linux/include/linux/filter.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Linux Socket Filter Data Structures
   4 */
   5#ifndef __LINUX_FILTER_H__
   6#define __LINUX_FILTER_H__
   7
   8#include <stdarg.h>
   9
  10#include <linux/atomic.h>
  11#include <linux/refcount.h>
  12#include <linux/compat.h>
  13#include <linux/skbuff.h>
  14#include <linux/linkage.h>
  15#include <linux/printk.h>
  16#include <linux/workqueue.h>
  17#include <linux/sched.h>
  18#include <linux/capability.h>
  19#include <linux/cryptohash.h>
  20#include <linux/set_memory.h>
  21#include <linux/kallsyms.h>
  22#include <linux/if_vlan.h>
  23#include <linux/vmalloc.h>
  24#include <linux/sockptr.h>
  25#include <linux/u64_stats_sync.h>
  26
  27#include <net/sch_generic.h>
  28
  29#include <asm/byteorder.h>
  30#include <uapi/linux/filter.h>
  31#include <uapi/linux/bpf.h>
  32
  33struct sk_buff;
  34struct sock;
  35struct seccomp_data;
  36struct bpf_prog_aux;
  37struct xdp_rxq_info;
  38struct xdp_buff;
  39struct sock_reuseport;
  40struct ctl_table;
  41struct ctl_table_header;
  42
  43/* ArgX, context and stack frame pointer register positions. Note,
  44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
  45 * calls in BPF_CALL instruction.
  46 */
  47#define BPF_REG_ARG1    BPF_REG_1
  48#define BPF_REG_ARG2    BPF_REG_2
  49#define BPF_REG_ARG3    BPF_REG_3
  50#define BPF_REG_ARG4    BPF_REG_4
  51#define BPF_REG_ARG5    BPF_REG_5
  52#define BPF_REG_CTX     BPF_REG_6
  53#define BPF_REG_FP      BPF_REG_10
  54
  55/* Additional register mappings for converted user programs. */
  56#define BPF_REG_A       BPF_REG_0
  57#define BPF_REG_X       BPF_REG_7
  58#define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
  59#define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
  60#define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
  61
  62/* Kernel hidden auxiliary/helper register. */
  63#define BPF_REG_AX              MAX_BPF_REG
  64#define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
  65#define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
  66
  67/* unused opcode to mark special call to bpf_tail_call() helper */
  68#define BPF_TAIL_CALL   0xf0
  69
  70/* unused opcode to mark special load instruction. Same as BPF_ABS */
  71#define BPF_PROBE_MEM   0x20
  72
  73/* unused opcode to mark call to interpreter with arguments */
  74#define BPF_CALL_ARGS   0xe0
  75
  76/* unused opcode to mark speculation barrier for mitigating
  77 * Speculative Store Bypass
  78 */
  79#define BPF_NOSPEC      0xc0
  80
  81/* As per nm, we expose JITed images as text (code) section for
  82 * kallsyms. That way, tools like perf can find it to match
  83 * addresses.
  84 */
  85#define BPF_SYM_ELF_TYPE        't'
  86
  87/* BPF program can access up to 512 bytes of stack space. */
  88#define MAX_BPF_STACK   512
  89
  90/* Helper macros for filter block array initializers. */
  91
  92/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
  93
  94#define BPF_ALU64_REG(OP, DST, SRC)                             \
  95        ((struct bpf_insn) {                                    \
  96                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
  97                .dst_reg = DST,                                 \
  98                .src_reg = SRC,                                 \
  99                .off   = 0,                                     \
 100                .imm   = 0 })
 101
 102#define BPF_ALU32_REG(OP, DST, SRC)                             \
 103        ((struct bpf_insn) {                                    \
 104                .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
 105                .dst_reg = DST,                                 \
 106                .src_reg = SRC,                                 \
 107                .off   = 0,                                     \
 108                .imm   = 0 })
 109
 110/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 111
 112#define BPF_ALU64_IMM(OP, DST, IMM)                             \
 113        ((struct bpf_insn) {                                    \
 114                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
 115                .dst_reg = DST,                                 \
 116                .src_reg = 0,                                   \
 117                .off   = 0,                                     \
 118                .imm   = IMM })
 119
 120#define BPF_ALU32_IMM(OP, DST, IMM)                             \
 121        ((struct bpf_insn) {                                    \
 122                .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
 123                .dst_reg = DST,                                 \
 124                .src_reg = 0,                                   \
 125                .off   = 0,                                     \
 126                .imm   = IMM })
 127
 128/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 129
 130#define BPF_ENDIAN(TYPE, DST, LEN)                              \
 131        ((struct bpf_insn) {                                    \
 132                .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
 133                .dst_reg = DST,                                 \
 134                .src_reg = 0,                                   \
 135                .off   = 0,                                     \
 136                .imm   = LEN })
 137
 138/* Short form of mov, dst_reg = src_reg */
 139
 140#define BPF_MOV64_REG(DST, SRC)                                 \
 141        ((struct bpf_insn) {                                    \
 142                .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
 143                .dst_reg = DST,                                 \
 144                .src_reg = SRC,                                 \
 145                .off   = 0,                                     \
 146                .imm   = 0 })
 147
 148#define BPF_MOV32_REG(DST, SRC)                                 \
 149        ((struct bpf_insn) {                                    \
 150                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 151                .dst_reg = DST,                                 \
 152                .src_reg = SRC,                                 \
 153                .off   = 0,                                     \
 154                .imm   = 0 })
 155
 156/* Short form of mov, dst_reg = imm32 */
 157
 158#define BPF_MOV64_IMM(DST, IMM)                                 \
 159        ((struct bpf_insn) {                                    \
 160                .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
 161                .dst_reg = DST,                                 \
 162                .src_reg = 0,                                   \
 163                .off   = 0,                                     \
 164                .imm   = IMM })
 165
 166#define BPF_MOV32_IMM(DST, IMM)                                 \
 167        ((struct bpf_insn) {                                    \
 168                .code  = BPF_ALU | BPF_MOV | BPF_K,             \
 169                .dst_reg = DST,                                 \
 170                .src_reg = 0,                                   \
 171                .off   = 0,                                     \
 172                .imm   = IMM })
 173
 174/* Special form of mov32, used for doing explicit zero extension on dst. */
 175#define BPF_ZEXT_REG(DST)                                       \
 176        ((struct bpf_insn) {                                    \
 177                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 178                .dst_reg = DST,                                 \
 179                .src_reg = DST,                                 \
 180                .off   = 0,                                     \
 181                .imm   = 1 })
 182
 183static inline bool insn_is_zext(const struct bpf_insn *insn)
 184{
 185        return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
 186}
 187
 188/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
 189#define BPF_LD_IMM64(DST, IMM)                                  \
 190        BPF_LD_IMM64_RAW(DST, 0, IMM)
 191
 192#define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
 193        ((struct bpf_insn) {                                    \
 194                .code  = BPF_LD | BPF_DW | BPF_IMM,             \
 195                .dst_reg = DST,                                 \
 196                .src_reg = SRC,                                 \
 197                .off   = 0,                                     \
 198                .imm   = (__u32) (IMM) }),                      \
 199        ((struct bpf_insn) {                                    \
 200                .code  = 0, /* zero is reserved opcode */       \
 201                .dst_reg = 0,                                   \
 202                .src_reg = 0,                                   \
 203                .off   = 0,                                     \
 204                .imm   = ((__u64) (IMM)) >> 32 })
 205
 206/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
 207#define BPF_LD_MAP_FD(DST, MAP_FD)                              \
 208        BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
 209
 210/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
 211
 212#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
 213        ((struct bpf_insn) {                                    \
 214                .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
 215                .dst_reg = DST,                                 \
 216                .src_reg = SRC,                                 \
 217                .off   = 0,                                     \
 218                .imm   = IMM })
 219
 220#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
 221        ((struct bpf_insn) {                                    \
 222                .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
 223                .dst_reg = DST,                                 \
 224                .src_reg = SRC,                                 \
 225                .off   = 0,                                     \
 226                .imm   = IMM })
 227
 228/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
 229
 230#define BPF_LD_ABS(SIZE, IMM)                                   \
 231        ((struct bpf_insn) {                                    \
 232                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
 233                .dst_reg = 0,                                   \
 234                .src_reg = 0,                                   \
 235                .off   = 0,                                     \
 236                .imm   = IMM })
 237
 238/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
 239
 240#define BPF_LD_IND(SIZE, SRC, IMM)                              \
 241        ((struct bpf_insn) {                                    \
 242                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
 243                .dst_reg = 0,                                   \
 244                .src_reg = SRC,                                 \
 245                .off   = 0,                                     \
 246                .imm   = IMM })
 247
 248/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
 249
 250#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
 251        ((struct bpf_insn) {                                    \
 252                .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
 253                .dst_reg = DST,                                 \
 254                .src_reg = SRC,                                 \
 255                .off   = OFF,                                   \
 256                .imm   = 0 })
 257
 258/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
 259
 260#define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
 261        ((struct bpf_insn) {                                    \
 262                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
 263                .dst_reg = DST,                                 \
 264                .src_reg = SRC,                                 \
 265                .off   = OFF,                                   \
 266                .imm   = 0 })
 267
 268
 269/*
 270 * Atomic operations:
 271 *
 272 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
 273 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
 274 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
 275 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
 276 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
 277 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
 278 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
 279 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
 280 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
 281 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
 282 */
 283
 284#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
 285        ((struct bpf_insn) {                                    \
 286                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
 287                .dst_reg = DST,                                 \
 288                .src_reg = SRC,                                 \
 289                .off   = OFF,                                   \
 290                .imm   = OP })
 291
 292/* Legacy alias */
 293#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
 294
 295/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
 296
 297#define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
 298        ((struct bpf_insn) {                                    \
 299                .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
 300                .dst_reg = DST,                                 \
 301                .src_reg = 0,                                   \
 302                .off   = OFF,                                   \
 303                .imm   = IMM })
 304
 305/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
 306
 307#define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
 308        ((struct bpf_insn) {                                    \
 309                .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
 310                .dst_reg = DST,                                 \
 311                .src_reg = SRC,                                 \
 312                .off   = OFF,                                   \
 313                .imm   = 0 })
 314
 315/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
 316
 317#define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
 318        ((struct bpf_insn) {                                    \
 319                .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
 320                .dst_reg = DST,                                 \
 321                .src_reg = 0,                                   \
 322                .off   = OFF,                                   \
 323                .imm   = IMM })
 324
 325/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
 326
 327#define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
 328        ((struct bpf_insn) {                                    \
 329                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
 330                .dst_reg = DST,                                 \
 331                .src_reg = SRC,                                 \
 332                .off   = OFF,                                   \
 333                .imm   = 0 })
 334
 335/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
 336
 337#define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
 338        ((struct bpf_insn) {                                    \
 339                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
 340                .dst_reg = DST,                                 \
 341                .src_reg = 0,                                   \
 342                .off   = OFF,                                   \
 343                .imm   = IMM })
 344
 345/* Unconditional jumps, goto pc + off16 */
 346
 347#define BPF_JMP_A(OFF)                                          \
 348        ((struct bpf_insn) {                                    \
 349                .code  = BPF_JMP | BPF_JA,                      \
 350                .dst_reg = 0,                                   \
 351                .src_reg = 0,                                   \
 352                .off   = OFF,                                   \
 353                .imm   = 0 })
 354
 355/* Relative call */
 356
 357#define BPF_CALL_REL(TGT)                                       \
 358        ((struct bpf_insn) {                                    \
 359                .code  = BPF_JMP | BPF_CALL,                    \
 360                .dst_reg = 0,                                   \
 361                .src_reg = BPF_PSEUDO_CALL,                     \
 362                .off   = 0,                                     \
 363                .imm   = TGT })
 364
 365/* Function call */
 366
 367#define BPF_CAST_CALL(x)                                        \
 368                ((u64 (*)(u64, u64, u64, u64, u64))(x))
 369
 370#define BPF_EMIT_CALL(FUNC)                                     \
 371        ((struct bpf_insn) {                                    \
 372                .code  = BPF_JMP | BPF_CALL,                    \
 373                .dst_reg = 0,                                   \
 374                .src_reg = 0,                                   \
 375                .off   = 0,                                     \
 376                .imm   = ((FUNC) - __bpf_call_base) })
 377
 378/* Raw code statement block */
 379
 380#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
 381        ((struct bpf_insn) {                                    \
 382                .code  = CODE,                                  \
 383                .dst_reg = DST,                                 \
 384                .src_reg = SRC,                                 \
 385                .off   = OFF,                                   \
 386                .imm   = IMM })
 387
 388/* Program exit */
 389
 390#define BPF_EXIT_INSN()                                         \
 391        ((struct bpf_insn) {                                    \
 392                .code  = BPF_JMP | BPF_EXIT,                    \
 393                .dst_reg = 0,                                   \
 394                .src_reg = 0,                                   \
 395                .off   = 0,                                     \
 396                .imm   = 0 })
 397
 398/* Speculation barrier */
 399
 400#define BPF_ST_NOSPEC()                                         \
 401        ((struct bpf_insn) {                                    \
 402                .code  = BPF_ST | BPF_NOSPEC,                   \
 403                .dst_reg = 0,                                   \
 404                .src_reg = 0,                                   \
 405                .off   = 0,                                     \
 406                .imm   = 0 })
 407
 408/* Internal classic blocks for direct assignment */
 409
 410#define __BPF_STMT(CODE, K)                                     \
 411        ((struct sock_filter) BPF_STMT(CODE, K))
 412
 413#define __BPF_JUMP(CODE, K, JT, JF)                             \
 414        ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
 415
 416#define bytes_to_bpf_size(bytes)                                \
 417({                                                              \
 418        int bpf_size = -EINVAL;                                 \
 419                                                                \
 420        if (bytes == sizeof(u8))                                \
 421                bpf_size = BPF_B;                               \
 422        else if (bytes == sizeof(u16))                          \
 423                bpf_size = BPF_H;                               \
 424        else if (bytes == sizeof(u32))                          \
 425                bpf_size = BPF_W;                               \
 426        else if (bytes == sizeof(u64))                          \
 427                bpf_size = BPF_DW;                              \
 428                                                                \
 429        bpf_size;                                               \
 430})
 431
 432#define bpf_size_to_bytes(bpf_size)                             \
 433({                                                              \
 434        int bytes = -EINVAL;                                    \
 435                                                                \
 436        if (bpf_size == BPF_B)                                  \
 437                bytes = sizeof(u8);                             \
 438        else if (bpf_size == BPF_H)                             \
 439                bytes = sizeof(u16);                            \
 440        else if (bpf_size == BPF_W)                             \
 441                bytes = sizeof(u32);                            \
 442        else if (bpf_size == BPF_DW)                            \
 443                bytes = sizeof(u64);                            \
 444                                                                \
 445        bytes;                                                  \
 446})
 447
 448#define BPF_SIZEOF(type)                                        \
 449        ({                                                      \
 450                const int __size = bytes_to_bpf_size(sizeof(type)); \
 451                BUILD_BUG_ON(__size < 0);                       \
 452                __size;                                         \
 453        })
 454
 455#define BPF_FIELD_SIZEOF(type, field)                           \
 456        ({                                                      \
 457                const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
 458                BUILD_BUG_ON(__size < 0);                       \
 459                __size;                                         \
 460        })
 461
 462#define BPF_LDST_BYTES(insn)                                    \
 463        ({                                                      \
 464                const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
 465                WARN_ON(__size < 0);                            \
 466                __size;                                         \
 467        })
 468
 469#define __BPF_MAP_0(m, v, ...) v
 470#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
 471#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
 472#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
 473#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
 474#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
 475
 476#define __BPF_REG_0(...) __BPF_PAD(5)
 477#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
 478#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
 479#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
 480#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
 481#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
 482
 483#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
 484#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
 485
 486#define __BPF_CAST(t, a)                                                       \
 487        (__force t)                                                            \
 488        (__force                                                               \
 489         typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
 490                                      (unsigned long)0, (t)0))) a
 491#define __BPF_V void
 492#define __BPF_N
 493
 494#define __BPF_DECL_ARGS(t, a) t   a
 495#define __BPF_DECL_REGS(t, a) u64 a
 496
 497#define __BPF_PAD(n)                                                           \
 498        __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
 499                  u64, __ur_3, u64, __ur_4, u64, __ur_5)
 500
 501#define BPF_CALL_x(x, name, ...)                                               \
 502        static __always_inline                                                 \
 503        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
 504        typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
 505        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
 506        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
 507        {                                                                      \
 508                return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
 509        }                                                                      \
 510        static __always_inline                                                 \
 511        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
 512
 513#define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
 514#define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
 515#define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
 516#define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
 517#define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
 518#define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
 519
 520#define bpf_ctx_range(TYPE, MEMBER)                                             \
 521        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 522#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
 523        offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
 524#if BITS_PER_LONG == 64
 525# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 526        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 527#else
 528# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 529        offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
 530#endif /* BITS_PER_LONG == 64 */
 531
 532#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
 533        ({                                                                      \
 534                BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));             \
 535                *(PTR_SIZE) = (SIZE);                                           \
 536                offsetof(TYPE, MEMBER);                                         \
 537        })
 538
 539/* A struct sock_filter is architecture independent. */
 540struct compat_sock_fprog {
 541        u16             len;
 542        compat_uptr_t   filter; /* struct sock_filter * */
 543};
 544
 545struct sock_fprog_kern {
 546        u16                     len;
 547        struct sock_filter      *filter;
 548};
 549
 550/* Some arches need doubleword alignment for their instructions and/or data */
 551#define BPF_IMAGE_ALIGNMENT 8
 552
 553struct bpf_binary_header {
 554        u32 pages;
 555        u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
 556};
 557
 558struct bpf_prog_stats {
 559        u64 cnt;
 560        u64 nsecs;
 561        u64 misses;
 562        struct u64_stats_sync syncp;
 563} __aligned(2 * sizeof(u64));
 564
 565struct bpf_prog {
 566        u16                     pages;          /* Number of allocated pages */
 567        u16                     jited:1,        /* Is our filter JIT'ed? */
 568                                jit_requested:1,/* archs need to JIT the prog */
 569#ifdef __GENKSYMS__
 570                                undo_set_mem:1, /* Passed set_memory_ro() checkpoint */
 571#endif
 572                                gpl_compatible:1, /* Is filter GPL compatible? */
 573                                cb_access:1,    /* Is control block accessed? */
 574                                dst_needed:1,   /* Do we need dst entry? */
 575                                blinded:1,      /* Was blinded */
 576                                is_func:1,      /* program is a bpf function */
 577                                kprobe_override:1, /* Do we override a kprobe? */
 578#ifdef __GENKSYMS__
 579                                has_callchain_buf:1; /* callchain buffer allocated? */
 580#else
 581                                has_callchain_buf:1, /* callchain buffer allocated? */
 582                                enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
 583                                call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
 584#endif
 585        enum bpf_prog_type      type;           /* Type of BPF program */
 586        enum bpf_attach_type    expected_attach_type; /* For some prog types */
 587        u32                     len;            /* Number of filter blocks */
 588        u32                     jited_len;      /* Size of jited insns in bytes */
 589        u8                      tag[BPF_TAG_SIZE];
 590        struct bpf_prog_aux     *aux;           /* Auxiliary fields */
 591        struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
 592        RH_KABI_BROKEN_INSERT(struct bpf_prog_stats __percpu *stats)
 593        RH_KABI_BROKEN_INSERT(int __percpu              *active)
 594        unsigned int            (*bpf_func)(const void *ctx,
 595                                            const struct bpf_insn *insn);
 596        /* Instructions for interpreter */
 597        union {
 598                struct sock_filter      insns[0];
 599                struct bpf_insn         insnsi[0];
 600        };
 601};
 602
 603struct sk_filter {
 604        refcount_t      refcnt;
 605        struct rcu_head rcu;
 606        struct bpf_prog *prog;
 607};
 608
 609DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
 610
 611#define __BPF_PROG_RUN(prog, ctx, dfunc)        ({                      \
 612        u32 __ret;                                                      \
 613        cant_migrate();                                                 \
 614        if (static_branch_unlikely(&bpf_stats_enabled_key)) {           \
 615                struct bpf_prog_stats *__stats;                         \
 616                u64 __start = sched_clock();                            \
 617                __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
 618                __stats = this_cpu_ptr(prog->stats);                    \
 619                u64_stats_update_begin(&__stats->syncp);                \
 620                __stats->cnt++;                                         \
 621                __stats->nsecs += sched_clock() - __start;              \
 622                u64_stats_update_end(&__stats->syncp);                  \
 623        } else {                                                        \
 624                __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
 625        }                                                               \
 626        __ret; })
 627
 628#define BPF_PROG_RUN(prog, ctx)                                         \
 629        __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
 630
 631/*
 632 * Use in preemptible and therefore migratable context to make sure that
 633 * the execution of the BPF program runs on one CPU.
 634 *
 635 * This uses migrate_disable/enable() explicitly to document that the
 636 * invocation of a BPF program does not require reentrancy protection
 637 * against a BPF program which is invoked from a preempting task.
 638 *
 639 * For non RT enabled kernels migrate_disable/enable() maps to
 640 * preempt_disable/enable(), i.e. it disables also preemption.
 641 */
 642static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
 643                                          const void *ctx)
 644{
 645        u32 ret;
 646
 647        migrate_disable();
 648        ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
 649        migrate_enable();
 650        return ret;
 651}
 652
 653#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
 654
 655struct bpf_skb_data_end {
 656        struct qdisc_skb_cb qdisc_cb;
 657        void *data_meta;
 658        void *data_end;
 659};
 660
 661struct bpf_nh_params {
 662        u32 nh_family;
 663        union {
 664                u32 ipv4_nh;
 665                struct in6_addr ipv6_nh;
 666        };
 667};
 668
 669struct bpf_redirect_info {
 670        u32 flags;
 671        u32 tgt_index;
 672        void *tgt_value;
 673        u32 map_id;
 674        enum bpf_map_type map_type;
 675        u32 kern_flags;
 676        struct bpf_nh_params nh;
 677};
 678
 679DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
 680
 681/* flags for bpf_redirect_info kern_flags */
 682#define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
 683
 684/* Compute the linear packet data range [data, data_end) which
 685 * will be accessed by various program types (cls_bpf, act_bpf,
 686 * lwt, ...). Subsystems allowing direct data access must (!)
 687 * ensure that cb[] area can be written to when BPF program is
 688 * invoked (otherwise cb[] save/restore is necessary).
 689 */
 690static inline void bpf_compute_data_pointers(struct sk_buff *skb)
 691{
 692        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 693
 694        BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
 695        cb->data_meta = skb->data - skb_metadata_len(skb);
 696        cb->data_end  = skb->data + skb_headlen(skb);
 697}
 698
 699/* Similar to bpf_compute_data_pointers(), except that save orginal
 700 * data in cb->data and cb->meta_data for restore.
 701 */
 702static inline void bpf_compute_and_save_data_end(
 703        struct sk_buff *skb, void **saved_data_end)
 704{
 705        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 706
 707        *saved_data_end = cb->data_end;
 708        cb->data_end  = skb->data + skb_headlen(skb);
 709}
 710
 711/* Restore data saved by bpf_compute_data_pointers(). */
 712static inline void bpf_restore_data_end(
 713        struct sk_buff *skb, void *saved_data_end)
 714{
 715        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 716
 717        cb->data_end = saved_data_end;
 718}
 719
 720static inline u8 *bpf_skb_cb(struct sk_buff *skb)
 721{
 722        /* eBPF programs may read/write skb->cb[] area to transfer meta
 723         * data between tail calls. Since this also needs to work with
 724         * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
 725         *
 726         * In some socket filter cases, the cb unfortunately needs to be
 727         * saved/restored so that protocol specific skb->cb[] data won't
 728         * be lost. In any case, due to unpriviledged eBPF programs
 729         * attached to sockets, we need to clear the bpf_skb_cb() area
 730         * to not leak previous contents to user space.
 731         */
 732        BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
 733        BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
 734                     FIELD_SIZEOF(struct qdisc_skb_cb, data));
 735
 736        return qdisc_skb_cb(skb)->data;
 737}
 738
 739/* Must be invoked with migration disabled */
 740static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
 741                                         struct sk_buff *skb)
 742{
 743        u8 *cb_data = bpf_skb_cb(skb);
 744        u8 cb_saved[BPF_SKB_CB_LEN];
 745        u32 res;
 746
 747        if (unlikely(prog->cb_access)) {
 748                memcpy(cb_saved, cb_data, sizeof(cb_saved));
 749                memset(cb_data, 0, sizeof(cb_saved));
 750        }
 751
 752        res = BPF_PROG_RUN(prog, skb);
 753
 754        if (unlikely(prog->cb_access))
 755                memcpy(cb_data, cb_saved, sizeof(cb_saved));
 756
 757        return res;
 758}
 759
 760static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
 761                                       struct sk_buff *skb)
 762{
 763        u32 res;
 764
 765        migrate_disable();
 766        res = __bpf_prog_run_save_cb(prog, skb);
 767        migrate_enable();
 768        return res;
 769}
 770
 771static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
 772                                        struct sk_buff *skb)
 773{
 774        u8 *cb_data = bpf_skb_cb(skb);
 775        u32 res;
 776
 777        if (unlikely(prog->cb_access))
 778                memset(cb_data, 0, BPF_SKB_CB_LEN);
 779
 780        res = bpf_prog_run_pin_on_cpu(prog, skb);
 781        return res;
 782}
 783
 784DECLARE_BPF_DISPATCHER(xdp)
 785
 786static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
 787                                            struct xdp_buff *xdp)
 788{
 789        /* Caller needs to hold rcu_read_lock() (!), otherwise program
 790         * can be released while still running, or map elements could be
 791         * freed early while still having concurrent users. XDP fastpath
 792         * already takes rcu_read_lock() when fetching the program, so
 793         * it's not necessary here anymore.
 794         */
 795        return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
 796}
 797
 798void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
 799
 800static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
 801{
 802        return prog->len * sizeof(struct bpf_insn);
 803}
 804
 805static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
 806{
 807        return round_up(bpf_prog_insn_size(prog) +
 808                        sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
 809}
 810
 811static inline unsigned int bpf_prog_size(unsigned int proglen)
 812{
 813        return max(sizeof(struct bpf_prog),
 814                   offsetof(struct bpf_prog, insns[proglen]));
 815}
 816
 817static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
 818{
 819        /* When classic BPF programs have been loaded and the arch
 820         * does not have a classic BPF JIT (anymore), they have been
 821         * converted via bpf_migrate_filter() to eBPF and thus always
 822         * have an unspec program type.
 823         */
 824        return prog->type == BPF_PROG_TYPE_UNSPEC;
 825}
 826
 827static inline u32 bpf_ctx_off_adjust_machine(u32 size)
 828{
 829        const u32 size_machine = sizeof(unsigned long);
 830
 831        if (size > size_machine && size % size_machine == 0)
 832                size = size_machine;
 833
 834        return size;
 835}
 836
 837static inline bool
 838bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
 839{
 840        return size <= size_default && (size & (size - 1)) == 0;
 841}
 842
 843static inline u8
 844bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
 845{
 846        u8 access_off = off & (size_default - 1);
 847
 848#ifdef __LITTLE_ENDIAN
 849        return access_off;
 850#else
 851        return size_default - (access_off + size);
 852#endif
 853}
 854
 855#define bpf_ctx_wide_access_ok(off, size, type, field)                  \
 856        (size == sizeof(__u64) &&                                       \
 857        off >= offsetof(type, field) &&                                 \
 858        off + sizeof(__u64) <= offsetofend(type, field) &&              \
 859        off % sizeof(__u64) == 0)
 860
 861#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
 862
 863static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 864{
 865#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 866        if (!fp->jited) {
 867                set_vm_flush_reset_perms(fp);
 868                set_memory_ro((unsigned long)fp, fp->pages);
 869        }
 870#endif
 871}
 872
 873static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
 874{
 875        set_vm_flush_reset_perms(hdr);
 876        set_memory_ro((unsigned long)hdr, hdr->pages);
 877        set_memory_x((unsigned long)hdr, hdr->pages);
 878}
 879
 880static inline struct bpf_binary_header *
 881bpf_jit_binary_hdr(const struct bpf_prog *fp)
 882{
 883        unsigned long real_start = (unsigned long)fp->bpf_func;
 884        unsigned long addr = real_start & PAGE_MASK;
 885
 886        return (void *)addr;
 887}
 888
 889int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
 890static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
 891{
 892        return sk_filter_trim_cap(sk, skb, 1);
 893}
 894
 895struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
 896void bpf_prog_free(struct bpf_prog *fp);
 897
 898bool bpf_opcode_in_insntable(u8 code);
 899
 900void bpf_prog_free_linfo(struct bpf_prog *prog);
 901void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 902                               const u32 *insn_to_jit_off);
 903int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
 904void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
 905
 906struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 907struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
 908struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 909                                  gfp_t gfp_extra_flags);
 910void __bpf_prog_free(struct bpf_prog *fp);
 911
 912static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
 913{
 914        __bpf_prog_free(fp);
 915}
 916
 917typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
 918                                       unsigned int flen);
 919
 920int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
 921int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
 922                              bpf_aux_classic_check_t trans, bool save_orig);
 923void bpf_prog_destroy(struct bpf_prog *fp);
 924
 925int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 926int sk_attach_bpf(u32 ufd, struct sock *sk);
 927int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 928int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 929void sk_reuseport_prog_free(struct bpf_prog *prog);
 930int sk_detach_filter(struct sock *sk);
 931int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
 932                  unsigned int len);
 933
 934bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
 935void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
 936
 937u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
 938#define __bpf_call_base_args \
 939        ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
 940         (void *)__bpf_call_base)
 941
 942struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
 943void bpf_jit_compile(struct bpf_prog *prog);
 944bool bpf_jit_needs_zext(void);
 945bool bpf_jit_supports_kfunc_call(void);
 946bool bpf_helper_changes_pkt_data(void *func);
 947
 948static inline bool bpf_dump_raw_ok(const struct cred *cred)
 949{
 950        /* Reconstruction of call-sites is dependent on kallsyms,
 951         * thus make dump the same restriction.
 952         */
 953        return kallsyms_show_value(cred);
 954}
 955
 956struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 957                                       const struct bpf_insn *patch, u32 len);
 958int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
 959
 960void bpf_clear_redirect_map(struct bpf_map *map);
 961
 962static inline bool xdp_return_frame_no_direct(void)
 963{
 964        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 965
 966        return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
 967}
 968
 969static inline void xdp_set_return_frame_no_direct(void)
 970{
 971        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 972
 973        ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
 974}
 975
 976static inline void xdp_clear_return_frame_no_direct(void)
 977{
 978        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 979
 980        ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
 981}
 982
 983static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
 984                                 unsigned int pktlen)
 985{
 986        unsigned int len;
 987
 988        if (unlikely(!(fwd->flags & IFF_UP)))
 989                return -ENETDOWN;
 990
 991        len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
 992        if (pktlen > len)
 993                return -EMSGSIZE;
 994
 995        return 0;
 996}
 997
 998/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
 999 * same cpu context. Further for best results no more than a single map
1000 * for the do_redirect/do_flush pair should be used. This limitation is
1001 * because we only track one map and force a flush when the map changes.
1002 * This does not appear to be a real limitation for existing software.
1003 */
1004int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1005                            struct xdp_buff *xdp, struct bpf_prog *prog);
1006int xdp_do_redirect(struct net_device *dev,
1007                    struct xdp_buff *xdp,
1008                    struct bpf_prog *prog);
1009void xdp_do_flush(void);
1010
1011/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1012 * it is no longer only flushing maps. Keep this define for compatibility
1013 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1014 */
1015#define xdp_do_flush_map xdp_do_flush
1016
1017void bpf_warn_invalid_xdp_action(u32 act);
1018
1019#ifdef CONFIG_INET
1020struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1021                                  struct bpf_prog *prog, struct sk_buff *skb,
1022                                  u32 hash);
1023#else
1024static inline struct sock *
1025bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1026                     struct bpf_prog *prog, struct sk_buff *skb,
1027                     u32 hash)
1028{
1029        return NULL;
1030}
1031#endif
1032
1033#ifdef CONFIG_BPF_JIT
1034extern int bpf_jit_enable;
1035extern int bpf_jit_harden;
1036extern int bpf_jit_kallsyms;
1037extern long bpf_jit_limit;
1038
1039typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1040
1041struct bpf_binary_header *
1042bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1043                     unsigned int alignment,
1044                     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1045void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1046u64 bpf_jit_alloc_exec_limit(void);
1047void *bpf_jit_alloc_exec(unsigned long size);
1048void bpf_jit_free_exec(void *addr);
1049void bpf_jit_free(struct bpf_prog *fp);
1050
1051int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1052                                struct bpf_jit_poke_descriptor *poke);
1053
1054int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1055                          const struct bpf_insn *insn, bool extra_pass,
1056                          u64 *func_addr, bool *func_addr_fixed);
1057
1058struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1059void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1060
1061static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1062                                u32 pass, void *image)
1063{
1064        pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1065               proglen, pass, image, current->comm, task_pid_nr(current));
1066
1067        if (image)
1068                print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1069                               16, 1, image, proglen, false);
1070}
1071
1072static inline bool bpf_jit_is_ebpf(void)
1073{
1074# ifdef CONFIG_HAVE_EBPF_JIT
1075        return true;
1076# else
1077        return false;
1078# endif
1079}
1080
1081static inline bool ebpf_jit_enabled(void)
1082{
1083        return bpf_jit_enable && bpf_jit_is_ebpf();
1084}
1085
1086static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1087{
1088        return fp->jited && bpf_jit_is_ebpf();
1089}
1090
1091static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1092{
1093        /* These are the prerequisites, should someone ever have the
1094         * idea to call blinding outside of them, we make sure to
1095         * bail out.
1096         */
1097        if (!bpf_jit_is_ebpf())
1098                return false;
1099        if (!prog->jit_requested)
1100                return false;
1101        if (!bpf_jit_harden)
1102                return false;
1103        if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1104                return false;
1105
1106        return true;
1107}
1108
1109static inline bool bpf_jit_kallsyms_enabled(void)
1110{
1111        /* There are a couple of corner cases where kallsyms should
1112         * not be enabled f.e. on hardening.
1113         */
1114        if (bpf_jit_harden)
1115                return false;
1116        if (!bpf_jit_kallsyms)
1117                return false;
1118        if (bpf_jit_kallsyms == 1)
1119                return true;
1120
1121        return false;
1122}
1123
1124const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1125                                 unsigned long *off, char *sym);
1126bool is_bpf_text_address(unsigned long addr);
1127int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1128                    char *sym);
1129
1130static inline const char *
1131bpf_address_lookup(unsigned long addr, unsigned long *size,
1132                   unsigned long *off, char **modname, char *sym)
1133{
1134        const char *ret = __bpf_address_lookup(addr, size, off, sym);
1135
1136        if (ret && modname)
1137                *modname = NULL;
1138        return ret;
1139}
1140
1141void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1142void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1143
1144#else /* CONFIG_BPF_JIT */
1145
1146static inline bool ebpf_jit_enabled(void)
1147{
1148        return false;
1149}
1150
1151static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1152{
1153        return false;
1154}
1155
1156static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1157{
1158        return false;
1159}
1160
1161static inline int
1162bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1163                            struct bpf_jit_poke_descriptor *poke)
1164{
1165        return -ENOTSUPP;
1166}
1167
1168static inline void bpf_jit_free(struct bpf_prog *fp)
1169{
1170        bpf_prog_unlock_free(fp);
1171}
1172
1173static inline bool bpf_jit_kallsyms_enabled(void)
1174{
1175        return false;
1176}
1177
1178static inline const char *
1179__bpf_address_lookup(unsigned long addr, unsigned long *size,
1180                     unsigned long *off, char *sym)
1181{
1182        return NULL;
1183}
1184
1185static inline bool is_bpf_text_address(unsigned long addr)
1186{
1187        return false;
1188}
1189
1190static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1191                                  char *type, char *sym)
1192{
1193        return -ERANGE;
1194}
1195
1196static inline const char *
1197bpf_address_lookup(unsigned long addr, unsigned long *size,
1198                   unsigned long *off, char **modname, char *sym)
1199{
1200        return NULL;
1201}
1202
1203static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1204{
1205}
1206
1207static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1208{
1209}
1210
1211#endif /* CONFIG_BPF_JIT */
1212
1213void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1214
1215#define BPF_ANC         BIT(15)
1216
1217static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1218{
1219        switch (first->code) {
1220        case BPF_RET | BPF_K:
1221        case BPF_LD | BPF_W | BPF_LEN:
1222                return false;
1223
1224        case BPF_LD | BPF_W | BPF_ABS:
1225        case BPF_LD | BPF_H | BPF_ABS:
1226        case BPF_LD | BPF_B | BPF_ABS:
1227                if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1228                        return true;
1229                return false;
1230
1231        default:
1232                return true;
1233        }
1234}
1235
1236static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1237{
1238        BUG_ON(ftest->code & BPF_ANC);
1239
1240        switch (ftest->code) {
1241        case BPF_LD | BPF_W | BPF_ABS:
1242        case BPF_LD | BPF_H | BPF_ABS:
1243        case BPF_LD | BPF_B | BPF_ABS:
1244#define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1245                                return BPF_ANC | SKF_AD_##CODE
1246                switch (ftest->k) {
1247                BPF_ANCILLARY(PROTOCOL);
1248                BPF_ANCILLARY(PKTTYPE);
1249                BPF_ANCILLARY(IFINDEX);
1250                BPF_ANCILLARY(NLATTR);
1251                BPF_ANCILLARY(NLATTR_NEST);
1252                BPF_ANCILLARY(MARK);
1253                BPF_ANCILLARY(QUEUE);
1254                BPF_ANCILLARY(HATYPE);
1255                BPF_ANCILLARY(RXHASH);
1256                BPF_ANCILLARY(CPU);
1257                BPF_ANCILLARY(ALU_XOR_X);
1258                BPF_ANCILLARY(VLAN_TAG);
1259                BPF_ANCILLARY(VLAN_TAG_PRESENT);
1260                BPF_ANCILLARY(PAY_OFFSET);
1261                BPF_ANCILLARY(RANDOM);
1262                BPF_ANCILLARY(VLAN_TPID);
1263                }
1264                /* Fallthrough. */
1265        default:
1266                return ftest->code;
1267        }
1268}
1269
1270void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1271                                           int k, unsigned int size);
1272
1273static inline int bpf_tell_extensions(void)
1274{
1275        return SKF_AD_MAX;
1276}
1277
1278struct bpf_sock_addr_kern {
1279        struct sock *sk;
1280        struct sockaddr *uaddr;
1281        /* Temporary "register" to make indirect stores to nested structures
1282         * defined above. We need three registers to make such a store, but
1283         * only two (src and dst) are available at convert_ctx_access time
1284         */
1285        u64 tmp_reg;
1286        void *t_ctx;    /* Attach type specific context. */
1287};
1288
1289struct bpf_sock_ops_kern {
1290        struct  sock *sk;
1291        union {
1292                u32 args[4];
1293                u32 reply;
1294                u32 replylong[4];
1295        };
1296        struct sk_buff  *syn_skb;
1297        struct sk_buff  *skb;
1298        void    *skb_data_end;
1299        u8      op;
1300        u8      is_fullsock;
1301        u8      remaining_opt_len;
1302        u64     temp;                   /* temp and everything after is not
1303                                         * initialized to 0 before calling
1304                                         * the BPF program. New fields that
1305                                         * should be initialized to 0 should
1306                                         * be inserted before temp.
1307                                         * temp is scratch storage used by
1308                                         * sock_ops_convert_ctx_access
1309                                         * as temporary storage of a register.
1310                                         */
1311};
1312
1313struct bpf_sysctl_kern {
1314        struct ctl_table_header *head;
1315        struct ctl_table *table;
1316        void *cur_val;
1317        size_t cur_len;
1318        void *new_val;
1319        size_t new_len;
1320        int new_updated;
1321        int write;
1322        loff_t *ppos;
1323        /* Temporary "register" for indirect stores to ppos. */
1324        u64 tmp_reg;
1325};
1326
1327#define BPF_SOCKOPT_KERN_BUF_SIZE       32
1328struct bpf_sockopt_buf {
1329        u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1330};
1331
1332struct bpf_sockopt_kern {
1333        struct sock     *sk;
1334        u8              *optval;
1335        u8              *optval_end;
1336        s32             level;
1337        s32             optname;
1338        s32             optlen;
1339        s32             retval;
1340};
1341
1342int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1343
1344struct bpf_sk_lookup_kern {
1345        u16             family;
1346        u16             protocol;
1347        __be16          sport;
1348        u16             dport;
1349        struct {
1350                __be32 saddr;
1351                __be32 daddr;
1352        } v4;
1353        struct {
1354                const struct in6_addr *saddr;
1355                const struct in6_addr *daddr;
1356        } v6;
1357        struct sock     *selected_sk;
1358        bool            no_reuseport;
1359};
1360
1361extern struct static_key_false bpf_sk_lookup_enabled;
1362
1363/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1364 *
1365 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1366 * SK_DROP. Their meaning is as follows:
1367 *
1368 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1369 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1370 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1371 *
1372 * This macro aggregates return values and selected sockets from
1373 * multiple BPF programs according to following rules in order:
1374 *
1375 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1376 *     macro result is SK_PASS and last ctx.selected_sk is used.
1377 *  2. If any program returned SK_DROP return value,
1378 *     macro result is SK_DROP.
1379 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1380 *
1381 * Caller must ensure that the prog array is non-NULL, and that the
1382 * array as well as the programs it contains remain valid.
1383 */
1384#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1385        ({                                                              \
1386                struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1387                struct bpf_prog_array_item *_item;                      \
1388                struct sock *_selected_sk = NULL;                       \
1389                bool _no_reuseport = false;                             \
1390                struct bpf_prog *_prog;                                 \
1391                bool _all_pass = true;                                  \
1392                u32 _ret;                                               \
1393                                                                        \
1394                migrate_disable();                                      \
1395                _item = &(array)->items[0];                             \
1396                while ((_prog = READ_ONCE(_item->prog))) {              \
1397                        /* restore most recent selection */             \
1398                        _ctx->selected_sk = _selected_sk;               \
1399                        _ctx->no_reuseport = _no_reuseport;             \
1400                                                                        \
1401                        _ret = func(_prog, _ctx);                       \
1402                        if (_ret == SK_PASS && _ctx->selected_sk) {     \
1403                                /* remember last non-NULL socket */     \
1404                                _selected_sk = _ctx->selected_sk;       \
1405                                _no_reuseport = _ctx->no_reuseport;     \
1406                        } else if (_ret == SK_DROP && _all_pass) {      \
1407                                _all_pass = false;                      \
1408                        }                                               \
1409                        _item++;                                        \
1410                }                                                       \
1411                _ctx->selected_sk = _selected_sk;                       \
1412                _ctx->no_reuseport = _no_reuseport;                     \
1413                migrate_enable();                                       \
1414                _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1415         })
1416
1417static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1418                                        const __be32 saddr, const __be16 sport,
1419                                        const __be32 daddr, const u16 dport,
1420                                        struct sock **psk)
1421{
1422        struct bpf_prog_array *run_array;
1423        struct sock *selected_sk = NULL;
1424        bool no_reuseport = false;
1425
1426        rcu_read_lock();
1427        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1428        if (run_array) {
1429                struct bpf_sk_lookup_kern ctx = {
1430                        .family         = AF_INET,
1431                        .protocol       = protocol,
1432                        .v4.saddr       = saddr,
1433                        .v4.daddr       = daddr,
1434                        .sport          = sport,
1435                        .dport          = dport,
1436                };
1437                u32 act;
1438
1439                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1440                if (act == SK_PASS) {
1441                        selected_sk = ctx.selected_sk;
1442                        no_reuseport = ctx.no_reuseport;
1443                } else {
1444                        selected_sk = ERR_PTR(-ECONNREFUSED);
1445                }
1446        }
1447        rcu_read_unlock();
1448        *psk = selected_sk;
1449        return no_reuseport;
1450}
1451
1452#if IS_ENABLED(CONFIG_IPV6)
1453static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1454                                        const struct in6_addr *saddr,
1455                                        const __be16 sport,
1456                                        const struct in6_addr *daddr,
1457                                        const u16 dport,
1458                                        struct sock **psk)
1459{
1460        struct bpf_prog_array *run_array;
1461        struct sock *selected_sk = NULL;
1462        bool no_reuseport = false;
1463
1464        rcu_read_lock();
1465        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1466        if (run_array) {
1467                struct bpf_sk_lookup_kern ctx = {
1468                        .family         = AF_INET6,
1469                        .protocol       = protocol,
1470                        .v6.saddr       = saddr,
1471                        .v6.daddr       = daddr,
1472                        .sport          = sport,
1473                        .dport          = dport,
1474                };
1475                u32 act;
1476
1477                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1478                if (act == SK_PASS) {
1479                        selected_sk = ctx.selected_sk;
1480                        no_reuseport = ctx.no_reuseport;
1481                } else {
1482                        selected_sk = ERR_PTR(-ECONNREFUSED);
1483                }
1484        }
1485        rcu_read_unlock();
1486        *psk = selected_sk;
1487        return no_reuseport;
1488}
1489#endif /* IS_ENABLED(CONFIG_IPV6) */
1490
1491static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, u64 flags,
1492                                                  void *lookup_elem(struct bpf_map *map, u32 key))
1493{
1494        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1495
1496        /* Lower bits of the flags are used as return code on lookup failure */
1497        if (unlikely(flags > XDP_TX))
1498                return XDP_ABORTED;
1499
1500        ri->tgt_value = lookup_elem(map, ifindex);
1501        if (unlikely(!ri->tgt_value)) {
1502                /* If the lookup fails we want to clear out the state in the
1503                 * redirect_info struct completely, so that if an eBPF program
1504                 * performs multiple lookups, the last one always takes
1505                 * precedence.
1506                 */
1507                ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1508                ri->map_type = BPF_MAP_TYPE_UNSPEC;
1509                return flags;
1510        }
1511
1512        ri->tgt_index = ifindex;
1513        ri->map_id = map->id;
1514        ri->map_type = map->map_type;
1515
1516        return XDP_REDIRECT;
1517}
1518
1519#endif /* __LINUX_FILTER_H__ */
1520