linux/kernel/cgroup/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/* See "Frequency meter" comments, below. */
  73
  74struct fmeter {
  75        int cnt;                /* unprocessed events count */
  76        int val;                /* most recent output value */
  77        time64_t time;          /* clock (secs) when val computed */
  78        spinlock_t lock;        /* guards read or write of above */
  79};
  80
  81struct cpuset {
  82        struct cgroup_subsys_state css;
  83
  84        unsigned long flags;            /* "unsigned long" so bitops work */
  85
  86        /*
  87         * On default hierarchy:
  88         *
  89         * The user-configured masks can only be changed by writing to
  90         * cpuset.cpus and cpuset.mems, and won't be limited by the
  91         * parent masks.
  92         *
  93         * The effective masks is the real masks that apply to the tasks
  94         * in the cpuset. They may be changed if the configured masks are
  95         * changed or hotplug happens.
  96         *
  97         * effective_mask == configured_mask & parent's effective_mask,
  98         * and if it ends up empty, it will inherit the parent's mask.
  99         *
 100         *
 101         * On legacy hierarchy:
 102         *
 103         * The user-configured masks are always the same with effective masks.
 104         */
 105
 106        /* user-configured CPUs and Memory Nodes allow to tasks */
 107        cpumask_var_t cpus_allowed;
 108        nodemask_t mems_allowed;
 109
 110        /* effective CPUs and Memory Nodes allow to tasks */
 111        cpumask_var_t effective_cpus;
 112        nodemask_t effective_mems;
 113
 114        /*
 115         * CPUs allocated to child sub-partitions (default hierarchy only)
 116         * - CPUs granted by the parent = effective_cpus U subparts_cpus
 117         * - effective_cpus and subparts_cpus are mutually exclusive.
 118         *
 119         * effective_cpus contains only onlined CPUs, but subparts_cpus
 120         * may have offlined ones.
 121         */
 122        cpumask_var_t subparts_cpus;
 123
 124        /*
 125         * This is old Memory Nodes tasks took on.
 126         *
 127         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 128         * - A new cpuset's old_mems_allowed is initialized when some
 129         *   task is moved into it.
 130         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 131         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 132         *   then old_mems_allowed is updated to mems_allowed.
 133         */
 134        nodemask_t old_mems_allowed;
 135
 136        struct fmeter fmeter;           /* memory_pressure filter */
 137
 138        /*
 139         * Tasks are being attached to this cpuset.  Used to prevent
 140         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 141         */
 142        int attach_in_progress;
 143
 144        /* partition number for rebuild_sched_domains() */
 145        int pn;
 146
 147        /* for custom sched domain */
 148        int relax_domain_level;
 149
 150        /* number of CPUs in subparts_cpus */
 151        int nr_subparts_cpus;
 152
 153        /* partition root state */
 154        int partition_root_state;
 155
 156        /*
 157         * Default hierarchy only:
 158         * use_parent_ecpus - set if using parent's effective_cpus
 159         * child_ecpus_count - # of children with use_parent_ecpus set
 160         */
 161        int use_parent_ecpus;
 162        int child_ecpus_count;
 163};
 164
 165/*
 166 * Partition root states:
 167 *
 168 *   0 - not a partition root
 169 *
 170 *   1 - partition root
 171 *
 172 *  -1 - invalid partition root
 173 *       None of the cpus in cpus_allowed can be put into the parent's
 174 *       subparts_cpus. In this case, the cpuset is not a real partition
 175 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 176 *       and the cpuset can be restored back to a partition root if the
 177 *       parent cpuset can give more CPUs back to this child cpuset.
 178 */
 179#define PRS_DISABLED            0
 180#define PRS_ENABLED             1
 181#define PRS_ERROR               -1
 182
 183/*
 184 * Temporary cpumasks for working with partitions that are passed among
 185 * functions to avoid memory allocation in inner functions.
 186 */
 187struct tmpmasks {
 188        cpumask_var_t addmask, delmask; /* For partition root */
 189        cpumask_var_t new_cpus;         /* For update_cpumasks_hier() */
 190};
 191
 192static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 193{
 194        return css ? container_of(css, struct cpuset, css) : NULL;
 195}
 196
 197/* Retrieve the cpuset for a task */
 198static inline struct cpuset *task_cs(struct task_struct *task)
 199{
 200        return css_cs(task_css(task, cpuset_cgrp_id));
 201}
 202
 203static inline struct cpuset *parent_cs(struct cpuset *cs)
 204{
 205        return css_cs(cs->css.parent);
 206}
 207
 208/* bits in struct cpuset flags field */
 209typedef enum {
 210        CS_ONLINE,
 211        CS_CPU_EXCLUSIVE,
 212        CS_MEM_EXCLUSIVE,
 213        CS_MEM_HARDWALL,
 214        CS_MEMORY_MIGRATE,
 215        CS_SCHED_LOAD_BALANCE,
 216        CS_SPREAD_PAGE,
 217        CS_SPREAD_SLAB,
 218} cpuset_flagbits_t;
 219
 220/* convenient tests for these bits */
 221static inline bool is_cpuset_online(struct cpuset *cs)
 222{
 223        return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 224}
 225
 226static inline int is_cpu_exclusive(const struct cpuset *cs)
 227{
 228        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 229}
 230
 231static inline int is_mem_exclusive(const struct cpuset *cs)
 232{
 233        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 234}
 235
 236static inline int is_mem_hardwall(const struct cpuset *cs)
 237{
 238        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 239}
 240
 241static inline int is_sched_load_balance(const struct cpuset *cs)
 242{
 243        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 244}
 245
 246static inline int is_memory_migrate(const struct cpuset *cs)
 247{
 248        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 249}
 250
 251static inline int is_spread_page(const struct cpuset *cs)
 252{
 253        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 254}
 255
 256static inline int is_spread_slab(const struct cpuset *cs)
 257{
 258        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 259}
 260
 261static inline int is_partition_root(const struct cpuset *cs)
 262{
 263        return cs->partition_root_state > 0;
 264}
 265
 266static struct cpuset top_cpuset = {
 267        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 268                  (1 << CS_MEM_EXCLUSIVE)),
 269        .partition_root_state = PRS_ENABLED,
 270};
 271
 272/**
 273 * cpuset_for_each_child - traverse online children of a cpuset
 274 * @child_cs: loop cursor pointing to the current child
 275 * @pos_css: used for iteration
 276 * @parent_cs: target cpuset to walk children of
 277 *
 278 * Walk @child_cs through the online children of @parent_cs.  Must be used
 279 * with RCU read locked.
 280 */
 281#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 282        css_for_each_child((pos_css), &(parent_cs)->css)                \
 283                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 284
 285/**
 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 287 * @des_cs: loop cursor pointing to the current descendant
 288 * @pos_css: used for iteration
 289 * @root_cs: target cpuset to walk ancestor of
 290 *
 291 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 292 * with RCU read locked.  The caller may modify @pos_css by calling
 293 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 294 * iteration and the first node to be visited.
 295 */
 296#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 297        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 298                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 299
 300/*
 301 * There are two global locks guarding cpuset structures - cpuset_mutex and
 302 * callback_lock. We also require taking task_lock() when dereferencing a
 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 304 * comment.
 305 *
 306 * A task must hold both locks to modify cpusets.  If a task holds
 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 308 * is the only task able to also acquire callback_lock and be able to
 309 * modify cpusets.  It can perform various checks on the cpuset structure
 310 * first, knowing nothing will change.  It can also allocate memory while
 311 * just holding cpuset_mutex.  While it is performing these checks, various
 312 * callback routines can briefly acquire callback_lock to query cpusets.
 313 * Once it is ready to make the changes, it takes callback_lock, blocking
 314 * everyone else.
 315 *
 316 * Calls to the kernel memory allocator can not be made while holding
 317 * callback_lock, as that would risk double tripping on callback_lock
 318 * from one of the callbacks into the cpuset code from within
 319 * __alloc_pages().
 320 *
 321 * If a task is only holding callback_lock, then it has read-only
 322 * access to cpusets.
 323 *
 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 325 * by other task, we use alloc_lock in the task_struct fields to protect
 326 * them.
 327 *
 328 * The cpuset_common_file_read() handlers only hold callback_lock across
 329 * small pieces of code, such as when reading out possibly multi-word
 330 * cpumasks and nodemasks.
 331 *
 332 * Accessing a task's cpuset should be done in accordance with the
 333 * guidelines for accessing subsystem state in kernel/cgroup.c
 334 */
 335
 336DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 337
 338void cpuset_read_lock(void)
 339{
 340        percpu_down_read(&cpuset_rwsem);
 341}
 342
 343void cpuset_read_unlock(void)
 344{
 345        percpu_up_read(&cpuset_rwsem);
 346}
 347
 348static DEFINE_SPINLOCK(callback_lock);
 349
 350static struct workqueue_struct *cpuset_migrate_mm_wq;
 351
 352/*
 353 * CPU / memory hotplug is handled asynchronously.
 354 */
 355static void cpuset_hotplug_workfn(struct work_struct *work);
 356static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 357
 358static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 359
 360/*
 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 364 * With v2 behavior, "cpus" and "mems" are always what the users have
 365 * requested and won't be changed by hotplug events. Only the effective
 366 * cpus or mems will be affected.
 367 */
 368static inline bool is_in_v2_mode(void)
 369{
 370        return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 371              (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 372}
 373
 374/*
 375 * Return in pmask the portion of a cpusets's cpus_allowed that
 376 * are online.  If none are online, walk up the cpuset hierarchy
 377 * until we find one that does have some online cpus.
 378 *
 379 * One way or another, we guarantee to return some non-empty subset
 380 * of cpu_online_mask.
 381 *
 382 * Call with callback_lock or cpuset_mutex held.
 383 */
 384static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 385{
 386        while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
 387                cs = parent_cs(cs);
 388                if (unlikely(!cs)) {
 389                        /*
 390                         * The top cpuset doesn't have any online cpu as a
 391                         * consequence of a race between cpuset_hotplug_work
 392                         * and cpu hotplug notifier.  But we know the top
 393                         * cpuset's effective_cpus is on its way to to be
 394                         * identical to cpu_online_mask.
 395                         */
 396                        cpumask_copy(pmask, cpu_online_mask);
 397                        return;
 398                }
 399        }
 400        cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 401}
 402
 403/*
 404 * Return in *pmask the portion of a cpusets's mems_allowed that
 405 * are online, with memory.  If none are online with memory, walk
 406 * up the cpuset hierarchy until we find one that does have some
 407 * online mems.  The top cpuset always has some mems online.
 408 *
 409 * One way or another, we guarantee to return some non-empty subset
 410 * of node_states[N_MEMORY].
 411 *
 412 * Call with callback_lock or cpuset_mutex held.
 413 */
 414static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 415{
 416        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 417                cs = parent_cs(cs);
 418        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 419}
 420
 421/*
 422 * update task's spread flag if cpuset's page/slab spread flag is set
 423 *
 424 * Call with callback_lock or cpuset_mutex held.
 425 */
 426static void cpuset_update_task_spread_flag(struct cpuset *cs,
 427                                        struct task_struct *tsk)
 428{
 429        if (is_spread_page(cs))
 430                task_set_spread_page(tsk);
 431        else
 432                task_clear_spread_page(tsk);
 433
 434        if (is_spread_slab(cs))
 435                task_set_spread_slab(tsk);
 436        else
 437                task_clear_spread_slab(tsk);
 438}
 439
 440/*
 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 442 *
 443 * One cpuset is a subset of another if all its allowed CPUs and
 444 * Memory Nodes are a subset of the other, and its exclusive flags
 445 * are only set if the other's are set.  Call holding cpuset_mutex.
 446 */
 447
 448static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 449{
 450        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 451                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 452                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 453                is_mem_exclusive(p) <= is_mem_exclusive(q);
 454}
 455
 456/**
 457 * alloc_cpumasks - allocate three cpumasks for cpuset
 458 * @cs:  the cpuset that have cpumasks to be allocated.
 459 * @tmp: the tmpmasks structure pointer
 460 * Return: 0 if successful, -ENOMEM otherwise.
 461 *
 462 * Only one of the two input arguments should be non-NULL.
 463 */
 464static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 465{
 466        cpumask_var_t *pmask1, *pmask2, *pmask3;
 467
 468        if (cs) {
 469                pmask1 = &cs->cpus_allowed;
 470                pmask2 = &cs->effective_cpus;
 471                pmask3 = &cs->subparts_cpus;
 472        } else {
 473                pmask1 = &tmp->new_cpus;
 474                pmask2 = &tmp->addmask;
 475                pmask3 = &tmp->delmask;
 476        }
 477
 478        if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 479                return -ENOMEM;
 480
 481        if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 482                goto free_one;
 483
 484        if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 485                goto free_two;
 486
 487        return 0;
 488
 489free_two:
 490        free_cpumask_var(*pmask2);
 491free_one:
 492        free_cpumask_var(*pmask1);
 493        return -ENOMEM;
 494}
 495
 496/**
 497 * free_cpumasks - free cpumasks in a tmpmasks structure
 498 * @cs:  the cpuset that have cpumasks to be free.
 499 * @tmp: the tmpmasks structure pointer
 500 */
 501static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 502{
 503        if (cs) {
 504                free_cpumask_var(cs->cpus_allowed);
 505                free_cpumask_var(cs->effective_cpus);
 506                free_cpumask_var(cs->subparts_cpus);
 507        }
 508        if (tmp) {
 509                free_cpumask_var(tmp->new_cpus);
 510                free_cpumask_var(tmp->addmask);
 511                free_cpumask_var(tmp->delmask);
 512        }
 513}
 514
 515/**
 516 * alloc_trial_cpuset - allocate a trial cpuset
 517 * @cs: the cpuset that the trial cpuset duplicates
 518 */
 519static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 520{
 521        struct cpuset *trial;
 522
 523        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 524        if (!trial)
 525                return NULL;
 526
 527        if (alloc_cpumasks(trial, NULL)) {
 528                kfree(trial);
 529                return NULL;
 530        }
 531
 532        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 533        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 534        return trial;
 535}
 536
 537/**
 538 * free_cpuset - free the cpuset
 539 * @cs: the cpuset to be freed
 540 */
 541static inline void free_cpuset(struct cpuset *cs)
 542{
 543        free_cpumasks(cs, NULL);
 544        kfree(cs);
 545}
 546
 547/*
 548 * validate_change() - Used to validate that any proposed cpuset change
 549 *                     follows the structural rules for cpusets.
 550 *
 551 * If we replaced the flag and mask values of the current cpuset
 552 * (cur) with those values in the trial cpuset (trial), would
 553 * our various subset and exclusive rules still be valid?  Presumes
 554 * cpuset_mutex held.
 555 *
 556 * 'cur' is the address of an actual, in-use cpuset.  Operations
 557 * such as list traversal that depend on the actual address of the
 558 * cpuset in the list must use cur below, not trial.
 559 *
 560 * 'trial' is the address of bulk structure copy of cur, with
 561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 562 * or flags changed to new, trial values.
 563 *
 564 * Return 0 if valid, -errno if not.
 565 */
 566
 567static int validate_change(struct cpuset *cur, struct cpuset *trial)
 568{
 569        struct cgroup_subsys_state *css;
 570        struct cpuset *c, *par;
 571        int ret;
 572
 573        rcu_read_lock();
 574
 575        /* Each of our child cpusets must be a subset of us */
 576        ret = -EBUSY;
 577        cpuset_for_each_child(c, css, cur)
 578                if (!is_cpuset_subset(c, trial))
 579                        goto out;
 580
 581        /* Remaining checks don't apply to root cpuset */
 582        ret = 0;
 583        if (cur == &top_cpuset)
 584                goto out;
 585
 586        par = parent_cs(cur);
 587
 588        /* On legacy hiearchy, we must be a subset of our parent cpuset. */
 589        ret = -EACCES;
 590        if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 591                goto out;
 592
 593        /*
 594         * If either I or some sibling (!= me) is exclusive, we can't
 595         * overlap
 596         */
 597        ret = -EINVAL;
 598        cpuset_for_each_child(c, css, par) {
 599                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 600                    c != cur &&
 601                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 602                        goto out;
 603                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 604                    c != cur &&
 605                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 606                        goto out;
 607        }
 608
 609        /*
 610         * Cpusets with tasks - existing or newly being attached - can't
 611         * be changed to have empty cpus_allowed or mems_allowed.
 612         */
 613        ret = -ENOSPC;
 614        if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 615                if (!cpumask_empty(cur->cpus_allowed) &&
 616                    cpumask_empty(trial->cpus_allowed))
 617                        goto out;
 618                if (!nodes_empty(cur->mems_allowed) &&
 619                    nodes_empty(trial->mems_allowed))
 620                        goto out;
 621        }
 622
 623        /*
 624         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 625         * tasks.
 626         */
 627        ret = -EBUSY;
 628        if (is_cpu_exclusive(cur) &&
 629            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 630                                       trial->cpus_allowed))
 631                goto out;
 632
 633        ret = 0;
 634out:
 635        rcu_read_unlock();
 636        return ret;
 637}
 638
 639#ifdef CONFIG_SMP
 640/*
 641 * Helper routine for generate_sched_domains().
 642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 643 */
 644static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 645{
 646        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 647}
 648
 649static void
 650update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 651{
 652        if (dattr->relax_domain_level < c->relax_domain_level)
 653                dattr->relax_domain_level = c->relax_domain_level;
 654        return;
 655}
 656
 657static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 658                                    struct cpuset *root_cs)
 659{
 660        struct cpuset *cp;
 661        struct cgroup_subsys_state *pos_css;
 662
 663        rcu_read_lock();
 664        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 665                /* skip the whole subtree if @cp doesn't have any CPU */
 666                if (cpumask_empty(cp->cpus_allowed)) {
 667                        pos_css = css_rightmost_descendant(pos_css);
 668                        continue;
 669                }
 670
 671                if (is_sched_load_balance(cp))
 672                        update_domain_attr(dattr, cp);
 673        }
 674        rcu_read_unlock();
 675}
 676
 677/* Must be called with cpuset_mutex held.  */
 678static inline int nr_cpusets(void)
 679{
 680        /* jump label reference count + the top-level cpuset */
 681        return static_key_count(&cpusets_enabled_key.key) + 1;
 682}
 683
 684/*
 685 * generate_sched_domains()
 686 *
 687 * This function builds a partial partition of the systems CPUs
 688 * A 'partial partition' is a set of non-overlapping subsets whose
 689 * union is a subset of that set.
 690 * The output of this function needs to be passed to kernel/sched/core.c
 691 * partition_sched_domains() routine, which will rebuild the scheduler's
 692 * load balancing domains (sched domains) as specified by that partial
 693 * partition.
 694 *
 695 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
 696 * for a background explanation of this.
 697 *
 698 * Does not return errors, on the theory that the callers of this
 699 * routine would rather not worry about failures to rebuild sched
 700 * domains when operating in the severe memory shortage situations
 701 * that could cause allocation failures below.
 702 *
 703 * Must be called with cpuset_mutex held.
 704 *
 705 * The three key local variables below are:
 706 *    cp - cpuset pointer, used (together with pos_css) to perform a
 707 *         top-down scan of all cpusets. For our purposes, rebuilding
 708 *         the schedulers sched domains, we can ignore !is_sched_load_
 709 *         balance cpusets.
 710 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 711 *         that need to be load balanced, for convenient iterative
 712 *         access by the subsequent code that finds the best partition,
 713 *         i.e the set of domains (subsets) of CPUs such that the
 714 *         cpus_allowed of every cpuset marked is_sched_load_balance
 715 *         is a subset of one of these domains, while there are as
 716 *         many such domains as possible, each as small as possible.
 717 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 718 *         the kernel/sched/core.c routine partition_sched_domains() in a
 719 *         convenient format, that can be easily compared to the prior
 720 *         value to determine what partition elements (sched domains)
 721 *         were changed (added or removed.)
 722 *
 723 * Finding the best partition (set of domains):
 724 *      The triple nested loops below over i, j, k scan over the
 725 *      load balanced cpusets (using the array of cpuset pointers in
 726 *      csa[]) looking for pairs of cpusets that have overlapping
 727 *      cpus_allowed, but which don't have the same 'pn' partition
 728 *      number and gives them in the same partition number.  It keeps
 729 *      looping on the 'restart' label until it can no longer find
 730 *      any such pairs.
 731 *
 732 *      The union of the cpus_allowed masks from the set of
 733 *      all cpusets having the same 'pn' value then form the one
 734 *      element of the partition (one sched domain) to be passed to
 735 *      partition_sched_domains().
 736 */
 737static int generate_sched_domains(cpumask_var_t **domains,
 738                        struct sched_domain_attr **attributes)
 739{
 740        struct cpuset *cp;      /* top-down scan of cpusets */
 741        struct cpuset **csa;    /* array of all cpuset ptrs */
 742        int csn;                /* how many cpuset ptrs in csa so far */
 743        int i, j, k;            /* indices for partition finding loops */
 744        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 745        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 746        int ndoms = 0;          /* number of sched domains in result */
 747        int nslot;              /* next empty doms[] struct cpumask slot */
 748        struct cgroup_subsys_state *pos_css;
 749        bool root_load_balance = is_sched_load_balance(&top_cpuset);
 750
 751        doms = NULL;
 752        dattr = NULL;
 753        csa = NULL;
 754
 755        /* Special case for the 99% of systems with one, full, sched domain */
 756        if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 757                ndoms = 1;
 758                doms = alloc_sched_domains(ndoms);
 759                if (!doms)
 760                        goto done;
 761
 762                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 763                if (dattr) {
 764                        *dattr = SD_ATTR_INIT;
 765                        update_domain_attr_tree(dattr, &top_cpuset);
 766                }
 767                cpumask_and(doms[0], top_cpuset.effective_cpus,
 768                            housekeeping_cpumask(HK_FLAG_DOMAIN));
 769
 770                goto done;
 771        }
 772
 773        csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 774        if (!csa)
 775                goto done;
 776        csn = 0;
 777
 778        rcu_read_lock();
 779        if (root_load_balance)
 780                csa[csn++] = &top_cpuset;
 781        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 782                if (cp == &top_cpuset)
 783                        continue;
 784                /*
 785                 * Continue traversing beyond @cp iff @cp has some CPUs and
 786                 * isn't load balancing.  The former is obvious.  The
 787                 * latter: All child cpusets contain a subset of the
 788                 * parent's cpus, so just skip them, and then we call
 789                 * update_domain_attr_tree() to calc relax_domain_level of
 790                 * the corresponding sched domain.
 791                 *
 792                 * If root is load-balancing, we can skip @cp if it
 793                 * is a subset of the root's effective_cpus.
 794                 */
 795                if (!cpumask_empty(cp->cpus_allowed) &&
 796                    !(is_sched_load_balance(cp) &&
 797                      cpumask_intersects(cp->cpus_allowed,
 798                                         housekeeping_cpumask(HK_FLAG_DOMAIN))))
 799                        continue;
 800
 801                if (root_load_balance &&
 802                    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 803                        continue;
 804
 805                if (is_sched_load_balance(cp) &&
 806                    !cpumask_empty(cp->effective_cpus))
 807                        csa[csn++] = cp;
 808
 809                /* skip @cp's subtree if not a partition root */
 810                if (!is_partition_root(cp))
 811                        pos_css = css_rightmost_descendant(pos_css);
 812        }
 813        rcu_read_unlock();
 814
 815        for (i = 0; i < csn; i++)
 816                csa[i]->pn = i;
 817        ndoms = csn;
 818
 819restart:
 820        /* Find the best partition (set of sched domains) */
 821        for (i = 0; i < csn; i++) {
 822                struct cpuset *a = csa[i];
 823                int apn = a->pn;
 824
 825                for (j = 0; j < csn; j++) {
 826                        struct cpuset *b = csa[j];
 827                        int bpn = b->pn;
 828
 829                        if (apn != bpn && cpusets_overlap(a, b)) {
 830                                for (k = 0; k < csn; k++) {
 831                                        struct cpuset *c = csa[k];
 832
 833                                        if (c->pn == bpn)
 834                                                c->pn = apn;
 835                                }
 836                                ndoms--;        /* one less element */
 837                                goto restart;
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * Now we know how many domains to create.
 844         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 845         */
 846        doms = alloc_sched_domains(ndoms);
 847        if (!doms)
 848                goto done;
 849
 850        /*
 851         * The rest of the code, including the scheduler, can deal with
 852         * dattr==NULL case. No need to abort if alloc fails.
 853         */
 854        dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 855                              GFP_KERNEL);
 856
 857        for (nslot = 0, i = 0; i < csn; i++) {
 858                struct cpuset *a = csa[i];
 859                struct cpumask *dp;
 860                int apn = a->pn;
 861
 862                if (apn < 0) {
 863                        /* Skip completed partitions */
 864                        continue;
 865                }
 866
 867                dp = doms[nslot];
 868
 869                if (nslot == ndoms) {
 870                        static int warnings = 10;
 871                        if (warnings) {
 872                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 873                                        nslot, ndoms, csn, i, apn);
 874                                warnings--;
 875                        }
 876                        continue;
 877                }
 878
 879                cpumask_clear(dp);
 880                if (dattr)
 881                        *(dattr + nslot) = SD_ATTR_INIT;
 882                for (j = i; j < csn; j++) {
 883                        struct cpuset *b = csa[j];
 884
 885                        if (apn == b->pn) {
 886                                cpumask_or(dp, dp, b->effective_cpus);
 887                                cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 888                                if (dattr)
 889                                        update_domain_attr_tree(dattr + nslot, b);
 890
 891                                /* Done with this partition */
 892                                b->pn = -1;
 893                        }
 894                }
 895                nslot++;
 896        }
 897        BUG_ON(nslot != ndoms);
 898
 899done:
 900        kfree(csa);
 901
 902        /*
 903         * Fallback to the default domain if kmalloc() failed.
 904         * See comments in partition_sched_domains().
 905         */
 906        if (doms == NULL)
 907                ndoms = 1;
 908
 909        *domains    = doms;
 910        *attributes = dattr;
 911        return ndoms;
 912}
 913
 914static void update_tasks_root_domain(struct cpuset *cs)
 915{
 916        struct css_task_iter it;
 917        struct task_struct *task;
 918
 919        css_task_iter_start(&cs->css, 0, &it);
 920
 921        while ((task = css_task_iter_next(&it)))
 922                dl_add_task_root_domain(task);
 923
 924        css_task_iter_end(&it);
 925}
 926
 927static void rebuild_root_domains(void)
 928{
 929        struct cpuset *cs = NULL;
 930        struct cgroup_subsys_state *pos_css;
 931
 932        percpu_rwsem_assert_held(&cpuset_rwsem);
 933        lockdep_assert_cpus_held();
 934        lockdep_assert_held(&sched_domains_mutex);
 935
 936        rcu_read_lock();
 937
 938        /*
 939         * Clear default root domain DL accounting, it will be computed again
 940         * if a task belongs to it.
 941         */
 942        dl_clear_root_domain(&def_root_domain);
 943
 944        cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 945
 946                if (cpumask_empty(cs->effective_cpus)) {
 947                        pos_css = css_rightmost_descendant(pos_css);
 948                        continue;
 949                }
 950
 951                css_get(&cs->css);
 952
 953                rcu_read_unlock();
 954
 955                update_tasks_root_domain(cs);
 956
 957                rcu_read_lock();
 958                css_put(&cs->css);
 959        }
 960        rcu_read_unlock();
 961}
 962
 963static void
 964partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 965                                    struct sched_domain_attr *dattr_new)
 966{
 967        mutex_lock(&sched_domains_mutex);
 968        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 969        rebuild_root_domains();
 970        mutex_unlock(&sched_domains_mutex);
 971}
 972
 973/*
 974 * Rebuild scheduler domains.
 975 *
 976 * If the flag 'sched_load_balance' of any cpuset with non-empty
 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 978 * which has that flag enabled, or if any cpuset with a non-empty
 979 * 'cpus' is removed, then call this routine to rebuild the
 980 * scheduler's dynamic sched domains.
 981 *
 982 * Call with cpuset_mutex held.  Takes get_online_cpus().
 983 */
 984static void rebuild_sched_domains_locked(void)
 985{
 986        struct cgroup_subsys_state *pos_css;
 987        struct sched_domain_attr *attr;
 988        cpumask_var_t *doms;
 989        struct cpuset *cs;
 990        int ndoms;
 991
 992        lockdep_assert_cpus_held();
 993        percpu_rwsem_assert_held(&cpuset_rwsem);
 994
 995        /*
 996         * If we have raced with CPU hotplug, return early to avoid
 997         * passing doms with offlined cpu to partition_sched_domains().
 998         * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
 999         *
1000         * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1001         * should be the same as the active CPUs, so checking only top_cpuset
1002         * is enough to detect racing CPU offlines.
1003         */
1004        if (!top_cpuset.nr_subparts_cpus &&
1005            !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1006                return;
1007
1008        /*
1009         * With subpartition CPUs, however, the effective CPUs of a partition
1010         * root should be only a subset of the active CPUs.  Since a CPU in any
1011         * partition root could be offlined, all must be checked.
1012         */
1013        if (top_cpuset.nr_subparts_cpus) {
1014                rcu_read_lock();
1015                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1016                        if (!is_partition_root(cs)) {
1017                                pos_css = css_rightmost_descendant(pos_css);
1018                                continue;
1019                        }
1020                        if (!cpumask_subset(cs->effective_cpus,
1021                                            cpu_active_mask)) {
1022                                rcu_read_unlock();
1023                                return;
1024                        }
1025                }
1026                rcu_read_unlock();
1027        }
1028
1029        /* Generate domain masks and attrs */
1030        ndoms = generate_sched_domains(&doms, &attr);
1031
1032        /* Have scheduler rebuild the domains */
1033        partition_and_rebuild_sched_domains(ndoms, doms, attr);
1034}
1035#else /* !CONFIG_SMP */
1036static void rebuild_sched_domains_locked(void)
1037{
1038}
1039#endif /* CONFIG_SMP */
1040
1041void rebuild_sched_domains(void)
1042{
1043        get_online_cpus();
1044        percpu_down_write(&cpuset_rwsem);
1045        rebuild_sched_domains_locked();
1046        percpu_up_write(&cpuset_rwsem);
1047        put_online_cpus();
1048}
1049
1050/**
1051 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1052 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1053 *
1054 * Iterate through each task of @cs updating its cpus_allowed to the
1055 * effective cpuset's.  As this function is called with cpuset_mutex held,
1056 * cpuset membership stays stable.
1057 */
1058static void update_tasks_cpumask(struct cpuset *cs)
1059{
1060        struct css_task_iter it;
1061        struct task_struct *task;
1062
1063        css_task_iter_start(&cs->css, 0, &it);
1064        while ((task = css_task_iter_next(&it)))
1065                set_cpus_allowed_ptr(task, cs->effective_cpus);
1066        css_task_iter_end(&it);
1067}
1068
1069/**
1070 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1071 * @new_cpus: the temp variable for the new effective_cpus mask
1072 * @cs: the cpuset the need to recompute the new effective_cpus mask
1073 * @parent: the parent cpuset
1074 *
1075 * If the parent has subpartition CPUs, include them in the list of
1076 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1077 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1078 * to mask those out.
1079 */
1080static void compute_effective_cpumask(struct cpumask *new_cpus,
1081                                      struct cpuset *cs, struct cpuset *parent)
1082{
1083        if (parent->nr_subparts_cpus) {
1084                cpumask_or(new_cpus, parent->effective_cpus,
1085                           parent->subparts_cpus);
1086                cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1087                cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1088        } else {
1089                cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1090        }
1091}
1092
1093/*
1094 * Commands for update_parent_subparts_cpumask
1095 */
1096enum subparts_cmd {
1097        partcmd_enable,         /* Enable partition root         */
1098        partcmd_disable,        /* Disable partition root        */
1099        partcmd_update,         /* Update parent's subparts_cpus */
1100};
1101
1102/**
1103 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1104 * @cpuset:  The cpuset that requests change in partition root state
1105 * @cmd:     Partition root state change command
1106 * @newmask: Optional new cpumask for partcmd_update
1107 * @tmp:     Temporary addmask and delmask
1108 * Return:   0, 1 or an error code
1109 *
1110 * For partcmd_enable, the cpuset is being transformed from a non-partition
1111 * root to a partition root. The cpus_allowed mask of the given cpuset will
1112 * be put into parent's subparts_cpus and taken away from parent's
1113 * effective_cpus. The function will return 0 if all the CPUs listed in
1114 * cpus_allowed can be granted or an error code will be returned.
1115 *
1116 * For partcmd_disable, the cpuset is being transofrmed from a partition
1117 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1118 * parent's subparts_cpus will be taken away from that cpumask and put back
1119 * into parent's effective_cpus. 0 should always be returned.
1120 *
1121 * For partcmd_update, if the optional newmask is specified, the cpu
1122 * list is to be changed from cpus_allowed to newmask. Otherwise,
1123 * cpus_allowed is assumed to remain the same. The cpuset should either
1124 * be a partition root or an invalid partition root. The partition root
1125 * state may change if newmask is NULL and none of the requested CPUs can
1126 * be granted by the parent. The function will return 1 if changes to
1127 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1128 * Error code should only be returned when newmask is non-NULL.
1129 *
1130 * The partcmd_enable and partcmd_disable commands are used by
1131 * update_prstate(). The partcmd_update command is used by
1132 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1133 * newmask set.
1134 *
1135 * The checking is more strict when enabling partition root than the
1136 * other two commands.
1137 *
1138 * Because of the implicit cpu exclusive nature of a partition root,
1139 * cpumask changes that violates the cpu exclusivity rule will not be
1140 * permitted when checked by validate_change(). The validate_change()
1141 * function will also prevent any changes to the cpu list if it is not
1142 * a superset of children's cpu lists.
1143 */
1144static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1145                                          struct cpumask *newmask,
1146                                          struct tmpmasks *tmp)
1147{
1148        struct cpuset *parent = parent_cs(cpuset);
1149        int adding;     /* Moving cpus from effective_cpus to subparts_cpus */
1150        int deleting;   /* Moving cpus from subparts_cpus to effective_cpus */
1151        bool part_error = false;        /* Partition error? */
1152
1153        percpu_rwsem_assert_held(&cpuset_rwsem);
1154
1155        /*
1156         * The parent must be a partition root.
1157         * The new cpumask, if present, or the current cpus_allowed must
1158         * not be empty.
1159         */
1160        if (!is_partition_root(parent) ||
1161           (newmask && cpumask_empty(newmask)) ||
1162           (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1163                return -EINVAL;
1164
1165        /*
1166         * Enabling/disabling partition root is not allowed if there are
1167         * online children.
1168         */
1169        if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1170                return -EBUSY;
1171
1172        /*
1173         * Enabling partition root is not allowed if not all the CPUs
1174         * can be granted from parent's effective_cpus or at least one
1175         * CPU will be left after that.
1176         */
1177        if ((cmd == partcmd_enable) &&
1178           (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1179             cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1180                return -EINVAL;
1181
1182        /*
1183         * A cpumask update cannot make parent's effective_cpus become empty.
1184         */
1185        adding = deleting = false;
1186        if (cmd == partcmd_enable) {
1187                cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1188                adding = true;
1189        } else if (cmd == partcmd_disable) {
1190                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1191                                       parent->subparts_cpus);
1192        } else if (newmask) {
1193                /*
1194                 * partcmd_update with newmask:
1195                 *
1196                 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1197                 * addmask = newmask & parent->effective_cpus
1198                 *                   & ~parent->subparts_cpus
1199                 */
1200                cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1201                deleting = cpumask_and(tmp->delmask, tmp->delmask,
1202                                       parent->subparts_cpus);
1203
1204                cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1205                adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1206                                        parent->subparts_cpus);
1207                /*
1208                 * Return error if the new effective_cpus could become empty.
1209                 */
1210                if (adding &&
1211                    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1212                        if (!deleting)
1213                                return -EINVAL;
1214                        /*
1215                         * As some of the CPUs in subparts_cpus might have
1216                         * been offlined, we need to compute the real delmask
1217                         * to confirm that.
1218                         */
1219                        if (!cpumask_and(tmp->addmask, tmp->delmask,
1220                                         cpu_active_mask))
1221                                return -EINVAL;
1222                        cpumask_copy(tmp->addmask, parent->effective_cpus);
1223                }
1224        } else {
1225                /*
1226                 * partcmd_update w/o newmask:
1227                 *
1228                 * addmask = cpus_allowed & parent->effectiveb_cpus
1229                 *
1230                 * Note that parent's subparts_cpus may have been
1231                 * pre-shrunk in case there is a change in the cpu list.
1232                 * So no deletion is needed.
1233                 */
1234                adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1235                                     parent->effective_cpus);
1236                part_error = cpumask_equal(tmp->addmask,
1237                                           parent->effective_cpus);
1238        }
1239
1240        if (cmd == partcmd_update) {
1241                int prev_prs = cpuset->partition_root_state;
1242
1243                /*
1244                 * Check for possible transition between PRS_ENABLED
1245                 * and PRS_ERROR.
1246                 */
1247                switch (cpuset->partition_root_state) {
1248                case PRS_ENABLED:
1249                        if (part_error)
1250                                cpuset->partition_root_state = PRS_ERROR;
1251                        break;
1252                case PRS_ERROR:
1253                        if (!part_error)
1254                                cpuset->partition_root_state = PRS_ENABLED;
1255                        break;
1256                }
1257                /*
1258                 * Set part_error if previously in invalid state.
1259                 */
1260                part_error = (prev_prs == PRS_ERROR);
1261        }
1262
1263        if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1264                return 0;       /* Nothing need to be done */
1265
1266        if (cpuset->partition_root_state == PRS_ERROR) {
1267                /*
1268                 * Remove all its cpus from parent's subparts_cpus.
1269                 */
1270                adding = false;
1271                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1272                                       parent->subparts_cpus);
1273        }
1274
1275        if (!adding && !deleting)
1276                return 0;
1277
1278        /*
1279         * Change the parent's subparts_cpus.
1280         * Newly added CPUs will be removed from effective_cpus and
1281         * newly deleted ones will be added back to effective_cpus.
1282         */
1283        spin_lock_irq(&callback_lock);
1284        if (adding) {
1285                cpumask_or(parent->subparts_cpus,
1286                           parent->subparts_cpus, tmp->addmask);
1287                cpumask_andnot(parent->effective_cpus,
1288                               parent->effective_cpus, tmp->addmask);
1289        }
1290        if (deleting) {
1291                cpumask_andnot(parent->subparts_cpus,
1292                               parent->subparts_cpus, tmp->delmask);
1293                /*
1294                 * Some of the CPUs in subparts_cpus might have been offlined.
1295                 */
1296                cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1297                cpumask_or(parent->effective_cpus,
1298                           parent->effective_cpus, tmp->delmask);
1299        }
1300
1301        parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1302        spin_unlock_irq(&callback_lock);
1303
1304        return cmd == partcmd_update;
1305}
1306
1307/*
1308 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1309 * @cs:  the cpuset to consider
1310 * @tmp: temp variables for calculating effective_cpus & partition setup
1311 *
1312 * When configured cpumask is changed, the effective cpumasks of this cpuset
1313 * and all its descendants need to be updated.
1314 *
1315 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1316 *
1317 * Called with cpuset_mutex held
1318 */
1319static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1320{
1321        struct cpuset *cp;
1322        struct cgroup_subsys_state *pos_css;
1323        bool need_rebuild_sched_domains = false;
1324
1325        rcu_read_lock();
1326        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1327                struct cpuset *parent = parent_cs(cp);
1328
1329                compute_effective_cpumask(tmp->new_cpus, cp, parent);
1330
1331                /*
1332                 * If it becomes empty, inherit the effective mask of the
1333                 * parent, which is guaranteed to have some CPUs.
1334                 */
1335                if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1336                        cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1337                        if (!cp->use_parent_ecpus) {
1338                                cp->use_parent_ecpus = true;
1339                                parent->child_ecpus_count++;
1340                        }
1341                } else if (cp->use_parent_ecpus) {
1342                        cp->use_parent_ecpus = false;
1343                        WARN_ON_ONCE(!parent->child_ecpus_count);
1344                        parent->child_ecpus_count--;
1345                }
1346
1347                /*
1348                 * Skip the whole subtree if the cpumask remains the same
1349                 * and has no partition root state.
1350                 */
1351                if (!cp->partition_root_state &&
1352                    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1353                        pos_css = css_rightmost_descendant(pos_css);
1354                        continue;
1355                }
1356
1357                /*
1358                 * update_parent_subparts_cpumask() should have been called
1359                 * for cs already in update_cpumask(). We should also call
1360                 * update_tasks_cpumask() again for tasks in the parent
1361                 * cpuset if the parent's subparts_cpus changes.
1362                 */
1363                if ((cp != cs) && cp->partition_root_state) {
1364                        switch (parent->partition_root_state) {
1365                        case PRS_DISABLED:
1366                                /*
1367                                 * If parent is not a partition root or an
1368                                 * invalid partition root, clear the state
1369                                 * state and the CS_CPU_EXCLUSIVE flag.
1370                                 */
1371                                WARN_ON_ONCE(cp->partition_root_state
1372                                             != PRS_ERROR);
1373                                cp->partition_root_state = 0;
1374
1375                                /*
1376                                 * clear_bit() is an atomic operation and
1377                                 * readers aren't interested in the state
1378                                 * of CS_CPU_EXCLUSIVE anyway. So we can
1379                                 * just update the flag without holding
1380                                 * the callback_lock.
1381                                 */
1382                                clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1383                                break;
1384
1385                        case PRS_ENABLED:
1386                                if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1387                                        update_tasks_cpumask(parent);
1388                                break;
1389
1390                        case PRS_ERROR:
1391                                /*
1392                                 * When parent is invalid, it has to be too.
1393                                 */
1394                                cp->partition_root_state = PRS_ERROR;
1395                                if (cp->nr_subparts_cpus) {
1396                                        cp->nr_subparts_cpus = 0;
1397                                        cpumask_clear(cp->subparts_cpus);
1398                                }
1399                                break;
1400                        }
1401                }
1402
1403                if (!css_tryget_online(&cp->css))
1404                        continue;
1405                rcu_read_unlock();
1406
1407                spin_lock_irq(&callback_lock);
1408
1409                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1410                if (cp->nr_subparts_cpus &&
1411                   (cp->partition_root_state != PRS_ENABLED)) {
1412                        cp->nr_subparts_cpus = 0;
1413                        cpumask_clear(cp->subparts_cpus);
1414                } else if (cp->nr_subparts_cpus) {
1415                        /*
1416                         * Make sure that effective_cpus & subparts_cpus
1417                         * are mutually exclusive.
1418                         *
1419                         * In the unlikely event that effective_cpus
1420                         * becomes empty. we clear cp->nr_subparts_cpus and
1421                         * let its child partition roots to compete for
1422                         * CPUs again.
1423                         */
1424                        cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1425                                       cp->subparts_cpus);
1426                        if (cpumask_empty(cp->effective_cpus)) {
1427                                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1428                                cpumask_clear(cp->subparts_cpus);
1429                                cp->nr_subparts_cpus = 0;
1430                        } else if (!cpumask_subset(cp->subparts_cpus,
1431                                                   tmp->new_cpus)) {
1432                                cpumask_andnot(cp->subparts_cpus,
1433                                        cp->subparts_cpus, tmp->new_cpus);
1434                                cp->nr_subparts_cpus
1435                                        = cpumask_weight(cp->subparts_cpus);
1436                        }
1437                }
1438                spin_unlock_irq(&callback_lock);
1439
1440                WARN_ON(!is_in_v2_mode() &&
1441                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1442
1443                update_tasks_cpumask(cp);
1444
1445                /*
1446                 * On legacy hierarchy, if the effective cpumask of any non-
1447                 * empty cpuset is changed, we need to rebuild sched domains.
1448                 * On default hierarchy, the cpuset needs to be a partition
1449                 * root as well.
1450                 */
1451                if (!cpumask_empty(cp->cpus_allowed) &&
1452                    is_sched_load_balance(cp) &&
1453                   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1454                    is_partition_root(cp)))
1455                        need_rebuild_sched_domains = true;
1456
1457                rcu_read_lock();
1458                css_put(&cp->css);
1459        }
1460        rcu_read_unlock();
1461
1462        if (need_rebuild_sched_domains)
1463                rebuild_sched_domains_locked();
1464}
1465
1466/**
1467 * update_sibling_cpumasks - Update siblings cpumasks
1468 * @parent:  Parent cpuset
1469 * @cs:      Current cpuset
1470 * @tmp:     Temp variables
1471 */
1472static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1473                                    struct tmpmasks *tmp)
1474{
1475        struct cpuset *sibling;
1476        struct cgroup_subsys_state *pos_css;
1477
1478        percpu_rwsem_assert_held(&cpuset_rwsem);
1479
1480        /*
1481         * Check all its siblings and call update_cpumasks_hier()
1482         * if their use_parent_ecpus flag is set in order for them
1483         * to use the right effective_cpus value.
1484         *
1485         * The update_cpumasks_hier() function may sleep. So we have to
1486         * release the RCU read lock before calling it.
1487         */
1488        rcu_read_lock();
1489        cpuset_for_each_child(sibling, pos_css, parent) {
1490                if (sibling == cs)
1491                        continue;
1492                if (!sibling->use_parent_ecpus)
1493                        continue;
1494                if (!css_tryget_online(&sibling->css))
1495                        continue;
1496
1497                rcu_read_unlock();
1498                update_cpumasks_hier(sibling, tmp);
1499                rcu_read_lock();
1500                css_put(&sibling->css);
1501        }
1502        rcu_read_unlock();
1503}
1504
1505/**
1506 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1507 * @cs: the cpuset to consider
1508 * @trialcs: trial cpuset
1509 * @buf: buffer of cpu numbers written to this cpuset
1510 */
1511static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1512                          const char *buf)
1513{
1514        int retval;
1515        struct tmpmasks tmp;
1516
1517        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1518        if (cs == &top_cpuset)
1519                return -EACCES;
1520
1521        /*
1522         * An empty cpus_allowed is ok only if the cpuset has no tasks.
1523         * Since cpulist_parse() fails on an empty mask, we special case
1524         * that parsing.  The validate_change() call ensures that cpusets
1525         * with tasks have cpus.
1526         */
1527        if (!*buf) {
1528                cpumask_clear(trialcs->cpus_allowed);
1529        } else {
1530                retval = cpulist_parse(buf, trialcs->cpus_allowed);
1531                if (retval < 0)
1532                        return retval;
1533
1534                if (!cpumask_subset(trialcs->cpus_allowed,
1535                                    top_cpuset.cpus_allowed))
1536                        return -EINVAL;
1537        }
1538
1539        /* Nothing to do if the cpus didn't change */
1540        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1541                return 0;
1542
1543        retval = validate_change(cs, trialcs);
1544        if (retval < 0)
1545                return retval;
1546
1547#ifdef CONFIG_CPUMASK_OFFSTACK
1548        /*
1549         * Use the cpumasks in trialcs for tmpmasks when they are pointers
1550         * to allocated cpumasks.
1551         */
1552        tmp.addmask  = trialcs->subparts_cpus;
1553        tmp.delmask  = trialcs->effective_cpus;
1554        tmp.new_cpus = trialcs->cpus_allowed;
1555#endif
1556
1557        if (cs->partition_root_state) {
1558                /* Cpumask of a partition root cannot be empty */
1559                if (cpumask_empty(trialcs->cpus_allowed))
1560                        return -EINVAL;
1561                if (update_parent_subparts_cpumask(cs, partcmd_update,
1562                                        trialcs->cpus_allowed, &tmp) < 0)
1563                        return -EINVAL;
1564        }
1565
1566        spin_lock_irq(&callback_lock);
1567        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1568
1569        /*
1570         * Make sure that subparts_cpus is a subset of cpus_allowed.
1571         */
1572        if (cs->nr_subparts_cpus) {
1573                cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1574                cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1575        }
1576        spin_unlock_irq(&callback_lock);
1577
1578        update_cpumasks_hier(cs, &tmp);
1579
1580        if (cs->partition_root_state) {
1581                struct cpuset *parent = parent_cs(cs);
1582
1583                /*
1584                 * For partition root, update the cpumasks of sibling
1585                 * cpusets if they use parent's effective_cpus.
1586                 */
1587                if (parent->child_ecpus_count)
1588                        update_sibling_cpumasks(parent, cs, &tmp);
1589        }
1590        return 0;
1591}
1592
1593/*
1594 * Migrate memory region from one set of nodes to another.  This is
1595 * performed asynchronously as it can be called from process migration path
1596 * holding locks involved in process management.  All mm migrations are
1597 * performed in the queued order and can be waited for by flushing
1598 * cpuset_migrate_mm_wq.
1599 */
1600
1601struct cpuset_migrate_mm_work {
1602        struct work_struct      work;
1603        struct mm_struct        *mm;
1604        nodemask_t              from;
1605        nodemask_t              to;
1606};
1607
1608static void cpuset_migrate_mm_workfn(struct work_struct *work)
1609{
1610        struct cpuset_migrate_mm_work *mwork =
1611                container_of(work, struct cpuset_migrate_mm_work, work);
1612
1613        /* on a wq worker, no need to worry about %current's mems_allowed */
1614        do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1615        mmput(mwork->mm);
1616        kfree(mwork);
1617}
1618
1619static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1620                                                        const nodemask_t *to)
1621{
1622        struct cpuset_migrate_mm_work *mwork;
1623
1624        mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1625        if (mwork) {
1626                mwork->mm = mm;
1627                mwork->from = *from;
1628                mwork->to = *to;
1629                INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1630                queue_work(cpuset_migrate_mm_wq, &mwork->work);
1631        } else {
1632                mmput(mm);
1633        }
1634}
1635
1636static void cpuset_post_attach(void)
1637{
1638        flush_workqueue(cpuset_migrate_mm_wq);
1639}
1640
1641/*
1642 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1643 * @tsk: the task to change
1644 * @newmems: new nodes that the task will be set
1645 *
1646 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1647 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1648 * parallel, it might temporarily see an empty intersection, which results in
1649 * a seqlock check and retry before OOM or allocation failure.
1650 */
1651static void cpuset_change_task_nodemask(struct task_struct *tsk,
1652                                        nodemask_t *newmems)
1653{
1654        task_lock(tsk);
1655
1656        local_irq_disable();
1657        write_seqcount_begin(&tsk->mems_allowed_seq);
1658
1659        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1660        mpol_rebind_task(tsk, newmems);
1661        tsk->mems_allowed = *newmems;
1662
1663        write_seqcount_end(&tsk->mems_allowed_seq);
1664        local_irq_enable();
1665
1666        task_unlock(tsk);
1667}
1668
1669static void *cpuset_being_rebound;
1670
1671/**
1672 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1673 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1674 *
1675 * Iterate through each task of @cs updating its mems_allowed to the
1676 * effective cpuset's.  As this function is called with cpuset_mutex held,
1677 * cpuset membership stays stable.
1678 */
1679static void update_tasks_nodemask(struct cpuset *cs)
1680{
1681        static nodemask_t newmems;      /* protected by cpuset_mutex */
1682        struct css_task_iter it;
1683        struct task_struct *task;
1684
1685        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1686
1687        guarantee_online_mems(cs, &newmems);
1688
1689        /*
1690         * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1691         * take while holding tasklist_lock.  Forks can happen - the
1692         * mpol_dup() cpuset_being_rebound check will catch such forks,
1693         * and rebind their vma mempolicies too.  Because we still hold
1694         * the global cpuset_mutex, we know that no other rebind effort
1695         * will be contending for the global variable cpuset_being_rebound.
1696         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1697         * is idempotent.  Also migrate pages in each mm to new nodes.
1698         */
1699        css_task_iter_start(&cs->css, 0, &it);
1700        while ((task = css_task_iter_next(&it))) {
1701                struct mm_struct *mm;
1702                bool migrate;
1703
1704                cpuset_change_task_nodemask(task, &newmems);
1705
1706                mm = get_task_mm(task);
1707                if (!mm)
1708                        continue;
1709
1710                migrate = is_memory_migrate(cs);
1711
1712                mpol_rebind_mm(mm, &cs->mems_allowed);
1713                if (migrate)
1714                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1715                else
1716                        mmput(mm);
1717        }
1718        css_task_iter_end(&it);
1719
1720        /*
1721         * All the tasks' nodemasks have been updated, update
1722         * cs->old_mems_allowed.
1723         */
1724        cs->old_mems_allowed = newmems;
1725
1726        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1727        cpuset_being_rebound = NULL;
1728}
1729
1730/*
1731 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1732 * @cs: the cpuset to consider
1733 * @new_mems: a temp variable for calculating new effective_mems
1734 *
1735 * When configured nodemask is changed, the effective nodemasks of this cpuset
1736 * and all its descendants need to be updated.
1737 *
1738 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1739 *
1740 * Called with cpuset_mutex held
1741 */
1742static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1743{
1744        struct cpuset *cp;
1745        struct cgroup_subsys_state *pos_css;
1746
1747        rcu_read_lock();
1748        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1749                struct cpuset *parent = parent_cs(cp);
1750
1751                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1752
1753                /*
1754                 * If it becomes empty, inherit the effective mask of the
1755                 * parent, which is guaranteed to have some MEMs.
1756                 */
1757                if (is_in_v2_mode() && nodes_empty(*new_mems))
1758                        *new_mems = parent->effective_mems;
1759
1760                /* Skip the whole subtree if the nodemask remains the same. */
1761                if (nodes_equal(*new_mems, cp->effective_mems)) {
1762                        pos_css = css_rightmost_descendant(pos_css);
1763                        continue;
1764                }
1765
1766                if (!css_tryget_online(&cp->css))
1767                        continue;
1768                rcu_read_unlock();
1769
1770                spin_lock_irq(&callback_lock);
1771                cp->effective_mems = *new_mems;
1772                spin_unlock_irq(&callback_lock);
1773
1774                WARN_ON(!is_in_v2_mode() &&
1775                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1776
1777                update_tasks_nodemask(cp);
1778
1779                rcu_read_lock();
1780                css_put(&cp->css);
1781        }
1782        rcu_read_unlock();
1783}
1784
1785/*
1786 * Handle user request to change the 'mems' memory placement
1787 * of a cpuset.  Needs to validate the request, update the
1788 * cpusets mems_allowed, and for each task in the cpuset,
1789 * update mems_allowed and rebind task's mempolicy and any vma
1790 * mempolicies and if the cpuset is marked 'memory_migrate',
1791 * migrate the tasks pages to the new memory.
1792 *
1793 * Call with cpuset_mutex held. May take callback_lock during call.
1794 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1795 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1796 * their mempolicies to the cpusets new mems_allowed.
1797 */
1798static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1799                           const char *buf)
1800{
1801        int retval;
1802
1803        /*
1804         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1805         * it's read-only
1806         */
1807        if (cs == &top_cpuset) {
1808                retval = -EACCES;
1809                goto done;
1810        }
1811
1812        /*
1813         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1814         * Since nodelist_parse() fails on an empty mask, we special case
1815         * that parsing.  The validate_change() call ensures that cpusets
1816         * with tasks have memory.
1817         */
1818        if (!*buf) {
1819                nodes_clear(trialcs->mems_allowed);
1820        } else {
1821                retval = nodelist_parse(buf, trialcs->mems_allowed);
1822                if (retval < 0)
1823                        goto done;
1824
1825                if (!nodes_subset(trialcs->mems_allowed,
1826                                  top_cpuset.mems_allowed)) {
1827                        retval = -EINVAL;
1828                        goto done;
1829                }
1830        }
1831
1832        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1833                retval = 0;             /* Too easy - nothing to do */
1834                goto done;
1835        }
1836        retval = validate_change(cs, trialcs);
1837        if (retval < 0)
1838                goto done;
1839
1840        spin_lock_irq(&callback_lock);
1841        cs->mems_allowed = trialcs->mems_allowed;
1842        spin_unlock_irq(&callback_lock);
1843
1844        /* use trialcs->mems_allowed as a temp variable */
1845        update_nodemasks_hier(cs, &trialcs->mems_allowed);
1846done:
1847        return retval;
1848}
1849
1850bool current_cpuset_is_being_rebound(void)
1851{
1852        bool ret;
1853
1854        rcu_read_lock();
1855        ret = task_cs(current) == cpuset_being_rebound;
1856        rcu_read_unlock();
1857
1858        return ret;
1859}
1860
1861static int update_relax_domain_level(struct cpuset *cs, s64 val)
1862{
1863#ifdef CONFIG_SMP
1864        if (val < -1 || val >= sched_domain_level_max)
1865                return -EINVAL;
1866#endif
1867
1868        if (val != cs->relax_domain_level) {
1869                cs->relax_domain_level = val;
1870                if (!cpumask_empty(cs->cpus_allowed) &&
1871                    is_sched_load_balance(cs))
1872                        rebuild_sched_domains_locked();
1873        }
1874
1875        return 0;
1876}
1877
1878/**
1879 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1880 * @cs: the cpuset in which each task's spread flags needs to be changed
1881 *
1882 * Iterate through each task of @cs updating its spread flags.  As this
1883 * function is called with cpuset_mutex held, cpuset membership stays
1884 * stable.
1885 */
1886static void update_tasks_flags(struct cpuset *cs)
1887{
1888        struct css_task_iter it;
1889        struct task_struct *task;
1890
1891        css_task_iter_start(&cs->css, 0, &it);
1892        while ((task = css_task_iter_next(&it)))
1893                cpuset_update_task_spread_flag(cs, task);
1894        css_task_iter_end(&it);
1895}
1896
1897/*
1898 * update_flag - read a 0 or a 1 in a file and update associated flag
1899 * bit:         the bit to update (see cpuset_flagbits_t)
1900 * cs:          the cpuset to update
1901 * turning_on:  whether the flag is being set or cleared
1902 *
1903 * Call with cpuset_mutex held.
1904 */
1905
1906static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1907                       int turning_on)
1908{
1909        struct cpuset *trialcs;
1910        int balance_flag_changed;
1911        int spread_flag_changed;
1912        int err;
1913
1914        trialcs = alloc_trial_cpuset(cs);
1915        if (!trialcs)
1916                return -ENOMEM;
1917
1918        if (turning_on)
1919                set_bit(bit, &trialcs->flags);
1920        else
1921                clear_bit(bit, &trialcs->flags);
1922
1923        err = validate_change(cs, trialcs);
1924        if (err < 0)
1925                goto out;
1926
1927        balance_flag_changed = (is_sched_load_balance(cs) !=
1928                                is_sched_load_balance(trialcs));
1929
1930        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1931                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1932
1933        spin_lock_irq(&callback_lock);
1934        cs->flags = trialcs->flags;
1935        spin_unlock_irq(&callback_lock);
1936
1937        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1938                rebuild_sched_domains_locked();
1939
1940        if (spread_flag_changed)
1941                update_tasks_flags(cs);
1942out:
1943        free_cpuset(trialcs);
1944        return err;
1945}
1946
1947/*
1948 * update_prstate - update partititon_root_state
1949 * cs:  the cpuset to update
1950 * val: 0 - disabled, 1 - enabled
1951 *
1952 * Call with cpuset_mutex held.
1953 */
1954static int update_prstate(struct cpuset *cs, int val)
1955{
1956        int err;
1957        struct cpuset *parent = parent_cs(cs);
1958        struct tmpmasks tmp;
1959
1960        if ((val != 0) && (val != 1))
1961                return -EINVAL;
1962        if (val == cs->partition_root_state)
1963                return 0;
1964
1965        /*
1966         * Cannot force a partial or invalid partition root to a full
1967         * partition root.
1968         */
1969        if (val && cs->partition_root_state)
1970                return -EINVAL;
1971
1972        if (alloc_cpumasks(NULL, &tmp))
1973                return -ENOMEM;
1974
1975        err = -EINVAL;
1976        if (!cs->partition_root_state) {
1977                /*
1978                 * Turning on partition root requires setting the
1979                 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1980                 * cannot be NULL.
1981                 */
1982                if (cpumask_empty(cs->cpus_allowed))
1983                        goto out;
1984
1985                err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1986                if (err)
1987                        goto out;
1988
1989                err = update_parent_subparts_cpumask(cs, partcmd_enable,
1990                                                     NULL, &tmp);
1991                if (err) {
1992                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1993                        goto out;
1994                }
1995                cs->partition_root_state = PRS_ENABLED;
1996        } else {
1997                /*
1998                 * Turning off partition root will clear the
1999                 * CS_CPU_EXCLUSIVE bit.
2000                 */
2001                if (cs->partition_root_state == PRS_ERROR) {
2002                        cs->partition_root_state = 0;
2003                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2004                        err = 0;
2005                        goto out;
2006                }
2007
2008                err = update_parent_subparts_cpumask(cs, partcmd_disable,
2009                                                     NULL, &tmp);
2010                if (err)
2011                        goto out;
2012
2013                cs->partition_root_state = 0;
2014
2015                /* Turning off CS_CPU_EXCLUSIVE will not return error */
2016                update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2017        }
2018
2019        /*
2020         * Update cpumask of parent's tasks except when it is the top
2021         * cpuset as some system daemons cannot be mapped to other CPUs.
2022         */
2023        if (parent != &top_cpuset)
2024                update_tasks_cpumask(parent);
2025
2026        if (parent->child_ecpus_count)
2027                update_sibling_cpumasks(parent, cs, &tmp);
2028
2029        rebuild_sched_domains_locked();
2030out:
2031        free_cpumasks(NULL, &tmp);
2032        return err;
2033}
2034
2035/*
2036 * Frequency meter - How fast is some event occurring?
2037 *
2038 * These routines manage a digitally filtered, constant time based,
2039 * event frequency meter.  There are four routines:
2040 *   fmeter_init() - initialize a frequency meter.
2041 *   fmeter_markevent() - called each time the event happens.
2042 *   fmeter_getrate() - returns the recent rate of such events.
2043 *   fmeter_update() - internal routine used to update fmeter.
2044 *
2045 * A common data structure is passed to each of these routines,
2046 * which is used to keep track of the state required to manage the
2047 * frequency meter and its digital filter.
2048 *
2049 * The filter works on the number of events marked per unit time.
2050 * The filter is single-pole low-pass recursive (IIR).  The time unit
2051 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2052 * simulate 3 decimal digits of precision (multiplied by 1000).
2053 *
2054 * With an FM_COEF of 933, and a time base of 1 second, the filter
2055 * has a half-life of 10 seconds, meaning that if the events quit
2056 * happening, then the rate returned from the fmeter_getrate()
2057 * will be cut in half each 10 seconds, until it converges to zero.
2058 *
2059 * It is not worth doing a real infinitely recursive filter.  If more
2060 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2061 * just compute FM_MAXTICKS ticks worth, by which point the level
2062 * will be stable.
2063 *
2064 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2065 * arithmetic overflow in the fmeter_update() routine.
2066 *
2067 * Given the simple 32 bit integer arithmetic used, this meter works
2068 * best for reporting rates between one per millisecond (msec) and
2069 * one per 32 (approx) seconds.  At constant rates faster than one
2070 * per msec it maxes out at values just under 1,000,000.  At constant
2071 * rates between one per msec, and one per second it will stabilize
2072 * to a value N*1000, where N is the rate of events per second.
2073 * At constant rates between one per second and one per 32 seconds,
2074 * it will be choppy, moving up on the seconds that have an event,
2075 * and then decaying until the next event.  At rates slower than
2076 * about one in 32 seconds, it decays all the way back to zero between
2077 * each event.
2078 */
2079
2080#define FM_COEF 933             /* coefficient for half-life of 10 secs */
2081#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2082#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
2083#define FM_SCALE 1000           /* faux fixed point scale */
2084
2085/* Initialize a frequency meter */
2086static void fmeter_init(struct fmeter *fmp)
2087{
2088        fmp->cnt = 0;
2089        fmp->val = 0;
2090        fmp->time = 0;
2091        spin_lock_init(&fmp->lock);
2092}
2093
2094/* Internal meter update - process cnt events and update value */
2095static void fmeter_update(struct fmeter *fmp)
2096{
2097        time64_t now;
2098        u32 ticks;
2099
2100        now = ktime_get_seconds();
2101        ticks = now - fmp->time;
2102
2103        if (ticks == 0)
2104                return;
2105
2106        ticks = min(FM_MAXTICKS, ticks);
2107        while (ticks-- > 0)
2108                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2109        fmp->time = now;
2110
2111        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2112        fmp->cnt = 0;
2113}
2114
2115/* Process any previous ticks, then bump cnt by one (times scale). */
2116static void fmeter_markevent(struct fmeter *fmp)
2117{
2118        spin_lock(&fmp->lock);
2119        fmeter_update(fmp);
2120        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2121        spin_unlock(&fmp->lock);
2122}
2123
2124/* Process any previous ticks, then return current value. */
2125static int fmeter_getrate(struct fmeter *fmp)
2126{
2127        int val;
2128
2129        spin_lock(&fmp->lock);
2130        fmeter_update(fmp);
2131        val = fmp->val;
2132        spin_unlock(&fmp->lock);
2133        return val;
2134}
2135
2136static struct cpuset *cpuset_attach_old_cs;
2137
2138/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2139static int cpuset_can_attach(struct cgroup_taskset *tset)
2140{
2141        struct cgroup_subsys_state *css;
2142        struct cpuset *cs;
2143        struct task_struct *task;
2144        int ret;
2145
2146        /* used later by cpuset_attach() */
2147        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2148        cs = css_cs(css);
2149
2150        percpu_down_write(&cpuset_rwsem);
2151
2152        /* allow moving tasks into an empty cpuset if on default hierarchy */
2153        ret = -ENOSPC;
2154        if (!is_in_v2_mode() &&
2155            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2156                goto out_unlock;
2157
2158        cgroup_taskset_for_each(task, css, tset) {
2159                ret = task_can_attach(task, cs->cpus_allowed);
2160                if (ret)
2161                        goto out_unlock;
2162                ret = security_task_setscheduler(task);
2163                if (ret)
2164                        goto out_unlock;
2165        }
2166
2167        /*
2168         * Mark attach is in progress.  This makes validate_change() fail
2169         * changes which zero cpus/mems_allowed.
2170         */
2171        cs->attach_in_progress++;
2172        ret = 0;
2173out_unlock:
2174        percpu_up_write(&cpuset_rwsem);
2175        return ret;
2176}
2177
2178static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2179{
2180        struct cgroup_subsys_state *css;
2181
2182        cgroup_taskset_first(tset, &css);
2183
2184        percpu_down_write(&cpuset_rwsem);
2185        css_cs(css)->attach_in_progress--;
2186        percpu_up_write(&cpuset_rwsem);
2187}
2188
2189/*
2190 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2191 * but we can't allocate it dynamically there.  Define it global and
2192 * allocate from cpuset_init().
2193 */
2194static cpumask_var_t cpus_attach;
2195
2196static void cpuset_attach(struct cgroup_taskset *tset)
2197{
2198        /* static buf protected by cpuset_mutex */
2199        static nodemask_t cpuset_attach_nodemask_to;
2200        struct task_struct *task;
2201        struct task_struct *leader;
2202        struct cgroup_subsys_state *css;
2203        struct cpuset *cs;
2204        struct cpuset *oldcs = cpuset_attach_old_cs;
2205
2206        cgroup_taskset_first(tset, &css);
2207        cs = css_cs(css);
2208
2209        percpu_down_write(&cpuset_rwsem);
2210
2211        /* prepare for attach */
2212        if (cs == &top_cpuset)
2213                cpumask_copy(cpus_attach, cpu_possible_mask);
2214        else
2215                guarantee_online_cpus(cs, cpus_attach);
2216
2217        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2218
2219        cgroup_taskset_for_each(task, css, tset) {
2220                /*
2221                 * can_attach beforehand should guarantee that this doesn't
2222                 * fail.  TODO: have a better way to handle failure here
2223                 */
2224                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2225
2226                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2227                cpuset_update_task_spread_flag(cs, task);
2228        }
2229
2230        /*
2231         * Change mm for all threadgroup leaders. This is expensive and may
2232         * sleep and should be moved outside migration path proper.
2233         */
2234        cpuset_attach_nodemask_to = cs->effective_mems;
2235        cgroup_taskset_for_each_leader(leader, css, tset) {
2236                struct mm_struct *mm = get_task_mm(leader);
2237
2238                if (mm) {
2239                        mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2240
2241                        /*
2242                         * old_mems_allowed is the same with mems_allowed
2243                         * here, except if this task is being moved
2244                         * automatically due to hotplug.  In that case
2245                         * @mems_allowed has been updated and is empty, so
2246                         * @old_mems_allowed is the right nodesets that we
2247                         * migrate mm from.
2248                         */
2249                        if (is_memory_migrate(cs))
2250                                cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2251                                                  &cpuset_attach_nodemask_to);
2252                        else
2253                                mmput(mm);
2254                }
2255        }
2256
2257        cs->old_mems_allowed = cpuset_attach_nodemask_to;
2258
2259        cs->attach_in_progress--;
2260        if (!cs->attach_in_progress)
2261                wake_up(&cpuset_attach_wq);
2262
2263        percpu_up_write(&cpuset_rwsem);
2264}
2265
2266/* The various types of files and directories in a cpuset file system */
2267
2268typedef enum {
2269        FILE_MEMORY_MIGRATE,
2270        FILE_CPULIST,
2271        FILE_MEMLIST,
2272        FILE_EFFECTIVE_CPULIST,
2273        FILE_EFFECTIVE_MEMLIST,
2274        FILE_SUBPARTS_CPULIST,
2275        FILE_CPU_EXCLUSIVE,
2276        FILE_MEM_EXCLUSIVE,
2277        FILE_MEM_HARDWALL,
2278        FILE_SCHED_LOAD_BALANCE,
2279        FILE_PARTITION_ROOT,
2280        FILE_SCHED_RELAX_DOMAIN_LEVEL,
2281        FILE_MEMORY_PRESSURE_ENABLED,
2282        FILE_MEMORY_PRESSURE,
2283        FILE_SPREAD_PAGE,
2284        FILE_SPREAD_SLAB,
2285} cpuset_filetype_t;
2286
2287static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2288                            u64 val)
2289{
2290        struct cpuset *cs = css_cs(css);
2291        cpuset_filetype_t type = cft->private;
2292        int retval = 0;
2293
2294        get_online_cpus();
2295        percpu_down_write(&cpuset_rwsem);
2296        if (!is_cpuset_online(cs)) {
2297                retval = -ENODEV;
2298                goto out_unlock;
2299        }
2300
2301        switch (type) {
2302        case FILE_CPU_EXCLUSIVE:
2303                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2304                break;
2305        case FILE_MEM_EXCLUSIVE:
2306                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2307                break;
2308        case FILE_MEM_HARDWALL:
2309                retval = update_flag(CS_MEM_HARDWALL, cs, val);
2310                break;
2311        case FILE_SCHED_LOAD_BALANCE:
2312                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2313                break;
2314        case FILE_MEMORY_MIGRATE:
2315                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2316                break;
2317        case FILE_MEMORY_PRESSURE_ENABLED:
2318                cpuset_memory_pressure_enabled = !!val;
2319                break;
2320        case FILE_SPREAD_PAGE:
2321                retval = update_flag(CS_SPREAD_PAGE, cs, val);
2322                break;
2323        case FILE_SPREAD_SLAB:
2324                retval = update_flag(CS_SPREAD_SLAB, cs, val);
2325                break;
2326        default:
2327                retval = -EINVAL;
2328                break;
2329        }
2330out_unlock:
2331        percpu_up_write(&cpuset_rwsem);
2332        put_online_cpus();
2333        return retval;
2334}
2335
2336static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2337                            s64 val)
2338{
2339        struct cpuset *cs = css_cs(css);
2340        cpuset_filetype_t type = cft->private;
2341        int retval = -ENODEV;
2342
2343        get_online_cpus();
2344        percpu_down_write(&cpuset_rwsem);
2345        if (!is_cpuset_online(cs))
2346                goto out_unlock;
2347
2348        switch (type) {
2349        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2350                retval = update_relax_domain_level(cs, val);
2351                break;
2352        default:
2353                retval = -EINVAL;
2354                break;
2355        }
2356out_unlock:
2357        percpu_up_write(&cpuset_rwsem);
2358        put_online_cpus();
2359        return retval;
2360}
2361
2362/*
2363 * Common handling for a write to a "cpus" or "mems" file.
2364 */
2365static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2366                                    char *buf, size_t nbytes, loff_t off)
2367{
2368        struct cpuset *cs = css_cs(of_css(of));
2369        struct cpuset *trialcs;
2370        int retval = -ENODEV;
2371
2372        buf = strstrip(buf);
2373
2374        /*
2375         * CPU or memory hotunplug may leave @cs w/o any execution
2376         * resources, in which case the hotplug code asynchronously updates
2377         * configuration and transfers all tasks to the nearest ancestor
2378         * which can execute.
2379         *
2380         * As writes to "cpus" or "mems" may restore @cs's execution
2381         * resources, wait for the previously scheduled operations before
2382         * proceeding, so that we don't end up keep removing tasks added
2383         * after execution capability is restored.
2384         *
2385         * cpuset_hotplug_work calls back into cgroup core via
2386         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2387         * operation like this one can lead to a deadlock through kernfs
2388         * active_ref protection.  Let's break the protection.  Losing the
2389         * protection is okay as we check whether @cs is online after
2390         * grabbing cpuset_mutex anyway.  This only happens on the legacy
2391         * hierarchies.
2392         */
2393        css_get(&cs->css);
2394        kernfs_break_active_protection(of->kn);
2395        flush_work(&cpuset_hotplug_work);
2396
2397        get_online_cpus();
2398        percpu_down_write(&cpuset_rwsem);
2399        if (!is_cpuset_online(cs))
2400                goto out_unlock;
2401
2402        trialcs = alloc_trial_cpuset(cs);
2403        if (!trialcs) {
2404                retval = -ENOMEM;
2405                goto out_unlock;
2406        }
2407
2408        switch (of_cft(of)->private) {
2409        case FILE_CPULIST:
2410                retval = update_cpumask(cs, trialcs, buf);
2411                break;
2412        case FILE_MEMLIST:
2413                retval = update_nodemask(cs, trialcs, buf);
2414                break;
2415        default:
2416                retval = -EINVAL;
2417                break;
2418        }
2419
2420        free_cpuset(trialcs);
2421out_unlock:
2422        percpu_up_write(&cpuset_rwsem);
2423        put_online_cpus();
2424        kernfs_unbreak_active_protection(of->kn);
2425        css_put(&cs->css);
2426        flush_workqueue(cpuset_migrate_mm_wq);
2427        return retval ?: nbytes;
2428}
2429
2430/*
2431 * These ascii lists should be read in a single call, by using a user
2432 * buffer large enough to hold the entire map.  If read in smaller
2433 * chunks, there is no guarantee of atomicity.  Since the display format
2434 * used, list of ranges of sequential numbers, is variable length,
2435 * and since these maps can change value dynamically, one could read
2436 * gibberish by doing partial reads while a list was changing.
2437 */
2438static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2439{
2440        struct cpuset *cs = css_cs(seq_css(sf));
2441        cpuset_filetype_t type = seq_cft(sf)->private;
2442        int ret = 0;
2443
2444        spin_lock_irq(&callback_lock);
2445
2446        switch (type) {
2447        case FILE_CPULIST:
2448                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2449                break;
2450        case FILE_MEMLIST:
2451                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2452                break;
2453        case FILE_EFFECTIVE_CPULIST:
2454                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2455                break;
2456        case FILE_EFFECTIVE_MEMLIST:
2457                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2458                break;
2459        case FILE_SUBPARTS_CPULIST:
2460                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2461                break;
2462        default:
2463                ret = -EINVAL;
2464        }
2465
2466        spin_unlock_irq(&callback_lock);
2467        return ret;
2468}
2469
2470static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2471{
2472        struct cpuset *cs = css_cs(css);
2473        cpuset_filetype_t type = cft->private;
2474        switch (type) {
2475        case FILE_CPU_EXCLUSIVE:
2476                return is_cpu_exclusive(cs);
2477        case FILE_MEM_EXCLUSIVE:
2478                return is_mem_exclusive(cs);
2479        case FILE_MEM_HARDWALL:
2480                return is_mem_hardwall(cs);
2481        case FILE_SCHED_LOAD_BALANCE:
2482                return is_sched_load_balance(cs);
2483        case FILE_MEMORY_MIGRATE:
2484                return is_memory_migrate(cs);
2485        case FILE_MEMORY_PRESSURE_ENABLED:
2486                return cpuset_memory_pressure_enabled;
2487        case FILE_MEMORY_PRESSURE:
2488                return fmeter_getrate(&cs->fmeter);
2489        case FILE_SPREAD_PAGE:
2490                return is_spread_page(cs);
2491        case FILE_SPREAD_SLAB:
2492                return is_spread_slab(cs);
2493        default:
2494                BUG();
2495        }
2496
2497        /* Unreachable but makes gcc happy */
2498        return 0;
2499}
2500
2501static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2502{
2503        struct cpuset *cs = css_cs(css);
2504        cpuset_filetype_t type = cft->private;
2505        switch (type) {
2506        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2507                return cs->relax_domain_level;
2508        default:
2509                BUG();
2510        }
2511
2512        /* Unrechable but makes gcc happy */
2513        return 0;
2514}
2515
2516static int sched_partition_show(struct seq_file *seq, void *v)
2517{
2518        struct cpuset *cs = css_cs(seq_css(seq));
2519
2520        switch (cs->partition_root_state) {
2521        case PRS_ENABLED:
2522                seq_puts(seq, "root\n");
2523                break;
2524        case PRS_DISABLED:
2525                seq_puts(seq, "member\n");
2526                break;
2527        case PRS_ERROR:
2528                seq_puts(seq, "root invalid\n");
2529                break;
2530        }
2531        return 0;
2532}
2533
2534static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2535                                     size_t nbytes, loff_t off)
2536{
2537        struct cpuset *cs = css_cs(of_css(of));
2538        int val;
2539        int retval = -ENODEV;
2540
2541        buf = strstrip(buf);
2542
2543        /*
2544         * Convert "root" to ENABLED, and convert "member" to DISABLED.
2545         */
2546        if (!strcmp(buf, "root"))
2547                val = PRS_ENABLED;
2548        else if (!strcmp(buf, "member"))
2549                val = PRS_DISABLED;
2550        else
2551                return -EINVAL;
2552
2553        css_get(&cs->css);
2554        get_online_cpus();
2555        percpu_down_write(&cpuset_rwsem);
2556        if (!is_cpuset_online(cs))
2557                goto out_unlock;
2558
2559        retval = update_prstate(cs, val);
2560out_unlock:
2561        percpu_up_write(&cpuset_rwsem);
2562        put_online_cpus();
2563        css_put(&cs->css);
2564        return retval ?: nbytes;
2565}
2566
2567/*
2568 * for the common functions, 'private' gives the type of file
2569 */
2570
2571static struct cftype legacy_files[] = {
2572        {
2573                .name = "cpus",
2574                .seq_show = cpuset_common_seq_show,
2575                .write = cpuset_write_resmask,
2576                .max_write_len = (100U + 6 * NR_CPUS),
2577                .private = FILE_CPULIST,
2578        },
2579
2580        {
2581                .name = "mems",
2582                .seq_show = cpuset_common_seq_show,
2583                .write = cpuset_write_resmask,
2584                .max_write_len = (100U + 6 * MAX_NUMNODES),
2585                .private = FILE_MEMLIST,
2586        },
2587
2588        {
2589                .name = "effective_cpus",
2590                .seq_show = cpuset_common_seq_show,
2591                .private = FILE_EFFECTIVE_CPULIST,
2592        },
2593
2594        {
2595                .name = "effective_mems",
2596                .seq_show = cpuset_common_seq_show,
2597                .private = FILE_EFFECTIVE_MEMLIST,
2598        },
2599
2600        {
2601                .name = "cpu_exclusive",
2602                .read_u64 = cpuset_read_u64,
2603                .write_u64 = cpuset_write_u64,
2604                .private = FILE_CPU_EXCLUSIVE,
2605        },
2606
2607        {
2608                .name = "mem_exclusive",
2609                .read_u64 = cpuset_read_u64,
2610                .write_u64 = cpuset_write_u64,
2611                .private = FILE_MEM_EXCLUSIVE,
2612        },
2613
2614        {
2615                .name = "mem_hardwall",
2616                .read_u64 = cpuset_read_u64,
2617                .write_u64 = cpuset_write_u64,
2618                .private = FILE_MEM_HARDWALL,
2619        },
2620
2621        {
2622                .name = "sched_load_balance",
2623                .read_u64 = cpuset_read_u64,
2624                .write_u64 = cpuset_write_u64,
2625                .private = FILE_SCHED_LOAD_BALANCE,
2626        },
2627
2628        {
2629                .name = "sched_relax_domain_level",
2630                .read_s64 = cpuset_read_s64,
2631                .write_s64 = cpuset_write_s64,
2632                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2633        },
2634
2635        {
2636                .name = "memory_migrate",
2637                .read_u64 = cpuset_read_u64,
2638                .write_u64 = cpuset_write_u64,
2639                .private = FILE_MEMORY_MIGRATE,
2640        },
2641
2642        {
2643                .name = "memory_pressure",
2644                .read_u64 = cpuset_read_u64,
2645                .private = FILE_MEMORY_PRESSURE,
2646        },
2647
2648        {
2649                .name = "memory_spread_page",
2650                .read_u64 = cpuset_read_u64,
2651                .write_u64 = cpuset_write_u64,
2652                .private = FILE_SPREAD_PAGE,
2653        },
2654
2655        {
2656                .name = "memory_spread_slab",
2657                .read_u64 = cpuset_read_u64,
2658                .write_u64 = cpuset_write_u64,
2659                .private = FILE_SPREAD_SLAB,
2660        },
2661
2662        {
2663                .name = "memory_pressure_enabled",
2664                .flags = CFTYPE_ONLY_ON_ROOT,
2665                .read_u64 = cpuset_read_u64,
2666                .write_u64 = cpuset_write_u64,
2667                .private = FILE_MEMORY_PRESSURE_ENABLED,
2668        },
2669
2670        { }     /* terminate */
2671};
2672
2673/*
2674 * This is currently a minimal set for the default hierarchy. It can be
2675 * expanded later on by migrating more features and control files from v1.
2676 */
2677static struct cftype dfl_files[] = {
2678        {
2679                .name = "cpus",
2680                .seq_show = cpuset_common_seq_show,
2681                .write = cpuset_write_resmask,
2682                .max_write_len = (100U + 6 * NR_CPUS),
2683                .private = FILE_CPULIST,
2684                .flags = CFTYPE_NOT_ON_ROOT,
2685        },
2686
2687        {
2688                .name = "mems",
2689                .seq_show = cpuset_common_seq_show,
2690                .write = cpuset_write_resmask,
2691                .max_write_len = (100U + 6 * MAX_NUMNODES),
2692                .private = FILE_MEMLIST,
2693                .flags = CFTYPE_NOT_ON_ROOT,
2694        },
2695
2696        {
2697                .name = "cpus.effective",
2698                .seq_show = cpuset_common_seq_show,
2699                .private = FILE_EFFECTIVE_CPULIST,
2700        },
2701
2702        {
2703                .name = "mems.effective",
2704                .seq_show = cpuset_common_seq_show,
2705                .private = FILE_EFFECTIVE_MEMLIST,
2706        },
2707
2708        {
2709                .name = "cpus.partition",
2710                .seq_show = sched_partition_show,
2711                .write = sched_partition_write,
2712                .private = FILE_PARTITION_ROOT,
2713                .flags = CFTYPE_NOT_ON_ROOT,
2714        },
2715
2716        {
2717                .name = "cpus.subpartitions",
2718                .seq_show = cpuset_common_seq_show,
2719                .private = FILE_SUBPARTS_CPULIST,
2720                .flags = CFTYPE_DEBUG,
2721        },
2722
2723        { }     /* terminate */
2724};
2725
2726
2727/*
2728 *      cpuset_css_alloc - allocate a cpuset css
2729 *      cgrp:   control group that the new cpuset will be part of
2730 */
2731
2732static struct cgroup_subsys_state *
2733cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2734{
2735        struct cpuset *cs;
2736
2737        if (!parent_css)
2738                return &top_cpuset.css;
2739
2740        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2741        if (!cs)
2742                return ERR_PTR(-ENOMEM);
2743
2744        if (alloc_cpumasks(cs, NULL)) {
2745                kfree(cs);
2746                return ERR_PTR(-ENOMEM);
2747        }
2748
2749        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2750        nodes_clear(cs->mems_allowed);
2751        nodes_clear(cs->effective_mems);
2752        fmeter_init(&cs->fmeter);
2753        cs->relax_domain_level = -1;
2754
2755        return &cs->css;
2756}
2757
2758static int cpuset_css_online(struct cgroup_subsys_state *css)
2759{
2760        struct cpuset *cs = css_cs(css);
2761        struct cpuset *parent = parent_cs(cs);
2762        struct cpuset *tmp_cs;
2763        struct cgroup_subsys_state *pos_css;
2764
2765        if (!parent)
2766                return 0;
2767
2768        get_online_cpus();
2769        percpu_down_write(&cpuset_rwsem);
2770
2771        set_bit(CS_ONLINE, &cs->flags);
2772        if (is_spread_page(parent))
2773                set_bit(CS_SPREAD_PAGE, &cs->flags);
2774        if (is_spread_slab(parent))
2775                set_bit(CS_SPREAD_SLAB, &cs->flags);
2776
2777        cpuset_inc();
2778
2779        spin_lock_irq(&callback_lock);
2780        if (is_in_v2_mode()) {
2781                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2782                cs->effective_mems = parent->effective_mems;
2783                cs->use_parent_ecpus = true;
2784                parent->child_ecpus_count++;
2785        }
2786        spin_unlock_irq(&callback_lock);
2787
2788        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2789                goto out_unlock;
2790
2791        /*
2792         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2793         * set.  This flag handling is implemented in cgroup core for
2794         * histrical reasons - the flag may be specified during mount.
2795         *
2796         * Currently, if any sibling cpusets have exclusive cpus or mem, we
2797         * refuse to clone the configuration - thereby refusing the task to
2798         * be entered, and as a result refusing the sys_unshare() or
2799         * clone() which initiated it.  If this becomes a problem for some
2800         * users who wish to allow that scenario, then this could be
2801         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2802         * (and likewise for mems) to the new cgroup.
2803         */
2804        rcu_read_lock();
2805        cpuset_for_each_child(tmp_cs, pos_css, parent) {
2806                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2807                        rcu_read_unlock();
2808                        goto out_unlock;
2809                }
2810        }
2811        rcu_read_unlock();
2812
2813        spin_lock_irq(&callback_lock);
2814        cs->mems_allowed = parent->mems_allowed;
2815        cs->effective_mems = parent->mems_allowed;
2816        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2817        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2818        spin_unlock_irq(&callback_lock);
2819out_unlock:
2820        percpu_up_write(&cpuset_rwsem);
2821        put_online_cpus();
2822        return 0;
2823}
2824
2825/*
2826 * If the cpuset being removed has its flag 'sched_load_balance'
2827 * enabled, then simulate turning sched_load_balance off, which
2828 * will call rebuild_sched_domains_locked(). That is not needed
2829 * in the default hierarchy where only changes in partition
2830 * will cause repartitioning.
2831 *
2832 * If the cpuset has the 'sched.partition' flag enabled, simulate
2833 * turning 'sched.partition" off.
2834 */
2835
2836static void cpuset_css_offline(struct cgroup_subsys_state *css)
2837{
2838        struct cpuset *cs = css_cs(css);
2839
2840        get_online_cpus();
2841        percpu_down_write(&cpuset_rwsem);
2842
2843        if (is_partition_root(cs))
2844                update_prstate(cs, 0);
2845
2846        if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2847            is_sched_load_balance(cs))
2848                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2849
2850        if (cs->use_parent_ecpus) {
2851                struct cpuset *parent = parent_cs(cs);
2852
2853                cs->use_parent_ecpus = false;
2854                parent->child_ecpus_count--;
2855        }
2856
2857        cpuset_dec();
2858        clear_bit(CS_ONLINE, &cs->flags);
2859
2860        percpu_up_write(&cpuset_rwsem);
2861        put_online_cpus();
2862}
2863
2864static void cpuset_css_free(struct cgroup_subsys_state *css)
2865{
2866        struct cpuset *cs = css_cs(css);
2867
2868        free_cpuset(cs);
2869}
2870
2871static void cpuset_bind(struct cgroup_subsys_state *root_css)
2872{
2873        percpu_down_write(&cpuset_rwsem);
2874        spin_lock_irq(&callback_lock);
2875
2876        if (is_in_v2_mode()) {
2877                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2878                top_cpuset.mems_allowed = node_possible_map;
2879        } else {
2880                cpumask_copy(top_cpuset.cpus_allowed,
2881                             top_cpuset.effective_cpus);
2882                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2883        }
2884
2885        spin_unlock_irq(&callback_lock);
2886        percpu_up_write(&cpuset_rwsem);
2887}
2888
2889/*
2890 * Make sure the new task conform to the current state of its parent,
2891 * which could have been changed by cpuset just after it inherits the
2892 * state from the parent and before it sits on the cgroup's task list.
2893 */
2894static void cpuset_fork(struct task_struct *task)
2895{
2896        if (task_css_is_root(task, cpuset_cgrp_id))
2897                return;
2898
2899        set_cpus_allowed_ptr(task, current->cpus_ptr);
2900        task->mems_allowed = current->mems_allowed;
2901}
2902
2903struct cgroup_subsys cpuset_cgrp_subsys = {
2904        .css_alloc      = cpuset_css_alloc,
2905        .css_online     = cpuset_css_online,
2906        .css_offline    = cpuset_css_offline,
2907        .css_free       = cpuset_css_free,
2908        .can_attach     = cpuset_can_attach,
2909        .cancel_attach  = cpuset_cancel_attach,
2910        .attach         = cpuset_attach,
2911        .post_attach    = cpuset_post_attach,
2912        .bind           = cpuset_bind,
2913        .fork           = cpuset_fork,
2914        .legacy_cftypes = legacy_files,
2915        .dfl_cftypes    = dfl_files,
2916        .early_init     = true,
2917        .threaded       = true,
2918};
2919
2920/**
2921 * cpuset_init - initialize cpusets at system boot
2922 *
2923 * Description: Initialize top_cpuset
2924 **/
2925
2926int __init cpuset_init(void)
2927{
2928        BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2929
2930        BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2931        BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2932        BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2933
2934        cpumask_setall(top_cpuset.cpus_allowed);
2935        nodes_setall(top_cpuset.mems_allowed);
2936        cpumask_setall(top_cpuset.effective_cpus);
2937        nodes_setall(top_cpuset.effective_mems);
2938
2939        fmeter_init(&top_cpuset.fmeter);
2940        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2941        top_cpuset.relax_domain_level = -1;
2942
2943        BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2944
2945        return 0;
2946}
2947
2948/*
2949 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2950 * or memory nodes, we need to walk over the cpuset hierarchy,
2951 * removing that CPU or node from all cpusets.  If this removes the
2952 * last CPU or node from a cpuset, then move the tasks in the empty
2953 * cpuset to its next-highest non-empty parent.
2954 */
2955static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2956{
2957        struct cpuset *parent;
2958
2959        /*
2960         * Find its next-highest non-empty parent, (top cpuset
2961         * has online cpus, so can't be empty).
2962         */
2963        parent = parent_cs(cs);
2964        while (cpumask_empty(parent->cpus_allowed) ||
2965                        nodes_empty(parent->mems_allowed))
2966                parent = parent_cs(parent);
2967
2968        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2969                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2970                pr_cont_cgroup_name(cs->css.cgroup);
2971                pr_cont("\n");
2972        }
2973}
2974
2975static void
2976hotplug_update_tasks_legacy(struct cpuset *cs,
2977                            struct cpumask *new_cpus, nodemask_t *new_mems,
2978                            bool cpus_updated, bool mems_updated)
2979{
2980        bool is_empty;
2981
2982        spin_lock_irq(&callback_lock);
2983        cpumask_copy(cs->cpus_allowed, new_cpus);
2984        cpumask_copy(cs->effective_cpus, new_cpus);
2985        cs->mems_allowed = *new_mems;
2986        cs->effective_mems = *new_mems;
2987        spin_unlock_irq(&callback_lock);
2988
2989        /*
2990         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2991         * as the tasks will be migratecd to an ancestor.
2992         */
2993        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2994                update_tasks_cpumask(cs);
2995        if (mems_updated && !nodes_empty(cs->mems_allowed))
2996                update_tasks_nodemask(cs);
2997
2998        is_empty = cpumask_empty(cs->cpus_allowed) ||
2999                   nodes_empty(cs->mems_allowed);
3000
3001        percpu_up_write(&cpuset_rwsem);
3002
3003        /*
3004         * Move tasks to the nearest ancestor with execution resources,
3005         * This is full cgroup operation which will also call back into
3006         * cpuset. Should be done outside any lock.
3007         */
3008        if (is_empty)
3009                remove_tasks_in_empty_cpuset(cs);
3010
3011        percpu_down_write(&cpuset_rwsem);
3012}
3013
3014static void
3015hotplug_update_tasks(struct cpuset *cs,
3016                     struct cpumask *new_cpus, nodemask_t *new_mems,
3017                     bool cpus_updated, bool mems_updated)
3018{
3019        if (cpumask_empty(new_cpus))
3020                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3021        if (nodes_empty(*new_mems))
3022                *new_mems = parent_cs(cs)->effective_mems;
3023
3024        spin_lock_irq(&callback_lock);
3025        cpumask_copy(cs->effective_cpus, new_cpus);
3026        cs->effective_mems = *new_mems;
3027        spin_unlock_irq(&callback_lock);
3028
3029        if (cpus_updated)
3030                update_tasks_cpumask(cs);
3031        if (mems_updated)
3032                update_tasks_nodemask(cs);
3033}
3034
3035static bool force_rebuild;
3036
3037void cpuset_force_rebuild(void)
3038{
3039        force_rebuild = true;
3040}
3041
3042/**
3043 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3044 * @cs: cpuset in interest
3045 * @tmp: the tmpmasks structure pointer
3046 *
3047 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3048 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3049 * all its tasks are moved to the nearest ancestor with both resources.
3050 */
3051static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3052{
3053        static cpumask_t new_cpus;
3054        static nodemask_t new_mems;
3055        bool cpus_updated;
3056        bool mems_updated;
3057        struct cpuset *parent;
3058retry:
3059        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3060
3061        percpu_down_write(&cpuset_rwsem);
3062
3063        /*
3064         * We have raced with task attaching. We wait until attaching
3065         * is finished, so we won't attach a task to an empty cpuset.
3066         */
3067        if (cs->attach_in_progress) {
3068                percpu_up_write(&cpuset_rwsem);
3069                goto retry;
3070        }
3071
3072        parent =  parent_cs(cs);
3073        compute_effective_cpumask(&new_cpus, cs, parent);
3074        nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3075
3076        if (cs->nr_subparts_cpus)
3077                /*
3078                 * Make sure that CPUs allocated to child partitions
3079                 * do not show up in effective_cpus.
3080                 */
3081                cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3082
3083        if (!tmp || !cs->partition_root_state)
3084                goto update_tasks;
3085
3086        /*
3087         * In the unlikely event that a partition root has empty
3088         * effective_cpus or its parent becomes erroneous, we have to
3089         * transition it to the erroneous state.
3090         */
3091        if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3092           (parent->partition_root_state == PRS_ERROR))) {
3093                if (cs->nr_subparts_cpus) {
3094                        cs->nr_subparts_cpus = 0;
3095                        cpumask_clear(cs->subparts_cpus);
3096                        compute_effective_cpumask(&new_cpus, cs, parent);
3097                }
3098
3099                /*
3100                 * If the effective_cpus is empty because the child
3101                 * partitions take away all the CPUs, we can keep
3102                 * the current partition and let the child partitions
3103                 * fight for available CPUs.
3104                 */
3105                if ((parent->partition_root_state == PRS_ERROR) ||
3106                     cpumask_empty(&new_cpus)) {
3107                        update_parent_subparts_cpumask(cs, partcmd_disable,
3108                                                       NULL, tmp);
3109                        cs->partition_root_state = PRS_ERROR;
3110                }
3111                cpuset_force_rebuild();
3112        }
3113
3114        /*
3115         * On the other hand, an erroneous partition root may be transitioned
3116         * back to a regular one or a partition root with no CPU allocated
3117         * from the parent may change to erroneous.
3118         */
3119        if (is_partition_root(parent) &&
3120           ((cs->partition_root_state == PRS_ERROR) ||
3121            !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3122             update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3123                cpuset_force_rebuild();
3124
3125update_tasks:
3126        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3127        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3128
3129        if (is_in_v2_mode())
3130                hotplug_update_tasks(cs, &new_cpus, &new_mems,
3131                                     cpus_updated, mems_updated);
3132        else
3133                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3134                                            cpus_updated, mems_updated);
3135
3136        percpu_up_write(&cpuset_rwsem);
3137}
3138
3139/**
3140 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3141 *
3142 * This function is called after either CPU or memory configuration has
3143 * changed and updates cpuset accordingly.  The top_cpuset is always
3144 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3145 * order to make cpusets transparent (of no affect) on systems that are
3146 * actively using CPU hotplug but making no active use of cpusets.
3147 *
3148 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3149 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3150 * all descendants.
3151 *
3152 * Note that CPU offlining during suspend is ignored.  We don't modify
3153 * cpusets across suspend/resume cycles at all.
3154 */
3155static void cpuset_hotplug_workfn(struct work_struct *work)
3156{
3157        static cpumask_t new_cpus;
3158        static nodemask_t new_mems;
3159        bool cpus_updated, mems_updated;
3160        bool on_dfl = is_in_v2_mode();
3161        struct tmpmasks tmp, *ptmp = NULL;
3162
3163        if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3164                ptmp = &tmp;
3165
3166        percpu_down_write(&cpuset_rwsem);
3167
3168        /* fetch the available cpus/mems and find out which changed how */
3169        cpumask_copy(&new_cpus, cpu_active_mask);
3170        new_mems = node_states[N_MEMORY];
3171
3172        /*
3173         * If subparts_cpus is populated, it is likely that the check below
3174         * will produce a false positive on cpus_updated when the cpu list
3175         * isn't changed. It is extra work, but it is better to be safe.
3176         */
3177        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3178        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3179
3180        /* synchronize cpus_allowed to cpu_active_mask */
3181        if (cpus_updated) {
3182                spin_lock_irq(&callback_lock);
3183                if (!on_dfl)
3184                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3185                /*
3186                 * Make sure that CPUs allocated to child partitions
3187                 * do not show up in effective_cpus. If no CPU is left,
3188                 * we clear the subparts_cpus & let the child partitions
3189                 * fight for the CPUs again.
3190                 */
3191                if (top_cpuset.nr_subparts_cpus) {
3192                        if (cpumask_subset(&new_cpus,
3193                                           top_cpuset.subparts_cpus)) {
3194                                top_cpuset.nr_subparts_cpus = 0;
3195                                cpumask_clear(top_cpuset.subparts_cpus);
3196                        } else {
3197                                cpumask_andnot(&new_cpus, &new_cpus,
3198                                               top_cpuset.subparts_cpus);
3199                        }
3200                }
3201                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3202                spin_unlock_irq(&callback_lock);
3203                /* we don't mess with cpumasks of tasks in top_cpuset */
3204        }
3205
3206        /* synchronize mems_allowed to N_MEMORY */
3207        if (mems_updated) {
3208                spin_lock_irq(&callback_lock);
3209                if (!on_dfl)
3210                        top_cpuset.mems_allowed = new_mems;
3211                top_cpuset.effective_mems = new_mems;
3212                spin_unlock_irq(&callback_lock);
3213                update_tasks_nodemask(&top_cpuset);
3214        }
3215
3216        percpu_up_write(&cpuset_rwsem);
3217
3218        /* if cpus or mems changed, we need to propagate to descendants */
3219        if (cpus_updated || mems_updated) {
3220                struct cpuset *cs;
3221                struct cgroup_subsys_state *pos_css;
3222
3223                rcu_read_lock();
3224                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3225                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3226                                continue;
3227                        rcu_read_unlock();
3228
3229                        cpuset_hotplug_update_tasks(cs, ptmp);
3230
3231                        rcu_read_lock();
3232                        css_put(&cs->css);
3233                }
3234                rcu_read_unlock();
3235        }
3236
3237        /* rebuild sched domains if cpus_allowed has changed */
3238        if (cpus_updated || force_rebuild) {
3239                force_rebuild = false;
3240                rebuild_sched_domains();
3241        }
3242
3243        free_cpumasks(NULL, ptmp);
3244}
3245
3246void cpuset_update_active_cpus(void)
3247{
3248        /*
3249         * We're inside cpu hotplug critical region which usually nests
3250         * inside cgroup synchronization.  Bounce actual hotplug processing
3251         * to a work item to avoid reverse locking order.
3252         */
3253        schedule_work(&cpuset_hotplug_work);
3254}
3255
3256void cpuset_wait_for_hotplug(void)
3257{
3258        flush_work(&cpuset_hotplug_work);
3259}
3260
3261/*
3262 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3263 * Call this routine anytime after node_states[N_MEMORY] changes.
3264 * See cpuset_update_active_cpus() for CPU hotplug handling.
3265 */
3266static int cpuset_track_online_nodes(struct notifier_block *self,
3267                                unsigned long action, void *arg)
3268{
3269        schedule_work(&cpuset_hotplug_work);
3270        return NOTIFY_OK;
3271}
3272
3273static struct notifier_block cpuset_track_online_nodes_nb = {
3274        .notifier_call = cpuset_track_online_nodes,
3275        .priority = 10,         /* ??! */
3276};
3277
3278/**
3279 * cpuset_init_smp - initialize cpus_allowed
3280 *
3281 * Description: Finish top cpuset after cpu, node maps are initialized
3282 */
3283void __init cpuset_init_smp(void)
3284{
3285        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3286        top_cpuset.mems_allowed = node_states[N_MEMORY];
3287        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3288
3289        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3290        top_cpuset.effective_mems = node_states[N_MEMORY];
3291
3292        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3293
3294        cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3295        BUG_ON(!cpuset_migrate_mm_wq);
3296}
3297
3298/**
3299 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3300 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3301 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3302 *
3303 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3304 * attached to the specified @tsk.  Guaranteed to return some non-empty
3305 * subset of cpu_online_mask, even if this means going outside the
3306 * tasks cpuset.
3307 **/
3308
3309void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3310{
3311        unsigned long flags;
3312
3313        spin_lock_irqsave(&callback_lock, flags);
3314        rcu_read_lock();
3315        guarantee_online_cpus(task_cs(tsk), pmask);
3316        rcu_read_unlock();
3317        spin_unlock_irqrestore(&callback_lock, flags);
3318}
3319
3320/**
3321 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3322 * @tsk: pointer to task_struct with which the scheduler is struggling
3323 *
3324 * Description: In the case that the scheduler cannot find an allowed cpu in
3325 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3326 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3327 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3328 * This is the absolute last resort for the scheduler and it is only used if
3329 * _every_ other avenue has been traveled.
3330 **/
3331
3332void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3333{
3334        rcu_read_lock();
3335        do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3336                task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3337        rcu_read_unlock();
3338
3339        /*
3340         * We own tsk->cpus_allowed, nobody can change it under us.
3341         *
3342         * But we used cs && cs->cpus_allowed lockless and thus can
3343         * race with cgroup_attach_task() or update_cpumask() and get
3344         * the wrong tsk->cpus_allowed. However, both cases imply the
3345         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3346         * which takes task_rq_lock().
3347         *
3348         * If we are called after it dropped the lock we must see all
3349         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3350         * set any mask even if it is not right from task_cs() pov,
3351         * the pending set_cpus_allowed_ptr() will fix things.
3352         *
3353         * select_fallback_rq() will fix things ups and set cpu_possible_mask
3354         * if required.
3355         */
3356}
3357
3358void __init cpuset_init_current_mems_allowed(void)
3359{
3360        nodes_setall(current->mems_allowed);
3361}
3362
3363/**
3364 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3365 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3366 *
3367 * Description: Returns the nodemask_t mems_allowed of the cpuset
3368 * attached to the specified @tsk.  Guaranteed to return some non-empty
3369 * subset of node_states[N_MEMORY], even if this means going outside the
3370 * tasks cpuset.
3371 **/
3372
3373nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3374{
3375        nodemask_t mask;
3376        unsigned long flags;
3377
3378        spin_lock_irqsave(&callback_lock, flags);
3379        rcu_read_lock();
3380        guarantee_online_mems(task_cs(tsk), &mask);
3381        rcu_read_unlock();
3382        spin_unlock_irqrestore(&callback_lock, flags);
3383
3384        return mask;
3385}
3386
3387/**
3388 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3389 * @nodemask: the nodemask to be checked
3390 *
3391 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3392 */
3393int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3394{
3395        return nodes_intersects(*nodemask, current->mems_allowed);
3396}
3397
3398/*
3399 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3400 * mem_hardwall ancestor to the specified cpuset.  Call holding
3401 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3402 * (an unusual configuration), then returns the root cpuset.
3403 */
3404static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3405{
3406        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3407                cs = parent_cs(cs);
3408        return cs;
3409}
3410
3411/**
3412 * cpuset_node_allowed - Can we allocate on a memory node?
3413 * @node: is this an allowed node?
3414 * @gfp_mask: memory allocation flags
3415 *
3416 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3417 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3418 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3419 * yes.  If current has access to memory reserves as an oom victim, yes.
3420 * Otherwise, no.
3421 *
3422 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3423 * and do not allow allocations outside the current tasks cpuset
3424 * unless the task has been OOM killed.
3425 * GFP_KERNEL allocations are not so marked, so can escape to the
3426 * nearest enclosing hardwalled ancestor cpuset.
3427 *
3428 * Scanning up parent cpusets requires callback_lock.  The
3429 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3430 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3431 * current tasks mems_allowed came up empty on the first pass over
3432 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3433 * cpuset are short of memory, might require taking the callback_lock.
3434 *
3435 * The first call here from mm/page_alloc:get_page_from_freelist()
3436 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3437 * so no allocation on a node outside the cpuset is allowed (unless
3438 * in interrupt, of course).
3439 *
3440 * The second pass through get_page_from_freelist() doesn't even call
3441 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3442 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3443 * in alloc_flags.  That logic and the checks below have the combined
3444 * affect that:
3445 *      in_interrupt - any node ok (current task context irrelevant)
3446 *      GFP_ATOMIC   - any node ok
3447 *      tsk_is_oom_victim   - any node ok
3448 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3449 *      GFP_USER     - only nodes in current tasks mems allowed ok.
3450 */
3451bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3452{
3453        struct cpuset *cs;              /* current cpuset ancestors */
3454        int allowed;                    /* is allocation in zone z allowed? */
3455        unsigned long flags;
3456
3457        if (in_interrupt())
3458                return true;
3459        if (node_isset(node, current->mems_allowed))
3460                return true;
3461        /*
3462         * Allow tasks that have access to memory reserves because they have
3463         * been OOM killed to get memory anywhere.
3464         */
3465        if (unlikely(tsk_is_oom_victim(current)))
3466                return true;
3467        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
3468                return false;
3469
3470        if (current->flags & PF_EXITING) /* Let dying task have memory */
3471                return true;
3472
3473        /* Not hardwall and node outside mems_allowed: scan up cpusets */
3474        spin_lock_irqsave(&callback_lock, flags);
3475
3476        rcu_read_lock();
3477        cs = nearest_hardwall_ancestor(task_cs(current));
3478        allowed = node_isset(node, cs->mems_allowed);
3479        rcu_read_unlock();
3480
3481        spin_unlock_irqrestore(&callback_lock, flags);
3482        return allowed;
3483}
3484
3485/**
3486 * cpuset_mem_spread_node() - On which node to begin search for a file page
3487 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3488 *
3489 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3490 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3491 * and if the memory allocation used cpuset_mem_spread_node()
3492 * to determine on which node to start looking, as it will for
3493 * certain page cache or slab cache pages such as used for file
3494 * system buffers and inode caches, then instead of starting on the
3495 * local node to look for a free page, rather spread the starting
3496 * node around the tasks mems_allowed nodes.
3497 *
3498 * We don't have to worry about the returned node being offline
3499 * because "it can't happen", and even if it did, it would be ok.
3500 *
3501 * The routines calling guarantee_online_mems() are careful to
3502 * only set nodes in task->mems_allowed that are online.  So it
3503 * should not be possible for the following code to return an
3504 * offline node.  But if it did, that would be ok, as this routine
3505 * is not returning the node where the allocation must be, only
3506 * the node where the search should start.  The zonelist passed to
3507 * __alloc_pages() will include all nodes.  If the slab allocator
3508 * is passed an offline node, it will fall back to the local node.
3509 * See kmem_cache_alloc_node().
3510 */
3511
3512static int cpuset_spread_node(int *rotor)
3513{
3514        return *rotor = next_node_in(*rotor, current->mems_allowed);
3515}
3516
3517int cpuset_mem_spread_node(void)
3518{
3519        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3520                current->cpuset_mem_spread_rotor =
3521                        node_random(&current->mems_allowed);
3522
3523        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3524}
3525
3526int cpuset_slab_spread_node(void)
3527{
3528        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3529                current->cpuset_slab_spread_rotor =
3530                        node_random(&current->mems_allowed);
3531
3532        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3533}
3534
3535EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3536
3537/**
3538 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3539 * @tsk1: pointer to task_struct of some task.
3540 * @tsk2: pointer to task_struct of some other task.
3541 *
3542 * Description: Return true if @tsk1's mems_allowed intersects the
3543 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3544 * one of the task's memory usage might impact the memory available
3545 * to the other.
3546 **/
3547
3548int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3549                                   const struct task_struct *tsk2)
3550{
3551        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3552}
3553
3554/**
3555 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3556 *
3557 * Description: Prints current's name, cpuset name, and cached copy of its
3558 * mems_allowed to the kernel log.
3559 */
3560void cpuset_print_current_mems_allowed(void)
3561{
3562        struct cgroup *cgrp;
3563
3564        rcu_read_lock();
3565
3566        cgrp = task_cs(current)->css.cgroup;
3567        pr_cont(",cpuset=");
3568        pr_cont_cgroup_name(cgrp);
3569        pr_cont(",mems_allowed=%*pbl",
3570                nodemask_pr_args(&current->mems_allowed));
3571
3572        rcu_read_unlock();
3573}
3574
3575/*
3576 * Collection of memory_pressure is suppressed unless
3577 * this flag is enabled by writing "1" to the special
3578 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3579 */
3580
3581int cpuset_memory_pressure_enabled __read_mostly;
3582
3583/**
3584 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3585 *
3586 * Keep a running average of the rate of synchronous (direct)
3587 * page reclaim efforts initiated by tasks in each cpuset.
3588 *
3589 * This represents the rate at which some task in the cpuset
3590 * ran low on memory on all nodes it was allowed to use, and
3591 * had to enter the kernels page reclaim code in an effort to
3592 * create more free memory by tossing clean pages or swapping
3593 * or writing dirty pages.
3594 *
3595 * Display to user space in the per-cpuset read-only file
3596 * "memory_pressure".  Value displayed is an integer
3597 * representing the recent rate of entry into the synchronous
3598 * (direct) page reclaim by any task attached to the cpuset.
3599 **/
3600
3601void __cpuset_memory_pressure_bump(void)
3602{
3603        rcu_read_lock();
3604        fmeter_markevent(&task_cs(current)->fmeter);
3605        rcu_read_unlock();
3606}
3607
3608#ifdef CONFIG_PROC_PID_CPUSET
3609/*
3610 * proc_cpuset_show()
3611 *  - Print tasks cpuset path into seq_file.
3612 *  - Used for /proc/<pid>/cpuset.
3613 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3614 *    doesn't really matter if tsk->cpuset changes after we read it,
3615 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3616 *    anyway.
3617 */
3618int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3619                     struct pid *pid, struct task_struct *tsk)
3620{
3621        char *buf;
3622        struct cgroup_subsys_state *css;
3623        int retval;
3624
3625        retval = -ENOMEM;
3626        buf = kmalloc(PATH_MAX, GFP_KERNEL);
3627        if (!buf)
3628                goto out;
3629
3630        css = task_get_css(tsk, cpuset_cgrp_id);
3631        retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3632                                current->nsproxy->cgroup_ns);
3633        css_put(css);
3634        if (retval >= PATH_MAX)
3635                retval = -ENAMETOOLONG;
3636        if (retval < 0)
3637                goto out_free;
3638        seq_puts(m, buf);
3639        seq_putc(m, '\n');
3640        retval = 0;
3641out_free:
3642        kfree(buf);
3643out:
3644        return retval;
3645}
3646#endif /* CONFIG_PROC_PID_CPUSET */
3647
3648/* Display task mems_allowed in /proc/<pid>/status file. */
3649void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3650{
3651        seq_printf(m, "Mems_allowed:\t%*pb\n",
3652                   nodemask_pr_args(&task->mems_allowed));
3653        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3654                   nodemask_pr_args(&task->mems_allowed));
3655}
3656