linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/compiler.h>
  38#include <linux/atomic.h>
  39#include <linux/irqflags.h>
  40#include <linux/preempt.h>
  41#include <linux/bottom_half.h>
  42#include <linux/lockdep.h>
  43#include <asm/processor.h>
  44#include <linux/cpumask.h>
  45
  46#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  47#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  48#define ulong2long(a)           (*(long *)(&(a)))
  49#define USHORT_CMP_GE(a, b)     (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
  50#define USHORT_CMP_LT(a, b)     (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
  51
  52/* Exported common interfaces */
  53void call_rcu(struct rcu_head *head, rcu_callback_t func);
  54void rcu_barrier_tasks(void);
  55void rcu_barrier_tasks_rude(void);
  56void synchronize_rcu(void);
  57
  58#ifdef CONFIG_PREEMPT_RCU
  59
  60void __rcu_read_lock(void);
  61void __rcu_read_unlock(void);
  62
  63/*
  64 * Defined as a macro as it is a very low level header included from
  65 * areas that don't even know about current.  This gives the rcu_read_lock()
  66 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  67 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  68 */
  69#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  70
  71#else /* #ifdef CONFIG_PREEMPT_RCU */
  72
  73#ifdef CONFIG_TINY_RCU
  74#define rcu_read_unlock_strict() do { } while (0)
  75#else
  76void rcu_read_unlock_strict(void);
  77#endif
  78
  79static inline void __rcu_read_lock(void)
  80{
  81        preempt_disable();
  82}
  83
  84static inline void __rcu_read_unlock(void)
  85{
  86        preempt_enable();
  87        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  88                rcu_read_unlock_strict();
  89}
  90
  91static inline int rcu_preempt_depth(void)
  92{
  93        return 0;
  94}
  95
  96#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  97
  98/* Internal to kernel */
  99void rcu_init(void);
 100extern int rcu_scheduler_active __read_mostly;
 101void rcu_sched_clock_irq(int user);
 102void rcu_report_dead(unsigned int cpu);
 103void rcutree_migrate_callbacks(int cpu);
 104
 105#ifdef CONFIG_TASKS_RCU_GENERIC
 106void rcu_init_tasks_generic(void);
 107#else
 108static inline void rcu_init_tasks_generic(void) { }
 109#endif
 110
 111#ifdef CONFIG_RCU_STALL_COMMON
 112void rcu_sysrq_start(void);
 113void rcu_sysrq_end(void);
 114#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 115static inline void rcu_sysrq_start(void) { }
 116static inline void rcu_sysrq_end(void) { }
 117#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 118
 119#ifdef CONFIG_NO_HZ_FULL
 120void rcu_user_enter(void);
 121void rcu_user_exit(void);
 122#else
 123static inline void rcu_user_enter(void) { }
 124static inline void rcu_user_exit(void) { }
 125#endif /* CONFIG_NO_HZ_FULL */
 126
 127#ifdef CONFIG_RCU_NOCB_CPU
 128void rcu_init_nohz(void);
 129int rcu_nocb_cpu_offload(int cpu);
 130int rcu_nocb_cpu_deoffload(int cpu);
 131void rcu_nocb_flush_deferred_wakeup(void);
 132#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 133static inline void rcu_init_nohz(void) { }
 134static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
 135static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
 136static inline void rcu_nocb_flush_deferred_wakeup(void) { }
 137#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 138
 139/**
 140 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 141 * @a: Code that RCU needs to pay attention to.
 142 *
 143 * RCU read-side critical sections are forbidden in the inner idle loop,
 144 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 145 * will happily ignore any such read-side critical sections.  However,
 146 * things like powertop need tracepoints in the inner idle loop.
 147 *
 148 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 149 * will tell RCU that it needs to pay attention, invoke its argument
 150 * (in this example, calling the do_something_with_RCU() function),
 151 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 152 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 153 * on the order of a million or so, even on 32-bit systems).  It is
 154 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 155 * transfer control either into or out of RCU_NONIDLE()'s statement.
 156 */
 157#define RCU_NONIDLE(a) \
 158        do { \
 159                rcu_irq_enter_irqson(); \
 160                do { a; } while (0); \
 161                rcu_irq_exit_irqson(); \
 162        } while (0)
 163
 164/*
 165 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 166 * This is a macro rather than an inline function to avoid #include hell.
 167 */
 168#ifdef CONFIG_TASKS_RCU_GENERIC
 169
 170# ifdef CONFIG_TASKS_RCU
 171# define rcu_tasks_classic_qs(t, preempt)                               \
 172        do {                                                            \
 173                if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))    \
 174                        WRITE_ONCE((t)->rcu_tasks_holdout, false);      \
 175        } while (0)
 176void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 177void synchronize_rcu_tasks(void);
 178# else
 179# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 180# define call_rcu_tasks call_rcu
 181# define synchronize_rcu_tasks synchronize_rcu
 182# endif
 183
 184# ifdef CONFIG_TASKS_RCU_TRACE
 185# define rcu_tasks_trace_qs(t)                                  \
 186        do {                                                            \
 187                struct task_struct_rh *t_rh = (t)->task_struct_rh;      \
 188                if (!likely(READ_ONCE(t_rh->trc_reader_checked)) &&     \
 189                    !unlikely(READ_ONCE(t_rh->trc_reader_nesting))) {   \
 190                        smp_store_release(&t_rh->trc_reader_checked, true); \
 191                        smp_mb(); /* Readers partitioned by store. */   \
 192                }                                                       \
 193        } while (0)
 194# else
 195# define rcu_tasks_trace_qs(t) do { } while (0)
 196# endif
 197
 198#define rcu_tasks_qs(t, preempt)                                        \
 199do {                                                                    \
 200        rcu_tasks_classic_qs((t), (preempt));                           \
 201        rcu_tasks_trace_qs((t));                                        \
 202} while (0)
 203
 204# ifdef CONFIG_TASKS_RUDE_RCU
 205void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 206void synchronize_rcu_tasks_rude(void);
 207# endif
 208
 209#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 210void exit_tasks_rcu_start(void);
 211void exit_tasks_rcu_finish(void);
 212#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 213#define rcu_tasks_qs(t, preempt) do { } while (0)
 214#define rcu_note_voluntary_context_switch(t) do { } while (0)
 215#define call_rcu_tasks call_rcu
 216#define synchronize_rcu_tasks synchronize_rcu
 217static inline void exit_tasks_rcu_start(void) { }
 218static inline void exit_tasks_rcu_finish(void) { }
 219#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 220
 221/**
 222 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 223 *
 224 * This macro resembles cond_resched(), except that it is defined to
 225 * report potential quiescent states to RCU-tasks even if the cond_resched()
 226 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 227 */
 228#define cond_resched_tasks_rcu_qs() \
 229do { \
 230        rcu_tasks_qs(current, false); \
 231        cond_resched(); \
 232} while (0)
 233
 234/*
 235 * Infrastructure to implement the synchronize_() primitives in
 236 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 237 */
 238
 239#if defined(CONFIG_TREE_RCU)
 240#include <linux/rcutree.h>
 241#elif defined(CONFIG_TINY_RCU)
 242#include <linux/rcutiny.h>
 243#else
 244#error "Unknown RCU implementation specified to kernel configuration"
 245#endif
 246
 247/*
 248 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 249 * are needed for dynamic initialization and destruction of rcu_head
 250 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 251 * dynamic initialization and destruction of statically allocated rcu_head
 252 * structures.  However, rcu_head structures allocated dynamically in the
 253 * heap don't need any initialization.
 254 */
 255#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 256void init_rcu_head(struct rcu_head *head);
 257void destroy_rcu_head(struct rcu_head *head);
 258void init_rcu_head_on_stack(struct rcu_head *head);
 259void destroy_rcu_head_on_stack(struct rcu_head *head);
 260#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 261static inline void init_rcu_head(struct rcu_head *head) { }
 262static inline void destroy_rcu_head(struct rcu_head *head) { }
 263static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 264static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 265#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 266
 267#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 268bool rcu_lockdep_current_cpu_online(void);
 269#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 270static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 271#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 272
 273#ifdef CONFIG_DEBUG_LOCK_ALLOC
 274
 275static inline void rcu_lock_acquire(struct lockdep_map *map)
 276{
 277        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 278}
 279
 280static inline void rcu_lock_release(struct lockdep_map *map)
 281{
 282        lock_release(map, _THIS_IP_);
 283}
 284
 285extern struct lockdep_map rcu_lock_map;
 286extern struct lockdep_map rcu_bh_lock_map;
 287extern struct lockdep_map rcu_sched_lock_map;
 288extern struct lockdep_map rcu_callback_map;
 289int debug_lockdep_rcu_enabled(void);
 290int rcu_read_lock_held(void);
 291int rcu_read_lock_bh_held(void);
 292int rcu_read_lock_sched_held(void);
 293int rcu_read_lock_any_held(void);
 294
 295#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 296
 297# define rcu_lock_acquire(a)            do { } while (0)
 298# define rcu_lock_release(a)            do { } while (0)
 299
 300static inline int rcu_read_lock_held(void)
 301{
 302        return 1;
 303}
 304
 305static inline int rcu_read_lock_bh_held(void)
 306{
 307        return 1;
 308}
 309
 310static inline int rcu_read_lock_sched_held(void)
 311{
 312        return !preemptible();
 313}
 314
 315static inline int rcu_read_lock_any_held(void)
 316{
 317        return !preemptible();
 318}
 319
 320#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 321
 322#ifdef CONFIG_PROVE_RCU
 323
 324/**
 325 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 326 * @c: condition to check
 327 * @s: informative message
 328 */
 329#define RCU_LOCKDEP_WARN(c, s)                                          \
 330        do {                                                            \
 331                static bool __section(.data.unlikely) __warned;         \
 332                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 333                        __warned = true;                                \
 334                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 335                }                                                       \
 336        } while (0)
 337
 338#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 339static inline void rcu_preempt_sleep_check(void)
 340{
 341        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 342                         "Illegal context switch in RCU read-side critical section");
 343}
 344#else /* #ifdef CONFIG_PROVE_RCU */
 345static inline void rcu_preempt_sleep_check(void) { }
 346#endif /* #else #ifdef CONFIG_PROVE_RCU */
 347
 348#define rcu_sleep_check()                                               \
 349        do {                                                            \
 350                rcu_preempt_sleep_check();                              \
 351                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 352                                 "Illegal context switch in RCU-bh read-side critical section"); \
 353                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 354                                 "Illegal context switch in RCU-sched read-side critical section"); \
 355        } while (0)
 356
 357#else /* #ifdef CONFIG_PROVE_RCU */
 358
 359#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 360#define rcu_sleep_check() do { } while (0)
 361
 362#endif /* #else #ifdef CONFIG_PROVE_RCU */
 363
 364/*
 365 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 366 * and rcu_assign_pointer().  Some of these could be folded into their
 367 * callers, but they are left separate in order to ease introduction of
 368 * multiple pointers markings to match different RCU implementations
 369 * (e.g., __srcu), should this make sense in the future.
 370 */
 371
 372#ifdef __CHECKER__
 373#define rcu_check_sparse(p, space) \
 374        ((void)(((typeof(*p) space *)p) == p))
 375#else /* #ifdef __CHECKER__ */
 376#define rcu_check_sparse(p, space)
 377#endif /* #else #ifdef __CHECKER__ */
 378
 379#define __rcu_access_pointer(p, space) \
 380({ \
 381        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 382        rcu_check_sparse(p, space); \
 383        ((typeof(*p) __force __kernel *)(_________p1)); \
 384})
 385#define __rcu_dereference_check(p, c, space) \
 386({ \
 387        /* Dependency order vs. p above. */ \
 388        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 389        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 390        rcu_check_sparse(p, space); \
 391        ((typeof(*p) __force __kernel *)(________p1)); \
 392})
 393#define __rcu_dereference_protected(p, c, space) \
 394({ \
 395        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 396        rcu_check_sparse(p, space); \
 397        ((typeof(*p) __force __kernel *)(p)); \
 398})
 399#define rcu_dereference_raw(p) \
 400({ \
 401        /* Dependency order vs. p above. */ \
 402        typeof(p) ________p1 = READ_ONCE(p); \
 403        ((typeof(*p) __force __kernel *)(________p1)); \
 404})
 405
 406/**
 407 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 408 * @v: The value to statically initialize with.
 409 */
 410#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 411
 412/**
 413 * rcu_assign_pointer() - assign to RCU-protected pointer
 414 * @p: pointer to assign to
 415 * @v: value to assign (publish)
 416 *
 417 * Assigns the specified value to the specified RCU-protected
 418 * pointer, ensuring that any concurrent RCU readers will see
 419 * any prior initialization.
 420 *
 421 * Inserts memory barriers on architectures that require them
 422 * (which is most of them), and also prevents the compiler from
 423 * reordering the code that initializes the structure after the pointer
 424 * assignment.  More importantly, this call documents which pointers
 425 * will be dereferenced by RCU read-side code.
 426 *
 427 * In some special cases, you may use RCU_INIT_POINTER() instead
 428 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 429 * to the fact that it does not constrain either the CPU or the compiler.
 430 * That said, using RCU_INIT_POINTER() when you should have used
 431 * rcu_assign_pointer() is a very bad thing that results in
 432 * impossible-to-diagnose memory corruption.  So please be careful.
 433 * See the RCU_INIT_POINTER() comment header for details.
 434 *
 435 * Note that rcu_assign_pointer() evaluates each of its arguments only
 436 * once, appearances notwithstanding.  One of the "extra" evaluations
 437 * is in typeof() and the other visible only to sparse (__CHECKER__),
 438 * neither of which actually execute the argument.  As with most cpp
 439 * macros, this execute-arguments-only-once property is important, so
 440 * please be careful when making changes to rcu_assign_pointer() and the
 441 * other macros that it invokes.
 442 */
 443#define rcu_assign_pointer(p, v)                                              \
 444do {                                                                          \
 445        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 446        rcu_check_sparse(p, __rcu);                                           \
 447                                                                              \
 448        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 449                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 450        else                                                                  \
 451                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 452} while (0)
 453
 454/**
 455 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 456 * @rcu_ptr: RCU pointer, whose old value is returned
 457 * @ptr: regular pointer
 458 * @c: the lockdep conditions under which the dereference will take place
 459 *
 460 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 461 * pointer and @c is the lockdep argument that is passed to the
 462 * rcu_dereference_protected() call used to read that pointer.  The old
 463 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 464 */
 465#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 466({                                                                      \
 467        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 468        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 469        __tmp;                                                          \
 470})
 471
 472/**
 473 * rcu_swap_protected() - swap an RCU and a regular pointer
 474 * @rcu_ptr: RCU pointer
 475 * @ptr: regular pointer
 476 * @c: the conditions under which the dereference will take place
 477 *
 478 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
 479 * @c is the argument that is passed to the rcu_dereference_protected() call
 480 * used to read that pointer.
 481 */
 482#define rcu_swap_protected(rcu_ptr, ptr, c) do {                        \
 483        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 484        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 485        (ptr) = __tmp;                                                  \
 486} while (0)
 487
 488/**
 489 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 490 * @p: The pointer to read
 491 *
 492 * Return the value of the specified RCU-protected pointer, but omit the
 493 * lockdep checks for being in an RCU read-side critical section.  This is
 494 * useful when the value of this pointer is accessed, but the pointer is
 495 * not dereferenced, for example, when testing an RCU-protected pointer
 496 * against NULL.  Although rcu_access_pointer() may also be used in cases
 497 * where update-side locks prevent the value of the pointer from changing,
 498 * you should instead use rcu_dereference_protected() for this use case.
 499 *
 500 * It is also permissible to use rcu_access_pointer() when read-side
 501 * access to the pointer was removed at least one grace period ago, as
 502 * is the case in the context of the RCU callback that is freeing up
 503 * the data, or after a synchronize_rcu() returns.  This can be useful
 504 * when tearing down multi-linked structures after a grace period
 505 * has elapsed.
 506 */
 507#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 508
 509/**
 510 * rcu_dereference_check() - rcu_dereference with debug checking
 511 * @p: The pointer to read, prior to dereferencing
 512 * @c: The conditions under which the dereference will take place
 513 *
 514 * Do an rcu_dereference(), but check that the conditions under which the
 515 * dereference will take place are correct.  Typically the conditions
 516 * indicate the various locking conditions that should be held at that
 517 * point.  The check should return true if the conditions are satisfied.
 518 * An implicit check for being in an RCU read-side critical section
 519 * (rcu_read_lock()) is included.
 520 *
 521 * For example:
 522 *
 523 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 524 *
 525 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 526 * if either rcu_read_lock() is held, or that the lock required to replace
 527 * the bar struct at foo->bar is held.
 528 *
 529 * Note that the list of conditions may also include indications of when a lock
 530 * need not be held, for example during initialisation or destruction of the
 531 * target struct:
 532 *
 533 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 534 *                                            atomic_read(&foo->usage) == 0);
 535 *
 536 * Inserts memory barriers on architectures that require them
 537 * (currently only the Alpha), prevents the compiler from refetching
 538 * (and from merging fetches), and, more importantly, documents exactly
 539 * which pointers are protected by RCU and checks that the pointer is
 540 * annotated as __rcu.
 541 */
 542#define rcu_dereference_check(p, c) \
 543        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 544
 545/**
 546 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 547 * @p: The pointer to read, prior to dereferencing
 548 * @c: The conditions under which the dereference will take place
 549 *
 550 * This is the RCU-bh counterpart to rcu_dereference_check().
 551 */
 552#define rcu_dereference_bh_check(p, c) \
 553        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 554
 555/**
 556 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 557 * @p: The pointer to read, prior to dereferencing
 558 * @c: The conditions under which the dereference will take place
 559 *
 560 * This is the RCU-sched counterpart to rcu_dereference_check().
 561 */
 562#define rcu_dereference_sched_check(p, c) \
 563        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 564                                __rcu)
 565
 566/*
 567 * The tracing infrastructure traces RCU (we want that), but unfortunately
 568 * some of the RCU checks causes tracing to lock up the system.
 569 *
 570 * The no-tracing version of rcu_dereference_raw() must not call
 571 * rcu_read_lock_held().
 572 */
 573#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 574
 575/**
 576 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 577 * @p: The pointer to read, prior to dereferencing
 578 * @c: The conditions under which the dereference will take place
 579 *
 580 * Return the value of the specified RCU-protected pointer, but omit
 581 * the READ_ONCE().  This is useful in cases where update-side locks
 582 * prevent the value of the pointer from changing.  Please note that this
 583 * primitive does *not* prevent the compiler from repeating this reference
 584 * or combining it with other references, so it should not be used without
 585 * protection of appropriate locks.
 586 *
 587 * This function is only for update-side use.  Using this function
 588 * when protected only by rcu_read_lock() will result in infrequent
 589 * but very ugly failures.
 590 */
 591#define rcu_dereference_protected(p, c) \
 592        __rcu_dereference_protected((p), (c), __rcu)
 593
 594
 595/**
 596 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 597 * @p: The pointer to read, prior to dereferencing
 598 *
 599 * This is a simple wrapper around rcu_dereference_check().
 600 */
 601#define rcu_dereference(p) rcu_dereference_check(p, 0)
 602
 603/**
 604 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 605 * @p: The pointer to read, prior to dereferencing
 606 *
 607 * Makes rcu_dereference_check() do the dirty work.
 608 */
 609#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 610
 611/**
 612 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 613 * @p: The pointer to read, prior to dereferencing
 614 *
 615 * Makes rcu_dereference_check() do the dirty work.
 616 */
 617#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 618
 619/**
 620 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 621 * @p: The pointer to hand off
 622 *
 623 * This is simply an identity function, but it documents where a pointer
 624 * is handed off from RCU to some other synchronization mechanism, for
 625 * example, reference counting or locking.  In C11, it would map to
 626 * kill_dependency().  It could be used as follows::
 627 *
 628 *      rcu_read_lock();
 629 *      p = rcu_dereference(gp);
 630 *      long_lived = is_long_lived(p);
 631 *      if (long_lived) {
 632 *              if (!atomic_inc_not_zero(p->refcnt))
 633 *                      long_lived = false;
 634 *              else
 635 *                      p = rcu_pointer_handoff(p);
 636 *      }
 637 *      rcu_read_unlock();
 638 */
 639#define rcu_pointer_handoff(p) (p)
 640
 641/**
 642 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 643 *
 644 * When synchronize_rcu() is invoked on one CPU while other CPUs
 645 * are within RCU read-side critical sections, then the
 646 * synchronize_rcu() is guaranteed to block until after all the other
 647 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 648 * on one CPU while other CPUs are within RCU read-side critical
 649 * sections, invocation of the corresponding RCU callback is deferred
 650 * until after the all the other CPUs exit their critical sections.
 651 *
 652 * Note, however, that RCU callbacks are permitted to run concurrently
 653 * with new RCU read-side critical sections.  One way that this can happen
 654 * is via the following sequence of events: (1) CPU 0 enters an RCU
 655 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 656 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 657 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 658 * callback is invoked.  This is legal, because the RCU read-side critical
 659 * section that was running concurrently with the call_rcu() (and which
 660 * therefore might be referencing something that the corresponding RCU
 661 * callback would free up) has completed before the corresponding
 662 * RCU callback is invoked.
 663 *
 664 * RCU read-side critical sections may be nested.  Any deferred actions
 665 * will be deferred until the outermost RCU read-side critical section
 666 * completes.
 667 *
 668 * You can avoid reading and understanding the next paragraph by
 669 * following this rule: don't put anything in an rcu_read_lock() RCU
 670 * read-side critical section that would block in a !PREEMPTION kernel.
 671 * But if you want the full story, read on!
 672 *
 673 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 674 * it is illegal to block while in an RCU read-side critical section.
 675 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 676 * kernel builds, RCU read-side critical sections may be preempted,
 677 * but explicit blocking is illegal.  Finally, in preemptible RCU
 678 * implementations in real-time (with -rt patchset) kernel builds, RCU
 679 * read-side critical sections may be preempted and they may also block, but
 680 * only when acquiring spinlocks that are subject to priority inheritance.
 681 */
 682static __always_inline void rcu_read_lock(void)
 683{
 684        __rcu_read_lock();
 685        __acquire(RCU);
 686        rcu_lock_acquire(&rcu_lock_map);
 687        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 688                         "rcu_read_lock() used illegally while idle");
 689}
 690
 691/*
 692 * So where is rcu_write_lock()?  It does not exist, as there is no
 693 * way for writers to lock out RCU readers.  This is a feature, not
 694 * a bug -- this property is what provides RCU's performance benefits.
 695 * Of course, writers must coordinate with each other.  The normal
 696 * spinlock primitives work well for this, but any other technique may be
 697 * used as well.  RCU does not care how the writers keep out of each
 698 * others' way, as long as they do so.
 699 */
 700
 701/**
 702 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 703 *
 704 * In most situations, rcu_read_unlock() is immune from deadlock.
 705 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 706 * is responsible for deboosting, which it does via rt_mutex_unlock().
 707 * Unfortunately, this function acquires the scheduler's runqueue and
 708 * priority-inheritance spinlocks.  This means that deadlock could result
 709 * if the caller of rcu_read_unlock() already holds one of these locks or
 710 * any lock that is ever acquired while holding them.
 711 *
 712 * That said, RCU readers are never priority boosted unless they were
 713 * preempted.  Therefore, one way to avoid deadlock is to make sure
 714 * that preemption never happens within any RCU read-side critical
 715 * section whose outermost rcu_read_unlock() is called with one of
 716 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 717 * a number of ways, for example, by invoking preempt_disable() before
 718 * critical section's outermost rcu_read_lock().
 719 *
 720 * Given that the set of locks acquired by rt_mutex_unlock() might change
 721 * at any time, a somewhat more future-proofed approach is to make sure
 722 * that that preemption never happens within any RCU read-side critical
 723 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 724 * This approach relies on the fact that rt_mutex_unlock() currently only
 725 * acquires irq-disabled locks.
 726 *
 727 * The second of these two approaches is best in most situations,
 728 * however, the first approach can also be useful, at least to those
 729 * developers willing to keep abreast of the set of locks acquired by
 730 * rt_mutex_unlock().
 731 *
 732 * See rcu_read_lock() for more information.
 733 */
 734static inline void rcu_read_unlock(void)
 735{
 736        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 737                         "rcu_read_unlock() used illegally while idle");
 738        __release(RCU);
 739        __rcu_read_unlock();
 740        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 741}
 742
 743/**
 744 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 745 *
 746 * This is equivalent of rcu_read_lock(), but also disables softirqs.
 747 * Note that anything else that disables softirqs can also serve as
 748 * an RCU read-side critical section.
 749 *
 750 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 751 * must occur in the same context, for example, it is illegal to invoke
 752 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 753 * was invoked from some other task.
 754 */
 755static inline void rcu_read_lock_bh(void)
 756{
 757        local_bh_disable();
 758        __acquire(RCU_BH);
 759        rcu_lock_acquire(&rcu_bh_lock_map);
 760        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 761                         "rcu_read_lock_bh() used illegally while idle");
 762}
 763
 764/**
 765 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 766 *
 767 * See rcu_read_lock_bh() for more information.
 768 */
 769static inline void rcu_read_unlock_bh(void)
 770{
 771        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 772                         "rcu_read_unlock_bh() used illegally while idle");
 773        rcu_lock_release(&rcu_bh_lock_map);
 774        __release(RCU_BH);
 775        local_bh_enable();
 776}
 777
 778/**
 779 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 780 *
 781 * This is equivalent of rcu_read_lock(), but disables preemption.
 782 * Read-side critical sections can also be introduced by anything else
 783 * that disables preemption, including local_irq_disable() and friends.
 784 *
 785 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 786 * must occur in the same context, for example, it is illegal to invoke
 787 * rcu_read_unlock_sched() from process context if the matching
 788 * rcu_read_lock_sched() was invoked from an NMI handler.
 789 */
 790static inline void rcu_read_lock_sched(void)
 791{
 792        preempt_disable();
 793        __acquire(RCU_SCHED);
 794        rcu_lock_acquire(&rcu_sched_lock_map);
 795        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 796                         "rcu_read_lock_sched() used illegally while idle");
 797}
 798
 799/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 800static inline notrace void rcu_read_lock_sched_notrace(void)
 801{
 802        preempt_disable_notrace();
 803        __acquire(RCU_SCHED);
 804}
 805
 806/**
 807 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 808 *
 809 * See rcu_read_lock_sched() for more information.
 810 */
 811static inline void rcu_read_unlock_sched(void)
 812{
 813        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 814                         "rcu_read_unlock_sched() used illegally while idle");
 815        rcu_lock_release(&rcu_sched_lock_map);
 816        __release(RCU_SCHED);
 817        preempt_enable();
 818}
 819
 820/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 821static inline notrace void rcu_read_unlock_sched_notrace(void)
 822{
 823        __release(RCU_SCHED);
 824        preempt_enable_notrace();
 825}
 826
 827/**
 828 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 829 * @p: The pointer to be initialized.
 830 * @v: The value to initialized the pointer to.
 831 *
 832 * Initialize an RCU-protected pointer in special cases where readers
 833 * do not need ordering constraints on the CPU or the compiler.  These
 834 * special cases are:
 835 *
 836 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 837 * 2.   The caller has taken whatever steps are required to prevent
 838 *      RCU readers from concurrently accessing this pointer *or*
 839 * 3.   The referenced data structure has already been exposed to
 840 *      readers either at compile time or via rcu_assign_pointer() *and*
 841 *
 842 *      a.      You have not made *any* reader-visible changes to
 843 *              this structure since then *or*
 844 *      b.      It is OK for readers accessing this structure from its
 845 *              new location to see the old state of the structure.  (For
 846 *              example, the changes were to statistical counters or to
 847 *              other state where exact synchronization is not required.)
 848 *
 849 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 850 * result in impossible-to-diagnose memory corruption.  As in the structures
 851 * will look OK in crash dumps, but any concurrent RCU readers might
 852 * see pre-initialized values of the referenced data structure.  So
 853 * please be very careful how you use RCU_INIT_POINTER()!!!
 854 *
 855 * If you are creating an RCU-protected linked structure that is accessed
 856 * by a single external-to-structure RCU-protected pointer, then you may
 857 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 858 * pointers, but you must use rcu_assign_pointer() to initialize the
 859 * external-to-structure pointer *after* you have completely initialized
 860 * the reader-accessible portions of the linked structure.
 861 *
 862 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 863 * ordering guarantees for either the CPU or the compiler.
 864 */
 865#define RCU_INIT_POINTER(p, v) \
 866        do { \
 867                rcu_check_sparse(p, __rcu); \
 868                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 869        } while (0)
 870
 871/**
 872 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 873 * @p: The pointer to be initialized.
 874 * @v: The value to initialized the pointer to.
 875 *
 876 * GCC-style initialization for an RCU-protected pointer in a structure field.
 877 */
 878#define RCU_POINTER_INITIALIZER(p, v) \
 879                .p = RCU_INITIALIZER(v)
 880
 881/*
 882 * Does the specified offset indicate that the corresponding rcu_head
 883 * structure can be handled by kvfree_rcu()?
 884 */
 885#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 886
 887/**
 888 * kfree_rcu() - kfree an object after a grace period.
 889 * @ptr: pointer to kfree for both single- and double-argument invocations.
 890 * @rhf: the name of the struct rcu_head within the type of @ptr,
 891 *       but only for double-argument invocations.
 892 *
 893 * Many rcu callbacks functions just call kfree() on the base structure.
 894 * These functions are trivial, but their size adds up, and furthermore
 895 * when they are used in a kernel module, that module must invoke the
 896 * high-latency rcu_barrier() function at module-unload time.
 897 *
 898 * The kfree_rcu() function handles this issue.  Rather than encoding a
 899 * function address in the embedded rcu_head structure, kfree_rcu() instead
 900 * encodes the offset of the rcu_head structure within the base structure.
 901 * Because the functions are not allowed in the low-order 4096 bytes of
 902 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 903 * If the offset is larger than 4095 bytes, a compile-time error will
 904 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
 905 * either fall back to use of call_rcu() or rearrange the structure to
 906 * position the rcu_head structure into the first 4096 bytes.
 907 *
 908 * Note that the allowable offset might decrease in the future, for example,
 909 * to allow something like kmem_cache_free_rcu().
 910 *
 911 * The BUILD_BUG_ON check must not involve any function calls, hence the
 912 * checks are done in macros here.
 913 */
 914#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
 915
 916/**
 917 * kvfree_rcu() - kvfree an object after a grace period.
 918 *
 919 * This macro consists of one or two arguments and it is
 920 * based on whether an object is head-less or not. If it
 921 * has a head then a semantic stays the same as it used
 922 * to be before:
 923 *
 924 *     kvfree_rcu(ptr, rhf);
 925 *
 926 * where @ptr is a pointer to kvfree(), @rhf is the name
 927 * of the rcu_head structure within the type of @ptr.
 928 *
 929 * When it comes to head-less variant, only one argument
 930 * is passed and that is just a pointer which has to be
 931 * freed after a grace period. Therefore the semantic is
 932 *
 933 *     kvfree_rcu(ptr);
 934 *
 935 * where @ptr is a pointer to kvfree().
 936 *
 937 * Please note, head-less way of freeing is permitted to
 938 * use from a context that has to follow might_sleep()
 939 * annotation. Otherwise, please switch and embed the
 940 * rcu_head structure within the type of @ptr.
 941 */
 942#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,           \
 943        kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 944
 945#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
 946#define kvfree_rcu_arg_2(ptr, rhf)                                      \
 947do {                                                                    \
 948        typeof (ptr) ___p = (ptr);                                      \
 949                                                                        \
 950        if (___p) {                                                                     \
 951                BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));   \
 952                kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)         \
 953                        (offsetof(typeof(*(ptr)), rhf)));                               \
 954        }                                                                               \
 955} while (0)
 956
 957#define kvfree_rcu_arg_1(ptr)                                   \
 958do {                                                            \
 959        typeof(ptr) ___p = (ptr);                               \
 960                                                                \
 961        if (___p)                                               \
 962                kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
 963} while (0)
 964
 965/*
 966 * Place this after a lock-acquisition primitive to guarantee that
 967 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 968 * if the UNLOCK and LOCK are executed by the same CPU or if the
 969 * UNLOCK and LOCK operate on the same lock variable.
 970 */
 971#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 972#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 973#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 974#define smp_mb__after_unlock_lock()     do { } while (0)
 975#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 976
 977
 978/* Has the specified rcu_head structure been handed to call_rcu()? */
 979
 980/**
 981 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 982 * @rhp: The rcu_head structure to initialize.
 983 *
 984 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 985 * given rcu_head structure has already been passed to call_rcu(), then
 986 * you must also invoke this rcu_head_init() function on it just after
 987 * allocating that structure.  Calls to this function must not race with
 988 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 989 */
 990static inline void rcu_head_init(struct rcu_head *rhp)
 991{
 992        rhp->func = (rcu_callback_t)~0L;
 993}
 994
 995/**
 996 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
 997 * @rhp: The rcu_head structure to test.
 998 * @f: The function passed to call_rcu() along with @rhp.
 999 *
1000 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1001 * and @false otherwise.  Emits a warning in any other case, including
1002 * the case where @rhp has already been invoked after a grace period.
1003 * Calls to this function must not race with callback invocation.  One way
1004 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1005 * in an RCU read-side critical section that includes a read-side fetch
1006 * of the pointer to the structure containing @rhp.
1007 */
1008static inline bool
1009rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1010{
1011        rcu_callback_t func = READ_ONCE(rhp->func);
1012
1013        if (func == f)
1014                return true;
1015        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1016        return false;
1017}
1018
1019/* kernel/ksysfs.c definitions */
1020extern int rcu_expedited;
1021extern int rcu_normal;
1022
1023#endif /* __LINUX_RCUPDATE_H */
1024