struct bdi_writeback *
1028locked_inode_to_wb_and_lock_list(struct inode *inode)
1029        __releases(&inode->i_lock)
1030        __acquires(&wb->list_lock)
1031{
1032        struct bdi_writeback *wb = inode_to_wb(inode);
1033
1034        spin_unlock(&inode->i_lock);
1035        spin_lock(&wb->list_lock);
1036        return wb;
1037}
1038
1039static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1040        __acquires(&wb->list_lock)
1041{
1042        struct bdi_writeback *wb = inode_to_wb(inode);
1043
1044        spin_lock(&wb->list_lock);
1045        return wb;
1046}
1047
1048static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1049{
1050        return nr_pages;
1051}
1052
1053static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1054                                  struct wb_writeback_work *base_work,
1055                                  bool skip_if_busy)
1056{
1057        might_sleep();
1058
1059        if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1060                base_work->auto_free = 0;
1061                wb_queue_work(&bdi->wb, base_work);
1062        }
1063}
1064
1065#endif  /* CONFIG_CGROUP_WRITEBACK */
1066
1067/*
1068 * Add in the number of potentially dirty inodes, because each inode
1069 * write can dirty pagecache in the underlying blockdev.
1070 */
1071static unsigned long get_nr_dirty_pages(void)
1072{
1073        return global_node_page_state(NR_FILE_DIRTY) +
1074                get_nr_dirty_inodes();
1075}
1076
1077static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078{
1079        if (!wb_has_dirty_io(wb))
1080                return;
1081
1082        /*
1083         * All callers of this function want to start writeback of all
1084         * dirty pages. Places like vmscan can call this at a very
1085         * high frequency, causing pointless allocations of tons of
1086         * work items and keeping the flusher threads busy retrieving
1087         * that work. Ensure that we only allow one of them pending and
1088         * inflight at the time.
1089         */
1090        if (test_bit(WB_start_all, &wb->state) ||
1091            test_and_set_bit(WB_start_all, &wb->state))
1092                return;
1093
1094        wb->start_all_reason = reason;
1095        wb_wakeup(wb);
1096}
1097
1098/**
1099 * wb_start_background_writeback - start background writeback
1100 * @wb: bdi_writback to write from
1101 *
1102 * Description:
1103 *   This makes sure WB_SYNC_NONE background writeback happens. When
1104 *   this function returns, it is only guaranteed that for given wb
1105 *   some IO is happening if we are over background dirty threshold.
1106 *   Caller need not hold sb s_umount semaphore.
1107 */
1108void wb_start_background_writeback(struct bdi_writeback *wb)
1109{
1110        /*
1111         * We just wake up the flusher thread. It will perform background
1112         * writeback as soon as there is no other work to do.
1113         */
1114        trace_writeback_wake_background(wb);
1115        wb_wakeup(wb);
1116}
1117
1118/*
1119 * Remove the inode from the writeback list it is on.
1120 */
1121void inode_io_list_del(struct inode *inode)
1122{
1123        struct bdi_writeback *wb;
1124
1125        wb = inode_to_wb_and_lock_list(inode);
1126        spin_lock(&inode->i_lock);
1127        inode_io_list_del_locked(inode, wb);
1128        spin_unlock(&inode->i_lock);
1129        spin_unlock(&wb->list_lock);
1130}
1131EXPORT_SYMBOL(inode_io_list_del);
1132
1133/*
1134 * mark an inode as under writeback on the sb
1135 */
1136void sb_mark_inode_writeback(struct inode *inode)
1137{
1138        struct super_block *sb = inode->i_sb;
1139        unsigned long flags;
1140
1141        if (list_empty(&inode->i_wb_list)) {
1142                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1143                if (list_empty(&inode->i_wb_list)) {
1144                        list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1145                        trace_sb_mark_inode_writeback(inode);
1146                }
1147                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1148        }
1149}
1150
1151/*
1152 * clear an inode as under writeback on the sb
1153 */
1154void sb_clear_inode_writeback(struct inode *inode)
1155{
1156        struct super_block *sb = inode->i_sb;
1157        unsigned long flags;
1158
1159        if (!list_empty(&inode->i_wb_list)) {
1160                spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1161                if (!list_empty(&inode->i_wb_list)) {
1162                        list_del_init(&inode->i_wb_list);
1163                        trace_sb_clear_inode_writeback(inode);
1164                }
1165                spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1166        }
1167}
1168
1169/*
1170 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1171 * furthest end of its superblock's dirty-inode list.
1172 *
1173 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1174 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1175 * the case then the inode must have been redirtied while it was being written
1176 * out and we don't reset its dirtied_when.
1177 */
1178static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1179{
1180        assert_spin_locked(&inode->i_lock);
1181
1182        if (!list_empty(&wb->b_dirty)) {
1183                struct inode *tail;
1184
1185                tail = wb_inode(wb->b_dirty.next);
1186                if (time_before(inode->dirtied_when, tail->dirtied_when))
1187                        inode->dirtied_when = jiffies;
1188        }
1189        inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1190        inode->i_state &= ~I_SYNC_QUEUED;
1191}
1192
1193static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1194{
1195        spin_lock(&inode->i_lock);
1196        redirty_tail_locked(inode, wb);
1197        spin_unlock(&inode->i_lock);
1198}
1199
1200/*
1201 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1202 */
1203static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1204{
1205        inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1206}
1207
1208static void inode_sync_complete(struct inode *inode)
1209{
1210        inode->i_state &= ~I_SYNC;
1211        /* If inode is clean an unused, put it into LRU now... */
1212        inode_add_lru(inode);
1213        /* Waiters must see I_SYNC cleared before being woken up */
1214        smp_mb();
1215        wake_up_bit(&inode->i_state, __I_SYNC);
1216}
1217
1218static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1219{
1220        bool ret = time_after(inode->dirtied_when, t);
1221#ifndef CONFIG_64BIT
1222        /*
1223         * For inodes being constantly redirtied, dirtied_when can get stuck.
1224         * It _appears_ to be in the future, but is actually in distant past.
1225         * This test is necessary to prevent such wrapped-around relative times
1226         * from permanently stopping the whole bdi writeback.
1227         */
1228        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1229#endif
1230        return ret;
1231}
1232
1233#define EXPIRE_DIRTY_ATIME 0x0001
1234
1235/*
1236 * Move expired (dirtied before dirtied_before) dirty inodes from
1237 * @delaying_queue to @dispatch_queue.
1238 */
1239static int move_expired_inodes(struct list_head *delaying_queue,
1240                               struct list_head *dispatch_queue,
1241                               unsigned long dirtied_before)
1242{
1243        LIST_HEAD(tmp);
1244        struct list_head *pos, *node;
1245        struct super_block *sb = NULL;
1246        struct inode *inode;
1247        int do_sb_sort = 0;
1248        int moved = 0;
1249
1250        while (!list_empty(delaying_queue)) {
1251                inode = wb_inode(delaying_queue->prev);
1252                if (inode_dirtied_after(inode, dirtied_before))
1253                        break;
1254                list_move(&inode->i_io_list, &tmp);
1255                moved++;
1256                spin_lock(&inode->i_lock);
1257                inode->i_state |= I_SYNC_QUEUED;
1258                spin_unlock(&inode->i_lock);
1259                if (sb_is_blkdev_sb(inode->i_sb))
1260                        continue;
1261                if (sb && sb != inode->i_sb)
1262                        do_sb_sort = 1;
1263                sb = inode->i_sb;
1264        }
1265
1266        /* just one sb in list, splice to dispatch_queue and we're done */
1267        if (!do_sb_sort) {
1268                list_splice(&tmp, dispatch_queue);
1269                goto out;
1270        }
1271
1272        /* Move inodes from one superblock together */
1273        while (!list_empty(&tmp)) {
1274                sb = wb_inode(tmp.prev)->i_sb;
1275                list_for_each_prev_safe(pos, node, &tmp) {
1276                        inode = wb_inode(pos);
1277                        if (inode->i_sb == sb)
1278                                list_move(&inode->i_io_list, dispatch_queue);
1279                }
1280        }
1281out:
1282        return moved;
1283}
1284
1285/*
1286 * Queue all expired dirty inodes for io, eldest first.
1287 * Before
1288 *         newly dirtied     b_dirty    b_io    b_more_io
1289 *         =============>    gf         edc     BA
1290 * After
1291 *         newly dirtied     b_dirty    b_io    b_more_io
1292 *         =============>    g          fBAedc
1293 *                                           |
1294 *                                           +--> dequeue for IO
1295 */
1296static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1297                     unsigned long dirtied_before)
1298{
1299        int moved;
1300        unsigned long time_expire_jif = dirtied_before;
1301
1302        assert_spin_locked(&wb->list_lock);
1303        list_splice_init(&wb->b_more_io, &wb->b_io);
1304        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1305        if (!work->for_sync)
1306                time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1307        moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1308                                     time_expire_jif);
1309        if (moved)
1310                wb_io_lists_populated(wb);
1311        trace_writeback_queue_io(wb, work, dirtied_before, moved);
1312}
1313
1314static int write_inode(struct inode *inode, struct writeback_control *wbc)
1315{
1316        int ret;
1317
1318        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1319                trace_writeback_write_inode_start(inode, wbc);
1320                ret = inode->i_sb->s_op->write_inode(inode, wbc);
1321                trace_writeback_write_inode(inode, wbc);
1322                return ret;
1323        }
1324        return 0;
1325}
1326
1327/*
1328 * Wait for writeback on an inode to complete. Called with i_lock held.
1329 * Caller must make sure inode cannot go away when we drop i_lock.
1330 */
1331static void __inode_wait_for_writeback(struct inode *inode)
1332        __releases(inode->i_lock)
1333        __acquires(inode->i_lock)
1334{
1335        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1336        wait_queue_head_t *wqh;
1337
1338        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1339        while (inode->i_state & I_SYNC) {
1340                spin_unlock(&inode->i_lock);
1341                __wait_on_bit(wqh, &wq, bit_wait,
1342                              TASK_UNINTERRUPTIBLE);
1343                spin_lock(&inode->i_lock);
1344        }
1345}
1346
1347/*
1348 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1349 */
1350void inode_wait_for_writeback(struct inode *inode)
1351{
1352        spin_lock(&inode->i_lock);
1353        __inode_wait_for_writeback(inode);
1354        spin_unlock(&inode->i_lock);
1355}
1356
1357/*
1358 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1359 * held and drops it. It is aimed for callers not holding any inode reference
1360 * so once i_lock is dropped, inode can go away.
1361 */
1362static void inode_sleep_on_writeback(struct inode *inode)
1363        __releases(inode->i_lock)
1364{
1365        DEFINE_WAIT(wait);
1366        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1367        int sleep;
1368
1369        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1370        sleep = inode->i_state & I_SYNC;
1371        spin_unlock(&inode->i_lock);
1372        if (sleep)
1373                schedule();
1374        finish_wait(wqh, &wait);
1375}
1376
1377/*
1378 * Find proper writeback list for the inode depending on its current state and
1379 * possibly also change of its state while we were doing writeback.  Here we
1380 * handle things such as livelock prevention or fairness of writeback among
1381 * inodes. This function can be called only by flusher thread - noone else
1382 * processes all inodes in writeback lists and requeueing inodes behind flusher
1383 * thread's back can have unexpected consequences.
1384 */
1385static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1386                          struct writeback_control *wbc)
1387{
1388        if (inode->i_state & I_FREEING)
1389                return;
1390
1391        /*
1392         * Sync livelock prevention. Each inode is tagged and synced in one
1393         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1394         * the dirty time to prevent enqueue and sync it again.
1395         */
1396        if ((inode->i_state & I_DIRTY) &&
1397            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1398                inode->dirtied_when = jiffies;
1399
1400        if (wbc->pages_skipped) {
1401                /*
1402                 * writeback is not making progress due to locked
1403                 * buffers. Skip this inode for now.
1404                 */
1405                redirty_tail_locked(inode, wb);
1406                return;
1407        }
1408
1409        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1410                /*
1411                 * We didn't write back all the pages.  nfs_writepages()
1412                 * sometimes bales out without doing anything.
1413                 */
1414                if (wbc->nr_to_write <= 0) {
1415                        /* Slice used up. Queue for next turn. */
1416                        requeue_io(inode, wb);
1417                } else {
1418                        /*
1419                         * Writeback blocked by something other than
1420                         * congestion. Delay the inode for some time to
1421                         * avoid spinning on the CPU (100% iowait)
1422                         * retrying writeback of the dirty page/inode
1423                         * that cannot be performed immediately.
1424                         */
1425                        redirty_tail_locked(inode, wb);
1426                }
1427        } else if (inode->i_state & I_DIRTY) {
1428                /*
1429                 * Filesystems can dirty the inode during writeback operations,
1430                 * such as delayed allocation during submission or metadata
1431                 * updates after data IO completion.
1432                 */
1433                redirty_tail_locked(inode, wb);
1434        } else if (inode->i_state & I_DIRTY_TIME) {
1435                inode->dirtied_when = jiffies;
1436                inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1437                inode->i_state &= ~I_SYNC_QUEUED;
1438        } else {
1439                /* The inode is clean. Remove from writeback lists. */
1440                inode_io_list_del_locked(inode, wb);
1441        }
1442}
1443
1444/*
1445 * Write out an inode and its dirty pages. Do not update the writeback list
1446 * linkage. That is left to the caller. The caller is also responsible for
1447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1448 */
1449static int
1450__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1451{
1452        struct address_space *mapping = inode->i_mapping;
1453        long nr_to_write = wbc->nr_to_write;
1454        unsigned dirty;
1455        int ret;
1456
1457        WARN_ON(!(inode->i_state & I_SYNC));
1458
1459        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1460
1461        ret = do_writepages(mapping, wbc);
1462
1463        /*
1464         * Make sure to wait on the data before writing out the metadata.
1465         * This is important for filesystems that modify metadata on data
1466         * I/O completion. We don't do it for sync(2) writeback because it has a
1467         * separate, external IO completion path and ->sync_fs for guaranteeing
1468         * inode metadata is written back correctly.
1469         */
1470        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1471                int err = filemap_fdatawait(mapping);
1472                if (ret == 0)
1473                        ret = err;
1474        }
1475
1476        /*
1477         * If the inode has dirty timestamps and we need to write them, call
1478         * mark_inode_dirty_sync() to notify the filesystem about it and to
1479         * change I_DIRTY_TIME into I_DIRTY_SYNC.
1480         */
1481        if ((inode->i_state & I_DIRTY_TIME) &&
1482            (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1483             time_after(jiffies, inode->dirtied_time_when +
1484                        dirtytime_expire_interval * HZ))) {
1485                trace_writeback_lazytime(inode);
1486                mark_inode_dirty_sync(inode);
1487        }
1488
1489        /*
1490         * Some filesystems may redirty the inode during the writeback
1491         * due to delalloc, clear dirty metadata flags right before
1492         * write_inode()
1493         */
1494        spin_lock(&inode->i_lock);
1495        dirty = inode->i_state & I_DIRTY;
1496        inode->i_state &= ~dirty;
1497
1498        /*
1499         * Paired with smp_mb() in __mark_inode_dirty().  This allows
1500         * __mark_inode_dirty() to test i_state without grabbing i_lock -
1501         * either they see the I_DIRTY bits cleared or we see the dirtied
1502         * inode.
1503         *
1504         * I_DIRTY_PAGES is always cleared together above even if @mapping
1505         * still has dirty pages.  The flag is reinstated after smp_mb() if
1506         * necessary.  This guarantees that either __mark_inode_dirty()
1507         * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1508         */
1509        smp_mb();
1510
1511        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1512                inode->i_state |= I_DIRTY_PAGES;
1513
1514        spin_unlock(&inode->i_lock);
1515
1516        /* Don't write the inode if only I_DIRTY_PAGES was set */
1517        if (dirty & ~I_DIRTY_PAGES) {
1518                int err = write_inode(inode, wbc);
1519                if (ret == 0)
1520                        ret = err;
1521        }
1522        trace_writeback_single_inode(inode, wbc, nr_to_write);
1523        return ret;
1524}
1525
1526/*
1527 * Write out an inode's dirty pages. Either the caller has an active reference
1528 * on the inode or the inode has I_WILL_FREE set.
1529 *
1530 * This function is designed to be called for writing back one inode which
1531 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1532 * and does more profound writeback list handling in writeback_sb_inodes().
1533 */
1534static int writeback_single_inode(struct inode *inode,
1535                                  struct writeback_control *wbc)
1536{
1537        struct bdi_writeback *wb;
1538        int ret = 0;
1539
1540        spin_lock(&inode->i_lock);
1541        if (!atomic_read(&inode->i_count))
1542                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1543        else
1544                WARN_ON(inode->i_state & I_WILL_FREE);
1545
1546        if (inode->i_state & I_SYNC) {
1547                if (wbc->sync_mode != WB_SYNC_ALL)
1548                        goto out;
1549                /*
1550                 * It's a data-integrity sync. We must wait. Since callers hold
1551                 * inode reference or inode has I_WILL_FREE set, it cannot go
1552                 * away under us.
1553                 */
1554                __inode_wait_for_writeback(inode);
1555        }
1556        WARN_ON(inode->i_state & I_SYNC);
1557        /*
1558         * Skip inode if it is clean and we have no outstanding writeback in
1559         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1560         * function since flusher thread may be doing for example sync in
1561         * parallel and if we move the inode, it could get skipped. So here we
1562         * make sure inode is on some writeback list and leave it there unless
1563         * we have completely cleaned the inode.
1564         */
1565        if (!(inode->i_state & I_DIRTY_ALL) &&
1566            (wbc->sync_mode != WB_SYNC_ALL ||
1567             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1568                goto out;
1569        inode->i_state |= I_SYNC;
1570        wbc_attach_and_unlock_inode(wbc, inode);
1571
1572        ret = __writeback_single_inode(inode, wbc);
1573
1574        wbc_detach_inode(wbc);
1575
1576        wb = inode_to_wb_and_lock_list(inode);
1577        spin_lock(&inode->i_lock);
1578        /*
1579         * If inode is clean, remove it from writeback lists. Otherwise don't
1580         * touch it. See comment above for explanation.
1581         */
1582        if (!(inode->i_state & I_DIRTY_ALL))
1583                inode_io_list_del_locked(inode, wb);
1584        spin_unlock(&wb->list_lock);
1585        inode_sync_complete(inode);
1586out:
1587        spin_unlock(&inode->i_lock);
1588        return ret;
1589}
1590
1591static long writeback_chunk_size(struct bdi_writeback *wb,
1592                                 struct wb_writeback_work *work)
1593{
1594        long pages;
1595
1596        /*
1597         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1598         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1599         * here avoids calling into writeback_inodes_wb() more than once.
1600         *
1601         * The intended call sequence for WB_SYNC_ALL writeback is:
1602         *
1603         *      wb_writeback()
1604         *          writeback_sb_inodes()       <== called only once
1605         *              write_cache_pages()     <== called once for each inode
1606         *                   (quickly) tag currently dirty pages
1607         *                   (maybe slowly) sync all tagged pages
1608         */
1609        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1610                pages = LONG_MAX;
1611        else {
1612                pages = min(wb->avg_write_bandwidth / 2,
1613                            global_wb_domain.dirty_limit / DIRTY_SCOPE);
1614                pages = min(pages, work->nr_pages);
1615                pages = round_down(pages + MIN_WRITEBACK_PAGES,
1616                                   MIN_WRITEBACK_PAGES);
1617        }
1618
1619        return pages;
1620}
1621
1622/*
1623 * Write a portion of b_io inodes which belong to @sb.
1624 *
1625 * Return the number of pages and/or inodes written.
1626 *
1627 * NOTE! This is called with wb->list_lock held, and will
1628 * unlock and relock that for each inode it ends up doing
1629 * IO for.
1630 */
1631static long writeback_sb_inodes(struct super_block *sb,
1632                                struct bdi_writeback *wb,
1633                                struct wb_writeback_work *work)
1634{
1635        struct writeback_control wbc = {
1636                .sync_mode              = work->sync_mode,
1637                .tagged_writepages      = work->tagged_writepages,
1638                .for_kupdate            = work->for_kupdate,
1639                .for_background         = work->for_background,
1640                .for_sync               = work->for_sync,
1641                .range_cyclic           = work->range_cyclic,
1642                .range_start            = 0,
1643                .range_end              = LLONG_MAX,
1644        };
1645        unsigned long start_time = jiffies;
1646        long write_chunk;
1647        long wrote = 0;  /* count both pages and inodes */
1648
1649        while (!list_empty(&wb->b_io)) {
1650                struct inode *inode = wb_inode(wb->b_io.prev);
1651                struct bdi_writeback *tmp_wb;
1652
1653                if (inode->i_sb != sb) {
1654                        if (work->sb) {
1655                                /*
1656                                 * We only want to write back data for this
1657                                 * superblock, move all inodes not belonging
1658                                 * to it back onto the dirty list.
1659                                 */
1660                                redirty_tail(inode, wb);
1661                                continue;
1662                        }
1663
1664                        /*
1665                         * The inode belongs to a different superblock.
1666                         * Bounce back to the caller to unpin this and
1667                         * pin the next superblock.
1668                         */
1669                        break;
1670                }
1671
1672                /*
1673                 * Don't bother with new inodes or inodes being freed, first
1674                 * kind does not need periodic writeout yet, and for the latter
1675                 * kind writeout is handled by the freer.
1676                 */
1677                spin_lock(&inode->i_lock);
1678                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1679                        redirty_tail_locked(inode, wb);
1680                        spin_unlock(&inode->i_lock);
1681                        continue;
1682                }
1683                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1684                        /*
1685                         * If this inode is locked for writeback and we are not
1686                         * doing writeback-for-data-integrity, move it to
1687                         * b_more_io so that writeback can proceed with the
1688                         * other inodes on s_io.
1689                         *
1690                         * We'll have another go at writing back this inode
1691                         * when we completed a full scan of b_io.
1692                         */
1693                        spin_unlock(&inode->i_lock);
1694                        requeue_io(inode, wb);
1695                        trace_writeback_sb_inodes_requeue(inode);
1696                        continue;
1697                }
1698                spin_unlock(&wb->list_lock);
1699
1700                /*
1701                 * We already requeued the inode if it had I_SYNC set and we
1702                 * are doing WB_SYNC_NONE writeback. So this catches only the
1703                 * WB_SYNC_ALL case.
1704                 */
1705                if (inode->i_state & I_SYNC) {
1706                        /* Wait for I_SYNC. This function drops i_lock... */
1707                        inode_sleep_on_writeback(inode);
1708                        /* Inode may be gone, start again */
1709                        spin_lock(&wb->list_lock);
1710                        continue;
1711                }
1712                inode->i_state |= I_SYNC;
1713                wbc_attach_and_unlock_inode(&wbc, inode);
1714
1715                write_chunk = writeback_chunk_size(wb, work);
1716                wbc.nr_to_write = write_chunk;
1717                wbc.pages_skipped = 0;
1718
1719                /*
1720                 * We use I_SYNC to pin the inode in memory. While it is set
1721                 * evict_inode() will wait so the inode cannot be freed.
1722                 */
1723                __writeback_single_inode(inode, &wbc);
1724
1725                wbc_detach_inode(&wbc);
1726                work->nr_pages -= write_chunk - wbc.nr_to_write;
1727                wrote += write_chunk - wbc.nr_to_write;
1728
1729                if (need_resched()) {
1730                        /*
1731                         * We're trying to balance between building up a nice
1732                         * long list of IOs to improve our merge rate, and
1733                         * getting those IOs out quickly for anyone throttling
1734                         * in balance_dirty_pages().  cond_resched() doesn't
1735                         * unplug, so get our IOs out the door before we
1736                         * give up the CPU.
1737                         */
1738                        blk_flush_plug(current);
1739                        cond_resched();
1740                }
1741
1742                /*
1743                 * Requeue @inode if still dirty.  Be careful as @inode may
1744                 * have been switched to another wb in the meantime.
1745                 */
1746                tmp_wb = inode_to_wb_and_lock_list(inode);
1747                spin_lock(&inode->i_lock);
1748                if (!(inode->i_state & I_DIRTY_ALL))
1749                        wrote++;
1750                requeue_inode(inode, tmp_wb, &wbc);
1751                inode_sync_complete(inode);
1752                spin_unlock(&inode->i_lock);
1753
1754                if (unlikely(tmp_wb != wb)) {
1755                        spin_unlock(&tmp_wb->list_lock);
1756                        spin_lock(&wb->list_lock);
1757                }
1758
1759                /*
1760                 * bail out to wb_writeback() often enough to check
1761                 * background threshold and other termination conditions.
1762                 */
1763                if (wrote) {
1764                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1765                                break;
1766                        if (work->nr_pages <= 0)
1767                                break;
1768                }
1769        }
1770        return wrote;
1771}
1772
1773static long __writeback_inodes_wb(struct bdi_writeback *wb,
1774                                  struct wb_writeback_work *work)
1775{
1776        unsigned long start_time = jiffies;
1777        long wrote = 0;
1778
1779        while (!list_empty(&wb->b_io)) {
1780                struct inode *inode = wb_inode(wb->b_io.prev);
1781                struct super_block *sb = inode->i_sb;
1782
1783                if (!trylock_super(sb)) {
1784                        /*
1785                         * trylock_super() may fail consistently due to
1786                         * s_umount being grabbed by someone else. Don't use
1787                         * requeue_io() to avoid busy retrying the inode/sb.
1788                         */
1789                        redirty_tail(inode, wb);
1790                        continue;
1791                }
1792                wrote += writeback_sb_inodes(sb, wb, work);
1793                up_read(&sb->s_umount);
1794
1795                /* refer to the same tests at the end of writeback_sb_inodes */
1796                if (wrote) {
1797                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1798                                break;
1799                        if (work->nr_pages <= 0)
1800                                break;
1801                }
1802        }
1803        /* Leave any unwritten inodes on b_io */
1804        return wrote;
1805}
1806
1807static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1808                                enum wb_reason reason)
1809{
1810        struct wb_writeback_work work = {
1811                .nr_pages       = nr_pages,
1812                .sync_mode      = WB_SYNC_NONE,
1813                .range_cyclic   = 1,
1814                .reason         = reason,
1815        };
1816        struct blk_plug plug;
1817
1818        blk_start_plug(&plug);
1819        spin_lock(&wb->list_lock);
1820        if (list_empty(&wb->b_io))
1821                queue_io(wb, &work, jiffies);
1822        __writeback_inodes_wb(wb, &work);
1823        spin_unlock(&wb->list_lock);
1824        blk_finish_plug(&plug);
1825
1826        return nr_pages - work.nr_pages;
1827}
1828
1829/*
1830 * Explicit flushing or periodic writeback of "old" data.
1831 *
1832 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1833 * dirtying-time in the inode's address_space.  So this periodic writeback code
1834 * just walks the superblock inode list, writing back any inodes which are
1835 * older than a specific point in time.
1836 *
1837 * Try to run once per dirty_writeback_interval.  But if a writeback event
1838 * takes longer than a dirty_writeback_interval interval, then leave a
1839 * one-second gap.
1840 *
1841 * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1842 * all dirty pages if they are all attached to "old" mappings.
1843 */
1844static long wb_writeback(struct bdi_writeback *wb,
1845                         struct wb_writeback_work *work)
1846{
1847        long nr_pages = work->nr_pages;
1848        unsigned long dirtied_before = jiffies;
1849        struct inode *inode;
1850        long progress;
1851        struct blk_plug plug;
1852
1853        blk_start_plug(&plug);
1854        spin_lock(&wb->list_lock);
1855        for (;;) {
1856                /*
1857                 * Stop writeback when nr_pages has been consumed
1858                 */
1859                if (work->nr_pages <= 0)
1860                        break;
1861
1862                /*
1863                 * Background writeout and kupdate-style writeback may
1864                 * run forever. Stop them if there is other work to do
1865                 * so that e.g. sync can proceed. They'll be restarted
1866                 * after the other works are all done.
1867                 */
1868                if ((work->for_background || work->for_kupdate) &&
1869                    !list_empty(&wb->work_list))
1870                        break;
1871
1872                /*
1873                 * For background writeout, stop when we are below the
1874                 * background dirty threshold
1875                 */
1876                if (work->for_background && !wb_over_bg_thresh(wb))
1877                        break;
1878
1879                /*
1880                 * Kupdate and background works are special and we want to
1881                 * include all inodes that need writing. Livelock avoidance is
1882                 * handled by these works yielding to any other work so we are
1883                 * safe.
1884                 */
1885                if (work->for_kupdate) {
1886                        dirtied_before = jiffies -
1887                                msecs_to_jiffies(dirty_expire_interval * 10);
1888                } else if (work->for_background)
1889                        dirtied_before = jiffies;
1890
1891                trace_writeback_start(wb, work);
1892                if (list_empty(&wb->b_io))
1893                        queue_io(wb, work, dirtied_before);
1894                if (work->sb)
1895                        progress = writeback_sb_inodes(work->sb, wb, work);
1896                else
1897                        progress = __writeback_inodes_wb(wb, work);
1898                trace_writeback_written(wb, work);
1899
1900                /*
1901                 * Did we write something? Try for more
1902                 *
1903                 * Dirty inodes are moved to b_io for writeback in batches.
1904                 * The completion of the current batch does not necessarily
1905                 * mean the overall work is done. So we keep looping as long
1906                 * as made some progress on cleaning pages or inodes.
1907                 */
1908                if (progress)
1909                        continue;
1910                /*
1911                 * No more inodes for IO, bail
1912                 */
1913                if (list_empty(&wb->b_more_io))
1914                        break;
1915                /*
1916                 * Nothing written. Wait for some inode to
1917                 * become available for writeback. Otherwise
1918                 * we'll just busyloop.
1919                 */
1920                trace_writeback_wait(wb, work);
1921                inode = wb_inode(wb->b_more_io.prev);
1922                spin_lock(&inode->i_lock);
1923                spin_unlock(&wb->list_lock);
1924                /* This function drops i_lock... */
1925                inode_sleep_on_writeback(inode);
1926                spin_lock(&wb->list_lock);
1927        }
1928        spin_unlock(&wb->list_lock);
1929        blk_finish_plug(&plug);
1930
1931        return nr_pages - work->nr_pages;
1932}
1933
1934/*
1935 * Return the next wb_writeback_work struct that hasn't been processed yet.
1936 */
1937static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1938{
1939        struct wb_writeback_work *work = NULL;
1940
1941        spin_lock_bh(&wb->work_lock);
1942        if (!list_empty(&wb->work_list)) {
1943                work = list_entry(wb->work_list.next,
1944                                  struct wb_writeback_work, list);
1945                list_del_init(&work->list);
1946        }
1947        spin_unlock_bh(&wb->work_lock);
1948        return work;
1949}
1950
1951static long wb_check_background_flush(struct bdi_writeback *wb)
1952{
1953        if (wb_over_bg_thresh(wb)) {
1954
1955                struct wb_writeback_work work = {
1956                        .nr_pages       = LONG_MAX,
1957                        .sync_mode      = WB_SYNC_NONE,
1958                        .for_background = 1,
1959                        .range_cyclic   = 1,
1960                        .reason         = WB_REASON_BACKGROUND,
1961                };
1962
1963                return wb_writeback(wb, &work);
1964        }
1965
1966        return 0;
1967}
1968
1969static long wb_check_old_data_flush(struct bdi_writeback *wb)
1970{
1971        unsigned long expired;
1972        long nr_pages;
1973
1974        /*
1975         * When set to zero, disable periodic writeback
1976         */
1977        if (!dirty_writeback_interval)
1978                return 0;
1979
1980        expired = wb->last_old_flush +
1981                        msecs_to_jiffies(dirty_writeback_interval * 10);
1982        if (time_before(jiffies, expired))
1983                return 0;
1984
1985        wb->last_old_flush = jiffies;
1986        nr_pages = get_nr_dirty_pages();
1987
1988        if (nr_pages) {
1989                struct wb_writeback_work work = {
1990                        .nr_pages       = nr_pages,
1991                        .sync_mode      = WB_SYNC_NONE,
1992                        .for_kupdate    = 1,
1993                        .range_cyclic   = 1,
1994                        .reason         = WB_REASON_PERIODIC,
1995                };
1996
1997                return wb_writeback(wb, &work);
1998        }
1999
2000        return 0;
2001}
2002
2003static long wb_check_start_all(struct bdi_writeback *wb)
2004{
2005        long nr_pages;
2006
2007        if (!test_bit(WB_start_all, &wb->state))
2008                return 0;
2009
2010        nr_pages = get_nr_dirty_pages();
2011        if (nr_pages) {
2012                struct wb_writeback_work work = {
2013                        .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2014                        .sync_mode      = WB_SYNC_NONE,
2015                        .range_cyclic   = 1,
2016                        .reason         = wb->start_all_reason,
2017                };
2018
2019                nr_pages = wb_writeback(wb, &work);
2020        }
2021
2022        clear_bit(WB_start_all, &wb->state);
2023        return nr_pages;
2024}
2025
2026
2027/*
2028 * Retrieve work items and do the writeback they describe
2029 */
2030static long wb_do_writeback(struct bdi_writeback *wb)
2031{
2032        struct wb_writeback_work *work;
2033        long wrote = 0;
2034
2035        set_bit(WB_writeback_running, &wb->state);
2036        while ((work = get_next_work_item(wb)) != NULL) {
2037                trace_writeback_exec(wb, work);
2038                wrote += wb_writeback(wb, work);
2039                finish_writeback_work(wb, work);
2040        }
2041
2042        /*
2043         * Check for a flush-everything request
2044         */
2045        wrote += wb_check_start_all(wb);
2046
2047        /*
2048         * Check for periodic writeback, kupdated() style
2049         */
2050        wrote += wb_check_old_data_flush(wb);
2051        wrote += wb_check_background_flush(wb);
2052        clear_bit(WB_writeback_running, &wb->state);
2053
2054        return wrote;
2055}
2056
2057/*
2058 * Handle writeback of dirty data for the device backed by this bdi. Also
2059 * reschedules periodically and does kupdated style flushing.
2060 */
2061void wb_workfn(struct work_struct *work)
2062{
2063        struct bdi_writeback *wb = container_of(to_delayed_work(work),
2064                                                struct bdi_writeback, dwork);
2065        long pages_written;
2066
2067        set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2068        current->flags |= PF_SWAPWRITE;
2069
2070        if (likely(!current_is_workqueue_rescuer() ||
2071                   !test_bit(WB_registered, &wb->state))) {
2072                /*
2073                 * The normal path.  Keep writing back @wb until its
2074                 * work_list is empty.  Note that this path is also taken
2075                 * if @wb is shutting down even when we're running off the
2076                 * rescuer as work_list needs to be drained.
2077                 */
2078                do {
2079                        pages_written = wb_do_writeback(wb);
2080                        trace_writeback_pages_written(pages_written);
2081                } while (!list_empty(&wb->work_list));
2082        } else {
2083                /*
2084                 * bdi_wq can't get enough workers and we're running off
2085                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2086                 * enough for efficient IO.
2087                 */
2088                pages_written = writeback_inodes_wb(wb, 1024,
2089                                                    WB_REASON_FORKER_THREAD);
2090                trace_writeback_pages_written(pages_written);
2091        }
2092
2093        if (!list_empty(&wb->work_list))
2094                wb_wakeup(wb);
2095        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2096                wb_wakeup_delayed(wb);
2097
2098        current->flags &= ~PF_SWAPWRITE;
2099}
2100
2101/*
2102 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2103 * write back the whole world.
2104 */
2105static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2106                                         enum wb_reason reason)
2107{
2108        struct bdi_writeback *wb;
2109
2110        if (!bdi_has_dirty_io(bdi))
2111                return;
2112
2113        list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2114                wb_start_writeback(wb, reason);
2115}
2116
2117void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2118                                enum wb_reason reason)
2119{
2120        rcu_read_lock();
2121        __wakeup_flusher_threads_bdi(bdi, reason);
2122        rcu_read_unlock();
2123}
2124
2125/*
2126 * Wakeup the flusher threads to start writeback of all currently dirty pages
2127 */
2128void wakeup_flusher_threads(enum wb_reason reason)
2129{
2130        struct backing_dev_info *bdi;
2131
2132        /*
2133         * If we are expecting writeback progress we must submit plugged IO.
2134         */
2135        if (blk_needs_flush_plug(current))
2136                blk_schedule_flush_plug(current);
2137
2138        rcu_read_lock();
2139        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2140                __wakeup_flusher_threads_bdi(bdi, reason);
2141        rcu_read_unlock();
2142}
2143
2144/*
2145 * Wake up bdi's periodically to make sure dirtytime inodes gets
2146 * written back periodically.  We deliberately do *not* check the
2147 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2148 * kernel to be constantly waking up once there are any dirtytime
2149 * inodes on the system.  So instead we define a separate delayed work
2150 * function which gets called much more rarely.  (By default, only
2151 * once every 12 hours.)
2152 *
2153 * If there is any other write activity going on in the file system,
2154 * this function won't be necessary.  But if the only thing that has
2155 * happened on the file system is a dirtytime inode caused by an atime
2156 * update, we need this infrastructure below to make sure that inode
2157 * eventually gets pushed out to disk.
2158 */
2159static void wakeup_dirtytime_writeback(struct work_struct *w);
2160static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2161
2162static void wakeup_dirtytime_writeback(struct work_struct *w)
2163{
2164        struct backing_dev_info *bdi;
2165
2166        rcu_read_lock();
2167        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2168                struct bdi_writeback *wb;
2169
2170                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2171                        if (!list_empty(&wb->b_dirty_time))
2172                                wb_wakeup(wb);
2173        }
2174        rcu_read_unlock();
2175        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2176}
2177
2178static int __init start_dirtytime_writeback(void)
2179{
2180        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2181        return 0;
2182}
2183__initcall(start_dirtytime_writeback);
2184
2185int dirtytime_interval_handler(struct ctl_table *table, int write,
2186                               void __user *buffer, size_t *lenp, loff_t *ppos)
2187{
2188        int ret;
2189
2190        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2191        if (ret == 0 && write)
2192                mod_delayed_work(system_wq, &dirtytime_work, 0);
2193        return ret;
2194}
2195
2196static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2197{
2198        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2199                struct dentry *dentry;
2200                const char *name = "?";
2201
2202                dentry = d_find_alias(inode);
2203                if (dentry) {
2204                        spin_lock(&dentry->d_lock);
2205                        name = (const char *) dentry->d_name.name;
2206                }
2207                printk(KERN_DEBUG
2208                       "%s(%d): dirtied inode %lu (%s) on %s\n",
2209                       current->comm, task_pid_nr(current), inode->i_ino,
2210                       name, inode->i_sb->s_id);
2211                if (dentry) {
2212                        spin_unlock(&dentry->d_lock);
2213                        dput(dentry);
2214                }
2215        }
2216}
2217
2218/**
2219 * __mark_inode_dirty - internal function
2220 *
2221 * @inode: inode to mark
2222 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2223 *
2224 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2225 * mark_inode_dirty_sync.
2226 *
2227 * Put the inode on the super block's dirty list.
2228 *
2229 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2230 * dirty list only if it is hashed or if it refers to a blockdev.
2231 * If it was not hashed, it will never be added to the dirty list
2232 * even if it is later hashed, as it will have been marked dirty already.
2233 *
2234 * In short, make sure you hash any inodes _before_ you start marking
2235 * them dirty.
2236 *
2237 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2238 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2239 * the kernel-internal blockdev inode represents the dirtying time of the
2240 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2241 * page->mapping->host, so the page-dirtying time is recorded in the internal
2242 * blockdev inode.
2243 */
2244void __mark_inode_dirty(struct inode *inode, int flags)
2245{
2246        struct super_block *sb = inode->i_sb;
2247        int dirtytime;
2248
2249        trace_writeback_mark_inode_dirty(inode, flags);
2250
2251        /*
2252         * Don't do this for I_DIRTY_PAGES - that doesn't actually
2253         * dirty the inode itself
2254         */
2255        if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2256                trace_writeback_dirty_inode_start(inode, flags);
2257
2258                if (sb->s_op->dirty_inode)
2259                        sb->s_op->dirty_inode(inode, flags);
2260
2261                trace_writeback_dirty_inode(inode, flags);
2262        }
2263        if (flags & I_DIRTY_INODE)
2264                flags &= ~I_DIRTY_TIME;
2265        dirtytime = flags & I_DIRTY_TIME;
2266
2267        /*
2268         * Paired with smp_mb() in __writeback_single_inode() for the
2269         * following lockless i_state test.  See there for details.
2270         */
2271        smp_mb();
2272
2273        if (((inode->i_state & flags) == flags) ||
2274            (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2275                return;
2276
2277        if (unlikely(block_dump))
2278                block_dump___mark_inode_dirty(inode);
2279
2280        spin_lock(&inode->i_lock);
2281        if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2282                goto out_unlock_inode;
2283        if ((inode->i_state & flags) != flags) {
2284                const int was_dirty = inode->i_state & I_DIRTY;
2285
2286                inode_attach_wb(inode, NULL);
2287
2288                if (flags & I_DIRTY_INODE)
2289                        inode->i_state &= ~I_DIRTY_TIME;
2290                inode->i_state |= flags;
2291
2292                /*
2293                 * If the inode is queued for writeback by flush worker, just
2294                 * update its dirty state. Once the flush worker is done with
2295                 * the inode it will place it on the appropriate superblock
2296                 * list, based upon its state.
2297                 */
2298                if (inode->i_state & I_SYNC_QUEUED)
2299                        goto out_unlock_inode;
2300
2301                /*
2302                 * Only add valid (hashed) inodes to the superblock's
2303                 * dirty list.  Add blockdev inodes as well.
2304                 */
2305                if (!S_ISBLK(inode->i_mode)) {
2306                        if (inode_unhashed(inode))
2307                                goto out_unlock_inode;
2308                }
2309                if (inode->i_state & I_FREEING)
2310                        goto out_unlock_inode;
2311
2312                /*
2313                 * If the inode was already on b_dirty/b_io/b_more_io, don't
2314                 * reposition it (that would break b_dirty time-ordering).
2315                 */
2316                if (!was_dirty) {
2317                        struct bdi_writeback *wb;
2318                        struct list_head *dirty_list;
2319                        bool wakeup_bdi = false;
2320
2321                        wb = locked_inode_to_wb_and_lock_list(inode);
2322
2323                        WARN((wb->bdi->capabilities & BDI_CAP_WRITEBACK) &&
2324                             !test_bit(WB_registered, &wb->state),
2325                             "bdi-%s not registered\n", bdi_dev_name(wb->bdi));
2326
2327                        inode->dirtied_when = jiffies;
2328                        if (dirtytime)
2329                                inode->dirtied_time_when = jiffies;
2330
2331                        if (inode->i_state & I_DIRTY)
2332                                dirty_list = &wb->b_dirty;
2333                        else
2334                                dirty_list = &wb->b_dirty_time;
2335
2336                        wakeup_bdi = inode_io_list_move_locked(inode, wb,
2337                                                               dirty_list);
2338
2339                        spin_unlock(&wb->list_lock);
2340                        trace_writeback_dirty_inode_enqueue(inode);
2341
2342                        /*
2343                         * If this is the first dirty inode for this bdi,
2344                         * we have to wake-up the corresponding bdi thread
2345                         * to make sure background write-back happens
2346                         * later.
2347                         */
2348                        if (wakeup_bdi &&
2349                            (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2350                                wb_wakeup_delayed(wb);
2351                        return;
2352                }
2353        }
2354out_unlock_inode:
2355        spin_unlock(&inode->i_lock);
2356}
2357EXPORT_SYMBOL(__mark_inode_dirty);
2358
2359/*
2360 * The @s_sync_lock is used to serialise concurrent sync operations
2361 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2362 * Concurrent callers will block on the s_sync_lock rather than doing contending
2363 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2364 * has been issued up to the time this function is enter is guaranteed to be
2365 * completed by the time we have gained the lock and waited for all IO that is
2366 * in progress regardless of the order callers are granted the lock.
2367 */
2368static void wait_sb_inodes(struct super_block *sb)
2369{
2370        LIST_HEAD(sync_list);
2371
2372        /*
2373         * We need to be protected against the filesystem going from
2374         * r/o to r/w or vice versa.
2375         */
2376        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2377
2378        mutex_lock(&sb->s_sync_lock);
2379
2380        /*
2381         * Splice the writeback list onto a temporary list to avoid waiting on
2382         * inodes that have started writeback after this point.
2383         *
2384         * Use rcu_read_lock() to keep the inodes around until we have a
2385         * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2386         * the local list because inodes can be dropped from either by writeback
2387         * completion.
2388         */
2389        rcu_read_lock();
2390        spin_lock_irq(&sb->s_inode_wblist_lock);
2391        list_splice_init(&sb->s_inodes_wb, &sync_list);
2392
2393        /*
2394         * Data integrity sync. Must wait for all pages under writeback, because
2395         * there may have been pages dirtied before our sync call, but which had
2396         * writeout started before we write it out.  In which case, the inode
2397         * may not be on the dirty list, but we still have to wait for that
2398         * writeout.
2399         */
2400        while (!list_empty(&sync_list)) {
2401                struct inode *inode = list_first_entry(&sync_list, struct inode,
2402                                                       i_wb_list);
2403                struct address_space *mapping = inode->i_mapping;
2404
2405                /*
2406                 * Move each inode back to the wb list before we drop the lock
2407                 * to preserve consistency between i_wb_list and the mapping
2408                 * writeback tag. Writeback completion is responsible to remove
2409                 * the inode from either list once the writeback tag is cleared.
2410                 */
2411                list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2412
2413                /*
2414                 * The mapping can appear untagged while still on-list since we
2415                 * do not have the mapping lock. Skip it here, wb completion
2416                 * will remove it.
2417                 */
2418                if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2419                        continue;
2420
2421                spin_unlock_irq(&sb->s_inode_wblist_lock);
2422
2423                spin_lock(&inode->i_lock);
2424                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2425                        spin_unlock(&inode->i_lock);
2426
2427                        spin_lock_irq(&sb->s_inode_wblist_lock);
2428                        continue;
2429                }
2430                __iget(inode);
2431                spin_unlock(&inode->i_lock);
2432                rcu_read_unlock();
2433
2434                /*
2435                 * We keep the error status of individual mapping so that
2436                 * applications can catch the writeback error using fsync(2).
2437                 * See filemap_fdatawait_keep_errors() for details.
2438                 */
2439                filemap_fdatawait_keep_errors(mapping);
2440
2441                cond_resched();
2442
2443                iput(inode);
2444
2445                rcu_read_lock();
2446                spin_lock_irq(&sb->s_inode_wblist_lock);
2447        }
2448        spin_unlock_irq(&sb->s_inode_wblist_lock);
2449        rcu_read_unlock();
2450        mutex_unlock(&sb->s_sync_lock);
2451}
2452
2453static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2454                                     enum wb_reason reason, bool skip_if_busy)
2455{
2456        struct backing_dev_info *bdi = sb->s_bdi;
2457        DEFINE_WB_COMPLETION(done, bdi);
2458        struct wb_writeback_work work = {
2459                .sb                     = sb,
2460                .sync_mode              = WB_SYNC_NONE,
2461                .tagged_writepages      = 1,
2462                .done                   = &done,
2463                .nr_pages               = nr,
2464                .reason                 = reason,
2465        };
2466
2467        if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2468                return;
2469        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2470
2471        bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2472        wb_wait_for_completion(&done);
2473}
2474
2475/**
2476 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2477 * @sb: the superblock
2478 * @nr: the number of pages to write
2479 * @reason: reason why some writeback work initiated
2480 *
2481 * Start writeback on some inodes on this super_block. No guarantees are made
2482 * on how many (if any) will be written, and this function does not wait
2483 * for IO completion of submitted IO.
2484 */
2485void writeback_inodes_sb_nr(struct super_block *sb,
2486                            unsigned long nr,
2487                            enum wb_reason reason)
2488{
2489        __writeback_inodes_sb_nr(sb, nr, reason, false);
2490}
2491EXPORT_SYMBOL(writeback_inodes_sb_nr);
2492
2493/**
2494 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2495 * @sb: the superblock
2496 * @reason: reason why some writeback work was initiated
2497 *
2498 * Start writeback on some inodes on this super_block. No guarantees are made
2499 * on how many (if any) will be written, and this function does not wait
2500 * for IO completion of submitted IO.
2501 */
2502void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2503{
2504        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2505}
2506EXPORT_SYMBOL(writeback_inodes_sb);
2507
2508/**
2509 * try_to_writeback_inodes_sb - try to start writeback if none underway
2510 * @sb: the superblock
2511 * @reason: reason why some writeback work was initiated
2512 *
2513 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2514 */
2515void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2516{
2517        if (!down_read_trylock(&sb->s_umount))
2518                return;
2519
2520        __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2521        up_read(&sb->s_umount);
2522}
2523EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2524
2525/**
2526 * sync_inodes_sb       -       sync sb inode pages
2527 * @sb: the superblock
2528 *
2529 * This function writes and waits on any dirty inode belonging to this
2530 * super_block.
2531 */
2532void sync_inodes_sb(struct super_block *sb)
2533{
2534        struct backing_dev_info *bdi = sb->s_bdi;
2535        DEFINE_WB_COMPLETION(done, bdi);
2536        struct wb_writeback_work work = {
2537                .sb             = sb,
2538                .sync_mode      = WB_SYNC_ALL,
2539                .nr_pages       = LONG_MAX,
2540                .range_cyclic   = 0,
2541                .done           = &done,
2542                .reason         = WB_REASON_SYNC,
2543                .for_sync       = 1,
2544        };
2545
2546        /*
2547         * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2548         * inodes under writeback and I_DIRTY_TIME inodes ignored by
2549         * bdi_has_dirty() need to be written out too.
2550         */
2551        if (bdi == &noop_backing_dev_info)
2552                return;
2553        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2554
2555        /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2556        bdi_down_write_wb_switch_rwsem(bdi);
2557        bdi_split_work_to_wbs(bdi, &work, false);
2558        wb_wait_for_completion(&done);
2559        bdi_up_write_wb_switch_rwsem(bdi);
2560
2561        wait_sb_inodes(sb);
2562}
2563EXPORT_SYMBOL(sync_inodes_sb);
2564
2565/**
2566 * write_inode_now      -       write an inode to disk
2567 * @inode: inode to write to disk
2568 * @sync: whether the write should be synchronous or not
2569 *
2570 * This function commits an inode to disk immediately if it is dirty. This is
2571 * primarily needed by knfsd.
2572 *
2573 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2574 */
2575int write_inode_now(struct inode *inode, int sync)
2576{
2577        struct writeback_control wbc = {
2578                .nr_to_write = LONG_MAX,
2579                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2580                .range_start = 0,
2581                .range_end = LLONG_MAX,
2582        };
2583
2584        if (!mapping_can_writeback(inode->i_mapping))
2585                wbc.nr_to_write = 0;
2586
2587        might_sleep();
2588        return writeback_single_inode(inode, &wbc);
2589}
2590EXPORT_SYMBOL(write_inode_now);
2591
2592/**
2593 * sync_inode - write an inode and its pages to disk.
2594 * @inode: the inode to sync
2595 * @wbc: controls the writeback mode
2596 *
2597 * sync_inode() will write an inode and its pages to disk.  It will also
2598 * correctly update the inode on its superblock's dirty inode lists and will
2599 * update inode->i_state.
2600 *
2601 * The caller must have a ref on the inode.
2602 */
2603int sync_inode(struct inode *inode, struct writeback_control *wbc)
2604{
2605        return writeback_single_inode(inode, wbc);
2606}
2607EXPORT_SYMBOL(sync_inode);
2608
2609/**
2610 * sync_inode_metadata - write an inode to disk
2611 * @inode: the inode to sync
2612 * @wait: wait for I/O to complete.
2613 *
2614 * Write an inode to disk and adjust its dirty state after completion.
2615 *
2616 * Note: only writes the actual inode, no associated data or other metadata.
2617 */
2618int sync_inode_metadata(struct inode *inode, int wait)
2619{
2620        struct writeback_control wbc = {
2621                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2622                .nr_to_write = 0, /* metadata-only */
2623        };
2624
2625        return sync_inode(inode, &wbc);
2626}
2627EXPORT_SYMBOL(sync_inode_metadata);
2628